WO2010087385A1 - 成膜装置およびガス吐出部材 - Google Patents

成膜装置およびガス吐出部材 Download PDF

Info

Publication number
WO2010087385A1
WO2010087385A1 PCT/JP2010/051090 JP2010051090W WO2010087385A1 WO 2010087385 A1 WO2010087385 A1 WO 2010087385A1 JP 2010051090 W JP2010051090 W JP 2010051090W WO 2010087385 A1 WO2010087385 A1 WO 2010087385A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
forming apparatus
processed
substrate
film forming
Prior art date
Application number
PCT/JP2010/051090
Other languages
English (en)
French (fr)
Inventor
輝夫 岩田
亮 桑嶋
学 網倉
毅 橋本
博章 内田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to EP10735850A priority Critical patent/EP2383774A1/en
Priority to CN2010800060854A priority patent/CN102301460A/zh
Priority to KR1020117020104A priority patent/KR101336363B1/ko
Priority to JP2010548540A priority patent/JP5513413B2/ja
Publication of WO2010087385A1 publication Critical patent/WO2010087385A1/ja
Priority to US13/194,206 priority patent/US20110283942A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a film forming apparatus that discharges a processing gas through a gas discharging member and forms a film such as a high dielectric constant film on a substrate to be processed by the reaction, and a gas discharging member used therefor.
  • the gate insulating film has a SiO 2 capacitance equivalent film thickness.
  • EOT Equivalent Oxide Thickness
  • High-k material As a material for realizing such a thin insulating film without increasing the gate leakage current, a high dielectric constant material, so-called High-k material, has attracted attention.
  • a high dielectric constant material When a high dielectric constant material is used as a gate insulating film, it must be thermodynamically stable without interdiffusion with the silicon substrate. From this point of view, oxides of hafnium, zirconium or lanthanum elements or silicates thereof, etc. Is promising.
  • a mounting table for mounting a semiconductor wafer as a substrate to be processed is provided in the chamber, What provided the shower plate which has a gas discharge hole so as to oppose a mounting base is used.
  • the semiconductor wafer on the mounting table is heated and a process gas for film formation is discharged from the gas discharge hole of the shower plate to cause a reaction of the process gas on the substrate to be processed.
  • a predetermined film is formed on the surface of the processing substrate.
  • a shower plate generally made of aluminum or an aluminum alloy is used, and a thin anodized film (anodized on the surface facing the substrate to be processed for the purpose of adjusting the radiation rate and improving the corrosion resistance. Film) is formed (JP 2000-303180 A, etc.).
  • a film made of a high dielectric constant material such as hafnium oxide high dielectric constant film
  • a film is also formed on the surface of the shower plate during the film formation.
  • the film formed on the shower plate cracks, peels off, or drops off as the film is formed repeatedly, and the film thickness reproducibility on the wafer and the in-plane film thickness distribution are stable. The number of particles on the wafer tends to deteriorate.
  • An object of the present invention is to provide a film forming apparatus in which a film formed on the surface of a gas discharge member is hardly cracked, peeled off, or dropped off during a film forming process, and a gas discharge member used therefor.
  • the present inventors have found that when a conventional gas discharge member made of aluminum or an aluminum alloy is used, a high dielectric constant film typified by hafnium oxide is used at the processing temperature.
  • the coefficient of thermal expansion is significantly different from the coefficient of thermal expansion of the main body of the gas discharge member, and the high dielectric constant film attached to the gas discharge member during film formation tends to peel off due to the difference in thermal expansion from the main body during the film formation process.
  • Such a peeling is not limited to the high dielectric constant film, and is likely to occur when the difference in thermal expansion between the gas discharge member and the film to be deposited is 5 ⁇ 10 ⁇ 6 / ° C. or more at the deposition temperature.
  • the difference in thermal expansion coefficient between the gas discharge member and the film to be deposited is smaller than 5 ⁇ 10 ⁇ 6 / ° C., but the thermal expansion coefficient between the gas discharge member body and the film is effective. Even if the difference is 5 ⁇ 10 ⁇ 6 / ° C. or more, an oxide film having a thermal expansion coefficient difference smaller than 5 ⁇ 10 ⁇ 6 / ° C. with respect to the film to be deposited on the surface of the gas discharge member is 10 ⁇ m or more. It has been found that the difference in thermal expansion between the gas discharge member and the film formed on the gas discharge member can be alleviated if it is formed.
  • the heat of the gas discharge member and the film formed on the gas discharge member is formed by forming an anodized film with a thickness of 10 ⁇ m or more on the surface.
  • the expansion difference can be reduced.
  • the emissivity of the gas discharge member when the emissivity of the gas discharge member is smaller than the emissivity of the film, the emissivity of the gas discharge member gradually changes as the film formation on the gas discharge member proceeds, and the emissivity thereof
  • the temperature of the gas discharge member rises due to an increase in radiation input heat due to the change in the temperature, but if the temperature rise is large, the stress is applied to the film due to the difference in thermal expansion between the gas discharge member and the film formed therewith. It has been found that there is a risk of occurrence of cracks.
  • the present invention has been completed based on such knowledge.
  • a film forming apparatus for reacting a processing gas on a heated substrate to be processed and forming a film on the surface of the substrate to be processed.
  • a gas discharge member that discharges the processing gas toward the substrate to be processed, the gas discharge member having a thermal expansion coefficient higher than that of the film by 5 ⁇ 10 ⁇ 6 / ° C. or more at the film forming temperature.
  • a film forming apparatus in which an oxide film having a thickness of 10 ⁇ m or more formed by oxidizing the main body is provided on a surface of the main body facing the mounting table.
  • a film forming apparatus for reacting a processing gas on a heated substrate to be processed, and forming a film on the surface of the substrate to be processed, which contains the substrate to be processed.
  • a processing container a mounting table for mounting the substrate to be processed in the processing container, a heating mechanism for heating the substrate to be processed on the mounting table, and provided in the processing container facing the mounting table;
  • a gas discharge member that discharges the processing gas toward the substrate to be processed.
  • the gas discharge member is made of a material having a difference in thermal expansion coefficient from the film at a film forming temperature of less than 5 ⁇ 10 ⁇ 6 / ° C.
  • a film forming apparatus is provided.
  • a film forming apparatus for reacting a processing gas on a heated substrate to be processed, and forming a film on the surface of the substrate to be processed, which contains the substrate to be processed.
  • a processing container a mounting table for mounting the substrate to be processed in the processing container, a heating mechanism for heating the substrate to be processed on the mounting table, and provided in the processing container facing the mounting table;
  • a gas discharge member that discharges the processing gas toward the substrate to be processed; and the gas discharge member has an emissivity between the main body and the film formed on a surface of the main body facing the mounting table.
  • a film forming apparatus having a film having a difference of 0.09 or less is provided.
  • a gas discharge member that is provided opposite to a mounting table on which a target object is mounted and discharges the processing gas toward a target substrate, and has a thermal expansion coefficient of 5 ⁇ 10 5 higher than that of the film at a film forming temperature.
  • a gas discharge member having a main body higher by ⁇ 6 / ° C. or more and an oxide film having a thickness of 10 ⁇ m or more formed by oxidizing the main body on the surface of the main body facing the mounting table.
  • a gas discharge member that is provided to face a mounting table on which a target object is mounted and discharges the processing gas toward a target substrate, and has a thermal expansion coefficient difference of 5 ⁇ from the film at a film forming temperature.
  • a gas discharge member made of a material smaller than 10 ⁇ 6 / ° C. is provided.
  • a gas discharge member that is provided facing a mounting table on which a target object is mounted and discharges the processing gas toward a substrate to be processed, and is formed on a main body and a surface of the main body facing the mounting table.
  • a gas discharge member having a film whose emissivity difference from the film is 0.09 or less is provided.
  • a film forming apparatus equipped with a shower plate having an anodic oxide film having a thickness of 20 ⁇ m 0.12 ⁇ m in a wafer sampled every 20th when a HfSiO x film was continuously formed on 10,000 wafers. It is a figure which shows the number of the particle
  • a peeling test on the surface of the shower plate was performed after continuously forming a HfO 2 film on 10,000 wafers with a conventional film forming apparatus equipped with a shower plate having an anodized film having a thickness of 0.7 ⁇ m. It is a photograph which shows a result.
  • a peeling test on the surface of the shower plate was performed after continuously forming a HfSiO x film on 10,000 wafers with a conventional film forming apparatus equipped with a shower plate having an anodized film having a thickness of 0.7 ⁇ m. It is a photograph which shows a result.
  • the HfO 2 film is a diagram showing the temperature change of the shower plate at the time of continuously formed with respect to 5000 wafers using conventional aluminum shower plate. Change in temperature of shower plate when HfSiO x film is continuously formed on 10,000 wafers when using a conventional aluminum shower plate and using a shower plate with an anodized film formed on the surface It is a figure which compares and shows.
  • the temperature change in the shower plate when the HfSiO x film was continuously formed by using the shower plate to form an anode oxide film on the surface is a diagram schematically illustrating. It is a figure which shows typically the state of the shower plate in the condition shown by A, B, and C of FIG. It is a figure which shows the result of having investigated the condition where the film thickness becomes thin when the film thickness of HfSiO x (Si 30%) is continuously formed on 5000 wafers, and the film thickness becomes smaller than the standard. It is sectional drawing which shows the shower plate of the film-forming apparatus which concerns on the 2nd Embodiment of this invention. It is sectional drawing which shows the shower plate of the film-forming apparatus which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a sectional view showing a film forming apparatus according to the first embodiment of the present invention.
