WO2010082656A1 - マルチコア光ファイバ - Google Patents
マルチコア光ファイバ Download PDFInfo
- Publication number
- WO2010082656A1 WO2010082656A1 PCT/JP2010/050523 JP2010050523W WO2010082656A1 WO 2010082656 A1 WO2010082656 A1 WO 2010082656A1 JP 2010050523 W JP2010050523 W JP 2010050523W WO 2010082656 A1 WO2010082656 A1 WO 2010082656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- region
- optical fiber
- regions
- leakage
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 108
- 230000001603 reducing effect Effects 0.000 claims abstract description 21
- 230000009467 reduction Effects 0.000 claims description 105
- 238000005253 cladding Methods 0.000 claims description 71
- 239000000835 fiber Substances 0.000 claims description 63
- 230000003287 optical effect Effects 0.000 claims description 40
- 230000001902 propagating effect Effects 0.000 claims description 13
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910005793 GeO 2 Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- -1 silver halide Chemical class 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02042—Multicore optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
- G02B6/0365—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
Definitions
- the present invention relates to a multi-core optical fiber in which a plurality of core regions are arranged on the same cross section as a transmission medium for optical communication.
- the optical fiber communication network is expanded from a trunk line system to a general household, and is widely recognized as a FTTH (Fiber To The Home) service.
- Most optical fibers applied to such communication networks are silica-based fibers, and a refractive index difference such as GeO 2 is added to the core region to give a refractive index difference to the cladding region.
- a total reflection type optical waveguide structure is included in the FTTH service.
- the FTTH service uses a single optical fiber by interposing a multistage optical splitter in a terminal station, which is the final relay station of an existing communication system such as the Internet, and between the terminal station and a subscriber's house. This is realized by a so-called PON (Passive Optical Network) system shared by each subscriber.
- PON Passive Optical Network
- a multi-core optical fiber is suitable as an optical fiber for ultra-fine diameter and ultra-high density that can meet such demands.
- a multi-core optical fiber is an optical fiber having a plurality of cores each functioning as an optically independent optical waveguide.
- the core regions are close to each other, when a small-diameter bend is applied in a state where high-power light is propagating through each core, it is caused by the propagation of light leaked from each core, and the fiber When the length is long, crosstalk occurs due to a part of the light propagating outside the core region even when the bending is not applied.
- FIG. 3C a design example of a multi-core optical fiber in which the crosstalk target value between core regions is set to ⁇ 30 dB or less is disclosed in FIG. 3, and the relative refractive index difference ⁇ is set to 1.2.
- the multi-core optical fiber with 19 core regions is proposed.
- light that contributes to crosstalk between core regions regardless of the cause of the occurrence will be expressed as leakage light below.
- the inventors have studied the conventional crosstalk reduction technology in the multi-core optical fiber as described above in detail, and have found the following problems.
- the target value of crosstalk between core regions disclosed in Non-Patent Document 1 may be insufficient when long-distance optical transmission is considered. That is, although the non-patent document 1 aims at -30 dB or less as crosstalk after propagation of 100 km light, the system length (total fiber length) may be 1000 km or more in the land trunk line system. Furthermore, in the transoceanic system, the system length may reach 10,000 km. In a fiber section where the crosstalk is relatively small, the crosstalk between the core regions is considered to be deteriorated by about 20 dB when the propagation length is 10 times.
- Non-Patent Document 1 the increase in ⁇ (increasing the relative refractive index difference between the core region and the cladding region) introduced in Non-Patent Document 1 as a crosstalk reduction technique may be inappropriate.
- increasing ⁇ increases the confinement of light in the core region, and thus is effective in reducing crosstalk between the core regions, but is likely to cause an increase in transmission loss and nonlinearity of the optical fiber. Therefore, in a multi-core optical fiber, there is a high risk that the transmission performance per core region will deteriorate.
- the transmission loss is desirably smaller.
- wavelength division multiplexing is performed as a means for realizing large-capacity transmission, it is necessary to input signal light having a larger number of wavelengths into the optical fiber in order to realize a larger transmission capacity.
- modulation speed is increased as a means for realizing large-capacity transmission, or when the modulation multi-level is increased, it is necessary to improve the optical SN ratio in order to maintain an error rate equivalent to that of conventional optical transmission. . Specifically, it is necessary to increase the incident light power to the optical fiber.
- crosstalk reduction technology can be used instead of the above-mentioned increase in ⁇ (enhancement of confinement of light in the core region). It is easy to predict that will be necessary.
- the present invention has been made to solve the above-described problems, and is provided with a multi-core light having a structure for effectively suppressing deterioration of transmission quality caused by crosstalk between a plurality of core regions. It aims to provide a fiber.
- the multi-core optical fiber according to the present invention is an optical fiber having a plurality of core regions each functioning as an optically independent optical waveguide, and more specifically, a core region extending along the optical axis, and a core region And a plurality of core fiber regions having a cladding region provided on the outer periphery of the core fiber region in the same cross section.
- the multi-core optical fiber according to the present invention includes a leakage reduction unit for reducing leakage light of the multi-core optical fiber from each core region, and at least a part of the leakage reduction unit includes a plurality of core fiber regions. It exists on a straight line connecting core regions in adjacent core fiber regions.
- each leakage reduction unit arranged so as to be positioned between adjacent core regions is arranged, without increasing the transmission loss of the multi-core optical fiber.
- Crosstalk due to leakage light from the core region can be effectively reduced.
- the leakage reduction part of the multi-core optical fiber according to the present invention is formed in the clad region so as to have an annular shape surrounding the core region on the same cross section.
- the leakage reduction part should just be located in at least one part between core area
- the leakage reduction portion is a region that forms a refractive index distribution in which a confinement ratio of propagating light is increased in a region surrounded by the leakage reduction portion.
- the leakage reduction unit is configured to substantially reduce the refractive index.
- the leakage reduction portion is configured by adding a refractive index lowering agent or forming a hole in each of the cladding regions of the plurality of core fiber regions. To do.
- it may be configured to increase the refractive index of the leakage reduction unit so as to confine the leakage light in the leakage reduction unit.
- the leakage reduction unit may be configured by adding a refractive index increasing agent in each of the cladding regions of the plurality of core fiber regions.
- the leakage reduction unit may be made of a material that reduces the power of leakage light.
- the constituent material has at least one of an absorption coefficient and a scattering coefficient larger than that of the cladding region.
- the leakage reduction unit is arranged so that at least a part thereof is located between the adjacent cores, so that the transmission loss in the multi-core optical fiber is not increased between the adjacent cores. Can reduce crosstalk.
- FIG. 1 is a diagram showing a typical cross-sectional structure of a multi-core optical fiber according to the present invention.
- the multi-core optical fiber 1 includes a bare optical fiber including a plurality of core regions 10 each extending along the optical axis AX, and a resin coating 30 provided on the outer periphery of the bare optical fiber.
- the bare optical fiber includes a plurality of core regions 10 and a cladding region 20 that surrounds the core regions 10.
- the clad region covering each core region 10 may be a common clad region that integrally covers each core region 10 or a clad region prepared for each core region 10.
- a region composed of a core region and a cladding region located around the core region is referred to as a core fiber region as a region having a basic waveguide structure.
- a crosstalk reduction effect can be obtained by arranging a plurality of core regions in a state where core regions having different optical characteristics are adjacent to each other. If this crosstalk reducing effect is described with reference to FIG. 2, the multi-core optical fiber 11 shown in FIG. 2 is different from the first group in the core region 10a belonging to the first group having predetermined optical characteristics.
- the core region 10 b belonging to the second group having optical characteristics has a structure integrally covered with a common cladding region 20, and a resin coating 30 is provided on the outer periphery of the cladding region 20.
- the core region 10a belonging to the first group and the core region 10b belonging to the second group have different propagation constants between the core regions by changing the refractive index distribution, the core diameter, etc. of the core region. .
- the core regions 10a and 10b having different optical characteristics so as to be adjacent to each other, an effect of suppressing crosstalk between adjacent core regions can be obtained.
