WO2010087194A1 - ブッシュ組付体の製造方法及び防振ゴムブッシュ - Google Patents
ブッシュ組付体の製造方法及び防振ゴムブッシュ Download PDFInfo
- Publication number
- WO2010087194A1 WO2010087194A1 PCT/JP2010/000536 JP2010000536W WO2010087194A1 WO 2010087194 A1 WO2010087194 A1 WO 2010087194A1 JP 2010000536 W JP2010000536 W JP 2010000536W WO 2010087194 A1 WO2010087194 A1 WO 2010087194A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peripheral surface
- outer cylinder
- vibration
- outer peripheral
- bush
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/38—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
- F16F1/3842—Method of assembly, production or treatment; Mounting thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
Definitions
- the present invention relates to a method of manufacturing a bush assembly including a vibration-proof rubber bush press-fit into a cylindrical metal counterpart and assembling the same, and a vibration-proof rubber bush as a component of the bush assembly.
- a vibration-proof rubber member of a vehicle having a cylindrical rigid outer cylinder and an inner cylinder, and a rubber elastic body integrally vulcanized and adhered in a state of elastically connecting the outer cylinder and the inner cylinder.
- Rubber bushes are widely used as trailing arm bushes, torque rod bushes, etc. of automobiles.
- the vibration-proof rubber bush is assembled by press-fitting in the axial direction on the outer peripheral surface of the outer cylinder with respect to a cylindrical metal counterpart having a circular inner peripheral surface, and together with the cylindrical counterpart, the bush assembly Build
- the outer cylinder of this vibration-proof rubber bush is made of metal, and when the vibration-proof rubber bush is press-fit into the mating member with a predetermined interference on the outer peripheral surface of the metal outer cylinder, the outer circumference of the outer cylinder Due to the strong frictional force generated between the surface and the inner circumferential surface of the mating member, the anti-vibration rubber bush is well prevented from coming off and rotating from the mating member.
- the outer cylinder of the vibration-proof rubber bush is simply press-fit and assembled to the other member. That is, even if the vibration-proof rubber bush is fixed to the mating member only by the frictional force between the outer circumferential surface of the resin outer cylinder and the inner circumferential surface of the mating member, press-fit with a predetermined interference at the beginning.
- the fixing force that is, the detachment force of the vibration-proof rubber bush from the other member is weak, and when the external input is applied, there is a fear that the vibration-proof rubber bush may be displaced with respect to the other member.
- FIG. 10 shows an example (disclosed in Patent Document 1 below).
- reference numeral 200 denotes a vibration-proof rubber bush, which is integrally bonded by vulcanization so as to elastically connect the outer cylinder 202 made of resin having a cylindrical shape, the inner cylinder 204 made of metal, and the outer cylinder 202 and the inner cylinder 204. And the rubber elastic body 206.
- Reference numeral 208 denotes a metal cylindrical counterpart having a circular inner circumferential surface
- the vibration-proof rubber bush 200 is axially press-fit into the mating member 208 on the outer circumferential surface of the outer cylinder 202 for engagement It is held in the state.
- the outer cylinder 202 made of resin has an annular collar portion 210 on one end side (lower end side in the drawing) in the axial direction, and the abutment of the collar portion 210 with the axial end surface of the mating member 208 10, the anti-vibration rubber bush 200 is prevented from coming off in the upward direction.
- the outer cylinder 202 is also partially thickened with inclined surfaces 214 and 216 inclined in opposite directions on the other axial end side opposite to this and on a portion axially projected from the mating member 208.
- the engaging portion 218 is the axial end face of the mating member 208, and more specifically, the flange portion 210.
- the fixing force of the vibration-proof rubber bushing 200 with respect to the mating member 208 is improved to some extent as compared with the case where no special measures are taken for the vibration-proof rubber bushing 200 in FIG. Is small, a sufficient pull-off force of the vibration-proof rubber bushing 200 from the mating member 208 can not be obtained, and the vibration-proof rubber bushing 200 may rotate relative to the mating member 208 also in the rotational direction.
- the anti-vibration rubber bush 200 causes positional deviation in the axial direction with respect to the mating member 208 or causes positional deviation in the rotational direction, the intended anti-vibration function of the anti-vibration rubber bush 200 is intended In some cases, the anti-vibration rubber bush 200 may be disengaged from the mating member 208 by the addition of an external input.
- the inner peripheral surface of the mating member is blasted to increase the surface roughness of the opposing member, in order to increase the fixing force of the vibration-proof rubber bush to the mating member, mainly the removal force.
- Methods are known. For example, in paragraph [0038] of Patent Document 2 below, it is disclosed that the inner peripheral surface of the opposite member of the comparative example product 2 of FIG. However, even in the method of providing unevenness on the inner peripheral surface of the mating member by such blasting, sufficient improvement in the removal force of the vibration-proof rubber bush can not be obtained.
- the present invention provides a method of manufacturing a bush assembly capable of dramatically enhancing the pull-off force from a mating member of a vibration-proof rubber bush having an outer cylinder made of resin.
- the object of the present invention is to provide a vibration-proof rubber bush as a component thereof.
- a bush assembly comprising an anti-vibration rubber bush having a rubber elastic body adhered and press-fit in an axial direction into a cylindrical metal counterpart member having a circular inner circumferential surface on the outer circumferential surface of the outer cylinder.
- the outer cylinder and the mating member are pressed together in a state in which the hard powder is interposed between the outer circumferential surface of the outer cylinder and the inner circumferential surface of the opposing member by press-fitting the vibration-proof rubber bush into the opposing member.
- the bush assembly is assembled in a fitted state to manufacture the bush assembly.
- a second aspect of the present invention related to a method of manufacturing a bush assembly is the method for manufacturing a bush assembly according to the first aspect of the present invention related to a method of manufacturing the bush assembly, Is attached to the outer peripheral surface of the outer cylinder in a state of being bitten into and held on the outer peripheral surface, and the anti-vibration rubber bush is press-fit into the mating member.
- a third aspect of the present invention related to a method of manufacturing a bush assembly is the method of manufacturing a bush assembly according to the second aspect of the present invention related to a method of manufacturing the bush assembly, wherein The outer peripheral surface is blasted, and the hard powder used as the projectile is attached to the outer peripheral surface of the outer cylinder in a state of being bitten into and held on the outer peripheral surface.
- a fourth aspect of the present invention related to a method of manufacturing a bush assembly is the manufacture of the bush assembly described in any one of the first to third aspects of the present invention related to a method of manufacturing the bush assembly.
- the hard powder is a ceramic powder.
- a fifth aspect of the present invention related to a method of manufacturing a bush assembly is a method of manufacturing a bush assembly according to a fourth aspect of the present invention related to a method of manufacturing the bush assembly, wherein the hard powder is alumina It is characterized by being a powder.
- a sixth aspect of the present invention related to a method of manufacturing a bush assembly is the manufacture of the bush assembly described in any one of the first to fifth aspects of the present invention related to a method of manufacturing the bush assembly.
- a resin coating film of an epoxy resin by cationic electrodeposition coating is formed on the inner peripheral surface of the mating member.