  • This film forming apparatus 100 has a substantially cylindrical chamber 1 which is airtightly configured, and in this, a semiconductor wafer (hereinafter simply referred to as a wafer) W which is a substrate to be processed is supported horizontally.
  • the susceptor 2 is arranged in a state of being supported by a cylindrical support member 3 provided at the center lower part thereof.
  • the susceptor 2 is made of a ceramic such as AlN.
  • heaters 5 a and 5 b are embedded in the susceptor 2.
  • the heater 5a is provided at the center of the susceptor, and the heater 5b is provided in a donut shape outside the heater 5a.
  • Heater power supplies 6a and 6b are connected to these heaters 5a and 5b.
  • the heater power supply 6a and 6b are independently controlled by the heater controller 7 based on a detection signal of a thermocouple (not shown) provided in the susceptor 2 to control the temperature of the wafer W.
  • a circular hole 1b is formed in the top wall 1a of the chamber 1, and a shower head 10 is fitted so as to protrude into the chamber 1 therefrom.
  • the shower head 10 is made of aluminum or an aluminum alloy.
  • a gas inlet 11 is provided on the upper surface of the shower head 10, and a disc-shaped recess is formed in the lower portion of the shower head 10.
  • a shower plate 12 as a gas discharge member is attached to the lower surface of the shower head 10 so as to cover the recess, and a space formed by the recess and the shower plate 12 functions as a gas diffusion space 15.
  • these gases are discharged from the shower plate 12 via separate routes in the shower head 10, and these processing gases are mixed after the discharge.
  • a post-mix type may also be used.
  • a gas supply pipe 21 extending from the processing gas supply mechanism 20 is connected to the gas inlet 11 of the shower head 10.
  • the processing gas supply mechanism 20 is for supplying a processing gas for forming a predetermined film on the wafer W on the susceptor 2 into the chamber 1.
  • a hafnium oxide (HfO 2 ) film or a hafnium silicate (HfSiO x (x is 1 to 2)) film is preferably formed.
  • zirconium oxide (ZrO x ) film zirconium silicate (ZrSiO x ) film, lanthanum oxide (LaO x ) film, lanthanum silicate (LaSiO x ) film, tantalum oxide (TaO x ) film, strontium titanate (SrTiO x )
  • zirconium oxide (ZrO x ) film zirconium silicate (ZrSiO x ) film, lanthanum oxide (LaO x ) film, lanthanum silicate (LaSiO x ) film, tantalum oxide (TaO x ) film, strontium titanate (SrTiO x )
  • YO x yttrium oxide
  • TiO x titanium oxide
  • These films contain, for example, an organometallic compound and, if necessary, a silicon compound for forming an oxidant or silicate as a processing gas from the processing gas supply mechanism 20
  • the film is formed by supplying the wafer W to the wafer W.
  • an organometallic compound such as a metal alkoxide such as hafnium tetratertibutoxide (HTB) or an amine-based organometallic compound such as tetrakisdimethylaminohafnium (TDMAH) is used as the organometallic compound.
  • the oxidizing agent include O 3 gas, H 2 O gas, and O 2 gas.
  • examples of the silicon compound include silane compounds such as tetraethoxysilane (TEOS) and disilane (Si 2 H 6 ).
  • the bottom wall 1c of the chamber 1 is provided with an exhaust chamber 30 that protrudes downward.
  • An exhaust pipe 31 is connected to the side surface of the exhaust chamber 30, and an exhaust device 32 is connected to the exhaust pipe 31.
  • a loading / unloading port 33 for loading / unloading the wafer W to / from a wafer transfer chamber (not shown) and a gate valve 34 for opening / closing the loading / unloading port 33 are provided.
  • the shower plate 12 includes a body 13 made of aluminum or an aluminum alloy, which is a material having a thermal expansion coefficient higher than that of the film by 5 ⁇ 10 ⁇ 6 / ° C. It has an anodized film (Al 2 O 3 ) 14 formed on the lower surface, and a large number of gas discharge holes 12a are formed.
  • the anodic oxide film 14 has a function of mitigating a difference in thermal expansion between the main body 13 made of aluminum or aluminum alloy having a high coefficient of thermal expansion and a film adhering to the surface of the shower plate 12 during film formation.
  • the same film as the film formed on the wafer W adheres to the surface of the shower plate 12 since the same film as the film formed on the wafer W adheres to the surface of the shower plate 12, there is a large thermal expansion coefficient difference between the attached film and the main body 13. For this reason, when such a film adheres directly to the main body 13, the film may be peeled off due to a difference in thermal expansion caused by heating during the film forming process.
  • the formation of the anodic oxide film 14 on the lower surface of the main body 13 can alleviate the difference in thermal expansion between them, and the peeling of the attached film can be suppressed.
  • the thickness of the anodic oxide film 14 In order to exhibit the effect of relieving such a difference in thermal expansion, the thickness of the anodic oxide film 14 needs to be 10 ⁇ m or more.
  • the thermal expansion of the anodic oxide film 14 increases due to the influence of the thermal expansion of the main body 13, and it is difficult to sufficiently exert the effect of relaxing the thermal expansion difference. It is. Preferably it is 15 micrometers or more.
  • the film thickness of the anodic oxide film 14 from the viewpoint of exerting the effect of reducing the thermal expansion difference, the effect is saturated and the cost is increased even if it exceeds 100 ⁇ m. It becomes the upper limit.
  • the inside of the chamber 1 is evacuated to a predetermined reduced pressure state, for example, about 400 Pa, and the wafer W is heated to a predetermined temperature by the heaters 5a and 5b.
  • the heating temperature is about 200 to 600 ° C. regardless of whether the film to be formed is HfO 2 or HfSiO x .
  • a processing gas for film formation is discharged from the processing gas supply mechanism 20 toward the wafer W from the gas discharge hole 12a of the shower plate 12 through the gas supply pipe 21 and the gas diffusion space 15. Then, a reaction occurs in the processing gas on the wafer W heated in advance, and a high-k film such as an HfO 2 film or an HfSiO x film is formed on the surface of the wafer W. Such film formation is continuously performed on the plurality of wafers W.
  • the film formation reaction also occurs on the surface of the shower plate 12, so that the film to be formed also adheres to the surface of the shower plate 12.
  • the amount of film attached to the surface of the shower plate 12 increases.
  • the anodized film on the surface of the shower plate 12 is as thin as about 0.7 ⁇ m, the anodized film thermally expands by almost the same amount as that of a main body made of aluminum or aluminum alloy.
  • the thermal expansion coefficient of aluminum is 23 ⁇ 10 ⁇ 6 / ° C.
  • HfO 2 or HfSiO x Since the coefficient of thermal expansion was 5 to 8 ⁇ 10 ⁇ 6 / ° C., the difference in coefficient of thermal expansion was 15 to 18 ⁇ 10 ⁇ 6 / ° C., and the film attached to the shower plate 12 was easily peeled off.
  • an anodized film having a thickness of 10 ⁇ m or more is formed on the surface of the main body 13 of the shower plate 12, so that the film attached to the shower plate 12 is peeled off by reducing the thermal expansion difference.
  • the anodic oxide film 14 is Al 2 O 3
  • its coefficient of thermal expansion is 6 to 8 ⁇ 10 ⁇ 6 / ° C.
  • its thickness is 10 ⁇ m or more.
  • the coefficient of thermal expansion of the portion in contact with the film is close to 6-8 ⁇ 10 ⁇ 6 / ° C., and there is almost no difference in thermal expansion between the anodized film 14 and the adhered film, and the adhered film is peeled off.
  • the film forming target film is a material constituting the main body 13.
  • the film has a thermal expansion coefficient that is lower by 5 ⁇ 10 ⁇ 6 / ° C. or more than the thermal expansion coefficient at the film forming temperature.
  • hafnium silicate (HfSiO x ), lanthanum oxide (LaO x ), titanium oxide (TiO x ), tantalum oxide (TaO x ), etc. are considered to have almost the same tendency.
  • materials having a thermal expansion coefficient in this range include a zirconium oxide (ZrO x ) film, a zirconium silicate (ZrSiO x ) film, a lanthanum silicate (LaSiO x ) film, strontium titanate ( There are SrTiO x ) film, yttrium oxide (YO x ) film, and the like.
  • the shower plate as the gas discharge member is formed by forming the anodized film with a thickness of 10 ⁇ m or more on the surface of the main body made of aluminum or aluminum alloy.
  • a film having a low coefficient of thermal expansion of 5 ⁇ 10 ⁇ 6 / ° C. or more between the main body of the discharge member and the film adhering to the surface of the gas discharge member The difference in thermal expansion can be alleviated, and the film adhering to the gas discharge member can be prevented from cracking, peeling off or falling off.
  • the shower plate as a conventional gas discharge member also has an anodic oxide film formed on the surface.
  • the purpose is to adjust the radiation rate and improve the corrosion resistance. It is as thin as about 7 ⁇ m, and the thermal expansion mitigating action is hardly obtained.
  • the emissivity (radiation rate) of the anodized film 14 is 0.6 or more.
  • the emissivity (emissivity) of the anodic oxide film 14 is high, the heat absorption from the susceptor 2 becomes good, the temperature of the anodic oxide film 14 becomes high, and a film adhering to the anodic oxide film 14 is present. It becomes denser and more difficult to peel off.
  • the emissivity of the anodized film 14 can be increased by increasing the roughness of the film surface. By setting the surface roughness Ra (ISO 4287-1997) of the anodized film 14 to 3.2 or more, the emissivity can be set to 0.8 or more.
  • FIG. 3 is a diagram showing a change in the film thickness of the HfSiO x film on the wafer and a change in the film thickness when the HfSiO x film is continuously formed on 10,000 wafers.
  • the film thickness is stable, the film thickness variation between wafers up to 7000 is 0.94% at 1 ⁇ , and the film thickness variation between wafers up to 10000 is 1.60% at 1 ⁇ . And it was acceptable.
  • FIG. 4 is a diagram showing the number of particles having a size exceeding 0.12 ⁇ m on every 20 wafers sampled. As shown in this figure, it was confirmed that the number of particles having a size exceeding 0.12 ⁇ m was extremely small.
  • FIG. 5 is a diagram showing temperature changes of the shower head and the shower plate during continuous film formation of 10,000 sheets.
  • the shower head temperature did not change, but the shower plate temperature gradually increased. This is because the (emissivity) emissivity of the anodized film of the shower plate is as high as 0.6 or more.
  • FIG. 6C are photographs showing the adhesion state of the deposits on the tape after the peel test
  • FIG. 6A is a photograph of the HfSiO x film using the shower plate formed with an anodic oxide film having a thickness of 20 ⁇ m of this embodiment.
  • FIG. 6B and FIG. 6C show the results after the continuous film formation of the HfO 2 film and the HfSiO x film using a conventional shower plate, respectively. . From these photographs, it was confirmed that by using a shower plate on which a thick anodized film was formed as in the present invention, it was difficult to peel off the film attached to the surface.