- FIG. 2 shows an example of a uniform cladding region
- a hole assist structure in which holes are provided around each core region, or a structure in which trenches are provided around each core region is adopted.
- the present invention provides an effective crosstalk between the core regions 10 by providing a leakage reduction unit 50 for reducing the leakage light of each multi-core optical fiber 1 from each core region 10. Realization of reduction technology.
- FIG. 4 is a diagram for explaining the structure and function of the leakage reduction unit together with the leakage light reduction mechanism, and region A shown in FIG. 1 (region on the cross section of the multicore optical fiber 1 perpendicular to the optical axis AX). It corresponds to.
- an annular leakage reduction portion 50 ⁇ / b> A is prepared for each core region 10, and the corresponding core region 10 is included in the cladding region 20 that constitutes one core fiber region together with the core region 10.
- the cladding region 20 includes an optical cladding 21 provided on the outer periphery of the core region 10 as a region that affects transmission characteristics of light propagating in the core region 10, and the core region 10.
- a physical cladding 22 provided on the outer periphery of the optical cladding 21 is provided as a region that does not affect the transmission characteristics of propagating light.
- the leakage reduction unit 50A is formed in the physical cladding 22 so as to avoid deterioration of transmission performance of each core region 10.
- the optical cladding 21 and the physical cladding 22 are regions that are distinguished from the viewpoint of whether or not they affect transmission characteristics, and cannot be distinguished from each other by the composition. Therefore, in the accompanying drawings, for easy understanding of the present invention, the boundary between the optical cladding 21 and the physical cladding 22 constituting the cladding region 20 is indicated by a broken line for convenience.
- the leakage reduction unit 50A is a region that reduces the power of leakage light from the core region 10, and effectively reduces the amount of leakage light by deflection control such as absorption, scattering, and confinement. It works to reduce.
- the leakage reduction unit 50A is configured such that the distance from the center of the core region 10 is MFD at a wavelength of 1.55 ⁇ m in the core fiber region including the core region 10. Is provided between the position that is 5/2 times as large as the outer peripheral surface of the cladding region (the interface between the physical cladding 22 and the resin coating 30).
- the leakage reduction unit 50A may be provided between the position where the electric field amplitude of the core fiber region including the core region 10 is 10 ⁇ 4 or less from the peak value to the outer peripheral surface of the cladding region 20.
- leakage light of the light amount P 0 from the core region 10 due to small-diameter bending (bending with a small radius of curvature applied to the multi-core optical fiber 1 during propagation of high-power light) is reduced.
- the amount of the leaked light is reduced by the deflection control such as absorption, scattering, confinement, etc. in the leakage reduction unit 50A.
- the amount of leakage light that has passed through the leakage reduction unit 50 is reduced to 1/10 of the amount of leakage light P 0 that has reached the leakage reduction unit 50A (see FIG. 4).
- crosstalk generated due to leakage light reaching the adjacent core region 10 is effectively reduced.
- each core region 10 has GeO as a refractive index increasing agent. 2 is added, and the cladding region 20 provided on the outer periphery of each core region 10 is made of pure silica.
- Each of the plurality of core fiber regions arranged on the same cross section in the multi-core optical fiber to be manufactured has a refractive index profile of a step structure.
- the relative refractive index difference between the core and the clad is 0.4% or less.
- each member to be a plurality of core fiber regions arranged on the same cross section of the multi-core optical fiber to be manufactured is prepared.
- the member 100A to be the core fiber region includes a fiber member 200a in which the layer to be the leakage reducing portion 50A reaches the outermost layer, and the fiber member 200a.
- a hollow member 200b having a through hole matching the cross-sectional shape is provided.
- the fiber member 200a is made of silica-based glass, and becomes a central region 110 to be the core region 10, an intermediate region 120 to be a part of the cladding region 20, and a leakage reduction portion 50A in order toward the outer peripheral surface on the center side.
- a power outermost layer 500 is provided.
- the intermediate region 120 includes an inner region 121 that finally becomes an optical cladding and an outer region 122 that becomes a physical cladding.
- the hollow member 200b is also made of quartz glass. By inserting the fiber member 200a into the through hole of the hollow member 200b, a member 100A to be a core fiber region can be obtained.
- the heater 300 is moved in the direction indicated by the arrow B (the length of the plurality of members 100A). By moving in the same direction) (see FIG. 5B).
- a multi-core optical fiber preform 100B is obtained.
- the outermost layer 500 to be the leakage reducing portion 50A has a light absorption coefficient or light scattering coefficient larger than that of the outer region 122 to be the physical cladding. Further, the outermost layer 500 to be the leakage reducing portion 50A has a lower viscosity than the outer region 122 to be the physical cladding in the integration process by heating.
- the multi-core optical fiber 1 which has the cross-sectional structure shown in FIG. 6 is obtained by drawing one end of the obtained preform
- the drawing apparatus for the base material 100B has a roller 330 for winding the multi-core optical fiber 1 drawn by rotating in the direction indicated by the arrow C, and a surface of the bare optical fiber just after drawing from the base material 100B.
- covers resin is provided at least.
- FIG. 6 shows a cross-sectional structure of the multi-core optical fiber 1 obtained through the above manufacturing process.
- the cross-sectional structure of the multi-core optical fiber 1A shown in FIG. 6 substantially includes the cross-sectional structure of FIG. That is, the multi-core optical fiber 1A includes a bare optical fiber including a plurality of core regions 10 and a resin coating 30 provided on the outer periphery of the bare optical fiber. In the bare optical fiber, a plurality of core fiber regions are arranged on the same cross section, and each core fiber region includes a core region 10 and a cladding region 20 surrounding the core region 10.
- the clad region 20 can be distinguished into the optical clad 21 and the physical clad 22, and the leakage reduction portion 50 ⁇ / b> A is preferably disposed in the clad region 20, particularly in the physical clad 22.
- the multi-core optical fiber 1A has a structure in which the plurality of core regions 10 are present in the common cladding region 20, and the leakage reduction portion 50A surrounds each of the core regions 10. Since the leakage reducing unit 50A blocks the light leaking from 10, the crosstalk between the core regions 10 can be effectively reduced.
- FIG. 7 is a diagram showing a cross-sectional structure of another embodiment of the multi-core optical fiber according to the present invention.
- the multi-core optical fiber 1B shown in FIG. 7A has a structure in which a plurality of core regions 10 are present in the cladding region 20 and a leakage reduction portion 50B is disposed between the core regions 10.
- the leakage reduction portion 50B is also arranged between the core regions 10 located on the diagonal line, but the interval between the core regions 10 on the diagonal line is sufficiently separated, and crosstalk is caused.
- the leakage reduction unit 50B located at the center may not be provided.
- the common clad region 20 can be classified into an optical clad 21 located around each core region 10 and a physical clad 22 covering the optical clad 21, and the multi-core optical fiber 1B can be distinguished from the multi-core optical fiber 1B.
- the physical cladding 22 is shared in the core fiber regions including the core region 10 respectively. That is, in the multi-core optical fiber 1B, adjacent core fiber regions out of the plurality of core fiber regions are in contact with each other via the leakage reduction unit 50B.
- the multi-core optical fiber 1C shown in FIG. 7B has a structure in which a plurality of core fibers 15 including a core region 160 and a cladding region 150 surrounding the core region 160 are integrated.
- the cladding region 150 includes an optical cladding 151 that directly covers the core region 160 and a physical cladding 152 that is provided on the outer periphery of the optical cladding 151.
- an annular leakage reduction portion 50C surrounding the core region 160 is located on the cross section of FIG.
- a jacket layer 40 is provided so as to cover the outer periphery of the integrated core fiber 15, and the resin coating 30 is provided on the outer periphery of the jacket layer 40.
- the core regions 10 and 160 and the cladding regions 20 and 150 are made of quartz glass.
- the resin coating 30 provided on the outer periphery of the cladding region 20 or the jacket layer 40 is, for example, a plastic coating.
- the leakage reduction units 50A to 50C are provided in the physical claddings 22 and 152 of the cladding regions 20 and 150. There is no particular limitation as long as the position has a distance of. Further, in the example of the multicore optical fiber 1C illustrated in FIG. 7C, the leakage reduction unit 50C may be disposed between two adjacent core fibers 15.