- the first aspect of the present invention relating to the vibration-proof rubber bush is integrally vulcanized and bonded in a state in which the cylindrical resin outer cylinder, the rigid inner cylinder, and the outer cylinder and the inner cylinder are elastically connected.
- a vibration-proof rubber bush which is assembled by being axially press-fitted to a cylindrical metal counterpart member having a rubber elastic body and having a circular inner circumferential surface on the outer circumferential surface of the outer cylinder, wherein the rubber bushing is assembled
- a hard powder made of a harder material than the outer cylinder is attached to the outer peripheral surface of the outer cylinder and to a portion fitted to the mating member.
- the hard powder is on the outer peripheral surface of the outer cylinder. It is characterized in that it adheres to the outer peripheral surface in a bite-in state.
- the third aspect of the present invention related to the vibration-proof rubber bush is the vibration-proof rubber bush described in the second aspect of the present invention concerning the vibration-proof rubber bush, wherein the hard powder is against the outer peripheral surface of the outer cylinder. It is characterized in that the hard powder is attached in a state of being bited into the outer peripheral surface by blasting using as a shot material.
- a fourth aspect of the present invention relating to a vibration-proof rubber bush is the vibration-proof rubber bush described in any one of the first to third aspects of the present invention concerning the vibration-proof rubber bush. It is characterized in that the body is a ceramic powder.
- the fifth aspect of the present invention related to the vibration-proof rubber bush is characterized in that the hard powder is alumina powder in the vibration-proof rubber bush described in the fourth aspect of the present invention concerning the vibration-proof rubber bush. I assume.
- the portion fitted to the outer peripheral surface of the resin outer cylinder and the inner peripheral surface of the mating member is more than the outer cylinder
- the vibration-proof rubber bush is pressed into the mating member, and the hard powder is interposed between the outer circumferential surface of the resin outer cylinder and the inner circumferential surface of the mating member
- the outer cylinder and the mating member are assembled in a fitted state.
- the hard powder attached to the outer peripheral surface of the resin outer cylinder bites into the outer peripheral surface of the outer cylinder in a press-fit state to the mating member, and the portion protruding from the outer peripheral surface of the outer cylinder is It is strongly pressed at least in the radial direction against the inner peripheral surface of the cylindrical mating member under strong tightening force by press-fitting, or bites into the inner peripheral surface of the mating member, whereby the mating member of the vibration-proof rubber bush It is thought that the pullout force (and the resistance in the rotational direction) from the material is dramatically increased by the anchoring effect of the hard powder.
- thermoplastic resin a thermosetting resin or the like can be used as a constituent resin of the outer cylinder, and among them, a thermoplastic resin excellent in impact resistance against vibration input and moldability is suitably used.
- thermoplastic resin material polyamide (including aromatic polyamide and modified polyamide), polyester (including modified polyester), polypropylene, polycarbonate, polyacetal, polyphenylene sulfide, modified polyphenylene ether and the like can be used.
- polyamide which is excellent in the balance of the reinforcement effect by a filler and cost is suitable.
- Glass fibers can be suitably used in terms of height and cost.
- non-reinforced resin materials without fillers can also be used.
- a mixture of polyamide 66 (PA 66) as a resin material and glass fiber as a filler at 30% (mass%) or more, preferably 40% or more on a polymer basis can be particularly suitably used.
- metal-based and inorganic-based ones can be used, among which inorganic-based ones are more preferable.
- ceramic type, silica sand, slag (refining slag of ore (slag)) other types can be used, and as ceramic type, alumina, silicon carbide, silicon nitride, zircon, glass other types Among them, ceramic materials harder than metals are particularly preferable.
- the metal surface of the inner peripheral surface of the mating member can be made to bite into it or its penetration force can be enhanced.
- the hard powder is to be attached to the outer peripheral surface of the resin outer cylinder, the hard powder is attached over an area of at least 20% or more of the fitting surface of the outer peripheral surface of the outer cylinder to the mating member. Is desirable.
- the bush assembly In the first embodiment of the present invention relating to the method of manufacturing the bush assembly, it is desirable to hold the hard powder on the outer peripheral surface of the resin outer cylinder in advance (the bush assembly) A second aspect of the present invention). By doing this, it is possible to effectively prevent the hard powder adhering to the outer peripheral surface of the resin outer cylinder from falling off from the outer peripheral surface of the outer cylinder before press-fitting.
- the outer peripheral surface of the outer cylinder can be subjected to a blasting treatment, and the hard powder used as the projection material can be adhered to and held in the outer peripheral surface of the outer cylinder.
- the manufacturing method of attachment Conventionally, blasting is performed on a cylindrical counterpart member, but as in the third aspect of the present invention related to a method of manufacturing the bush assembly, hard powder is used for the resin outer cylinder. It is not known that blasting is performed for the purpose of adhering the body.
- the hard powder is attached to the outer peripheral surface of the resin outer cylinder by such blasting, so that the hard powder is externally It can be made to bite into the outer peripheral surface of a pipe
- the hard powder can be uniformly dispersed and adhered to the entire outer peripheral surface of the outer cylinder, in detail, over the entire surface of the fitting surface to the mating member, and the vibration-proof rubber bush to the mating member Fixing quality by press-fitting can be improved.
- the above-mentioned ceramic-based hard powder as the hard powder.
- the particles of the powder particles are repeatedly hit on the workpiece to be projected, that is, the outer peripheral surface of the resin outer cylinder, the container containing the workpiece, etc. That is, as the projection is repeated, the particle size gradually decreases as it is broken or crushed.
- the projectile usually has a particle size distribution of constant width.
- the effect of making the surface of the outer cylinder uneven is large, those with large particle sizes are easily bounced when they collide with the outer peripheral surface of the outer cylinder, and the efficiency of holding on the outer peripheral surface of the outer cylinder is low.
- the particle size is small, the effect of roughening the outer peripheral surface of the outer cylinder is small but it is hard to cause rebound, and it is easy to bite into the outer peripheral surface of the outer cylinder and be held there.
- biting into a recess formed with a large particle size it is difficult to drop off from the outer peripheral surface of the outer cylinder, and the holding power tends to be high.
- the metal such as iron has a high impact force on the resin outer cylinder. It may cause the outer cylinder to crack.
- ceramic powder in particular alumina powder, which is lighter and harder than metals such as iron, and in particular alumina powder, and which adheres to the outer peripheral surface of the outer cylinder in a bite-in state is there.
- the powder particles are liable to be cracked by projection, and the cracks form an angular shape, and the corner portions thereof easily bite into the outer peripheral surface of the outer cylinder.
- ceramic powder as the hard powder regardless of whether the hard powder is attached by the above-mentioned blasting (the method of producing a bush assembly) It is preferable to use alumina powder, in particular, among the ceramic powders (fourth embodiment) (fifth embodiment of the present invention relating to a method for producing a bush assembly).
- the vibration-proof rubber bush even when the vibration-proof rubber bush is press-fit with the inner peripheral surface being the exposed surface of metal without applying cation coating to the inner peripheral surface of the mating member, it adheres to the outer peripheral surface of the resin outer cylinder member It has been confirmed that the removal power is increased by the function of the hardened hard powder, but particularly when the resin coating of epoxy resin by cationic electrodeposition is formed on the inner peripheral surface of the other member as described above. As it will become apparent later, it has been confirmed that the pullout force of the anti-vibration rubber bush is dramatically increased.