  • FIG. 7 is a scanning electron microscope (SEM) photograph showing a cross section of the shower plate after the continuous film formation of 10,000 sheets. As shown in this figure, it was confirmed that no peeling occurred in the HfSiO x film formed on the shower plate. In addition, although the crack has generate
  • the emissivity of the shower plate is about 0.05 which is substantially the emissivity of aluminum.
  • the film to be deposited is HfO 2 or HfSiO x
  • the emissivity is as high as about 0.9.
  • the temperature of the shower plate is 70 ° C. in the continuous film formation for 5000 wafers. More than that.
  • the emissivity of the surface of the shower plate 12 can be made higher than before by forming the shower plate 12 by forming the anodized film 14 on the surface of the main body 13 as in this embodiment.
  • the emissivity of the anodized film 14 is 0.8, as shown in FIG. 10, the initial temperature can be made higher than that of the conventional thin anodized film alone, and the temperature of the shower plate can be increased. Change can be reduced.
  • the emissivity of the anodized film 14 is preferably 0.8 or more.
  • the difference in emissivity between the anodized film 14 and the attached film is preferably 0.1 or less.
  • the emissivity difference is 0.1, While the film is continuously formed on the wafer, the radiation heat input increases, and accordingly, the temperature of the shower plate 12 gradually increases. About 2,000 sheets are continuously formed, about 15 ° C. from the initial temperature, about 5000 sheets. It becomes about 30 ° C.
  • FIG. 13 shows a state when such a film thickness variation occurs.
  • FIG. 13 is a diagram showing a result of investigating a situation in which “thickness reduction” occurs in which the film thickness becomes smaller than the standard when HfSiO x (Si 30%) is continuously formed on 5000 wafers. This shows a case where a shower plate on which an anodized film (thickness 20 ⁇ m) is formed (two types of 1st and 2nd). For comparison, a situation when HfSiO x (Si 30%) is continuously formed on 1000 wafers using a conventional aluminum shower plate is also shown. As shown in FIG. 13, even when an anodized film was formed, it was confirmed that “thickness reduction” occurs when the temperature difference is 13 ° C. or more. In the conventional aluminum shower plate, “thickness reduction” occurred when 1000 sheets were continuously formed.
  • the difference between the emissivity of the anodized film 14 and the emissivity of the film to be deposited, that is, the film to be formed is 0.09 or less.
  • the emissivity of the anodic oxide film 14 may be in the range of 0.81 to 0.99. It is effective to make the surface roughness Ra of the oxide film further larger than 3.2.
  • a more preferable difference in emissivity is 0.05 or less (that is, the emissivity of the anodized film 14 is 0.85 to 0.95 in the case of HSifO x or HfO 2 ).
  • an anodized film Al 2 O 3
  • the present invention is not limited to this, and the difference in thermal expansion coefficient between the main body and the film to be formed is shown. Is a material of 5 ⁇ 10 ⁇ 6 / ° C. or more, and an oxide of the main body material is formed on the surface, and the difference in thermal expansion coefficient between the oxide film and the film to be formed is 5 ⁇ 10 ⁇ 6 / ° C. or less. If so, it is applicable.
  • the HfSiO x film or the HfO 2 film when the HfSiO x film or the HfO 2 film is formed, a refractory metal such as Ti, Mo, Ta, or W can be used as the main body material.
  • a refractory metal such as Ti, Mo, Ta, or W
  • the film formation of the High-k film typified by the HfSiO x film and the HfO 2 film has been described as an example.
  • the film is not limited to the High-k film as long as the film is formed by 5 ⁇ 10 ⁇ 6 / ° C. or lower than the rate.
  • the above-described embodiment is also an example of the apparatus configuration, and various forms are possible.
  • FIG. 14 is a cross-sectional view showing a shower plate of a film forming apparatus according to the second embodiment of the present invention.
  • the configuration other than the shower plate is the same as that of the first embodiment, the description is omitted.
  • the film forming apparatus of this embodiment forms a high-k film such as an HfO 2 film or an HfSiO film.
  • the shower plate 42 is made of a material having a thermal expansion difference at a film forming temperature lower than 5 ⁇ 10 ⁇ 6 / ° C. with respect to the High-k film to be formed, and has a large number of gas discharge holes 42a.
  • a High-k film such as an HfO 2 film or an HfSiO film has a thermal expansion coefficient of about 5 to 8 ⁇ 10 ⁇ 6 / ° C. Therefore, as a material of the shower plate 42, the thermal expansion coefficient is 8.9 ⁇ 10 6. Ti that is close to ⁇ 6 / ° C. and the thermal expansion coefficient of the high-k film is preferable.
  • the shower plate 42 in forming a high-k film in addition to Ti, Mo (thermal expansion coefficient 4.9 ⁇ 10 ⁇ 6 / ° C.), Ta (thermal expansion coefficient 6.3 ⁇ 10 ⁇ ) 6 / ° C.), W (thermal expansion coefficient 4.3 ⁇ 10 ⁇ 6 / ° C.), Hastelloy (registered trademark) (thermal expansion coefficient 12.4 ⁇ 10 ⁇ 6 / ° C.) which is a Ni-based alloy. .
  • the shower plate 42 made of a material having a thermal expansion coefficient close to the thermal expansion coefficient of the film to be formed, even if the temperature of the shower plate 42 rises due to heating during the film forming process, The difference in thermal expansion between the shower plate 42 and the film attached to the shower plate 42 can be reduced, and the stress generated in the film attached to the shower plate 42 can be reduced. Therefore, the film attached to the shower plate 42 is not easily cracked, peeled off or dropped off, the film thickness reproducibility of the film on the wafer, the stability of the in-plane film thickness distribution can be increased, and the number of particles on the wafer Can be reduced.
  • the difference in thermal expansion from the film to be formed, which constitutes the shower plate 42, is smaller than 5 ⁇ 10 ⁇ 6 / ° C.
  • Ti, Mo, Ta, W an example using Hastelloy (registered trademark) which is a nickel-based alloy has been shown.
  • the present invention is not limited to this, and any film may be formed.
  • the material may be any material whose thermal expansion difference from the film to be formed is smaller than 5 ⁇ 10 ⁇ 6 / ° C.
  • FIG. 15 is a cross-sectional view showing a shower plate of a film forming apparatus according to the third embodiment of the present invention.
  • the configuration other than the shower plate is the same as that of the first embodiment, the description is omitted.
  • the film forming apparatus of this embodiment forms a high-k film such as an HfSiO x film or an HfO 2 film.
  • the shower plate 52 includes a main body 53 and a high emissivity film 54 formed on the surface of the main body 53, and a large number of gas discharge holes 52a are formed.
  • the material of the main body 53 is not particularly limited.
  • the conventionally used aluminum or aluminum alloy may be used, and the Ti, Mo, Ta, W, or Ni-based alloy described above may be used. Of these, Ti, Mo, Ta, W, and Ni-based alloys are preferable.
  • the high emissivity film 54 has an emissivity close to the emissivity of the film to be formed, and is made of a material that makes the difference between them 0.09 or less. For example, if the film to be formed is an HfSiO x film or an HfO 2 film, the emissivity is approximately 0.9, and the high emissivity film 54 is made of a material having an emissivity of 0.81 to 0.99. Selected. A more preferable range of the difference in emissivity is 0.05. When the film to be formed is an HfSiO x film or an HfO 2 film, the high emissivity film 54 is 0.85 to 0.95. Selected.
  • An example of a material having such an emissivity is TiO 2 .
  • the emissivity of TiO 2 is 0.87 to 0.94 and is in the range of 0.81 to 0.99.
  • Other materials constituting the high emissivity film 54 include Fe-based oxide (emissivity 0.9), chromium-based oxide (emissivity 0.9), carbon (emissivity 0.9) HfO 2 (radiation). Rate 0.9).
  • the formation method is not particularly limited, and for example, it can be formed by vapor deposition or anodization.
  • the high emissivity film 54 is an oxide of the material constituting the main body 53
  • the high emissivity film 54 can be formed by subjecting the main body 53 to oxidation treatment.
  • an anodic oxide film (Al 2 O 3 ) having a rough surface can be used as the high emissivity film 54, and when the main body 53 is Ti, this is oxidized. it is possible to form a high-emittance film 54 made of TiO 2 subjected to a treatment.
  • the thickness of the high emissivity film 54 may be any thickness that can exhibit the original emissivity of the material, and about 1 to 50 ⁇ m is sufficient.
  • the high emissivity film 54 having a difference in emissivity of 0.09 or less from the high-k film such as the HfSiO x film or the HfO 2 film on the surface of the main body 53 as the shower plate 52 Even when the high-k film adheres to the surface of the shower plate 52, the emissivity hardly changes and the temperature rise of the shower plate 52 is reduced.
  • the stress on the High-k film due to the difference in thermal expansion between the main body 53 and the High-k film attached to the shower plate 52 can be made extremely small. For this reason, the generation of cracks in the High-k film adhering to the surface of the shower plate 52 can be effectively suppressed. For this reason, the film thickness reproducibility of the film on the wafer and the stability of the in-plane film thickness distribution can be increased, and the number of particles on the wafer can be reduced.
  • the material of the main body 53 is the same as the material of the shower plate 42 of the second embodiment, and the High-k to be formed is to be formed. It is preferable to use a material having a thermal expansion difference with the film at a temperature lower than 5 ⁇ 10 ⁇ 6 / ° C., for example, Ti, Mo, Ta, W, Hastelloy (registered trademark).
  • a material having a thermal expansion difference with the film at a temperature lower than 5 ⁇ 10 ⁇ 6 / ° C. for example, Ti, Mo, Ta, W, Hastelloy (registered trademark).
  • the high emissivity film 54 when forming an HfSiO x film or an HfO 2 film, it is preferable to use Ti as the material of the main body 53 and a TiO 2 film as the high emissivity film 54. With such a combination, not only can the thermal expansion coefficient difference and the emissivity difference be extremely reduced, but also the high emissivity film 54 can be easily formed by oxidation of the main body 53, and these The high emissivity film 54 does not peel off because of high consistency and good adhesion.
  • FIG. 16 shows an HfSiO x film on a wafer when a HfSiO x film is continuously formed on 5000 or more wafers using a film forming apparatus equipped with a shower plate in which a TiO 2 film is formed on a Ti plate. It is a figure which shows the film thickness change of this, and the dispersion
  • the shower plate 52 is composed of the main body 53 and the high emissivity film 54, and the high emissivity film 54 is formed.
  • the emissivity film 54 may be any material as long as the emissivity difference from the film to be deposited is 0.09 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 成膜装置(100)は、ウエハ(W)を収容するチャンバ(1)と、チャンバ(1)内でウエハWを載置するサセプタ(2)と、サセプタ(2)上のウエハWを加熱するヒーター(5a,5b)と、サセプタ(2)に対向して設けられ、ウエハ(W)に向けて成膜のための処理ガスを吐出する、本体がアルミニウムまたはアルミニウム合金からなるシャワープレート(12)とを具備し、ウエハ(W)の表面に、成膜温度において熱膨張率がシャワープレート(12)の本体(13)の熱膨張率よりも、5×10-6/℃以上低い膜を成膜するものであり、シャワープレート(12)は、本体(13)のサセプタ(2)に対向する面に厚さが10μm以上の陽極酸化皮膜(14)が形成されている。