- FIGS. 8 to 9 show an example of the multi-core optical fiber 1A shown in FIG. 6, but the other multi-core optical fibers 1B and 1C are similarly configured with the leakage reduction units 50B and 50C, respectively.
- Any of the leakage reduction units 50A to 50C has a deflection control function by absorption, scattering, confinement, and the like.
- FIG. 8 is a diagram for explaining a first specific example of a leakage reduction unit 50A applicable to the multi-core optical fiber 1A.
- FIG. 8A shows a cross-sectional structure of the multi-core optical fiber 1A, which matches the cross-sectional structure of FIG.
- a layer having a low refractive index called a trench layer formed in an annular shape so as to surround the core region 10 is provided as the leakage reduction portion 50A. That is, the leakage reduction unit 50A according to the first specific example performs the leakage light deflection control by confining the leakage light in a region inside the leakage reduction unit 50A.
- FIG. 8B is a refractive index profile of one core fiber region in the multi-core light 1A.
- FIG. 8C is an enlarged view of a portion D in FIG. 8A, and a layer having a low refractive index is formed by forming a plurality of holes 510 as the leakage reduction portion 50A according to the first specific example. It is an example which implement
- FIG. 8D is an enlarged view of a portion D in FIG. 8A, and a layer having a low refractive index is realized by forming a plurality of voids 520 as the leakage reduction unit 50A according to the first specific example. It is an example.
- the multi-core optical fiber 1A is a silica-based glass fiber, and a plurality of core fiber regions are arranged on the cross section shown in FIG. 8A, and the plurality of core fiber regions includes a corresponding one core region 10 and , A common clad region 20 is formed.
- the clad region 20 can be distinguished into an optical clad 21 and a physical clad 22 around the core region, and an annular leakage reduction portion 50A surrounding the core region 10 is provided in the physical clad 22.
- the leakage reduction unit 50A according to the first example propagates leakage light to the adjacent core region 10 by confining the leakage light propagating from the core region 10 in the inner region surrounded by the leakage reduction unit 50A. Function to suppress.
- the core region 10 is made of silica glass to which GeO 2 is added, the cladding region 20 is made of pure silica glass, and the relative refractive index difference of the core region 10 with respect to the cladding region 20 is 0. .35% (0.4% or less).
- the outer diameter of the core region 10 is 8.5 ⁇ m.
- Such a core fiber region has an MFD of 10.2 ⁇ m at a wavelength of 1.55 ⁇ m.
- the electric field amplitude in the core fiber region takes a peak value at the center of the core region 10 (hereinafter referred to as the core center), and the position where the peak value is 10 ⁇ 4 is a position away from the core center by 28.5 ⁇ m. is there.
- the leakage reduction portion 50A is separated from the core center by 25.5 ⁇ m (a distance of 5/2 times the MFD) or more along the radial direction R, or separated from the core center by 28.5 ⁇ m or more along the radial direction R. Further, it is preferably provided in the physical cladding 22.
- the leakage reduction portion 50A is a ring-shaped region formed in a range from 35 ⁇ m to 50 ⁇ m from the core center.
- the first means for realizing the leakage reduction unit 50A realizes the deflection control of the leakage light from each core region 10 by designing the refractive index profile as shown in FIG. 8B. To do.
- the deflection control of the leakage light is performed by adopting the refractive index profile of the trench structure as the refractive index profile of each of the plurality of core fiber regions in the multi-core optical fiber 1A. That is, as shown in FIG. 8B, by adding F to the silica glass region corresponding to the leakage reduction portion 50A, the relative refractive index difference of the leakage reduction portion 50A with respect to the optical cladding 21 is -0.7%.
- the multi-core optical fiber 1A is a silica-based fiber.
- the core region 10 is made of quartz glass to which GeO 2 is added, and the cladding region 20 is pure. Made of silica glass. Further, the relative refractive index difference between the core region 10 and the cladding region 20 is 0.4% or less.
- the refractive index of the leakage reducing portion 50A provided in the physical cladding 22 is lower than that of pure silica glass by adding F (refractive index lowering agent).
- FIG. 8C is an enlarged view of a portion D in FIG. 8A, and the leakage reduction unit 50A according to the first specific example is for realizing the deflection control of the leakage light from the core region 10.
- 2nd means is shown. This second means performs the deflection control of the leaked light by providing a plurality of holes 510 extending along the optical axis AX in a region corresponding to the leak reducing unit 50A.
- FIG. 8D is an enlarged view of the portion D in FIG. 8A, and shows a third means for realizing the deflection control of leaked light as the leak reducing unit 50A according to the first specific example.
- This third means is an annular region surrounding the core region 10 on the cross section shown in FIG. 8A, and is formed by scattering voids 520 in a region extending along the optical axis AX.
- the leakage light deflection control is performed by forming the leakage reduction portion 50A.
- the leakage reduction portion 50A is formed as a low refractive index region, a hole formation region, or a void scattering region, so that the ratio of the leakage reduction portion 50A to the cladding region 20 is increased.
- the refractive index difference is significantly lower. As a result, a part of the leaked light from the core region 10 toward the adjacent core region 10 due to the small-diameter bending or the like is confined in the inner region surrounded by the leakage reduction unit 50A.
- the ratio of the light confined in the inner region surrounded by the leakage reduction unit 50A out of the leakage light from each core region 10 toward the resin coating 30 of the multi-core optical fiber 1A is from the core region 10 to the leakage reduction unit.
- the configuration can be adjusted by the arrangement of voids.
- the leakage reduction unit 50A configured as described above has a peak value (core value) in each core fiber region at a position that is 5/2 times or more MFD from the core region center or in each core fiber region. It exists outside the position that is 10 ⁇ 4 or less of the peak value at the center. Therefore, the presence of the leakage reduction unit 50A is at a level where the influence on the light propagating in the core region 10 can be effectively ignored, and the influence of the leakage reduction unit 50A on the characteristics such as transmission loss can be ignored. . In addition, part of the leaked light leaks to the outside of the leakage reducing unit 50A, so that the light component confined in the inner region of the leakage reducing unit 50A gradually attenuates as it propagates.
- the light component confined in the inner region surrounded by the leakage reducing unit 50A is not coupled to the propagating light in the core region 10 again (the light component confined in the inner region of the leakage reducing unit 50A is not Influencing the transmission characteristics of the propagating light in the core region 10 can be substantially avoided).
- FIG. 9 is a figure for demonstrating the 2nd specific example of the leakage reduction part applicable to the multi-core optical fiber which concerns on this invention.
- the leakage reduction unit 50A according to the second specific example performs deflection control of leakage light by increasing scattering of leakage light reaching from the core region 10 in each core fiber region.
- FIG. 9A shows a cross-sectional structure of the multi-core optical fiber 1A, which matches the cross-sectional structure of FIG.
- the leakage reduction portion 50A is formed in an annular shape so as to surround the core region 10.
- FIG. 9B is an enlarged view of the portion D in FIG. 9A, and at least one of the absorption coefficient and the scattering coefficient is larger than the cladding region as the leakage reduction unit 50A according to the second specific example. It is an example which implement
- a multi-core optical fiber 1 ⁇ / b> A shown in FIG. 9A has a plurality of core fiber regions arranged on a cross section thereof, and the plurality of core fiber regions have a corresponding one core region 10 and a common cladding region 20. It is composed of The clad region 20 can be distinguished into an optical clad 21 and a physical clad 22 around the core region, and an annular leakage reduction portion 50A surrounding the core region 10 is provided in the physical clad 22.
- the leakage reduction unit 50A according to the second specific example functions to reduce the amount of leakage light reaching the adjacent core region 10 by scattering the leakage light propagating from the core region 10 by the leakage reduction unit 50A. To do.
- the core region 10 is made of silica glass to which GeO 2 is added, the cladding region 20 is made of pure silica glass, and the relative refractive index difference of the core region 10 with respect to the cladding region 20 is 1 %.
- the outer diameter of the core region 10 is 30 ⁇ m.