- the object to be coated (here, a metal counterpart member) is immersed in a bath containing an electrodeposition coating solution, which is used as a cathode, and voltage is applied between the bath and the anode immersed in the bath.
- the paint particles are electrophoresed toward the object to be coated on the cathode, deposited there by an electrochemical reaction to form a film, and then cured by baking, and uniformly and firmly adhered to the inner peripheral surface of the mating member A film of paint particles can be formed.
- the coating film itself of the formed epoxy resin is also hard and has high strength.
- the resin coating film has a strength that can withstand the pull-off force of the vibration-proof rubber bush. It is necessary that the resin is adhered to the other member and the strength of the resin itself is also strong. In this respect, the resin coating of the epoxy resin by cationic electrodeposition coating satisfies this condition. In order to enhance the pull-off force by the penetration of the hard powder into the resin coating film, it is desirable to use a hard powder which is harder than the resin coating film of the epoxy resin.
- the first to fifth aspects of the present invention concerning the vibration-proof rubber bush relate to the vibration-proof rubber bush as a constituent member of the bush assembly in the present invention concerning the method of manufacturing the bush assembly.
- the vibration-proof rubber bush is made by adhering hard powder to the outer peripheral surface of the resin outer cylinder, and the vibration-proof rubber bush is firmly fixed to the other member when it is press-fitted to the other member. A force can be obtained, and it is possible to realize a dramatically higher drop-off force than in the past.
- FIG. It is a figure of the vibration-proof rubber bush of one Embodiment of this invention. It is sectional drawing of FIG. It is a partial cross section side view which shows the vibration-proof rubber bush of the embodiment as a bush assembly. It is explanatory drawing of the assembly
- FIG. 1 and FIG. 2 10 is a vibration-proof rubber bush of this embodiment, which elastically connects the cylindrical outer cylinder 12, the cylindrical inner cylinder 14, and the outer cylinder 12 and the inner cylinder 14. And a rubber elastic body 16 integrally vulcanized and bonded in a state.
- the inner cylinder 14 is made of an extruded material made of metal, in this case, an aluminum alloy, and a plurality of hollow spaces 18 are formed in the axial direction along the circumferential direction.
- the outer cylinder 12 is made of a hard resin and made of resin.
- polyamide 66 resin is used as the resin.
- the polyamide 66 resin contains 33% by mass of a glass fiber as a reinforcing material based on a polymer.
- the outer cylinder 12 is integrally formed with a circumferentially annular flange portion 20 projecting radially outward at one axial end side (right end side in FIG. 2).
- the rubber elastic body 16 also has a cylindrical shape around the axis, but as shown in FIG. 1 (B), the rubber elastic body 16 is opposed to each other with the inner cylinder 14 in the direction perpendicular to the axis. In the state, a pair of ridges 22 in the form of penetrating in the axial direction is provided. In more detail, the rounding portions 22 are provided at two positions separated by 180 ° in the circumferential direction.
- a rubber collar portion 24 is provided on the rubber elastic body 16 so as to overlap with the collar portion 20 of the outer cylinder 12 as shown in FIG.
- the bored portion 22 is indented radially inward and outward at the both ends of the slit-like portion 25 extending in an arc shape in the circumferential direction and both ends of the slit-like portion 25.
- a pair of end portions 26 having the same shape.
- the pair of ridges 22 are vertically symmetrical in FIG. 1 (B).
- the end portions 26 and the slit-like portions 25 also have a left-right symmetrical shape in FIG. 1 (B).
- the rubber elastic body 16 is provided with an inner circumferential rubber stopper portion 28 and a circumferential outer rubber stopper portion 30 which face each other in the radial direction with the radius portion 22 therebetween.
- the inner circumferential rubber stopper portion 28 and the outer circumferential rubber stopper portion 30 have a stopper action by their contact. Regulate excessive relative displacement in the same direction.
- Numeral 32 denotes a rubber main body having an inherent vibration damping action by elastic deformation
- the vibration damping rubber bush 10 has an outer cylinder 12 and an inner cylinder 14 in an axis perpendicular direction orthogonal to the opposing direction of the pair of collar portions 22.
- the space is filled with the rubber body portion 32, and the same portion is a solid portion.
- 34 represents the solid part.
- reference numeral 38 denotes a mating member to which the vibration-proof rubber bush 10 is to be assembled.
- the mating member 38 is a metal cylindrical member having a circular inner peripheral surface, and an arm 40 extends from the mating member 38.
- ing. 3 is a view corresponding to FIG. 2, and the outer peripheral surface of the outer cylinder 12 appears on one side (upper side in FIG. 3) across the center line.
- the anti-vibration rubber bush 10 is axially pressed into the inner peripheral surface of the mating member 38 on the outer peripheral surface of the outer cylinder 12 with a predetermined interference, and is held in a fitted state by the mating member 38.
- the vibration-proof rubber bush 10 constitutes a bush assembly 36 by assembling to the mating member 38.
- the bush assembly 36 is manufactured by the following manufacturing method. That is, in the present embodiment, hard powder made of a material harder than the resin outer cylinder 12 is made to adhere to the outer peripheral surface of the resin outer cylinder 12, in detail, on the mating surface with the mating member 38. In the state, the vibration-proof rubber bush 10 is press-fit into the mating member 38 and assembled to constitute a bush assembly 36. Thus, with the hard powder interposed between the outer peripheral surface of the outer cylinder 12 and the inner peripheral surface of the mating member 38, the outer cylinder 12 and the mating member 38 are assembled in a fitted state, and the bush assembly is assembled.
- the attachment 36 is manufactured.
- the hard powder is preferably ceramic powder, more preferably alumina powder. Furthermore, it is desirable to form a resin coating film of epoxy resin by cationic electrodeposition coating on the inner peripheral surface of the mating member 38 in which the outer cylinder 12 is fitted.
- the vibration-proof rubber bush 10 it is also possible to press-fit the vibration-proof rubber bush 10 to the mating member 38 in such a state simply by making the hard powder adhere to the outer peripheral surface of the outer cylinder 12 (without biting in).
- the outer peripheral surface of the outer cylinder 12 is blasted to make hard powder as a projection material stick to the outer peripheral surface of the outer cylinder 12 and held on the outer peripheral surface of the outer cylinder 12
- the anti-vibration rubber bush 10 may be press-fitted to the mating member 38 in this state for assembly.
- the hard powder may be attached to the outer peripheral surface of the resin outer cylinder 12 in a single state at a stage before vulcanization molding of the vibration-proof rubber bush 10 in some cases.
- hard powder is adhered to the outer peripheral surface of the outer cylinder 12 in advance.
- the fixing force of the vibration-proof rubber bush 10 to the mating member 38 can be made high, and the detachment force of the vibration-proof rubber bush 10 from the mating member 38 can be dramatically increased. is there. This point is specifically verified below.
- the present inventors intend to increase the pull-out force of the vibration-proof rubber bush 10 by making the outer peripheral surface of the outer cylinder 12 into a concavo-convex shape initially (by increasing the surface roughness).