Description

成膜装置およびガス吐出部材
 本発明は、ガス吐出部材を介して処理ガスを吐出し、その反応により被処理基板上に高誘電率膜等の膜を成膜する成膜装置およびそれに用いられるガス吐出部材に関する。
 近時、LSIの高集積化、高速化の要請からLSIを構成する半導体素子のデザインルールが益々微細化されており、それにともなってCMOSデバイスにおいては、ゲート絶縁膜がSiO容量換算膜厚のEOT(Equivalent Oxide Thickness)で1.5nm程度以下の値が要求されている。このような薄い絶縁膜をゲートリーク電流を増加させずに実現する材料として高誘電率材料、いわゆるHigh-k材料が注目されている。
 高誘電率材料をゲート絶縁膜として用いる場合は、シリコン基板との相互拡散がなく、熱力学的に安定である必要があり、その観点からハフニウム、ジルコニウムあるいはランタン系元素の酸化物またはそのシリケート等が有望視されている。
 一方、このような高誘電率材料を成膜する場合に限らず、成膜装置としては、チャンバ内に被処理基板である半導体ウエハを載置する載置台を設け、ガス吐出部材として、多数のガス吐出孔を有するシャワープレートを載置台に対向するように設けたものが用いられる。そして、成膜に際しては、載置台上の半導体ウエハを加熱するとともに、シャワープレートのガス吐出孔から成膜のための処理ガスを吐出して被処理基板上で処理ガスの反応を生じさせ、被処理基板表面に所定の膜を成膜する。
 この種の成膜装置においては、シャワープレートとして、一般的にアルミニウムまたはアルミニウム合金製のものが用いられ、輻射率調整および耐食性向上を目的として被処理基板と対向する面に薄い陽極酸化皮膜(アルマイト被膜)が形成される(特開2000-303180号公報等)。
 しかしながら、上記成膜装置を用いて酸化ハフニウム等の高誘電率材料からなる膜(高誘電率膜)を成膜する場合には、成膜の際にシャワープレート表面にも膜が形成され、ウエハに対する成膜を繰り返していくうちに、シャワープレートに形成された膜にクラックが生じたり、場合によってははがれや脱落が生じ、ウエハ上の膜の膜厚再現性、面内膜厚分布の安定性、ウエハ上のパーティクル数が悪化する傾向にある。
 本発明の目的は、成膜処理の際に、ガス吐出部材の表面に形成された膜のクラック、はがれ、脱落が生じ難い成膜装置およびそれに用いるガス吐出部材を提供することにある。
 本発明者らは上記課題を解決すべく検討を重ねた結果、従来のアルミニウムまたはアルミニウム合金からなるガス吐出部材を用いた場合には、酸化ハフニウムに代表される高誘電率膜は、処理温度における熱膨張率がガス吐出部材の本体の熱膨張率とは大きく異なり、成膜の際にガス吐出部材に付着した高誘電率膜が、成膜処理中に本体との熱膨張差ではがれやすくなること、およびこのようなはがれは、高誘電率膜に限らず、成膜温度において、ガス吐出部材と成膜しようとする膜の熱膨張差が5×10-6/℃以上の場合に生じやすくなることを見出した。
 したがって、ガス吐出部材を、成膜しようとする膜との熱膨張率差が5×10-6/℃より小さいものとすることが有効であるが、ガス吐出部材本体と膜との熱膨張率差が5×10-6/℃以上であっても、ガス吐出部材の表面に成膜しようとする膜との熱膨張率差が5×10-6/℃より小さい酸化皮膜を10μm以上の厚さで形成すれば、ガス吐出部材とガス吐出部材に形成された膜との熱膨張差を緩和することができることを見出した。例えば、従来のアルミニウムまたはアルミニウム合金からなるガス吐出部材を用いる場合には表面に10μm以上の厚さで陽極酸化皮膜を形成することにより、ガス吐出部材とガス吐出部材に形成された膜との熱膨張差を緩和することができる。
 また、ガス吐出部材の放射率が膜の放射率よりも小さい場合には、ガス吐出部材への膜の形成が進行していくことによりガス吐出部材の放射率が徐々に変化し、その放射率の変化による放射入熱の上昇によりガス吐出部材の温度が上昇するが、その温度上昇が大きいと、それにともなうガス吐出部材とそこに形成された膜との間の熱膨張差により、膜に応力が発生してクラックが入るおそれがあることを見出した。
 本発明はこのような知見に基づいて完成されたものである。
 すなわち、本発明の第1の観点によれば、処理ガスを加熱された被処理基板上で反応させ、被処理基板の表面に、膜を成膜する成膜装置であって、被処理基板を収容する処理容器と、前記処理容器内で被処理基板を載置する載置台と、前記載置台上の被処理基板を加熱する加熱機構と、前記処理容器内に前記載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材とを具備し、前記ガス吐出部材は、成膜温度において熱膨張率が前記膜よりも5×10-6/℃以上高い本体と、前記本体の前記載置台に対向する面に本体を酸化処理して形成された厚さが10μm以上の酸化皮膜が形成されている成膜装置が提供される。
 本発明の第2の観点によれば、処理ガスを加熱された被処理基板上で反応させ、被処理基板の表面に、膜を成膜する成膜装置であって、被処理基板を収容する処理容器と、前記処理容器内で被処理基板を載置する載置台と、前記載置台上の被処理基板を加熱する加熱機構と、前記処理容器内に前記載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材とを具備し、前記ガス吐出部材は、成膜温度における前記膜との熱膨張率差が5×10-6/℃より小さい材料からなる成膜装置が提供される。
 本発明の第3の観点によれば、処理ガスを加熱された被処理基板上で反応させ、被処理基板の表面に、膜を成膜する成膜装置であって、被処理基板を収容する処理容器と、前記処理容器内で被処理基板を載置する載置台と、前記載置台上の被処理基板を加熱する加熱機構と、前記処理容器内に前記載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材とを具備し、前記ガス吐出部材は、本体と、前記本体の前記載置台に対向する面に形成された、前記膜との放射率差が0.09以下の皮膜とを有する成膜装置が提供される。
 本発明の第4の観点によれば、処理ガスを処理容器内の加熱された被処理基板上で反応させ、被処理基板の表面に膜を成膜する成膜装置において、前記処理容器内に被処理体を載置する載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材であって、成膜温度において熱膨張率が前記膜よりも5×10-6/℃以上高い本体と、前記本体の前記載置台に対向する面に本体を酸化処理して形成された厚さが10μm以上の酸化皮膜とを有するガス吐出部材が提供される。
 本発明の第5の観点によれば、処理ガスを処理容器内の加熱された被処理基板上で反応させ、被処理基板の表面に膜を成膜する成膜装置において、前記処理容器内に被処理体を載置する載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材であって、成膜温度における前記膜との熱膨張率差が5×10-6/℃より小さい材料からなるガス吐出部材が提供される。
 本発明の第6の観点によれば、処理ガスを処理容器内の加熱された被処理基板上で反応させ、被処理基板の表面に膜を成膜する成膜装置において、前記処理容器内に被処理体を載置する載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材であって、本体と、前記本体の前記載置台に対向する面に形成された、前記膜との放射率差が0.09以下の皮膜とを有するガス吐出部材が提供される。
本発明の第1の実施形態に係る成膜装置を示す断面図である。 図1の成膜装置のシャワープレートを示す断面図である。 厚さ20μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置を用いて10000枚のウエハに対して連続してHfSiO膜を成膜した際のウエハ上のHfSiO膜の膜厚変化および膜厚のばらつき変化を示す図である。 厚さ20μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置を用いて10000枚のウエハに対して連続してHfSiO膜を成膜した際の20枚おきにサンプリングしたウエハにおける0.12μmを超える大きさのパーティクルの個数を示す図である。 厚さ20μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置を用いて10000枚のウエハに対して連続してHfSiO膜を成膜した際のシャワーヘッドおよびシャワープレートの温度変化を示す図である。 厚さ20μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置で10000枚のウエハに対してHfSiO膜の連続成膜を行った後のシャワープレート表面の剥離試験を行った結果を示す写真である。 従来の厚さ0.7μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置で10000枚のウエハに対してHfO膜の連続成膜を行った後のシャワープレート表面の剥離試験を行った結果を示す写真である。 従来の厚さ0.7μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置で10000枚のウエハに対してHfSiO膜の連続成膜を行った後のシャワープレート表面の剥離試験を行った結果を示す写真である。 厚さ20μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置を用いて10000枚のウエハに対して連続してHfSiO膜を成膜した後のシャワープレートの断面を示す走査型電子顕微鏡(SEM)写真である。 厚さ0.7μmの陽極酸化皮膜を有するシャワープレートを装着した成膜装置を用いて10000枚のウエハに対して連続してHfSiO膜を成膜した後のシャワープレートの断面を示す走査型電子顕微鏡(SEM)写真である。 従来のアルミニウム製のシャワープレートを用いて5000枚のウエハに対してHfO膜を連続成膜した際のシャワープレートの温度変化を示す図である。 従来のアルミニウム製のシャワープレートを用いた場合と表面に陽極酸化皮膜を形成したシャワープレートを用いた場合とで10000枚のウエハに対してHfSiO膜を連続成膜した際のシャワープレートの温度変化を比較して示す図である。 表面に陽極酸化皮膜を形成したシャワープレートを用いてHfSiO膜を連続成膜した際のシャワープレートの温度変化を模式的に示す図である。 図13のA、B、Cで示す状況でのシャワープレートの状態を模式的に示す図である。 5000枚のウエハに対してHfSiO(Si30%)を連続成膜した際における膜厚が規格よりも小さくなる「膜厚低下」が生じる状況を調査した結果を示す図である。 本発明の第2の実施形態に係る成膜装置のシャワープレートを示す断面図である。 本発明の第3の実施形態に係る成膜装置のシャワープレートを示す断面図である。 TiプレートにTiO膜を形成したシャワープレートを装着した成膜装置を用いて5000枚以上のウエハに対して連続してHfSiO膜を成膜した際のウエハ上のHfSiO膜の膜厚変化および膜厚のばらつき変化を示す図である。
 以下、添付図面を参照して、本発明の実施の形態について説明する。
 <第1の実施形態>
 まず、本発明の第1の実施形態について説明する。
 図1は本発明の第1の実施形態に係る成膜装置を示す断面図である。この成膜装置100は、気密に構成された略円筒状のチャンバ1を有しており、その中には被処理基板である半導体ウエハ(以下単にウエハと記す)Wを水平に支持するためのサセプタ2がその中央下部に設けられた円筒状の支持部材3により支持された状態で配置されている。このサセプタ2はAlN等のセラミックスからなっている。また、サセプタ2にはヒーター5a,5bが埋め込まれている。ヒーター5aはサセプタの中心に設けられており、ヒーター5bはヒーター5aの外側にドーナツ状に設けられている。これらヒーター5a,5bにはヒーター電源6a,6bが接続されている。そして、サセプタ2に設けられた熱電対(図示せず)の検出信号に基づいてヒーターコントローラ7によりヒーター電源6aおよび6bを独立に制御して、ウエハWの温度制御を行うようになっている。
 チャンバ1の天壁1aには、円形の孔1bが形成されており、そこからチャンバ1内へ突出するようにシャワーヘッド10が嵌め込まれている。シャワーヘッド10はアルミニウムまたはアルミニウム合金で構成されている。シャワーヘッド10の上面にはガス導入口11が設けられており、シャワーヘッド10の下部には円板状をなす凹部が形成されている。シャワーヘッド10の下面には凹部を覆うようにガス吐出部材としてのシャワープレート12が取り付けられており、凹部とシャワープレート12により形成される空間がガス拡散空間15として機能する。なお、2種類またはそれ以上の処理ガスの反応により成膜する場合には、これらガスをシャワーヘッド10内で別々のルートを経由してシャワープレート12から吐出し、吐出後にこれら処理ガスを混合するポストミックスタイプであってもよい。