- the core region 10 light is multimode at a wavelength of 1.55 ⁇ m, but the MFD of the base mode is 19.8 ⁇ m.
- the electric field amplitude in each core fiber region has a peak value at the core center, and the position where the peak value is 10 ⁇ 4 is a position away from the core center by 23.1 ⁇ m.
- the leakage reduction unit 50AC according to the second specific example is separated from the core center by 49.5 ⁇ m (a distance that is 5/2 times the MFD) or more along the radial direction R, or from the core center in the radial direction R. And 23.1 ⁇ m or more along the physical cladding 22.
- the leakage reduction portion 50A is a ring-shaped region formed in a range from 35 ⁇ m to 50 ⁇ m from the core center.
- the leak light deflection control means shown in FIG. 9B performs the leak light deflection control by increasing the scattering of the leak light by the micro anisotropic body 530 added to the region corresponding to the leak reduction section 50A.
- a leakage reduction part 50A for example, glass containing elongated silver halide grains (micro anisotropic body 530) can be considered.
- the leakage reduction unit 50A As described above, by adding the minute anisotropic body 530 to the annular leakage reduction unit 50A, the leakage light is scattered in the leakage reduction unit 50A (as a result, the leakage light is deflected), and the leakage light. Absorption (leakage of light leaks) is greater than other glass regions. That is, the leakage reduction unit 50 ⁇ / b> A has a larger absorption coefficient and scattering coefficient than the cladding region 20. Therefore, the leakage reduction unit 50A according to the second specific example can also effectively reduce the amount of leakage light that passes through the leakage reduction unit 50A and travels toward the adjacent core region 10.
- the leakage reduction unit 50A of the multicore optical fiber 1A shown in FIG. 6 has been described as an example, but any leakage reduction unit 50B of the multicore optical fibers 1B and 1C shown in FIG. , 50C.
- 1, 1A, 1B, 1C multi-core optical fiber, 10, 160 ... core region, 21, 151 ... optical cladding, 22, 152 ... physical cladding, 20, 150 ... cladding region, 50, 50A, 50B, 50C ... leakage reduction Part, 30 ... resin coating, 510 ... hole, 520 ... void, 530 ... silver halide grain (micro anisotropic body).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
また、本発明に係るマルチコア光ファイバの漏洩低減部は、同一断面上でコア領域を取り囲む環状になるようにクラッド領域内に形成されるのが好ましい。なお、漏洩低減部は、少なくともその一部がコア領域間に位置していればよく、また、複数のコアファイバ領域は、1つのクラッド領域を共有することにより構成されてもよい。この場合、複数のコアファイバ領域のうち隣接するコアファイバ領域は、漏洩低減部を介して接触した状態となる。
漏洩低減部50Aが形成されている。なお、図9(b)は、図9(a)における部分Dの拡大図であり、第2具体例に係る漏洩低減部50Aとして、吸収係数及び散乱係数の少なくとも何れかがクラッド領域よりも大きくなるよう形成された領域を実現する例である。
Claims (7)
- 光軸に沿って伸びたコア領域と、前記コア領域の外周に設けられたクラッド領域とを備えたコアファイバ領域を、同一断面内に複数有するマルチコア光ファイバであって、
前記複数のコアファイバ領域のうち隣接するコアファイバ領域におけるコア領域同士を結ぶ直線上に、漏洩低減部が存在することを特徴とするマルチコア光ファイバ。 - 請求項1記載のマルチコア光ファイバにおいて、
前記漏洩低減部は、前記複数のコアファイバ領域それぞれにおいて、前記同一断面上で前記コア領域を取り囲む環状になるように前記クラッド領域内に形成されている。 - 請求項1記載のマルチコア光ファイバにおいて、
前記複数のコアファイバ領域のうち隣接するコアファイバ領域は、前記漏洩低減部を介して接触している。 - 請求項1記載のマルチコア光ファイバにおいて、
前記漏洩低減部は、当該漏洩低減部により取り囲まれた領域内における伝搬光の閉じ込め率を高めた屈折率分布を有する。 - 請求項4記載のマルチコア光ファイバにおいて、
前記漏洩低減部は、実質的に屈折率を低減する構成として、前記複数のコアファイバ領域のクラッド領域それぞれに屈折率低下剤が添加されている、又は、空孔が形成されている。 - 請求項1記載のマルチコア光ファイバにおいて、
前記漏洩低減部は、伝搬光のパワーを低減する素材で構成されている。 - 請求項6記載のマルチコア光ファイバにおいて、
前記素材は、吸収係数、及び、散乱係数の少なくとも何れか一方が前記クラッド領域よりも大きい。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10731325.6A EP2388629A4 (en) | 2009-01-19 | 2010-01-19 | OPTICAL FIBER WITH MULTIPLE SOULS |
US12/743,175 US8447156B2 (en) | 2009-01-19 | 2010-01-19 | Multi-core optical fiber |
JP2010546668A JPWO2010082656A1 (ja) | 2009-01-19 | 2010-01-19 | マルチコア光ファイバ |
CN201080004970.9A CN102282488B (zh) | 2009-01-19 | 2010-01-19 | 多芯光纤 |
US13/744,745 US8655131B2 (en) | 2009-01-19 | 2013-01-18 | Multi-core optical fiber |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-009095 | 2009-01-19 | ||
JP2009009095 | 2009-01-19 | ||
JP2009-010217 | 2009-01-20 | ||
JP2009010217 | 2009-01-20 | ||
JP2009-181702 | 2009-08-04 | ||
JP2009181702 | 2009-08-04 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/743,175 A-371-Of-International US8447156B2 (en) | 2009-01-19 | 2010-01-19 | Multi-core optical fiber |
US13/744,745 Continuation US8655131B2 (en) | 2009-01-19 | 2013-01-18 | Multi-core optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010082656A1 true WO2010082656A1 (ja) | 2010-07-22 |
Family
ID=42339907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050523 WO2010082656A1 (ja) | 2009-01-19 | 2010-01-19 | マルチコア光ファイバ |
Country Status (5)
Country | Link |
---|---|
US (2) | US8447156B2 (ja) |
EP (1) | EP2388629A4 (ja) |
JP (1) | JPWO2010082656A1 (ja) |
CN (1) | CN102282488B (ja) |
WO (1) | WO2010082656A1 (ja) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011170062A (ja) * | 2010-02-18 | 2011-09-01 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバ及びその製造方法並びに光ファイバ母材及びその製造方法 |
JP2011170099A (ja) * | 2010-02-18 | 2011-09-01 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
JP2011209702A (ja) * | 2010-03-10 | 2011-10-20 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
JP2012093520A (ja) * | 2010-10-26 | 2012-05-17 | Kohoku Kogyo Kk | 光ファイバ |
WO2012063775A1 (ja) * | 2010-11-08 | 2012-05-18 | 株式会社フジクラ | マルチコアファイバ |
WO2012064579A1 (en) * | 2010-11-08 | 2012-05-18 | Corning Incorporated | Multi-core optical fiber ribbons and methods for making the same |
WO2012118132A1 (ja) | 2011-03-02 | 2012-09-07 | 株式会社フジクラ | マルチコアファイバ |
JP2012181282A (ja) * | 2011-02-28 | 2012-09-20 | Fujikura Ltd | マルチコアファイバ |
JP2012203035A (ja) * | 2011-03-23 | 2012-10-22 | Mitsubishi Cable Ind Ltd | マルチコアファイバおよびその製造方法 |
JP2013003201A (ja) * | 2011-06-13 | 2013-01-07 | Nippon Telegr & Teleph Corp <Ntt> | マルチコアファイバおよびその接続方法 |
JP2013020074A (ja) * | 2011-07-11 | 2013-01-31 | Hitachi Cable Ltd | マルチコアファイバ |