- blasting pneumatic sand blasting
- powder as a shot material
- the surface exposure and fuzzing of the glass fiber are not particularly recognized, and therefore, fuzzing of the glass fiber, that is, the glass fiber becomes a resistance and the pullout force of the vibration-proof rubber bush 10 is It was found that they did not improve.
- FIG. 6 (B) (b) it can be recognized that black points are gathered together along the uneven shape of the surface.
- the collection of black points is a powder of alumina used as a shot material.
- the pull-off force was measured as follows. That is, as shown in FIG. 5, the vibration proof rubber bush 10 is press-fit and assembled to a metal cylindrical jig 42 having the same inner peripheral surface shape as the mating member 38, and the jig In the state where 42 was placed on the base 44, the pressing force in the disengaging direction was applied to the outer cylinder 12 by the pressing jig 46, and the disengaging force at that time was measured.
- the resin coating film by cationic electrodeposition coating is a film having a thickness of about 10 to 30 ⁇ m.
- the outer diameter of the outer cylinder 12 and the inner diameter of the jig 42 are as shown in Table 5, and the length L of the jig 42 in the vertical direction in the figure is 52 mm.
- the amount of sag in Table 5 is a value obtained by subtracting the outer diameter after extraction in accordance with FIG. 5 from the initial outer diameter.
- the surface roughness is higher than those not blasted and wet blasting compared to sandblasted. It can be seen that the surface roughness is higher in the case of For example, in Table 2, Rz is 6.1 for the non-blasted one, while Rz is 19.8 for the sandblasted one and that for the wet blasted one is Rz 31. It is 5 (all are average values).
- the sandblasted product has a removal power of 27.30 kN and 26.80 kN, which is much higher than that of the wet-blasted product (the wet-blasted product is sandblasted) About half the power of the processed ones).
- III Observation of surface (outer peripheral surface) of outer cylinder 12 Next, the point of (c) above, that is, whether the projection material bites into the outer peripheral surface of the outer cylinder 12 and the throwing-off effect of the damping rubber bush 10 is improved by the throwing effect. The verification of was done.
- III-1 Confirmation of outer peripheral surface state of outer cylinder 12 by SEM photograph and mapping The surface was observed with a scanning electron microscope for each without blast treatment, one with sand blast treatment and one with wet blast treatment, and was present on the surface The presence of Al from alumina (Al 2 O 3 ) was confirmed, and the presence and distribution of Si were observed. The results are shown in FIG.
- the Al mapping and the Si mapping were measured with an energy dispersive X-ray analyzer using a Hitachi scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corp.).
- sandblasting sprays alumina powder with air, while wetblasting uses a stream of water, so alumina powder is washed away it is conceivable that.
- Al 2 O 3 is also contained in the glass fiber contained in the outer cylinder 12, Al that appears in the same place as Si in the Al mapping image and the Si mapping image for the wet-blasted one is a glass It is considered to be of fiber origin.
- the element can be identified by the fluorescent X-ray. Moreover, since the intensity of the generated fluorescent X-rays is proportional to the concentration of the element, the element can be quantitatively analyzed by measuring the intensity. From this result, Al derived from alumina could be confirmed in an amount of 0.115 (cps / ⁇ A) by sandblasting. In addition, cps represents counts per second in counts per second.
- the outer cylinder 12 made of resin there is an inherent problem such as a secular change (permanent strain) as a temporal change after press-in and a drop-off force decrease due to the stress relaxation, and here the accelerated test In the heat aging test (heat aging test of holding at 80 ° C. for 42 hours) and the holding of cooling (holding at -40 ° C. for 3 hours), measurement is also performed for the detachment force.
- heat aging test heat aging test of holding at 80 ° C. for 42 hours
- the holding of cooling holding at -40 ° C. for 3 hours
- measurement is also performed for the detachment force.
- the resin outer cylinder 12 has a large amount of shrinkage due to cooling with respect to the metal counterpart member, and there is a problem that the dropout force is reduced by that, so to what extent It is a test to check if it will be.
- each of those not subjected to blast treatment and those subjected to wet blast treatment is subjected to measurement with respect to those not subjected to alumina coating, and those subjected to sand blast treatment
- the measurement was performed for each of those not subjected to the washing treatment and those subjected to the washing treatment.
- the resin outer cylinder 12 is blasted to specifically check the effect of the resin coating film of the epoxy resin formed on the inner peripheral surface of the mating member 38 by cationic electrodeposition coating on the pull-off force. Then, as the cylindrical jig 42 shown in FIG. 5, the ones with and without the resin coating film formed on the inner peripheral surface were used to compare and measure the pullout force.
- the outer cylinder 12 used was made of the polyamide 66 resin containing 33% by mass of glass fibers as described above, here, the outer cylinder 12 was 50% by mass of glass fibers in the polyamide 66 resin. The one contained was used. Furthermore, in the previous test, short fibers (having a length of 300 ⁇ m in the resin pellet state before molding of the outer cylinder 12) were used as glass fibers, but here long fibers (also resin before molding of the outer cylinder 12) 10 mm in length in pellet form was used.
- the vibration proof rubber bush 10 which has been subjected to a blast treatment to the outer cylinder 12 once, is pressed into the cylindrical jig 42 in which the resin coating film is formed on the inner circumferential surface by cationic electrodeposition coating. And then the pressure-insulated rubber bush 10, which has been subjected to another blasting treatment to the same jig 42 after being extracted, is press-fitted and pulled out, and the detachment force at that time The measurement of was also carried out (represented in Table 8 as jig reuse).
- the blasting was performed using the same thing as used by the previous test as a projection material.
- the injection pressure was 0.57 MPa
- the nozzle diameter was ⁇ 9.2 mm.
- cationic electrodeposition coating was performed using HG350E (trade name) manufactured by Kansai Paint Co., Ltd. as a paint.
- the film thickness of the resin coating film formed at this time was 25 to 30 ⁇ m. It is to be noted that the number of samples with cation coating, no cation coating, and jig reuse shown in Table 8 is measured for three samples.
- the removal force is 28.0, 31.0, 31 .0 (average about 30), and the drop-off power is reduced by about 30% as compared with the case with the cation coating.
- the release force is as large as 42 kN on average for those with cation coating, and this value is higher than, for example, the release forces 28.5 and 27.3 (blasted) in Table 7. It is nearly double the value.
- the difference in the pull-off force is the effect that the glass fibers contained in the resin are long fibers in the test shown in Table 8 and the content is as large as 50% by mass.
- the inner surface of the jig 42 is smooth and the physical property of the inner surface is almost the same, both with and without the cationic electrodeposition coating.
- the pull-off force is almost equal between the two.
- the degree of drop of the drop-off force is about 40% as compared with the one with cation coating because the blast on the outer peripheral surface of the resin outer cylinder 12
- the effect is that the hard powder is attached by the treatment (the difference between the drop in force of 1/3 and the drop by 40% is due to the presence or absence of the function of the hard powder), which is the counterpart Even when the cation coating 12 is not used, it means that the removal power is enhanced by causing the hard powder to adhere to the outer cylinder 12 by the blast treatment.
- the physical properties of the inner peripheral surface of the mating member 12, that is, the jig 42 in this case are almost equal between the one subjected to the cationic electrodeposition coating and the one not subjected to the cationic electrodeposition coating.