 シャワーヘッド10のガス導入口11には、処理ガス供給機構20から延びるガス供給配管21が接続されている。
 処理ガス供給機構20は、サセプタ2上のウエハW上に所定の膜を成膜するための処理ガスをチャンバ1内に供給するためのものである。本実施形態では、シャワープレート12の本体13を構成する材料の成膜処理温度における熱膨張率よりも5×10-6/℃以上低い熱膨張率を有する膜、典型的には高誘電率膜(High-k膜)を成膜する。これらHigh-k膜の中でも酸化ハフニウム(HfO)膜やハフニウムシリケート(HfSiO(xは1~2))膜を成膜する場合が好適である。その他に、酸化ジルコニウム(ZrO)膜、ジルコニウムシリケート(ZrSiO)膜、酸化ランタン(LaO)膜、ランタンシリケート(LaSiO)膜、酸化タンタル(TaO)膜、チタン酸ストロンチウム(SrTiO)膜、および酸化イットリウム(YO)膜、酸化チタン(TiO)を挙げることができる。これら膜は、処理ガスとして、例えば、有機金属化合物および必要に応じて酸化剤やシリケートを形成するためのシリコン化合物を処理ガス供給機構20からガス供給配管21およびガス拡散空間15を経てシャワープレート12からウエハWに供給することにより成膜される。例えば、HfO膜を成膜する場合には、有機金属化合物としてハフニウムテトラターシャリブトキサイド(HTB)等の金属アルコキシドやテトラキスジメチルアミノハフニウム(TDMAH)等のアミン系の有機金属化合物などを用いることができる。また、酸化剤としてはOガス、HOガス、Oガス等を挙げることができる。さらにシリコン化合物としてはテトラエトキシシラン(TEOS)、ジシラン(Si)等のシラン系化合物を挙げることができる。
 チャンバ1の底壁1cには、下方に向けて突出する排気室30が設けられている。排気室30の側面には排気管31が接続されており、この排気管31には排気装置32が接続されている。そしてこの排気装置32を作動させることによりチャンバ1内を所定の真空度まで減圧することが可能となっている。
 チャンバ1の側壁には、ウエハ搬送室(図示せず)との間でウエハWの搬入出を行うための搬入出口33と、この搬入出口33を開閉するゲートバルブ34とが設けられている。
 上記シャワープレート12は、図2に示すように、成膜温度において熱膨張率が前記膜よりも5×10-6/℃以上高い材料であるアルミニウムまたはアルミニウム合金からなる本体13と、本体13の下面に形成された陽極酸化皮膜(Al)14とを有しており、多数のガス吐出孔12aが形成されている。陽極酸化皮膜14は、熱膨張率の大きいアルミニウムまたはアルミニウム合金からなる本体13と成膜時にシャワープレート12の表面に付着する膜との間の熱膨張差を緩和する機能を有する。つまり、シャワープレート12の表面には、ウエハWに成膜される膜と同じ膜が付着するから、付着する膜と本体13との間には大きい熱膨張率差が存在する。このため、本体13に直接このような膜が付着すると、成膜処理時の加熱による熱膨張差により、その膜がはがれるおそれがある。しかし、本体13の下面に陽極酸化皮膜14が形成されることにより、これらの間の熱膨張差を緩和することができ、付着した膜のはがれを抑制することができる。
 このような熱膨張差を緩和する作用を発揮するためには、陽極酸化皮膜14の厚さは10μm以上必要である。陽極酸化皮膜14の厚さが10μm未満であると、陽極酸化皮膜14の熱膨張が本体13の熱膨張の影響を受けて大きくなり、熱膨張差を緩和する作用を十分に発揮することが困難である。好ましくは15μm以上である。熱膨張差を緩和する作用を発揮する観点からは陽極酸化皮膜14の膜厚に上限は存在しないが、100μmを超えても効果が飽和し、コストがかかるだけであるので、100μmが事実上の上限となる。
 このように構成された成膜装置においては、まず、チャンバ1内を排気して所定の減圧状態、例えば400Pa程度とし、ヒーター5a,5bによりウエハWを所定の温度に加熱する。加熱温度は、成膜する膜がHfOである場合にも、HfSiOである場合にも、200~600℃程度である。
 この状態で処理ガス供給機構20から成膜のための処理ガスをガス供給配管21およびガス拡散空間15を経てシャワープレート12のガス吐出孔12aからウエハWに向けて処理ガスを吐出する。そうすると、予め加熱されているウエハW上で処理ガスに反応が生じ、ウエハW表面に例えばHfO膜やHfSiO膜のようなHigh-k膜が成膜される。そして、このような成膜を複数のウエハWに対して連続的に行う。
 この成膜の際に、成膜反応はシャワープレート12の表面でも生じるので、シャワープレート12の表面にも成膜すべき膜が付着する。このような成膜処理を複数のウエハWに対して連続的に行うと、シャワープレート12の表面に付着する膜の付着量が増加していく。
 従来は、シャワープレート12の表面の陽極酸化皮膜は0.7μm程度と薄いため、陽極酸化皮膜はアルミニウムやアルミニウム合金からなる本体とほぼ同じだけ熱膨張してしまう。例えばシャワープレートの本体をアルミニウムで構成し、成膜する膜がHfO膜やHfSiO膜の場合には、アルミニウムの熱膨張率が23×10-6/℃であり、HfOやHfSiOの熱膨張率が5~8×10-6/℃であるから、熱膨張率差は15~18×10-6/℃にもなり、シャワープレート12に付着した膜がはがれやすい状態となっていた。そして、このような膜はがれが生じると、ウエハWでのパーティクルが増加するとともに、シャワーヘッド12表面の表面積が増えることにより、成膜のための処理ガスがシャワープレート12で多く消費され、ウエハWに供給される処理ガスの量が減って、ウエハ上の膜の膜厚再現性や面内膜厚分布の安定性が悪化してしまう。
 これに対して、本実施形態では、シャワープレート12の本体13の表面に厚さ10μm以上の陽極酸化皮膜を形成するので、その熱膨張差を緩和する作用によりシャワープレート12に付着した膜のはがれを抑制することができる。すなわち、陽極酸化皮膜14はAlであって、その熱膨張率は6~8×10-6/℃であり、その厚さが10μm以上であるから、陽極酸化皮膜14の付着した膜に接している部分の熱膨張率は6~8×10-6/℃に近い値であり、陽極酸化皮膜14と付着した膜との間には熱膨張差がほとんどなく、付着した膜のはがれを十分に抑制することができる。このため、ウエハのパーティクル数を少なく維持することができ、ウエハ上の膜の膜厚再現性、面内膜厚分布の安定性を良好にすることができる。
 このような膜はがれは、シャワープレート12の本体13との熱膨張率差が5×10-6/℃以上の場合に生じやすい傾向にあるところから、成膜対象膜を本体13を構成する材料の成膜処理温度における熱膨張率よりも5×10-6/℃以上低い熱膨張率を有する膜としている。上述したハフニウムシリケート(HfSiO)、酸化ランタン(LaO)、酸化チタン(TiO)、酸化タンタル(TaO)等もほぼ同様の傾向をもつものと考えられる。また、この範囲の熱膨張率を有する材料としては、上述したように、他に、酸化ジルコニウム(ZrO)膜、ジルコニウムシリケート(ZrSiO)膜、ランタンシリケート(LaSiO)膜、チタン酸ストロンチウム(SrTiO)膜、および酸化イットリウム(YO)膜等がある。
 なお、本体13と陽極酸化皮膜14の間には大きな熱膨張率差があるが、これらの間は整合性が良好であるため、これらの間にはがれ等が生じることはない。
 このように、本実施形態によれば、アルミニウムまたはアルミニウム合金からなる本体の表面に陽極酸化皮膜を10μm以上の厚さで形成してガス吐出部材であるシャワープレートを構成するので、処理温度におけるガス吐出部材の本体との熱膨張率差が5×10-6/℃以上の熱膨張率が低い膜を成膜する際に、ガス吐出部材の本体とガス吐出部材の表面に付着した膜との熱膨張差を緩和することができ、ガス吐出部材に付着した膜のクラック、はがれ、脱落を生じ難くすることができる。このため、ガス吐出部材表面に形成された膜のはがれや脱落を軽減することができ、基板上の膜の膜厚再現性、面内膜厚分布の安定性、基板上のパーティクル数を改善することができる。
 なお、従来のガス吐出部材としてのシャワープレートも表面に陽極酸化皮膜が形成されているが、上述したようにその目的は輻射率調整および耐食性向上のためであって、通常、膜厚は0.7μm程度と薄く、熱膨張の緩和作用はほとんど得られない。
 本実施形態において、陽極酸化皮膜14の放射率(輻射率)は0.6以上であることが好ましい。このように陽極酸化皮膜14の放射率(輻射率)が高い場合には、サセプタ2からの熱の吸収が良好となり、陽極酸化皮膜14の温度が高くなり、陽極酸化皮膜14に付着する膜がより緻密なものとなり、よりはがれ難くなる。陽極酸化皮膜14の放射率は、皮膜表面の粗さを粗くすることにより、大きくすることができる。陽極酸化皮膜14の表面粗さRa(ISO4287-1997)を3.2以上とすることにより、放射率を0.8以上とすることができる。
 次に、本実施形態の効果を把握した実験結果について説明する。
 アルミニウム製の本体に厚さ20μmの陽極酸化皮膜を形成したシャワープレートを装着した成膜装置を用いて、成膜用の処理ガスとしてハフニウムテトラターシャリブトキサイド(HTB)を用いて、ウエハ上へのHfO膜の成膜処理を10000枚のウエハについて連続して行った。
まず、その10000枚の連続成膜の際のウエハ上のHfSiO膜の膜厚変化および膜厚のばらつき変化を把握した。その結果を図3に示す。図3は、10000枚のウエハに対して連続してHfSiO膜を成膜した際のウエハ上のHfSiO膜の膜厚変化および膜厚のばらつき変化を示す図である。この図に示すように、膜厚は安定しており、7000枚までのウエハ間の膜厚ばらつきは1σで0.94%、10000枚までのウエハ間の膜厚ばらつきは1σで1.60%と許容範囲であった。
 次に、上記10000枚の連続成膜の際のウエハへのパーティクルの付着について把握した。その結果を図4に示す。図4は20枚おきにサンプリングしたウエハにおける0.12μmを超える大きさのパーティクルの個数を示す図である。この図に示すように、0.12μmを超える大きさのパーティクルは極めて少ないことが確認された。
 次に、上記10000枚の連続成膜の際のシャワーヘッドおよびシャワープレートの温度変化の安定性について把握した。その結果を図5に示す。図5は、10000枚の連続成膜の際のシャワーヘッドおよびシャワープレートの温度変化を示す図である。この図に示すように、シャワーヘッドの温度は変化が見られないが、シャワープレートの温度は徐々に上昇した。これは、シャワープレートの陽極酸化皮膜の(放射率)輻射率が0.6以上と高いことによる。
 次に、上記厚さ20μmの陽極酸化皮膜を形成したシャワープレートを用いて上記10000枚のウエハに対するHfSiO膜の連続成膜を行った後のシャワープレートに対して剥離試験を行った。比較のため、従来の厚さ0.7μmの陽極酸化皮膜を形成したシャワープレートを用いて10000枚のウエハに対しHfO膜およびHfSiO膜の連続成膜を行った後のシャワープレートに対しての剥離試験も行った。剥離試験は、10000枚成膜後のシャワープレートの表面にテープを貼り、それをはがした後に、テープに付着する付着物を目視にて確認することによって行った。その結果を図6A~図6Cに示す。図6A~図6Cは剥離試験後のテープへの付着物の付着状態を示す写真であり、図6Aは本実施形態の厚さ20μmの陽極酸化皮膜を形成したシャワープレートを用いてHfSiO膜の連続成膜を行った結果を示すものであり、図6B、図6Cは従来のシャワープレートを用いて、それぞれHfO膜およびHfSiO膜の連続成膜を行った後の結果を示すものである。これらの写真から、本発明のように厚い陽極酸化皮膜を形成したシャワープレートを用いることにより、その表面に付着した膜がはがれ難くなることが確認された。
 次に、上記厚さ20μmの陽極酸化皮膜を形成したシャワープレートを用いて上記10000枚のウエハに対するHfSiO膜の連続成膜を行った後のシャワープレート表面へのHfSiO膜の付着状態を把握した。その結果を図7に示す。図7は10000枚連続成膜後のシャワープレートの断面を示す走査型電子顕微鏡(SEM)写真である。この図に示すように、シャワープレートに形成されたHfSiO膜にははがれが発生していないことが確認された。なお、クラックが発生しているが、これはシャワープレートを取り外す際の急激な温度変化によるものである。比較のため、従来の厚さ0.7μmの陽極酸化皮膜を形成したシャワープレートについて同様に10000枚のウエハに対するHfSiO膜の連続成膜を行った後のシャワープレートの断面を示す走査型電子顕微鏡(SEM)写真を図8に示す。この図に示すように、従来のシャワープレートではHfSiO膜のはがれが発生していることが確認された。