JP2013020075A (ja) * | 2011-07-11 | 2013-01-31 | Hitachi Cable Ltd | マルチコアファイバの製造方法 |
WO2013021697A1 (ja) * | 2011-08-08 | 2013-02-14 | 古河電気工業株式会社 | マルチコア光ファイバおよび光伝送システム |
JP2013040078A (ja) * | 2011-08-17 | 2013-02-28 | Fujikura Ltd | 結合型マルチコアファイバ用母材の製造方法、結合型マルチコアファイバの製造方法、及び、結合型マルチコアファイバ |
WO2013027776A1 (ja) * | 2011-08-25 | 2013-02-28 | 国立大学法人横浜国立大学 | マルチコアファイバおよびマルチコアファイバのコアの配置方法 |
JP2013088457A (ja) * | 2011-10-13 | 2013-05-13 | Nippon Telegr & Teleph Corp <Ntt> | 4芯単一モード光ファイバおよび光ケーブル |
JP2013090227A (ja) * | 2011-10-20 | 2013-05-13 | Nippon Telegr & Teleph Corp <Ntt> | 光受信装置、マルチコア光ファイバ及び光伝送システム |
WO2013094568A1 (ja) * | 2011-12-22 | 2013-06-27 | 住友電気工業株式会社 | 光伝送システム |
WO2013108524A1 (ja) * | 2012-01-19 | 2013-07-25 | 株式会社フジクラ | マルチコアファイバ |
WO2013157245A1 (ja) * | 2012-04-20 | 2013-10-24 | 日本電気株式会社 | 多重光伝送路、光伝送システムおよび光伝送方法 |
WO2014034810A1 (ja) * | 2012-08-31 | 2014-03-06 | 株式会社フジクラ | 光ファイバおよび光ファイバの製造方法 |
JP2014506682A (ja) * | 2011-01-19 | 2014-03-17 | ファイバー・オプティクス・リサーチ・センター・オブ・ザ・ロシアン・アカデミー・オブ・サイエンシズ(エフオーアールシー・アールエーエス) | マルチコア光ファイバ(変形形態) |
JP2014509412A (ja) * | 2011-02-24 | 2014-04-17 | オーエフエス ファイテル,エルエルシー | 空間多重化のためのマルチコア・ファイバ設計 |
WO2014080953A1 (ja) * | 2012-11-26 | 2014-05-30 | 住友電気工業株式会社 | 光導波路、光ファイバケーブル、および光モジュール |
JP2015135497A (ja) * | 2015-02-02 | 2015-07-27 | 古河電気工業株式会社 | マルチコア光ファイバおよびマルチコア光ファイバの製造方法 |
CN104838298A (zh) * | 2012-12-05 | 2015-08-12 | 住友电气工业株式会社 | 光波导和光纤传输系统 |
JP2015159584A (ja) * | 2015-04-08 | 2015-09-03 | 日本電信電話株式会社 | 光受信装置、マルチコア光ファイバ及び光伝送システム |
JP2015163972A (ja) * | 2015-04-06 | 2015-09-10 | 株式会社フジクラ | 通信用マルチコアファイバ |
US20150316714A1 (en) * | 2011-06-16 | 2015-11-05 | Furukawa Electric Co., Ltd. | Multi-core amplification optical fiber |
JP2016075938A (ja) * | 2010-11-08 | 2016-05-12 | 株式会社フジクラ | マルチコアファイバ |
US9383515B2 (en) | 2011-02-25 | 2016-07-05 | Sumitomo Electric Industries, Ltd. | Receiving method and separating apparatus for light outputted from multi-core optical fiber |
EP2610656A4 (en) * | 2010-08-24 | 2018-01-10 | National University Corporation Yokohama National University | Multicore fiber and core placement method for multicore fiber |
US10042114B2 (en) | 2011-09-05 | 2018-08-07 | Fujikura Ltd. | Multicore fiber for communication |
JP2019081681A (ja) * | 2017-10-31 | 2019-05-30 | 古河電気工業株式会社 | 光ファイバの製造方法及び光ファイバ母材の製造方法 |
WO2023026574A1 (ja) * | 2021-08-26 | 2023-03-02 | 株式会社村田製作所 | 光学素子 |
WO2023090174A1 (ja) * | 2021-11-17 | 2023-05-25 | 古河電気工業株式会社 | マルチコアファイバおよびその製造方法 |
WO2023135944A1 (ja) | 2022-01-11 | 2023-07-20 | 住友電気工業株式会社 | マルチコア光ファイバの製造方法及びマルチコア光ファイバ |
Families Citing this family (196)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8447156B2 (en) * | 2009-01-19 | 2013-05-21 | Sumitomo Electric Industries, Ltd. | Multi-core optical fiber |
DK2209029T3 (en) | 2009-01-19 | 2015-04-13 | Sumitomo Electric Industries | optical fiber |
EP2209031B1 (en) | 2009-01-20 | 2020-03-11 | Sumitomo Electric Industries, Ltd. | Arrangement converter |
JP5708015B2 (ja) * | 2010-02-26 | 2015-04-30 | 住友電気工業株式会社 | 光ファイバケーブル |
WO2011112846A1 (en) * | 2010-03-10 | 2011-09-15 | Ofs Fitel Llc. A Delaware Limited Liability Company | Multicore fibers and associated structures and techniques |
DE102011085637B4 (de) * | 2011-11-02 | 2022-02-03 | Trumpf Laser Gmbh | Optische Transportfaser und Verfahren zu deren Herstellung und Verfahren zum Verkleben |
US8811787B2 (en) | 2011-11-30 | 2014-08-19 | At&T Intellectual Property I, L.P. | Multicore optical fiber with reduced inter-core crosstalk |
EP2821823B1 (en) * | 2012-02-29 | 2020-03-25 | Sumitomo Electric Industries, Ltd. | Multicore optical fiber, multicore optical fiber cable, and multicore optical fiber transmission system |
EP2856668B1 (en) * | 2012-05-25 | 2016-12-14 | Corning Incorporated | Systems for differential optical signaling |
WO2013192597A2 (en) * | 2012-06-21 | 2013-12-27 | Ofs Fitel, Llc | Method of optimizing multicore optical fiber and devices utilizing same |
DE102012106806B4 (de) * | 2012-07-26 | 2022-07-28 | J-Fiber Gmbh | Sensorfaser zur Temperatur-, Dehnungs- und/oder Torsionsdetektion in Form eines Mehrkern-Lichtwellenleiters mit einer Fiber-Bragg-Gitterstruktur |
JP6321647B2 (ja) * | 2012-08-08 | 2018-05-09 | オーエフエス ファイテル,エルエルシー | ファイバ回折格子の刻印中のビーム障害物の回避 |
US9574911B2 (en) | 2012-08-09 | 2017-02-21 | Corning Incorporated | Two-core optical fibers for distributed fiber sensors and systems |
US8920925B2 (en) | 2012-11-09 | 2014-12-30 | Corning Incorporated | Stabilized lithium composite particles |
US9183994B2 (en) | 2012-11-28 | 2015-11-10 | Corning Incorporated | Lithium ion capacitors and methods of production |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US20150085352A1 (en) * | 2013-09-20 | 2015-03-26 | Alcatel-Lucent Usa Inc. | Optical amplifier for space-division multiplexing |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
JP6287179B2 (ja) * | 2013-12-25 | 2018-03-07 | 住友電気工業株式会社 | マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法 |
US10473872B2 (en) * | 2014-03-19 | 2019-11-12 | Corning Optical Communications LLC | Fiber optic cable with large-diameter optical fibers |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US11025460B2 (en) | 2014-11-20 | 2021-06-01 | At&T Intellectual Property I, L.P. | Methods and apparatus for accessing interstitial areas of a cable |
US10505252B2 (en) | 2014-11-20 | 2019-12-10 | At&T Intellectual Property I, L.P. | Communication system having a coupler for guiding electromagnetic waves through interstitial areas formed by a plurality of stranded uninsulated conductors and method of use |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US10516555B2 (en) | 2014-11-20 | 2019-12-24 | At&T Intellectual Property I, L.P. | Methods and apparatus for creating interstitial areas in a cable |