- the removal force should be equivalent regardless of whether the jig 42 is subjected to cationic electrodeposition coating, but in practice As shown in the result of 8, a large difference occurs in the removal force between the case where the cationic electrodeposition coating is applied and the case where it is not applied. This is a proof that the effect of the hard powder adhering to the outer peripheral surface of the outer cylinder 12 by the blasting, that is, the presence of the hard powder largely contributes to the improvement of the removal force.
- the glass fiber of long fiber contained in the resin is divided and shortened at the time of molding the outer cylinder 12, and the length becomes various length by division, but the rigidity of the outer cylinder 12 is increased by using the long fiber Also, considering that the fact that the pull-off force is dramatically increased is that the glass fibers contained in the resin outer cylinder are long fibers, the outer cylinder is naturally also in the product formed state Most of the glass fibers contained in 12 still maintain a certain length or more. For example, if glass fibers of 1 mm or more are contained in a molded article, it can be identified as a reinforcing material in which long fibers longer than the conventional 300 ⁇ m are blended in a resin material.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Springs (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
この防振ゴムブッシュは、円形の内周面を有する筒形の金属製の相手部材に対して外筒の外周面において軸方向に圧入して組み付けられ、筒形の相手部材とともにブッシュ組付体を構築する。
図10はその一例を示している(下記特許文献1に開示)。
同図において200は防振ゴムブッシュで、円筒状をなす樹脂製の外筒202と、金属製の内筒204と、それら外筒202及び内筒204を弾性連結する状態に一体に加硫接着されたゴム弾性体206とを有している。
樹脂製の外筒202は、軸方向の一端側(図中下端側)に環状をなす鍔部210を有しており、その鍔部210の相手部材208の軸端面への当接によって、図10中上方向への防振ゴムブッシュ200の抜けが防止される。
例えば下記特許文献2の段落[0038]に、図7の比較例品2の相手部材の内周面にブラスト処理を施す点が開示されている。
しかしながらこのようなブラスト処理によって相手部材の内周面に凹凸付与する方法においても、防振ゴムブッシュの抜け力の十分なる向上は得られない。
かかる本発明によれば、後の説明で明らかにされるように防振ゴムブッシュの相手部材からの抜け力を飛躍的に高め得ることが確認されている。
詳しくは、かかる外筒の構成樹脂として熱可塑性樹脂や熱硬化性樹脂等を用いることができ、その中でも振動入力に対する耐衝撃強度や成形性に優れる熱可塑性樹脂が好適に用いられる。
また使用部位によっては充填材のない非強化樹脂材料も用いることもできる。
但し本発明では樹脂材料としてポリアミド66(PA66)に充填材としてガラス繊維をポリマーベースで30%(質量%)以上、望ましくは40%以上混合したものを特に好適に用いることができる。
また無機系のものとしてセラミック系や珪砂,スラグ(鉱石の精錬スラグ(鉱滓))その他の系統のものを用いることができ、更にセラミック系としてアルミナ,炭化珪素,窒化珪素,ジルコン,ガラスその他のものを用いることができるが、このうち金属よりも硬質なセラミック系のものが特に好適である。
尚、硬質粉体を樹脂製の外筒の外周面に付着させるに際して、外筒の外周面の相手部材に対する嵌合面の少なくとも20%以上の面積に亘って硬質粉体の付着処理をしておくことが望ましい。
このようにしておけば、圧入前において樹脂製の外筒の外周面に付着させた硬質粉体が外筒の外周面から脱落してしまうのを有効に防止することができる。
従来、筒形の相手部材に対してブラスト処理することは行われているが、このブッシュ組付体の製造方法に関する本発明の第三の態様のように樹脂製の外筒に対して硬質粉体を付着させることを目的としてブラスト処理を行うといったことは知られていない。
このようなセラミック系の硬質粉体を投射材として用いたとき、粉体粒子の粒が投射対象であるワーク即ち樹脂製の外筒の外周面やワークを入れた容器等に繰り返し当ることによって、つまり投射を繰り返すうちに割れたり破砕したりして粒度が次第に小さくなって行く。
一方粒度の小さいものは、外筒の外周面を粗す効果は小さいが跳ね返りを生じ難く、外筒の外周面に食い込んでそこに保持され易い。特に粒度の大きいもので形成された凹部に食い込むことによって外筒の外周面から脱落し難く、保持力が高くなる傾向となる。
この点において、鉄等の金属に比べて軽量でしかも硬いセラミック粉体、特にアルミナ粉体を投射材として用い、これを外筒の外周面に食込状態に付着させるようになすのが好適である。
尚この樹脂塗膜に対する硬質粉体の食込みにより抜け力を高めるためには、硬質粉体としてかかるエポキシ樹脂の樹脂塗膜よりも硬いものを用いることが望ましい。
図1及び図2において、10は本実施形態の防振ゴムブッシュで、円筒状をなす外筒12と、同じく円筒状をなす内筒14と、それら外筒12及び内筒14を弾性連結する状態に一体に加硫接着されたゴム弾性体16とを有している。
内筒14は金属製、ここではアルミニウム合金の押出材にて構成されており、周方向に沿って軸方向に貫通の複数の空所18が形成されている。
但し他の材質の樹脂にて外筒12を構成することも可能である。
この外筒12には、軸方向一端側(図2中右端側)に、径方向外方に張り出した周方向に環状をなす鍔部20が一体に成形されている。
詳しくは、周方向に180°隔たった位置の2個所にすぐり部22が設けられている。
尚ゴム弾性体16には、図2に示しているように外筒12における鍔部20に重なる状態で、ゴム鍔部24が設けられている。
ここで一対のすぐり部22は、図1(B)において上下対称形状をなしている。
またそれぞれのすぐり部22おいて、各端部26及びスリット状部25も図1(B)において左右対称形状をなしている。
これら内周側ゴムストッパ部28と外周側ゴムストッパ部30とは、内筒14と外筒12とが図1(B)において上下方向に相対変位したとき、それらの当接によるストッパ作用にて同方向の過大な相対変位を規制する。
防振ゴムブッシュ10は、外筒12の外周面においてこの相手部材38の内周面に所定の締代で軸方向に圧入され、この相手部材38によって嵌合状態に保持される。
防振ゴムブッシュ10は、この相手部材38への組付けによってブッシュ組付体36を構成する。
以下にこの点を具体的に検証する。
(イ)外筒12にはガラス繊維が含まれており、ブラスト処理によってそのガラス繊維が表面に毛羽立った状態で露出することにより抜け力が向上した可能性。
(ロ)ブラスト処理によって外筒12の外周面が粗されることにより抜け力が向上した可能性。
(ハ)ブラスト処理によって投射材が外筒12の外周面に刺さるようにして食い込み、その結果圧入状態で投射材が相手部材との間に介在して、投錨効果によって防振ゴムブッシュ10の抜け力が向上した可能性。
そこで先ず上記の(イ)の点、即ちブラスト処理によってガラス繊維が表面に毛羽立ちを生じているか否かを確認するために、ブラスト処理しなかったもの及びブラスト処理したものの両方について、その外筒12の横断面をSEM(走査形電子顕微鏡)により観察した。
その結果が図6に示してある。
尚ブラスト処理については以下の条件で行った。
投射材:アルミナ粉末((株)不二製作所製のフジランダムA36(初期粒度が595~500μm)を使用、化学成分,モース硬度は下記の表1の通りである)