 ところで、従来のシャワープレートは極薄い陽極酸化皮膜が形成されているだけであるため、シャワープレートの放射率は、ほぼアルミニウムの放射率である0.05程度である。これに対して成膜しようとする膜がHfOやHfSiOの場合には、放射率が0.9程度と高く、多数のウエハに対して連続的に成膜を行うと、シャワープレート表面の放射率が徐々に上昇していき、シャワープレートへのHfOやHfSiOの付着が進行するに従って、放射入熱が大きくなり、シャワープレートの温度が上昇する。図9は、HfO膜を成膜した場合の従来のシャワープレートの温度上昇を示すものであるが、この図に示すように、5000枚のウエハに対する連続成膜でシャワープレートの温度が70℃以上も上昇する。すなわち、上述した熱膨張率差によるシャワープレートに付着したHfSiO膜やHfO膜のクラックやはがれは、シャワープレートの放射率変化による温度変化により助長されると考えられる。
 これに対し、本実施形態のように、本体13の表面に陽極酸化皮膜14を形成してシャワープレート12を構成することにより、シャワープレート12の表面の放射率を従来よりも高くすることができる。陽極酸化皮膜14の放射率が0.8の場合には、図10に示すように、従来の薄い陽極酸化皮膜のみの場合に比較して初期温度を高くすることができ、シャワープレートの温度の変化を小さくすることができる。
 このような点から、付着する膜の放射率が0.9の場合には、陽極酸化皮膜14の放射率は0.8以上が好ましい。一般化すると、陽極酸化皮膜14と付着する膜の放射率の差が0.1以下であることが好ましい。ただし、図10に示すように、放射率が0.8の陽極酸化皮膜14に放射率0.9のHfSiO膜が付着する場合には、放射率差は0.1であるが、多数のウエハに連続的に成膜する間に、放射入熱が増加し、それにともなってシャワープレート12の温度は徐々に上昇し、2000枚程度の連続成膜で初期温度よりも15℃程度、5000枚程度の連続成膜で初期温度よりも30℃程度高くなる。そのため、その温度差に起因する熱膨張差が無視し得ないものとなる場合があり、そのような場合には、付着したHfSiO膜に応力が発生する。すなわち、この際の放射率差に起因する温度変化を模式的に図11に示すと、初期段階のAでは、図12のAに示すように、シャワープレートに付着したHfSiO膜には応力がほとんど発生しないが、ウエハの枚数が増加してBに達すると、図12のBに示すようにHfSiO膜に引張応力が発生し、ウエハの枚数が1000~2000枚程度のCになると、図12のCに示すように、HfSiO膜は引張応力に耐えられなくなって、HfSiO膜中にクラックが発生する場合も生じる。シャワープレートに付着したHSifO膜にクラックが発生すると、成膜の際の成膜原料がクラックで消費され、膜厚変動、面内分布が大きくなる傾向を示す。
 このような膜厚変動が生じたときの状態を図13に示す。図13は、5000枚のウエハに対してHfSiO(Si30%)を連続成膜した際における膜厚が規格よりも小さくなる「膜厚低下」が生じる状況を調査した結果を示す図であり、陽極酸化皮膜(厚さ20μm)を形成したシャワープレートを用いた場合(1stおよび2ndの2種類)について示すものである。比較のため、従来のアルミニウム製のシャワープレートを用いて1000枚のウエハに対してHfSiO(Si30%)を連続成膜した際の状況も示す。図13に示すように、陽極酸化皮膜を形成した場合でも温度差が13℃以上で「膜厚低下」生じることが確認された。なお、従来のアルミニウム製のシャワープレートでは、1000枚連続成膜した時点で「膜厚低下」が生じていた。
 このような放射率差に起因する不都合は、陽極酸化皮膜14の放射率と付着する膜、つまり成膜しようとする膜の放射率との差が0.09以下であれば、ほぼ解消することができる。付着する膜が放射率が0.9のHSifOまたはHfOの場合には、陽極酸化皮膜14の放射率が0.81~0.99の範囲になるようにすればよく、そのためには陽極酸化皮膜の表面粗さRaを3.2よりもさらに大きくすることが有効である。より好ましい放射率の差は0.05以下(つまりHSifOやHfOの場合には、陽極酸化皮膜14の放射率が0.85~0.95)である。
 なお、本実施形態では、アルミニウムまたはアルミニウム合金からなる本体に陽極酸化皮膜(Al)を形成する場合について示したが、これに限らず、本体と形成しようとする膜の熱膨張率差が5×10-6/℃以上の材料であり、その表面に本体材料の酸化物を形成し、その酸化膜と形成しようとする膜との熱膨張率差が5×10-6/℃以下であれば適用可能である。例えば、HfSiO膜またはHfO膜を成膜する場合に、本体材料としてTi、Mo、Ta、W等の高融点金属を挙げることができる。また、上本実施形態では、HfSiO膜やHfO膜に代表されるHigh-k膜の成膜を例にとって説明したが、成膜温度において熱膨張率が前記ガス吐出部材の本体の熱膨張率よりも、5×10-6/℃以上低い膜の成膜であれば、High-k膜に限らない。さらに、装置構成についても上記実施形態は例示であって、種々の形態が可能である。
 <第2の実施形態>
 次に、本発明の第2の実施形態について説明する。
 図14は、本発明の第2の実施形態に係る成膜装置のシャワープレートを示す断面図である。本実施形態では、シャワープレート以外の構成は第1の実施形態と同じであるため、説明を省略する。
 本実施形態の成膜装置は、HfO膜やHfSiO膜のようなHigh-k膜を成膜するものである。シャワープレート42は、成膜しようとするHigh-k膜との成膜温度における熱膨張差が5×10-6/℃より小さい材料からなり、多数のガス吐出孔42aを有している。
 HfO膜やHfSiO膜のようなHigh-k膜は、熱膨張率が5~8×10-6/℃程度であるから、シャワープレート42の材料としては、熱膨張率が8.9×10-6/℃とHigh-k膜の熱膨張係数に近いTiが好ましい。High-k膜を成膜する場合におけるシャワープレート42の材料としては、Tiの他に、Mo(熱膨張率4.9×10-6/℃)、Ta(熱膨張率6.3×10-6/℃)、W(熱膨張率4.3×10-6/℃)、Ni基合金であるハステロイ(登録商標)(熱膨張率12.4×10-6/℃)を挙げることができる。
 このように、成膜しようとする膜の熱膨張率に近い熱膨張率を有する材料からなるシャワープレート42を設けることにより、成膜処理時の加熱によりシャワープレート42の温度が上昇しても、シャワープレート42とシャワープレート42に付着した膜との熱膨張差を小さくすることができ、シャワープレート42に付着した膜に生じる応力を低減することができる。したがって、シャワープレート42に付着した膜のクラック、はがれ、脱落が生じ難く、ウエハ上の膜の膜厚再現性、面内膜厚分布の安定性を高くすることができ、かつウエハ上のパーティクル数を少なくすることができる。
 なお、本実施形態では、High-k膜を成膜する成膜装置において、シャワープレート42を構成する、成膜しようとする膜との熱膨張差が5×10-6/℃より小さい材料として、Ti、Mo、Ta、W、ニッケル基合金であるハステロイ(登録商標)を用いた例を示したが、これに限らず、どのような膜の成膜であってもよく、シャワープレート42の材料が、成膜しようとする膜との熱膨張差が5×10-6/℃より小さいものであればよい。
 <第3の実施形態>
 次に、本発明の第3の実施形態について説明する。
 図15は、本発明の第3の実施形態に係る成膜装置のシャワープレートを示す断面図である。本実施形態では、シャワープレート以外の構成は第1の実施形態と同じであるため、説明を省略する。
 本実施形態の成膜装置は、HfSiO膜やHfO膜のようなHigh-k膜を成膜するものである。シャワープレート52は、本体53と、本体53の表面に形成された高放射率膜54とを有しており、多数のガス吐出孔52aが形成されている。
 本体53の材料は特に限定されない。例えば、従来から用いられているアルミニウムまたはアルミニウム合金であってもよいし、上述したTi、Mo、Ta、W、Ni基合金を用いることもできる。これらの中で、Ti、Mo、Ta、W、Ni基合金が好ましい。
 高放射率膜54は、成膜しようとする膜の放射率と近接した放射率を有し、両者の差が0.09以下となるような材料で構成されている。例えば成膜しようとする膜がHfSiO膜やHfO膜であれば、放射率がほぼ0.9であり、高放射率膜54としては、放射率が0.81~0.99の材料が選択される。放射率の差のより好ましい範囲は0.05であり、このとき成膜しようとする膜がHfSiO膜やHfO膜のとき高放射率膜54としては0.85~0.95のものが選択される。放射率がこのような範囲の材料としては、TiOを挙げることができる。TiOの放射率は0.87~0.94であり、0.81~0.99の範囲内である。高放射率膜54を構成する他の材料としては、Fe系酸化物(放射率0.9)、クロム系酸化物(放射率0.9)、カーボン(放射率0.9)HfO(放射率0.9)を挙げることができる。
 形成手法は特に限定されるものではなく、例えば、蒸着、陽極酸化で形成することができる。また、高放射率膜54が本体53を構成する材料の酸化物である場合には、本体53に酸化処理を施すことにより高放射率膜54を形成することができる。たとえば、本体53がアルミニウムの場合には、高放射率膜54として表面粗さを粗くした陽極酸化皮膜(Al)を用いることができ、本体53がTiの場合には、これに酸化処理を施してTiOからなる高放射率膜54を形成することができる。
 高放射率膜54の厚さは、その材料本来の放射率が発揮できる厚さであればよく、1~50μm程度で十分である。
 このように、シャワープレート52として本体53の表面にHfSiO膜やHfO膜のようなHigh-k膜との放射率差が0.09以下の高放射率膜54を形成することにより、多数のウエハに対して連続的に成膜を行って、シャワープレート52の表面に対するHigh-k膜の付着が進行しても、放射率はほとんど変化せず、シャワープレート52の温度上昇を小さくすることができ、本体53とシャワープレート52に付着したHigh-k膜との熱膨張差によるHigh-k膜への応力を極めて小さくすることができる。このため、シャワープレート52の表面に付着したHigh-k膜へのクラック発生を効果的に抑制することができる。このため、ウエハ上の膜の膜厚再現性、面内膜厚分布の安定性を高くすることができ、かつウエハ上のパーティクル数を少なくすることができる。
 このようなHigh-k膜へのクラック発生をより一層効果的に抑制するためには、本体53の材料を第2の実施形態のシャワープレート42の材料と同様、成膜しようとするHigh-k膜との成膜温度における熱膨張差が5×10-6/℃より小さい材料、例えば、Ti、Mo、Ta、W、ハステロイ(登録商標)を用いることが好ましい。これにより、シャワープレート52の初期の温度変動および成膜が進行した際の温度変動の両方を極めて有効に抑制することができ、シャワープレート52に付着したHigh-k膜への応力をより一層小さくすることができる。具体的には、HfSiO膜やHfO膜を成膜する場合には、本体53の材料としてTiを用い、高放射率膜54としてTiO膜を用いることが好ましい。このような組み合わせであれば、上記熱膨張率差および放射率差を極めて小さくすることができるのみならず、高放射率膜54を本体53の酸化により容易に形成することができるとともに、これらの整合性が高く密着性がよいため、高放射率膜54の剥がれも生じない。
 次に、本実施形態の効果を把握した実験結果について説明する。
 チタン製の本体にTiO膜を形成したシャワープレートを装着した成膜装置を用いて、成膜用の処理ガスとしてハフニウムテトラターシャリブトキサイド(HTB)を用いて、ウエハ上へのHfSiO膜の成膜処理を5000枚以上のウエハについて連続して行い、ウエハ上のHfSiO膜の膜厚変化および膜厚のばらつき変化を把握した。その結果を図16に示す。図16は、TiプレートにTiO膜を形成したシャワープレートを装着した成膜装置を用いて5000枚以上のウエハに対して連続してHfSiO膜を成膜した際のウエハ上のHfSiO膜の膜厚変化および膜厚のばらつき変化を示す図である。この図に示すように、膜厚は安定しており、5000枚を超えてもウエハ間の膜厚ばらつきは1σで1.2%程度であった。
 なお、本実施形態では、High-k膜を成膜する成膜装置において、シャワープレート52を本体53および高放射率膜54からなるものとし、高放射率膜54を構成する、成膜しようとするHigh-k膜との放射率差が0.09以下の材料として、TiO、Fe酸化物、クロム系酸化物、カーボン、HfOを用いた例を示したが、これに限らず、高放射率膜54の材料が、成膜しようとする膜との放射率差が0.09以下のものであればどのようなものであってもよい。