US10505250B2 (en) | 2014-11-20 | 2019-12-10 | At&T Intellectual Property I, L.P. | Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for propagating guided wave modes therein and methods of use |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10554454B2 (en) | 2014-11-20 | 2020-02-04 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing electromagnetic waves in a cable |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10411920B2 (en) | 2014-11-20 | 2019-09-10 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing electromagnetic waves within pathways of a cable |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10505249B2 (en) | 2014-11-20 | 2019-12-10 | At&T Intellectual Property I, L.P. | Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for guiding electromagnetic waves therein and method of use |
US10505248B2 (en) | 2014-11-20 | 2019-12-10 | At&T Intellectual Property I, L.P. | Communication cable having a plurality of uninsulated conductors forming interstitial areas for propagating electromagnetic waves therein and method of use |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
WO2016099976A1 (en) * | 2014-12-15 | 2016-06-23 | Intuitive Surgical Operations, Inc. | Dissimilar cores in multicore optical fiber for strain and temperature separation |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
JP6226905B2 (ja) * | 2015-03-30 | 2017-11-08 | 株式会社フジクラ | マルチコア光ファイバ、及び、マルチコア光ファイバの製造方法 |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
JP2017072818A (ja) * | 2015-10-08 | 2017-04-13 | 住友電気工業株式会社 | マルチコア光ファイバ、マルチコア光ファイバケーブルおよび光ファイバ伝送システム |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10690843B2 (en) | 2016-03-17 | 2020-06-23 | Fujikura Ltd. | Multicore fiber |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
CN110300906A (zh) * | 2017-06-16 | 2019-10-01 | 直观外科手术操作公司 | 具有集成吸收材料的光纤 |
CN110568549A (zh) * | 2019-09-06 | 2019-12-13 | 江苏斯德雷特通光光纤有限公司 | 一种基于空气孔棒的多芯光纤及其制备方法 |
JP2023518466A (ja) | 2020-03-19 | 2023-05-01 | コーニング インコーポレイテッド | 外部クラッド領域を有するマルチコアファイバ |
CN116194811A (zh) | 2020-07-22 | 2023-05-30 | 康宁股份有限公司 | 多纤芯光纤 |
CN116068768A (zh) * | 2022-03-15 | 2023-05-05 | 嘉兴驭光光电科技有限公司 | 衍射光波导以及具有其的显示设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813504U (ja) * | 1981-07-17 | 1983-01-27 | 日本電信電話株式会社 | 低漏話マルチコア光フアイバ |
JP2008534995A (ja) * | 2005-03-24 | 2008-08-28 | キネティック リミテッド | 多コア微細構造体光ファイバ |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2505995C3 (de) | 1974-02-16 | 1979-03-01 | Olympus Optical Co., Ltd., Tokio | Verfahren zur Herstellung eines Bildzerlegers |
US4000416A (en) | 1975-07-11 | 1976-12-28 | International Telephone And Telegraph Corporation | Multi-core optical communications fiber |
JPS56113104A (en) * | 1980-02-14 | 1981-09-05 | Sumitomo Electric Ind Ltd | Multicore fiber |
US4304584A (en) | 1980-04-28 | 1981-12-08 | Corning Glass Works | Method for making polarizing glasses by extrusion |
US4409477A (en) | 1981-06-22 | 1983-10-11 | Sanders Associates, Inc. | Scanning optical system |
JPS5813504A (ja) | 1981-07-16 | 1983-01-26 | Toho Chem Ind Co Ltd | 表面被覆型粒状農薬 |
JPS59187301A (ja) | 1983-04-08 | 1984-10-24 | Kokusai Denshin Denwa Co Ltd <Kdd> | 光フアイバ |
JPS6360123A (ja) | 1986-08-29 | 1988-03-16 | Furukawa Electric Co Ltd:The | シングルモ−ド型光フアイバ用多孔質母材の製造方法 |
US4820010A (en) | 1987-04-28 | 1989-04-11 | Spectra Diode Laboratories, Inc. | Bright output optical system with tapered bundle |
AU7773291A (en) | 1990-04-11 | 1991-10-30 | Washington University | Fiber optic beam-imaging apparatus with plastic reducer bundles and method |
US5155790A (en) | 1990-06-04 | 1992-10-13 | Photon Imaging Corp. | Electronic scanner or printer with ordered fiber optic array |
US5216738A (en) | 1992-04-03 | 1993-06-01 | Photon Imaging Corp. | Fiber optic bundle and method of manufacture |
JPH05341147A (ja) | 1992-06-12 | 1993-12-24 | Asahi Chem Ind Co Ltd | マルチコア型シングルモード光ファイバおよびこれを用いた伝送方法 |
GB9221813D0 (en) | 1992-10-16 | 1992-12-02 | Univ Montfort | Imaging arrangements |
US5381505A (en) | 1993-08-09 | 1995-01-10 | Uop | Optical fibers with a light absorbing coating |
EP0802432A1 (en) * | 1994-05-24 | 1997-10-22 | Asahi Kasei Kogyo Kabushiki Kaisha | Plastic fiber bundle for optical communication |
JP3841849B2 (ja) | 1995-07-07 | 2006-11-08 | 株式会社フジクラ | 耐放射線性テープ型マルチコアファイバの製造方法 |
JP3439892B2 (ja) * | 1995-12-11 | 2003-08-25 | 日立電線株式会社 | 希土類元素添加マルチコアファイバ及びその製造方法 |
JPH10104443A (ja) | 1996-09-26 | 1998-04-24 | Nippon Telegr & Teleph Corp <Ntt> | マルチコアファイバ |
US6188824B1 (en) * | 1997-02-07 | 2001-02-13 | Asahi Kasei Kogyo Kabushiki Kaisha | Optical signal transmission multicore plastic optical fiber |
CA2335879C (en) * | 1998-06-25 | 2004-11-23 | Samsung Electronics Co., Ltd. | Optical fiber preform having oh barrier and manufacturing method thereof |
US6480345B2 (en) | 2000-06-30 | 2002-11-12 | Ricoh Company, Ltd. | Image magnifying/reducing optical device and manufacturing method thereof |
US6636675B2 (en) * | 2001-03-12 | 2003-10-21 | Verrillon, Inc. | Optical fiber with reduced cladding-mode loss |
US6611648B2 (en) * | 2001-05-09 | 2003-08-26 | Corning Incorporated | Optical fibers having cores with different propagation constants, and methods of manufacturing same |
US6556754B2 (en) | 2001-08-10 | 2003-04-29 | 3M Innovative Properties Company | Three dimensional optical circuit |
EP1427677A2 (de) | 2001-09-10 | 2004-06-16 | Schott Glas | Glasfaser mit mindestens zwei glasmänteln |
KR20050049559A (ko) | 2002-10-30 | 2005-05-25 | 메사추세츠 인스티튜트 오브 테크놀로지 | 파장 둔감성 광집적 편광 스플리터 |
US6856743B2 (en) | 2002-12-02 | 2005-02-15 | Corning Incorporated | NZDSF optical fiber with low dispersion zero and low slope |
KR100820926B1 (ko) * | 2003-04-11 | 2008-04-10 | 가부시키가이샤후지쿠라 | 광파이버 |
CN1300609C (zh) * | 2003-10-28 | 2007-02-14 | 长飞光纤光缆有限公司 | 高性能色散补偿光纤及其制造方法 |
US20050111801A1 (en) | 2003-11-25 | 2005-05-26 | Opto-Knowledge Systems, Inc. | Flexible Optical Fiber Ribbon Cable, Fiber Optic Reformattor, and Method for Making Same Cable and Reformattor |
