WO2010082656A1 - マルチコア光ファイバ - Google Patents

マルチコア光ファイバ Download PDF

Info

Publication number
WO2010082656A1
WO2010082656A1 PCT/JP2010/050523 JP2010050523W WO2010082656A1 WO 2010082656 A1 WO2010082656 A1 WO 2010082656A1 JP 2010050523 W JP2010050523 W JP 2010050523W WO 2010082656 A1 WO2010082656 A1 WO 2010082656A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
region
optical fiber
regions
leakage
Prior art date
Application number
PCT/JP2010/050523
Other languages
English (en)
French (fr)
Inventor
笹岡 英資
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP10731325.6A priority Critical patent/EP2388629A4/en
Priority to US12/743,175 priority patent/US8447156B2/en
Priority to JP2010546668A priority patent/JPWO2010082656A1/ja
Priority to CN201080004970.9A priority patent/CN102282488B/zh
Publication of WO2010082656A1 publication Critical patent/WO2010082656A1/ja
Priority to US13/744,745 priority patent/US8655131B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +

Definitions

  • the present invention relates to a multi-core optical fiber in which a plurality of core regions are arranged on the same cross section as a transmission medium for optical communication.
  • the optical fiber communication network is expanded from a trunk line system to a general household, and is widely recognized as a FTTH (Fiber To The Home) service.
  • Most optical fibers applied to such communication networks are silica-based fibers, and a refractive index difference such as GeO 2 is added to the core region to give a refractive index difference to the cladding region.
  • a total reflection type optical waveguide structure is included in the FTTH service.
  • the FTTH service uses a single optical fiber by interposing a multistage optical splitter in a terminal station, which is the final relay station of an existing communication system such as the Internet, and between the terminal station and a subscriber's house. This is realized by a so-called PON (Passive Optical Network) system shared by each subscriber.
  • PON Passive Optical Network
  • a multi-core optical fiber is suitable as an optical fiber for ultra-fine diameter and ultra-high density that can meet such demands.
  • a multi-core optical fiber is an optical fiber having a plurality of cores each functioning as an optically independent optical waveguide.
  • the core regions are close to each other, when a small-diameter bend is applied in a state where high-power light is propagating through each core, it is caused by the propagation of light leaked from each core, and the fiber When the length is long, crosstalk occurs due to a part of the light propagating outside the core region even when the bending is not applied.
  • FIG. 3C a design example of a multi-core optical fiber in which the crosstalk target value between core regions is set to ⁇ 30 dB or less is disclosed in FIG. 3, and the relative refractive index difference ⁇ is set to 1.2.
  • the multi-core optical fiber with 19 core regions is proposed.
  • light that contributes to crosstalk between core regions regardless of the cause of the occurrence will be expressed as leakage light below.
  • the inventors have studied the conventional crosstalk reduction technology in the multi-core optical fiber as described above in detail, and have found the following problems.
  • the target value of crosstalk between core regions disclosed in Non-Patent Document 1 may be insufficient when long-distance optical transmission is considered. That is, although the non-patent document 1 aims at -30 dB or less as crosstalk after propagation of 100 km light, the system length (total fiber length) may be 1000 km or more in the land trunk line system. Furthermore, in the transoceanic system, the system length may reach 10,000 km. In a fiber section where the crosstalk is relatively small, the crosstalk between the core regions is considered to be deteriorated by about 20 dB when the propagation length is 10 times.
  • Non-Patent Document 1 the increase in ⁇ (increasing the relative refractive index difference between the core region and the cladding region) introduced in Non-Patent Document 1 as a crosstalk reduction technique may be inappropriate.
  • increasing ⁇ increases the confinement of light in the core region, and thus is effective in reducing crosstalk between the core regions, but is likely to cause an increase in transmission loss and nonlinearity of the optical fiber. Therefore, in a multi-core optical fiber, there is a high risk that the transmission performance per core region will deteriorate.
  • the transmission loss is desirably smaller.
  • wavelength division multiplexing is performed as a means for realizing large-capacity transmission, it is necessary to input signal light having a larger number of wavelengths into the optical fiber in order to realize a larger transmission capacity.