射出圧力(エア圧):0.57±0.1MPa
ノズル径:φ6.8~φ9.0mm(平均径)
装置:(株)不二製作所製 SG- 4BL- 304型
尚図6(B)(ロ)に、表面の凹凸形状に沿って黒色の点が集合して存在していることが認められる。この黒色の点の集合は投射材として用いたアルミナの粉体である。
次に上記(ロ)の点、即ちブラスト処理により外筒12の表面が粗れることによって、防振ゴムブッシュ10の抜け力が向上したのかどうかの検証を行った。
II-1.表面粗さ測定結果(以下の表2,表3中の数値は試料数n=2について2個所測定した平均値を示す)
ブラスト処理しなかったもの,ブラスト処理したもの及びウェットブラスト処理したもの(ブラスト処理は外筒12の全面。以下同じ)のそれぞれについて、加硫前後の表面粗さを測定した。
その結果を加硫前のものについては表2に、加硫後のものについては表3に示した。
(1)加硫前
ブラスト処理は、多数の外筒12に対して同時に処理を行うことから、ここでは全部で105個に対してブラスト処理を行ったときの表面粗さのばらつきを確認した。結果が表4に示してある。
尚これら表2,表3,表4においてRaはJIS B0601に規定するところの中心線平均粗さであり、Rmaxは最大高さ,Rzは10点平均粗さである。
ブラスト処理をしなったもの,乾式でエア噴射によるブラスト処理を行ったもの、及び水流によるウェットブラスト処理したもののそれぞれについて抜け力測定を行った。
結果が以下の表5に示してある。
即ち、図5に示しているように上記相手部材38と同一の内周面形状を有する金属製の円筒状の治具42に、防振ゴムブッシュ10を圧入して組み付けておき、そして治具42をベース44上に乗せた状態で、押圧治具46にて外筒12に抜け方向の押圧力を加え、その際の抜け力を測定した。
ここでカチオン電着塗装による樹脂塗膜は厚みが10~30μm程度の膜である。
一方外筒12の外径,治具42の内径は表5に示した通りであり、また治具42の図中上下方向の長さLは52mmである。
尚表5のへたり量は図5に従って抜出しを行った後の外径を当初の外径から差し引いた値である。
例えば、表2においてブラスト処理しなかったものについてはRzが6.1であるのに対し、サンドブラスト処理をしたものはRzが19.8であり、またウェットブラスト処理をしたものはRzが31.5(何れも平均値)となっている。
これに対してサンドブラスト処理をしたものについては、抜け力が27.30kN,26.80kNで、ウェットブラスト処理をしたものよりも更に大幅に抜け力が高くなっている(ウェットブラスト処理したものはサンドブラスト処理したものの約半分の抜け力)。
図7にこれらの結果がまとめて示してある。
従ってサンドブラスト処理によって抜け力が飛躍的に高まるのは、その他の理由によるものと考えられる。
尚表3に見られるように、加硫により外筒12の表面粗さが低くなっているが、これは加硫時に外筒12が成形金型の内面に押し付けられ、その際の熱及び圧力によって外筒12の外周面が平滑化された結果と考えられる。
次に上記の(ハ)の点、即ち投射材が外筒12の外周面に食い込み、その投錨効果によって防振ゴムブッシュ10の抜け力が向上したのかどうかの検証を行った。
III-1.SEM写真及びマッピングによる外筒12外周面状態の確認
ブラスト処理を行わなかったもの,サンドブラスト処理をしたもの及びウェットブラスト処理をしたもののそれぞれについて表面を走査形電子顕微鏡にて観察し、また表面に存在するアルミナ(Al2 O3 )由来のAlの存在状態の確認及び併せてSiの存在及び分布の観察を行った。
結果が図8に示してある。
次にブラスト処理しなかったもの,サンドブラスト処理したもの及びウェットブラスト処理したもののそれぞれについて、表面のアルミナ付着量(厳密にはAlの存在量)を蛍光X線分析により定量分析した。
結果が表6に示してある。
また発生する蛍光X線の強度は元素の濃度に比例するため、その強度を測定することによって元素を定量分析することができる。
この結果から、サンドブラスト処理によってアルミナ由来のAlが0.115(cps/μA)の量で確認できた。
尚cpsはcounts per second で1秒当たりのカウント数を表す。
アルミナ粉体の抜け力への寄与を確認するため、ブラスト処理しなかったもの及びウェットブラスト処理したもののそれぞれにアルミナ粉体を単に振り掛けるだけの塗布処理(塗布は外筒12の外周面全面)を行ったもの、及びサンドブラスト処理したものの表面を洗浄処理(流水下でナイロンスポンジを使用して1個当り3分間擦るようにして洗浄)を行い、防振ゴムブッシュ10の抜け力への影響を確認試験した。
結果が表7及び図9に示してある。
ここで-40℃の放置は、樹脂製の外筒12は金属製の相手部材に対して冷却による収縮の量が大きく、そのことにより抜け力が低下する問題があるため、それがどの程度になるのかを確認するための試験である。
これは、アルミナ粉体が外筒12の外周面に食い込んだ状態に強固に保持されており、洗浄によってはその外周面から脱落しないことを表している。
表7において、上記の熱老化+低温放置の条件を与えた後の抜け力は7.20kN,7.40kN,7.10kNであり、この値は十分な値である。
更に、先の試験ではガラス繊維として短繊維(外筒12成形前の樹脂ペレット状態で長さが300μmのもの)を用いたが、ここではガラス繊維として長繊維(同じく外筒12成形前の樹脂ペレット状態で長さが10mmのもの)を用いた。
またブラスト条件については、射出圧力:0.57MPa,ノズル径:φ9.2mmとした。
またカチオン電着塗装は、塗料として関西ペイント(株)社製のHG350E(商品名)を用いて行った。このとき生成した樹脂塗膜の膜厚は25~30μmであった。
尚、表8のカチオン塗装有り,カチオン塗装無し,治具再利用の何れのものも試料数3個について測定を行っている。
このことから、相手部材38に対してカチオン塗装を施しておくことで抜け力を極めて効果的に高め得ることが分る。
但しカチオン塗装無しのものに比べれば、抜け力はなお一定の高い値を示している。
このこともまた、カチオン塗装による樹脂塗膜が抜け力を高める上で有効に働いていることを示している。
この抜け力の相違は、表8に結果を示した試験では樹脂に含有したガラス繊維が長繊維であり、且つこれを50質量%と多く含有したことの効果である。
先の試験で示したように、内周面にカチオン電着塗装を施した治具42を用いた場合において、樹脂製の外筒12にブラスト処理を行わなかったものでは、ブラスト処理を行ったものに対し抜け力が約3分の1と低い値となっている。
カチオン塗装無しの治具42を用いた場合において、抜け力がカチオン塗装有りのものに比べてその低下の程度が40%程度に留まっているのは、樹脂製の外筒12の外周面にブラスト処理にて硬質粉体を付着させたことの効果によるもの(抜け力3分の1の低下と40%低下との差は硬質粉体による働きの有無によるもの)であり、このことは相手部材12がカチオン塗装無しの場合であっても、外筒12にブラスト処理により硬質粉体を付着させておくことで抜け力が高まることを意味している。
例えば本発明においては上記アルミナ以外の他の様々な硬質粉体を用いることができるし、また樹脂製の外筒12外周面への付着の手法についても他の様々な手法を用いることが可能である等、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
12 外筒
14 内筒
16 ゴム弾性体
36 ブッシュ組付体
38 相手部材
Claims (11)
- 円筒状の樹脂製の外筒と、剛性の内筒と、それら外筒と内筒とを弾性連結する状態に一体に加硫接着されたゴム弾性体とを有する防振ゴムブッシュを、該外筒の外周面において円形の内周面を有する筒形の金属製の相手部材に軸方向に圧入して組み付けて成るブッシュ組付体の製造方法であって
前記樹脂製の外筒の外周面に且つ前記相手部材の内周面に嵌合する部分に、該外筒よりも硬質材から成る硬質粉体を付着させた状態で前記防振ゴムブッシュを前記相手部材に圧入し、該外筒の外周面と該相手部材の内周面との間に該硬質粉体を介在させる状態に、それら外筒と相手部材とを嵌合状態に組み付け、前記ブッシュ組付体を製造することを特徴とするブッシュ組付体の製造方法。 - 請求項1において、前記硬質粉体を前記外筒の外周面に食い込んだ状態に付着させて該外周面に保持させておき、前記防振ゴムブッシュを前記相手部材に圧入することを特徴とするブッシュ組付体の製造方法。
- 請求項2において、前記外筒の外周面に対してブラスト処理を施し、投射材として用いた前記硬質粉体を該外筒の外周面に食い込んだ状態に付着させて該外周面に保持させておくことを特徴とするブッシュ組付体の製造方法。
- 請求項1~3の何れかにおいて、前記硬質粉体がセラミック粉体であることを特徴とするブッシュ組付体の製造方法。
- 請求項4において、前記硬質粉体がアルミナ粉体であることを特徴とするブッシュ組付体の製造方法。
- 請求項1~5の何れかにおいて、前記相手部材の内周面には、カチオン電着塗装によるエポキシ樹脂の樹脂塗膜が形成してあることを特徴とするブッシュ組付体の製造方法。
- 円筒状の樹脂製の外筒と、剛性の内筒と、それら外筒と内筒とを弾性連結する状態に一体に加硫接着されたゴム弾性体とを有し、該外筒の外周面において円形の内周面を有する筒形の金属製の相手部材に軸方向に圧入されて組み付けられる防振ゴムブッシュであって