KR20070058380A (ko) | 2004-04-23 | 2007-06-08 | 라이트 프리스크립션즈 이노베이터즈, 엘엘씨 | 발광 다이오드를 위한 광학 매니폴드 |
US20080205840A1 (en) | 2004-10-28 | 2008-08-28 | Fujifilm Corporation | Plastic Optical Member and Producing Method Thereof |
JP2006194925A (ja) | 2005-01-11 | 2006-07-27 | Tomoegawa Paper Co Ltd | 光ファイバ構造体及びその製造方法 |
US7289707B1 (en) | 2006-05-12 | 2007-10-30 | Np Photonics, Inc | Multi-core optical fiber image amplifier and method of drawing |
WO2008013627A2 (en) * | 2006-06-30 | 2008-01-31 | Corning Incorporated | Low bend loss optical fiber with high modulus coating |
US7450807B2 (en) | 2006-08-31 | 2008-11-11 | Corning Incorporated | Low bend loss optical fiber with deep depressed ring |
US7526169B2 (en) * | 2006-11-29 | 2009-04-28 | Corning Incorporated | Low bend loss quasi-single-mode optical fiber and optical fiber line |
US7283714B1 (en) | 2006-12-15 | 2007-10-16 | Ipg Photonics Corporation | Large mode area fiber for low-loss transmission and amplification of single mode lasers |
US7787731B2 (en) * | 2007-01-08 | 2010-08-31 | Corning Incorporated | Bend resistant multimode optical fiber |
US7526166B2 (en) | 2007-01-31 | 2009-04-28 | Corning Incorporated | High numerical aperture fiber |
US7437046B2 (en) * | 2007-02-12 | 2008-10-14 | Furukawa Electric North America, Inc. | Optical fiber configuration for dissipating stray light |
FR2914751B1 (fr) | 2007-04-06 | 2009-07-03 | Draka Comteq France | Fibre optique monomode |
WO2008136918A2 (en) | 2007-05-07 | 2008-11-13 | Corning Incorporated | Large effective area fiber |
US8374472B2 (en) | 2007-06-15 | 2013-02-12 | Ofs Fitel, Llc | Bend insensitivity in single mode optical fibers |
WO2009062131A1 (en) * | 2007-11-09 | 2009-05-14 | Draka Comteq, B.V. | Microbend- resistant optical fiber |
CN101680994B (zh) * | 2008-02-22 | 2013-02-20 | 住友电气工业株式会社 | 光纤及光缆 |
FR2930997B1 (fr) * | 2008-05-06 | 2010-08-13 | Draka Comteq France Sa | Fibre optique monomode |
US7590324B1 (en) * | 2008-07-24 | 2009-09-15 | Corning Incorporated | Double-clad optical fibers and devices with double-clad optical fibers |
WO2010036684A2 (en) * | 2008-09-26 | 2010-04-01 | Corning Incorporated | High numerical aperture multimode optical fiber |
US8081854B2 (en) * | 2008-12-19 | 2011-12-20 | Sehf-Korea Co., Ltd. | Low bend loss optical fiber |
US8447156B2 (en) * | 2009-01-19 | 2013-05-21 | Sumitomo Electric Industries, Ltd. | Multi-core optical fiber |
US8295698B2 (en) | 2009-08-27 | 2012-10-23 | Maged E Beshai | Time-coherent global network |
JP5347989B2 (ja) * | 2010-01-21 | 2013-11-20 | 住友電気工業株式会社 | マルチコア光ファイバ |
US7903918B1 (en) * | 2010-02-22 | 2011-03-08 | Corning Incorporated | Large numerical aperture bend resistant multimode optical fiber |
JP2011209702A (ja) * | 2010-03-10 | 2011-10-20 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
JPWO2011114795A1 (ja) * | 2010-03-16 | 2013-06-27 | 古河電気工業株式会社 | マルチコア光ファイバおよびその製造方法 |
-
2010
- 2010-01-19 US US12/743,175 patent/US8447156B2/en active Active
- 2010-01-19 JP JP2010546668A patent/JPWO2010082656A1/ja active Pending
- 2010-01-19 WO PCT/JP2010/050523 patent/WO2010082656A1/ja active Application Filing
- 2010-01-19 CN CN201080004970.9A patent/CN102282488B/zh active Active
- 2010-01-19 EP EP10731325.6A patent/EP2388629A4/en not_active Withdrawn
-
2013
- 2013-01-18 US US13/744,745 patent/US8655131B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813504U (ja) * | 1981-07-17 | 1983-01-27 | 日本電信電話株式会社 | 低漏話マルチコア光フアイバ |
JP2008534995A (ja) * | 2005-03-24 | 2008-08-28 | キネティック リミテッド | 多コア微細構造体光ファイバ |
Non-Patent Citations (2)
Title |
---|
IEICE ELECTRONICS EXPRESS, vol. 6, no. 2, 26 January 2009 (2009-01-26), pages 98 - 103 |
See also references of EP2388629A4 |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011170099A (ja) * | 2010-02-18 | 2011-09-01 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
US8655132B2 (en) | 2010-02-18 | 2014-02-18 | Sumitomo Electric Industries, Ltd. | Multi-core optical fiber |
JP2011170062A (ja) * | 2010-02-18 | 2011-09-01 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバ及びその製造方法並びに光ファイバ母材及びその製造方法 |
JP2011209702A (ja) * | 2010-03-10 | 2011-10-20 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
EP2610656A4 (en) * | 2010-08-24 | 2018-01-10 | National University Corporation Yokohama National University | Multicore fiber and core placement method for multicore fiber |
JP2012093520A (ja) * | 2010-10-26 | 2012-05-17 | Kohoku Kogyo Kk | 光ファイバ |
JP2012118495A (ja) * | 2010-11-08 | 2012-06-21 | Fujikura Ltd | マルチコアファイバ |
US8971685B2 (en) | 2010-11-08 | 2015-03-03 | Fujikura Ltd. | Multicore fiber |
WO2012064579A1 (en) * | 2010-11-08 | 2012-05-18 | Corning Incorporated | Multi-core optical fiber ribbons and methods for making the same |
EP2639608A4 (en) * | 2010-11-08 | 2015-06-24 | Fujikura Co Ltd | MORE CORE FIBER |
US9796618B2 (en) | 2010-11-08 | 2017-10-24 | Corning Incorporated | Multi-core optical fiber ribbons and methods for making the same |
US9120693B2 (en) | 2010-11-08 | 2015-09-01 | Corning Incorporated | Multi-core optical fiber ribbons and methods for making the same |
JP2016075938A (ja) * | 2010-11-08 | 2016-05-12 | 株式会社フジクラ | マルチコアファイバ |
WO2012063775A1 (ja) * | 2010-11-08 | 2012-05-18 | 株式会社フジクラ | マルチコアファイバ |
JP2014500980A (ja) * | 2010-11-08 | 2014-01-16 | コーニング インコーポレイテッド | マルチコア光ファイバリボン及びその作製方法 |
JP2014506682A (ja) * | 2011-01-19 | 2014-03-17 | ファイバー・オプティクス・リサーチ・センター・オブ・ザ・ロシアン・アカデミー・オブ・サイエンシズ(エフオーアールシー・アールエーエス) | マルチコア光ファイバ(変形形態) |
JP2014509412A (ja) * | 2011-02-24 | 2014-04-17 | オーエフエス ファイテル,エルエルシー | 空間多重化のためのマルチコア・ファイバ設計 |
US9383515B2 (en) | 2011-02-25 | 2016-07-05 | Sumitomo Electric Industries, Ltd. | Receiving method and separating apparatus for light outputted from multi-core optical fiber |
JP2012181282A (ja) * | 2011-02-28 | 2012-09-20 | Fujikura Ltd | マルチコアファイバ |
WO2012118132A1 (ja) | 2011-03-02 | 2012-09-07 | 株式会社フジクラ | マルチコアファイバ |