  • modulation speed is increased as a means for realizing large-capacity transmission, or when the modulation multi-level is increased, it is necessary to improve the optical SN ratio in order to maintain an error rate equivalent to that of conventional optical transmission. . Specifically, it is necessary to increase the incident light power to the optical fiber.
  • crosstalk reduction technology can be used instead of the above-mentioned increase in ⁇ (enhancement of confinement of light in the core region). It is easy to predict that will be necessary.
  • the present invention has been made to solve the above-described problems, and is provided with a multi-core light having a structure for effectively suppressing deterioration of transmission quality caused by crosstalk between a plurality of core regions. It aims to provide a fiber.
  • the multi-core optical fiber according to the present invention is an optical fiber having a plurality of core regions each functioning as an optically independent optical waveguide, and more specifically, a core region extending along the optical axis, and a core region And a plurality of core fiber regions having a cladding region provided on the outer periphery of the core fiber region in the same cross section.
  • the multi-core optical fiber according to the present invention includes a leakage reduction unit for reducing leakage light of the multi-core optical fiber from each core region, and at least a part of the leakage reduction unit includes a plurality of core fiber regions. It exists on a straight line connecting core regions in adjacent core fiber regions.
  • each leakage reduction unit arranged so as to be positioned between adjacent core regions is arranged, without increasing the transmission loss of the multi-core optical fiber.
  • Crosstalk due to leakage light from the core region can be effectively reduced.
  • the leakage reduction part of the multi-core optical fiber according to the present invention is formed in the clad region so as to have an annular shape surrounding the core region on the same cross section.
  • the leakage reduction part should just be located in at least one part between core area
  • the leakage reduction portion is a region that forms a refractive index distribution in which a confinement ratio of propagating light is increased in a region surrounded by the leakage reduction portion.
  • the leakage reduction unit is configured to substantially reduce the refractive index.
  • the leakage reduction portion is configured by adding a refractive index lowering agent or forming a hole in each of the cladding regions of the plurality of core fiber regions. To do.
  • it may be configured to increase the refractive index of the leakage reduction unit so as to confine the leakage light in the leakage reduction unit.
  • the leakage reduction unit may be configured by adding a refractive index increasing agent in each of the cladding regions of the plurality of core fiber regions.
  • the leakage reduction unit may be made of a material that reduces the power of leakage light.
  • the constituent material has at least one of an absorption coefficient and a scattering coefficient larger than that of the cladding region.
  • the leakage reduction unit is arranged so that at least a part thereof is located between the adjacent cores, so that the transmission loss in the multi-core optical fiber is not increased between the adjacent cores. Can reduce crosstalk.
  • FIG. 1 is a diagram showing a typical cross-sectional structure of a multi-core optical fiber according to the present invention.
  • the multi-core optical fiber 1 includes a bare optical fiber including a plurality of core regions 10 each extending along the optical axis AX, and a resin coating 30 provided on the outer periphery of the bare optical fiber.
  • the bare optical fiber includes a plurality of core regions 10 and a cladding region 20 that surrounds the core regions 10.
  • the clad region covering each core region 10 may be a common clad region that integrally covers each core region 10 or a clad region prepared for each core region 10.
  • a region composed of a core region and a cladding region located around the core region is referred to as a core fiber region as a region having a basic waveguide structure.
  • a crosstalk reduction effect can be obtained by arranging a plurality of core regions in a state where core regions having different optical characteristics are adjacent to each other. If this crosstalk reducing effect is described with reference to FIG. 2, the multi-core optical fiber 11 shown in FIG. 2 is different from the first group in the core region 10a belonging to the first group having predetermined optical characteristics.
  • the core region 10 b belonging to the second group having optical characteristics has a structure integrally covered with a common cladding region 20, and a resin coating 30 is provided on the outer periphery of the cladding region 20.
  • the core region 10a belonging to the first group and the core region 10b belonging to the second group have different propagation constants between the core regions by changing the refractive index distribution, the core diameter, etc. of the core region. .
  • the core regions 10a and 10b having different optical characteristics so as to be adjacent to each other, an effect of suppressing crosstalk between adjacent core regions can be obtained.