Claims (24)

  1.  処理ガスを加熱された被処理基板上で反応させ、被処理基板の表面に膜を成膜する成膜装置であって、
     被処理基板を収容する処理容器と、
     前記処理容器内で被処理基板を載置する載置台と、
     前記載置台上の被処理基板を加熱する加熱機構と、
     前記処理容器内に前記載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材と
    を具備し、
     前記ガス吐出部材は、成膜温度において熱膨張率が前記膜よりも5×10-6/℃以上高い本体と、前記本体の前記載置台に対向する面に本体を酸化処理して形成された厚さが10μm以上の酸化皮膜が形成されている成膜装置。
  2.  前記本体はアルミニウムまたはアルミニウム合金からなり、前記酸化皮膜は陽極酸化皮膜である請求項1に記載の成膜装置。
  3.  前記膜は高誘電率膜である、請求項1に記載の成膜装置。
  4.  前記膜は、酸化ハフニウム膜、ハフニウムシリケート膜、酸化ジルコニウム膜、ジルコニウムシリケート膜、酸化ランタン膜、ランタンシリケート膜、酸化タンタル膜、チタン酸ストロンチウム膜、および酸化イットリウム膜からなる群から選択される膜である、請求項3に記載の成膜装置。
  5.  前記陽極酸化皮膜の厚さは15μm以上である、請求項1に記載の成膜装置。
  6.  前記酸化皮膜の放射率が0.6以上である、請求項1に記載の成膜装置。
  7.  前記酸化皮膜の放射率と前記膜の放射率との差が0.1以下である、請求項1に記載の成膜装置。
  8.  前記酸化皮膜の放射率と前記膜の放射率との差が0.09以下である、請求項7に記載の成膜装置。
  9.  処理ガスを加熱された被処理基板上で反応させ、被処理基板の表面に、膜を成膜する成膜装置であって、
     被処理基板を収容する処理容器と、
     前記処理容器内で被処理基板を載置する載置台と、
     前記載置台上の被処理基板を加熱する加熱機構と、
     前記処理容器内に前記載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材と
    を具備し、
     前記ガス吐出部材は、成膜温度における前記膜との熱膨張率差が5×10-6/℃より小さい材料からなる成膜装置。
  10.  前記膜は高誘電率膜である、請求項9に記載の成膜装置。
  11.  前記膜は、酸化ハフニウム膜、ハフニウムシリケート膜、酸化ジルコニウム膜、ジルコニウムシリケート膜、酸化ランタン膜、ランタンシリケート膜、酸化タンタル膜、チタン酸ストロンチウム膜、および酸化イットリウム膜からなる群から選択される膜である、請求項10に記載の成膜装置。
  12.  前記ガス吐出部材は、Ti、Mo、Ta、W、ハステロイ(登録商標)からなる群から選択された材料からなる、請求項10に記載の成膜装置。
  13.  処理ガスを加熱された被処理基板上で反応させ、被処理基板の表面に、膜を成膜する成膜装置であって、
     被処理基板を収容する処理容器と、
     前記処理容器内で被処理基板を載置する載置台と、
     前記載置台上の被処理基板を加熱する加熱機構と、
     前記処理容器内に前記載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材と
    を具備し、
     前記ガス吐出部材は、本体と、前記本体の前記載置台に対向する面に形成された、前記膜との放射率差が0.09以下の皮膜とを有する成膜装置。
  14.  前記膜は高誘電率膜である、請求項13に記載の成膜装置。
  15.  前記膜は、酸化ハフニウム膜、ハフニウムシリケート膜、酸化ジルコニウム膜、ジルコニウムシリケート膜、酸化ランタン膜、ランタンシリケート膜、酸化タンタル膜、チタン酸ストロンチウム膜、および酸化イットリウム膜からなる群から選択される膜である、請求項14に記載の成膜装置。
  16.  前記膜は、酸化ハフニウム膜またはハフニウムシリケート膜である、請求項15に記載の成膜装置。
  17.  前記皮膜の放射率は0.081~0.099である、請求項16に記載の成膜装置。
  18.  前記皮膜は、TiO、Fe酸化物、クロム系酸化物、カーボン、酸化ハフニウムからなる群から選択された材料で構成されている、請求項17に記載の成膜装置。
  19.  前記本体は、成膜温度における前記膜との熱膨張率差が5×10-6/℃より小さい材料からなる、請求項13に記載の成膜装置。
  20.  前記ガス吐出部材は、Ti、Mo、Ta、W、ハステロイ(登録商標)からなる群から選択された材料からなる、請求項19に記載の成膜装置。
  21.  前記本体がTiで構成され、前記皮膜がTiOで構成されている、請求項13に記載の成膜装置。
  22.  処理ガスを処理容器内の加熱された被処理基板上で反応させ、被処理基板の表面に膜を成膜する成膜装置において、前記処理容器内に被処理体を載置する載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材であって、
     成膜温度において熱膨張率が前記膜よりも5×10-6/℃以上高い本体と、前記本体の前記載置台に対向する面に本体を酸化処理して形成された厚さが10μm以上の酸化皮膜とを有するガス吐出部材。
  23.  処理ガスを処理容器内の加熱された被処理基板上で反応させ、被処理基板の表面に膜を成膜する成膜装置において、前記処理容器内に被処理体を載置する載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材であって、
     成膜温度における前記膜との熱膨張率差が5×10-6/℃より小さい材料からなるガス吐出部材。
  24.  処理ガスを処理容器内の加熱された被処理基板上で反応させ、被処理基板の表面に膜を成膜する成膜装置において、前記処理容器内に被処理体を載置する載置台に対向して設けられ、被処理基板に向けて前記処理ガスを吐出するガス吐出部材であって、
     本体と、前記本体の前記載置台に対向する面に形成された、前記膜との放射率差が0.09以下の皮膜とを有するガス吐出部材。
     