前記樹脂製の外筒の外周面に且つ前記相手部材に嵌合する部分に、該外筒よりも硬質材から成る硬質粉体が付着させてあることを特徴とする防振ゴムブッシュ。 - 請求項7において、前記硬質粉体が、前記外筒の外周面に食い込んだ状態に該外周面に付着させてあることを特徴とする防振ゴムブッシュ。
- 請求項8において、前記硬質粉体が、前記外筒の外周面に対する該硬質粉体を投射材として用いたブラスト処理によって該外周面に食い込んだ状態に付着させてあることを特徴とする防振ゴムブッシュ。
- 請求項7~9の何れかにおいて、前記硬質粉体がセラミック粉体であることを特徴とする防振ゴムブッシュ。
- 請求項10において、前記硬質粉体がアルミナ粉体であることを特徴とする防振ゴムブッシュ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/996,472 US8651465B2 (en) | 2009-01-29 | 2010-01-29 | Method of manufacturing bushing assembly and vibration damping rubber bushing |
CN201080003224.8A CN102216642A (zh) | 2009-01-29 | 2010-01-29 | 衬套组装体的制造方法和隔振橡胶衬套 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009018812 | 2009-01-29 | ||
JP2009-018812 | 2009-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087194A1 true WO2010087194A1 (ja) | 2010-08-05 |
Family
ID=42395458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000536 WO2010087194A1 (ja) | 2009-01-29 | 2010-01-29 | ブッシュ組付体の製造方法及び防振ゴムブッシュ |
Country Status (4)
Country | Link |
---|---|
US (1) | US8651465B2 (ja) |
JP (1) | JP5363360B2 (ja) |
CN (1) | CN102216642A (ja) |
WO (1) | WO2010087194A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102734322A (zh) * | 2012-06-25 | 2012-10-17 | 安徽中鼎减震橡胶技术有限公司 | 一种开口式轴套及其生产方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5562570B2 (ja) * | 2009-03-25 | 2014-07-30 | 株式会社ブリヂストン | 防振装置 |
WO2012124061A1 (ja) * | 2011-03-15 | 2012-09-20 | 東海ゴム工業株式会社 | 防振装置 |
CN102489934B (zh) * | 2011-11-28 | 2013-06-19 | 武汉船用机械有限责任公司 | 一种超长衬套的装配方法 |
JP6122622B2 (ja) * | 2012-11-30 | 2017-04-26 | 日立オートモティブシステムズ株式会社 | シリンダ装置 |
JP5619947B2 (ja) * | 2013-03-28 | 2014-11-05 | 株式会社ブリヂストン | トルクロッド |
DE102013223295A1 (de) * | 2013-11-15 | 2015-05-21 | Bayerische Motoren Werke Aktiengesellschaft | Funktionelles Bauteil, insbesondere für ein Kraftfahrzeug, Verfahren zur Herstellung eines funktionellen Bauteils und Kraftfahrzeug, das ein funktionelles Bauteil umfasst |
US20160221407A1 (en) * | 2015-01-29 | 2016-08-04 | Trelleborg Automotive Usa, Inc. | Rotationally slipping rubber bushing with axial retention feature |
CN109552434A (zh) * | 2019-01-22 | 2019-04-02 | 特瑞堡模塑件(无锡)有限公司 | 驾驶室翻转衬套 |
CN112359384A (zh) * | 2020-10-19 | 2021-02-12 | 建新赵氏科技有限公司 | 一种汽车减震衬套的生产方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04282012A (ja) * | 1990-11-12 | 1992-10-07 | Man B & W Diesel As | 内燃機関用クランク軸 |
JPH0577637U (ja) | 1992-03-23 | 1993-10-22 | 東海ゴム工業株式会社 | ブッシュ |
JPH0669469U (ja) * | 1993-03-15 | 1994-09-30 | 豊生ブレーキ工業株式会社 | エンジン支持構造 |
JP2002317844A (ja) * | 2001-01-24 | 2002-10-31 | Tokai Rubber Ind Ltd | ゴムブッシュ |
JP2004176803A (ja) | 2002-11-26 | 2004-06-24 | Tokai Rubber Ind Ltd | 筒形防振装置 |
JP2007277371A (ja) * | 2006-04-05 | 2007-10-25 | Dainippon Ink & Chem Inc | 電着塗料用エポキシ樹脂組成物 |
JP2008156707A (ja) * | 2006-12-25 | 2008-07-10 | Mitsubishi Heavy Ind Ltd | 熱処理方法 |
JP2008162317A (ja) * | 2006-12-27 | 2008-07-17 | Ntn Corp | 車輪用軸受装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3507759A (en) * | 1966-09-15 | 1970-04-21 | American Cyanamid Co | Removal of conductive metal oxide from a metal oxide coated insulating substrate |
US3457151A (en) * | 1966-10-27 | 1969-07-22 | Solutec Corp | Electrolytic cleaning method |
GB1521783A (en) * | 1976-04-27 | 1978-08-16 | Rolls Royce | Method of and mixture for alloy coating removal |
US5922142A (en) * | 1996-11-07 | 1999-07-13 | Midwest Research Institute | Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making |
US6348159B1 (en) * | 1999-02-15 | 2002-02-19 | First Solar, Llc | Method and apparatus for etching coated substrates |
US6179887B1 (en) * | 1999-02-17 | 2001-01-30 | 3M Innovative Properties Company | Method for making an abrasive article and abrasive articles thereof |
JP2000355673A (ja) * | 1999-04-16 | 2000-12-26 | Kansai Paint Co Ltd | カチオン電着塗料組成物 |
US7645366B2 (en) * | 1999-07-12 | 2010-01-12 | Semitool, Inc. | Microelectronic workpiece holders and contact assemblies for use therewith |
JP2001235009A (ja) * | 2000-02-22 | 2001-08-31 | Seiko Epson Corp | 歯車装置,歯車,および該歯車装置を備えた記録装置 |
JP2002115745A (ja) * | 2000-10-10 | 2002-04-19 | Toyo Tire & Rubber Co Ltd | ブッシュ型マウント |