  • FIG. 2 shows an example of a uniform cladding region
  • a hole assist structure in which holes are provided around each core region, or a structure in which trenches are provided around each core region is adopted.
  • the present invention provides an effective crosstalk between the core regions 10 by providing a leakage reduction unit 50 for reducing the leakage light of each multi-core optical fiber 1 from each core region 10. Realization of reduction technology.
  • FIG. 4 is a diagram for explaining the structure and function of the leakage reduction unit together with the leakage light reduction mechanism, and region A shown in FIG. 1 (region on the cross section of the multicore optical fiber 1 perpendicular to the optical axis AX). It corresponds to.
  • an annular leakage reduction portion 50 ⁇ / b> A is prepared for each core region 10, and the corresponding core region 10 is included in the cladding region 20 that constitutes one core fiber region together with the core region 10.
  • the cladding region 20 includes an optical cladding 21 provided on the outer periphery of the core region 10 as a region that affects transmission characteristics of light propagating in the core region 10, and the core region 10.
  • a physical cladding 22 provided on the outer periphery of the optical cladding 21 is provided as a region that does not affect the transmission characteristics of propagating light.
  • the leakage reduction unit 50A is formed in the physical cladding 22 so as to avoid deterioration of transmission performance of each core region 10.
  • the optical cladding 21 and the physical cladding 22 are regions that are distinguished from the viewpoint of whether or not they affect transmission characteristics, and cannot be distinguished from each other by the composition. Therefore, in the accompanying drawings, for easy understanding of the present invention, the boundary between the optical cladding 21 and the physical cladding 22 constituting the cladding region 20 is indicated by a broken line for convenience.
  • the leakage reduction unit 50A is a region that reduces the power of leakage light from the core region 10, and effectively reduces the amount of leakage light by deflection control such as absorption, scattering, and confinement. It works to reduce.
  • the leakage reduction unit 50A is configured such that the distance from the center of the core region 10 is MFD at a wavelength of 1.55 ⁇ m in the core fiber region including the core region 10. Is provided between the position that is 5/2 times as large as the outer peripheral surface of the cladding region (the interface between the physical cladding 22 and the resin coating 30).
  • the leakage reduction unit 50A may be provided between the position where the electric field amplitude of the core fiber region including the core region 10 is 10 ⁇ 4 or less from the peak value to the outer peripheral surface of the cladding region 20.
  • leakage light of the light amount P 0 from the core region 10 due to small-diameter bending (bending with a small radius of curvature applied to the multi-core optical fiber 1 during propagation of high-power light) is reduced.
  • the amount of the leaked light is reduced by the deflection control such as absorption, scattering, confinement, etc. in the leakage reduction unit 50A.
  • the amount of leakage light that has passed through the leakage reduction unit 50 is reduced to 1/10 of the amount of leakage light P 0 that has reached the leakage reduction unit 50A (see FIG. 4).
  • crosstalk generated due to leakage light reaching the adjacent core region 10 is effectively reduced.
  • each core region 10 has GeO as a refractive index increasing agent. 2 is added, and the cladding region 20 provided on the outer periphery of each core region 10 is made of pure silica.
  • Each of the plurality of core fiber regions arranged on the same cross section in the multi-core optical fiber to be manufactured has a refractive index profile of a step structure.
  • the relative refractive index difference between the core and the clad is 0.4% or less.
  • each member to be a plurality of core fiber regions arranged on the same cross section of the multi-core optical fiber to be manufactured is prepared.
  • the member 100A to be the core fiber region includes a fiber member 200a in which the layer to be the leakage reducing portion 50A reaches the outermost layer, and the fiber member 200a.
  • a hollow member 200b having a through hole matching the cross-sectional shape is provided.
  • the fiber member 200a is made of silica-based glass, and becomes a central region 110 to be the core region 10, an intermediate region 120 to be a part of the cladding region 20, and a leakage reduction portion 50A in order toward the outer peripheral surface on the center side.
  • a power outermost layer 500 is provided.
  • the intermediate region 120 includes an inner region 121 that finally becomes an optical cladding and an outer region 122 that becomes a physical cladding.
  • the hollow member 200b is also made of quartz glass. By inserting the fiber member 200a into the through hole of the hollow member 200b, a member 100A to be a core fiber region can be obtained.