PCT/JP2010/051090 2009-01-29 2010-01-28 成膜装置およびガス吐出部材 WO2010087385A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10735850A EP2383774A1 (en) 2009-01-29 2010-01-28 Film deposition device and gas ejection member
CN2010800060854A CN102301460A (zh) 2009-01-29 2010-01-28 成膜装置和气体排出部件
KR1020117020104A KR101336363B1 (ko) 2009-01-29 2010-01-28 성막 장치 및 가스 토출 부재
JP2010548540A JP5513413B2 (ja) 2009-01-29 2010-01-28 成膜装置およびガス吐出部材
US13/194,206 US20110283942A1 (en) 2009-01-29 2011-07-29 Film forming apparatus and gas injection member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-018365 2009-01-29
JP2009018365 2009-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/194,206 Continuation US20110283942A1 (en) 2009-01-29 2011-07-29 Film forming apparatus and gas injection member

Publications (1)

Publication Number Publication Date
WO2010087385A1 true WO2010087385A1 (ja) 2010-08-05

Family

ID=42395643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051090 WO2010087385A1 (ja) 2009-01-29 2010-01-28 成膜装置およびガス吐出部材

Country Status (7)

Country Link
US (1) US20110283942A1 (ja)
EP (1) EP2383774A1 (ja)
JP (1) JP5513413B2 (ja)
KR (1) KR101336363B1 (ja)
CN (1) CN102301460A (ja)
TW (1) TW201040308A (ja)
WO (1) WO2010087385A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130164948A1 (en) * 2011-12-22 2013-06-27 Intermolecular, Inc. Methods for improving wafer temperature uniformity
JP2013536590A (ja) * 2010-08-27 2013-09-19 アプライド マテリアルズ インコーポレイテッド 高放射率表面を有するガス分配シャワーヘッド
JP2017017247A (ja) * 2015-07-03 2017-01-19 昭和電工株式会社 成膜装置
JP2021512493A (ja) * 2018-01-31 2021-05-13 ラム リサーチ コーポレーションLam Research Corporation 静電チャック(esc)ペデスタル電圧分離
US11817341B2 (en) 2017-06-02 2023-11-14 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
US11835868B2 (en) 2018-03-20 2023-12-05 Lam Research Corporation Protective coating for electrostatic chucks

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130115372A1 (en) * 2011-11-08 2013-05-09 Primestar Solar, Inc. High emissivity distribution plate in vapor deposition apparatus and processes
JP6714978B2 (ja) * 2014-07-10 2020-07-01 東京エレクトロン株式会社 プラズマ処理装置用の部品、プラズマ処理装置、及びプラズマ処理装置用の部品の製造方法
US10388820B2 (en) 2015-02-03 2019-08-20 Lg Electronics Inc. Metal organic chemical vapor deposition apparatus for solar cell
US20170011909A1 (en) * 2015-07-06 2017-01-12 Asm Ip Holding B.V. Emissivity, surface finish and porosity control of semiconductor reactor components
US11380557B2 (en) * 2017-06-05 2022-07-05 Applied Materials, Inc. Apparatus and method for gas delivery in semiconductor process chambers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188678A (ja) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp プラズマ気相成長装置
JPH0570959A (ja) * 1991-09-13 1993-03-23 Nippon Steel Corp プラズマcvd装置用電極及びその形成方法
JPH05102042A (ja) * 1991-10-04 1993-04-23 Nissin Electric Co Ltd プラズマcvd装置
JPH0910577A (ja) * 1995-06-26 1997-01-14 Ulvac Japan Ltd 真空装置用構造材料および真空装置用構造部材
JPH09129563A (ja) * 1995-11-02 1997-05-16 Ulvac Japan Ltd シャワープレート
JP2000303180A (ja) 1999-04-16 2000-10-31 Hitachi Ltd 処理装置
JP2002289557A (ja) * 2002-02-04 2002-10-04 Tokyo Electron Ltd 成膜方法
JP2007027490A (ja) * 2005-07-19 2007-02-01 Tokyo Electron Ltd ガス処理装置
WO2007074678A1 (ja) * 2005-12-27 2007-07-05 Tokyo Electron Limited 成膜装置、成膜方法、プリコート層、および、プリコート層の形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002439B1 (ko) * 1990-03-09 1994-03-24 니뽄 덴신 덴와 가부시끼가이샤 금속 박막 성장방법 및 장치
JP3341619B2 (ja) * 1997-03-04 2002-11-05 東京エレクトロン株式会社 成膜装置
WO2004107825A1 (ja) * 2003-05-30 2004-12-09 Tokyo Electron Limited プラズマ源及びプラズマ処理装置
JP4513329B2 (ja) * 2004-01-16 2010-07-28 東京エレクトロン株式会社 処理装置
JP2006140367A (ja) * 2004-11-15 2006-06-01 Sumitomo Electric Ind Ltd 半導体製造装置用加熱体およびこれを搭載した加熱装置
US20090025008A1 (en) * 2007-07-19 2009-01-22 Aten International Co., Ltd. Ipmi systems and electronic apparatus using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188678A (ja) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp プラズマ気相成長装置
JPH0570959A (ja) * 1991-09-13 1993-03-23 Nippon Steel Corp プラズマcvd装置用電極及びその形成方法
JPH05102042A (ja) * 1991-10-04 1993-04-23 Nissin Electric Co Ltd プラズマcvd装置
JPH0910577A (ja) * 1995-06-26 1997-01-14 Ulvac Japan Ltd 真空装置用構造材料および真空装置用構造部材
JPH09129563A (ja) * 1995-11-02 1997-05-16 Ulvac Japan Ltd シャワープレート
JP2000303180A (ja) 1999-04-16 2000-10-31 Hitachi Ltd 処理装置
JP2002289557A (ja) * 2002-02-04 2002-10-04 Tokyo Electron Ltd 成膜方法
JP2007027490A (ja) * 2005-07-19 2007-02-01 Tokyo Electron Ltd ガス処理装置
WO2007074678A1 (ja) * 2005-12-27 2007-07-05 Tokyo Electron Limited 成膜装置、成膜方法、プリコート層、および、プリコート層の形成方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536590A (ja) * 2010-08-27 2013-09-19 アプライド マテリアルズ インコーポレイテッド 高放射率表面を有するガス分配シャワーヘッド
US20130164948A1 (en) * 2011-12-22 2013-06-27 Intermolecular, Inc. Methods for improving wafer temperature uniformity
JP2017017247A (ja) * 2015-07-03 2017-01-19 昭和電工株式会社 成膜装置
US11817341B2 (en) 2017-06-02 2023-11-14 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
JP2021512493A (ja) * 2018-01-31 2021-05-13 ラム リサーチ コーポレーションLam Research Corporation 静電チャック(esc)ペデスタル電圧分離
JP7374103B2 (ja) 2018-01-31 2023-11-06 ラム リサーチ コーポレーション 静電チャック(esc)ペデスタル電圧分離
US11990360B2 (en) 2018-01-31 2024-05-21 Lam Research Corporation Electrostatic chuck (ESC) pedestal voltage isolation
US11835868B2 (en) 2018-03-20 2023-12-05 Lam Research Corporation Protective coating for electrostatic chucks

Also Published As

Publication number Publication date
CN102301460A (zh) 2011-12-28
EP2383774A1 (en) 2011-11-02
KR20110122147A (ko) 2011-11-09
KR101336363B1 (ko) 2013-12-04
JPWO2010087385A1 (ja) 2012-08-02
TW201040308A (en) 2010-11-16
US20110283942A1 (en) 2011-11-24
JP5513413B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5513413B2 (ja) 成膜装置およびガス吐出部材
US9728409B2 (en) Method of manufacturing semiconductor device
JP6711592B2 (ja) プラズマチャンバ部品用耐プラズマコーティング
US8021717B2 (en) Film formation method, cleaning method and film formation apparatus
US7879179B2 (en) Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film
US7674726B2 (en) Parts for deposition reactors
KR101031741B1 (ko) 가스 처리 장치
JP5140957B2 (ja) 成膜装置
JP4325301B2 (ja) 載置台、処理装置及び処理方法
US20140272341A1 (en) Thermal treated sandwich structure layer to improve adhesive strength
JP2017147262A (ja) 基板処理装置、半導体装置の製造方法およびプログラム
US9975320B2 (en) Diffusion bonded plasma resisted chemical vapor deposition (CVD) chamber heater
JP2010059522A (ja) 成膜方法及び成膜装置
TW200924038A (en) Ceramic cover wafers of aluminum nitride or beryllium oxide
WO2009116588A1 (ja) 表面処理方法、シャワーヘッド部、処理容器及びこれらを用いた処理装置
JP5083173B2 (ja) 処理方法及び処理装置
JP2018049898A (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP6280721B2 (ja) TiN膜の成膜方法および記憶媒体
JPWO2015137198A1 (ja) 多層膜の製造方法および多層膜
US20200317582A1 (en) Member for plasma processing apparatus, plasma processing apparatus with the same and method for using sintered body
JP2013007121A (ja) 成膜装置及び成膜方法
WO2007069599A1 (ja) 成膜装置のプリコート方法
JP4260590B2 (ja) 基板処理装置のクリーニング方法
CN112088424A (zh) 等离子处理装置、等离子处理装置的内部构件和该内部构件的制造方法
WO2009119177A1 (ja) 成膜方法、成膜装置および記憶媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006085.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010548540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010735850

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117020104

Country of ref document: KR

Kind code of ref document: A