US8965165B2 (en) | 2011-03-02 | 2015-02-24 | Fujikura Ltd. | Multicore fiber |
JP2012203035A (ja) * | 2011-03-23 | 2012-10-22 | Mitsubishi Cable Ind Ltd | マルチコアファイバおよびその製造方法 |
JP2013003201A (ja) * | 2011-06-13 | 2013-01-07 | Nippon Telegr & Teleph Corp <Ntt> | マルチコアファイバおよびその接続方法 |
US9423559B2 (en) * | 2011-06-16 | 2016-08-23 | Furukawa Electric Co., Ltd. | Multi-core amplification optical fiber |
US20150316714A1 (en) * | 2011-06-16 | 2015-11-05 | Furukawa Electric Co., Ltd. | Multi-core amplification optical fiber |
JP2013020075A (ja) * | 2011-07-11 | 2013-01-31 | Hitachi Cable Ltd | マルチコアファイバの製造方法 |
JP2013020074A (ja) * | 2011-07-11 | 2013-01-31 | Hitachi Cable Ltd | マルチコアファイバ |
JP5324012B2 (ja) * | 2011-08-08 | 2013-10-23 | 古河電気工業株式会社 | マルチコア光ファイバおよび光伝送システム |
WO2013021697A1 (ja) * | 2011-08-08 | 2013-02-14 | 古河電気工業株式会社 | マルチコア光ファイバおよび光伝送システム |
US9128234B2 (en) | 2011-08-08 | 2015-09-08 | Furukawa Electric Co., Ltd. | Multi-core optical fiber and optical transmission system |
JP2013040078A (ja) * | 2011-08-17 | 2013-02-28 | Fujikura Ltd | 結合型マルチコアファイバ用母材の製造方法、結合型マルチコアファイバの製造方法、及び、結合型マルチコアファイバ |
US9335467B2 (en) | 2011-08-25 | 2016-05-10 | Nat'l University Corp. Yokohama Nat'l University | Multi-core fiber and method of positioning of core of multi-core fiber |
JPWO2013027776A1 (ja) * | 2011-08-25 | 2015-03-19 | 国立大学法人横浜国立大学 | マルチコアファイバおよびマルチコアファイバのコアの配置方法 |
CN103765264A (zh) * | 2011-08-25 | 2014-04-30 | 国立大学法人横滨国立大学 | 多芯光纤以及多芯光纤的纤芯的配置方法 |
WO2013027776A1 (ja) * | 2011-08-25 | 2013-02-28 | 国立大学法人横浜国立大学 | マルチコアファイバおよびマルチコアファイバのコアの配置方法 |
US10663653B2 (en) | 2011-09-05 | 2020-05-26 | Fujikura Ltd. | Multicore fiber for communication |
US10156674B2 (en) | 2011-09-05 | 2018-12-18 | Fujikura Ltd. | Multicore fiber for communication |
US10042114B2 (en) | 2011-09-05 | 2018-08-07 | Fujikura Ltd. | Multicore fiber for communication |
JP2013088457A (ja) * | 2011-10-13 | 2013-05-13 | Nippon Telegr & Teleph Corp <Ntt> | 4芯単一モード光ファイバおよび光ケーブル |
JP2013090227A (ja) * | 2011-10-20 | 2013-05-13 | Nippon Telegr & Teleph Corp <Ntt> | 光受信装置、マルチコア光ファイバ及び光伝送システム |
WO2013094568A1 (ja) * | 2011-12-22 | 2013-06-27 | 住友電気工業株式会社 | 光伝送システム |
CN104025478A (zh) * | 2011-12-22 | 2014-09-03 | 住友电气工业株式会社 | 光传输系统 |
US8855488B2 (en) | 2011-12-22 | 2014-10-07 | Sumitomo Electric Industries, Ltd. | Optical transmission system |
CN104025478B (zh) * | 2011-12-22 | 2016-08-24 | 住友电气工业株式会社 | 光传输系统 |
JP5468711B2 (ja) * | 2012-01-19 | 2014-04-09 | 株式会社フジクラ | マルチコアファイバ |
WO2013108524A1 (ja) * | 2012-01-19 | 2013-07-25 | 株式会社フジクラ | マルチコアファイバ |
US20150316715A1 (en) * | 2012-01-19 | 2015-11-05 | Fujikura Ltd. | Multi-core fiber |
WO2013157245A1 (ja) * | 2012-04-20 | 2013-10-24 | 日本電気株式会社 | 多重光伝送路、光伝送システムおよび光伝送方法 |
JPWO2013157245A1 (ja) * | 2012-04-20 | 2015-12-21 | 日本電気株式会社 | 多重光伝送路、光伝送システムおよび光伝送方法 |
WO2014034810A1 (ja) * | 2012-08-31 | 2014-03-06 | 株式会社フジクラ | 光ファイバおよび光ファイバの製造方法 |
JP2014047116A (ja) * | 2012-08-31 | 2014-03-17 | Fujikura Ltd | 光ファイバおよびその製造方法 |
WO2014080953A1 (ja) * | 2012-11-26 | 2014-05-30 | 住友電気工業株式会社 | 光導波路、光ファイバケーブル、および光モジュール |
JPWO2014080953A1 (ja) * | 2012-11-26 | 2017-01-05 | 住友電気工業株式会社 | 光導波路、光ファイバケーブル、および光モジュール |
CN104838298B (zh) * | 2012-12-05 | 2018-07-17 | 住友电气工业株式会社 | 光波导和光纤传输系统 |
CN104838298A (zh) * | 2012-12-05 | 2015-08-12 | 住友电气工业株式会社 | 光波导和光纤传输系统 |
JP2015135497A (ja) * | 2015-02-02 | 2015-07-27 | 古河電気工業株式会社 | マルチコア光ファイバおよびマルチコア光ファイバの製造方法 |
JP2015163972A (ja) * | 2015-04-06 | 2015-09-10 | 株式会社フジクラ | 通信用マルチコアファイバ |
JP2015159584A (ja) * | 2015-04-08 | 2015-09-03 | 日本電信電話株式会社 | 光受信装置、マルチコア光ファイバ及び光伝送システム |
JP2019081681A (ja) * | 2017-10-31 | 2019-05-30 | 古河電気工業株式会社 | 光ファイバの製造方法及び光ファイバ母材の製造方法 |
WO2023026574A1 (ja) * | 2021-08-26 | 2023-03-02 | 株式会社村田製作所 | 光学素子 |
WO2023090174A1 (ja) * | 2021-11-17 | 2023-05-25 | 古河電気工業株式会社 | マルチコアファイバおよびその製造方法 |
WO2023135944A1 (ja) | 2022-01-11 | 2023-07-20 | 住友電気工業株式会社 | マルチコア光ファイバの製造方法及びマルチコア光ファイバ |
Also Published As
Publication number | Publication date |
---|---|
EP2388629A4 (en) | 2014-09-03 |
JPWO2010082656A1 (ja) | 2012-07-05 |
CN102282488A (zh) | 2011-12-14 |
US20110052129A1 (en) | 2011-03-03 |
US20130136410A1 (en) | 2013-05-30 |
US8655131B2 (en) | 2014-02-18 |
CN102282488B (zh) | 2014-04-23 |
EP2388629A1 (en) | 2011-11-23 |
US8447156B2 (en) | 2013-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010082656A1 (ja) | マルチコア光ファイバ | |
EP2369376B1 (en) | Multi-core optical fiber | |
US8094985B2 (en) | Multi-core holey fiber and optical transmission system | |
EP2209029B1 (en) | Optical fiber | |
US8737793B2 (en) | Multi-core optical fiber and method of manufacturing the same | |
EP2545400B1 (en) | Multicore fibers and associated structures and techniques | |
Saitoh et al. | Multicore fibers for large capacity transmission | |
US9823413B2 (en) | Multicore fiber designs for spatial multiplexing | |
JP6397898B2 (ja) | 空間分割多重のための少モード光ファイバ | |
WO2011024808A1 (ja) | マルチコアファイバ | |
CN105425335B (zh) | 一种通信用抗弯多芯光纤 | |
Sakamoto et al. | 120 spatial channel few-mode multi-core fibre with relative core multiplicity factor exceeding 100 | |
JP2014010266A (ja) | マルチコアファイバ | |
CN111474626A (zh) | 一种多芯光纤 | |
CN219997338U (zh) | 光纤及光纤通信系统 | |
Ponchua et al. | Design of Four-Core Uncoupled Multicore Fiber for Next-Generation Inter-Data Center Networks | |
CN115291318B (zh) | 一种19芯超低损耗色散补偿多芯光子晶体光纤 | |
JP7468664B2 (ja) | 光コネクタ | |
Hayashi | Ultra-dense space-division-multiplexing optical fibers | |
Mukasa et al. | Photonic Crystal Multi-Core Fibers for Future High-Capacity Transmission Systems | |
Ponchua et al. | 2 Data Center Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080004970.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12743175 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10731325 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010546668 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010731325 Country of ref document: EP |