US6572962B2 (en) * | 2001-04-12 | 2003-06-03 | The Gates Corporation | Particle lock joint |
ES2247439T3 (es) * | 2002-05-02 | 2006-03-01 | Yamashita Rubber Kabushiki Kaisha | Dispositivo antivibracion. |
US20040000322A1 (en) * | 2002-07-01 | 2004-01-01 | Applied Materials, Inc. | Point-of-use mixing with H2SO4 and H2O2 on top of a horizontally spinning wafer |
US7104533B2 (en) * | 2002-11-26 | 2006-09-12 | Tokai Rubber Industries, Ltd. | Cylindrical vibration damping device |
US7419911B2 (en) * | 2003-11-10 | 2008-09-02 | Ekc Technology, Inc. | Compositions and methods for rapidly removing overfilled substrates |
JP2006022948A (ja) * | 2004-06-07 | 2006-01-26 | Honda Motor Co Ltd | 締結構造 |
US20070013159A1 (en) * | 2005-03-23 | 2007-01-18 | Mestre Miquel T | Knuckle and bearing assembly and process of manufacturing same |
JP4404849B2 (ja) * | 2005-12-27 | 2010-01-27 | 本田技研工業株式会社 | ブッシュ |
JP4382822B2 (ja) * | 2007-01-11 | 2009-12-16 | 本田技研工業株式会社 | 筒形防振装置 |
JP2009270700A (ja) * | 2008-05-12 | 2009-11-19 | Bridgestone Corp | 弾性ブッシュおよびそれの製造方法 |
-
2010
- 2010-01-27 JP JP2010015229A patent/JP5363360B2/ja active Active
- 2010-01-29 CN CN201080003224.8A patent/CN102216642A/zh active Pending
- 2010-01-29 US US12/996,472 patent/US8651465B2/en active Active
- 2010-01-29 WO PCT/JP2010/000536 patent/WO2010087194A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04282012A (ja) * | 1990-11-12 | 1992-10-07 | Man B & W Diesel As | 内燃機関用クランク軸 |
JPH0577637U (ja) | 1992-03-23 | 1993-10-22 | 東海ゴム工業株式会社 | ブッシュ |
JPH0669469U (ja) * | 1993-03-15 | 1994-09-30 | 豊生ブレーキ工業株式会社 | エンジン支持構造 |
JP2002317844A (ja) * | 2001-01-24 | 2002-10-31 | Tokai Rubber Ind Ltd | ゴムブッシュ |
JP2004176803A (ja) | 2002-11-26 | 2004-06-24 | Tokai Rubber Ind Ltd | 筒形防振装置 |
JP2007277371A (ja) * | 2006-04-05 | 2007-10-25 | Dainippon Ink & Chem Inc | 電着塗料用エポキシ樹脂組成物 |
JP2008156707A (ja) * | 2006-12-25 | 2008-07-10 | Mitsubishi Heavy Ind Ltd | 熱処理方法 |
JP2008162317A (ja) * | 2006-12-27 | 2008-07-17 | Ntn Corp | 車輪用軸受装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102734322A (zh) * | 2012-06-25 | 2012-10-17 | 安徽中鼎减震橡胶技术有限公司 | 一种开口式轴套及其生产方法 |
Also Published As
Publication number | Publication date |
---|---|
US8651465B2 (en) | 2014-02-18 |
JP5363360B2 (ja) | 2013-12-11 |
US20110109027A1 (en) | 2011-05-12 |
CN102216642A (zh) | 2011-10-12 |
JP2010196892A (ja) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010087194A1 (ja) | ブッシュ組付体の製造方法及び防振ゴムブッシュ | |
JP2010196892A5 (ja) | ||
JP5384619B2 (ja) | 自己潤滑性の表面被覆複合材料 | |
CA2060909A1 (en) | Rubber-metal bushing and method of producing the same | |
JPH05346114A (ja) | ボールジョイント | |
US20070295577A1 (en) | Friction member and method of manufacturing thereof | |
US20140209422A1 (en) | Back plate for disc brake pad and disc brake pad using the back plate | |
FR2817004A1 (fr) | Materiau de friction pour freins de vehicules et de machines | |
EP3215654A1 (en) | Applying polymer coating connecting rod surfaces for reduced wear | |
JP5085150B2 (ja) | ファンボスおよびその製法 | |
JP2013067362A (ja) | 電動パワーステアリング装置 | |
US3560034A (en) | Flanged-end bushing | |
US20130157072A1 (en) | Process for producing sliding member and sliding member | |
JP2006220189A (ja) | 防振構造体の製造方法 | |
CN105733035B (zh) | 一种陶瓷耐磨橡胶管及其制作方法 | |
CN101048615A (zh) | 用于输送固体的输送管和用于制造输送管的方法 | |
Tichy et al. | Quasi-static tests on polyurethane adhesive bonds reinforced by rubber powder | |
DE102016211442A1 (de) | Verfahren zum Herstellen eines Fahrzeugbauteils und Fahrzeugbauteil | |
JP2011094519A (ja) | ピストン冷却用オイルジェットおよびその製造方法 | |
JPH08104760A (ja) | 摩擦材の製造方法 | |
JP2006220190A (ja) | 防振構造体の製造方法 | |
JP4547280B2 (ja) | 防振構造体及びその製造方法 | |
WO2018190705A1 (en) | Injected bolted connection | |
JP2000002279A (ja) | ゴムブッシュ | |
JP2010014127A (ja) | 防振ゴムブッシュの製造方法及び防振ゴムブッシュ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080003224.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010735666 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10735666 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12996472 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10735666 Country of ref document: EP Kind code of ref document: A1 |