  • the heater 300 is moved in the direction indicated by the arrow B (the length of the plurality of members 100A). By moving in the same direction) (see FIG. 5B).
  • a multi-core optical fiber preform 100B is obtained.
  • the outermost layer 500 to be the leakage reducing portion 50A has a light absorption coefficient or light scattering coefficient larger than that of the outer region 122 to be the physical cladding. Further, the outermost layer 500 to be the leakage reducing portion 50A has a lower viscosity than the outer region 122 to be the physical cladding in the integration process by heating.
  • the multi-core optical fiber 1 which has the cross-sectional structure shown in FIG. 6 is obtained by drawing one end of the obtained preform
  • the drawing apparatus for the base material 100B has a roller 330 for winding the multi-core optical fiber 1 drawn by rotating in the direction indicated by the arrow C, and a surface of the bare optical fiber just after drawing from the base material 100B.
  • covers resin is provided at least.
  • FIG. 6 shows a cross-sectional structure of the multi-core optical fiber 1 obtained through the above manufacturing process.
  • the cross-sectional structure of the multi-core optical fiber 1A shown in FIG. 6 substantially includes the cross-sectional structure of FIG. That is, the multi-core optical fiber 1A includes a bare optical fiber including a plurality of core regions 10 and a resin coating 30 provided on the outer periphery of the bare optical fiber. In the bare optical fiber, a plurality of core fiber regions are arranged on the same cross section, and each core fiber region includes a core region 10 and a cladding region 20 surrounding the core region 10.
  • the clad region 20 can be distinguished into the optical clad 21 and the physical clad 22, and the leakage reduction portion 50 ⁇ / b> A is preferably disposed in the clad region 20, particularly in the physical clad 22.
  • the multi-core optical fiber 1A has a structure in which the plurality of core regions 10 are present in the common cladding region 20, and the leakage reduction portion 50A surrounds each of the core regions 10. Since the leakage reducing unit 50A blocks the light leaking from 10, the crosstalk between the core regions 10 can be effectively reduced.
  • FIG. 7 is a diagram showing a cross-sectional structure of another embodiment of the multi-core optical fiber according to the present invention.
  • the multi-core optical fiber 1B shown in FIG. 7A has a structure in which a plurality of core regions 10 are present in the cladding region 20 and a leakage reduction portion 50B is disposed between the core regions 10.
  • the leakage reduction portion 50B is also arranged between the core regions 10 located on the diagonal line, but the interval between the core regions 10 on the diagonal line is sufficiently separated, and crosstalk is caused.
  • the leakage reduction unit 50B located at the center may not be provided.
  • the common clad region 20 can be classified into an optical clad 21 located around each core region 10 and a physical clad 22 covering the optical clad 21, and the multi-core optical fiber 1B can be distinguished from the multi-core optical fiber 1B.
  • the physical cladding 22 is shared in the core fiber regions including the core region 10 respectively. That is, in the multi-core optical fiber 1B, adjacent core fiber regions out of the plurality of core fiber regions are in contact with each other via the leakage reduction unit 50B.
  • the multi-core optical fiber 1C shown in FIG. 7B has a structure in which a plurality of core fibers 15 including a core region 160 and a cladding region 150 surrounding the core region 160 are integrated.
  • the cladding region 150 includes an optical cladding 151 that directly covers the core region 160 and a physical cladding 152 that is provided on the outer periphery of the optical cladding 151.
  • an annular leakage reduction portion 50C surrounding the core region 160 is located on the cross section of FIG.
  • a jacket layer 40 is provided so as to cover the outer periphery of the integrated core fiber 15, and the resin coating 30 is provided on the outer periphery of the jacket layer 40.
  • the core regions 10 and 160 and the cladding regions 20 and 150 are made of quartz glass.
  • the resin coating 30 provided on the outer periphery of the cladding region 20 or the jacket layer 40 is, for example, a plastic coating.
  • the leakage reduction units 50A to 50C are provided in the physical claddings 22 and 152 of the cladding regions 20 and 150. There is no particular limitation as long as the position has a distance of. Further, in the example of the multicore optical fiber 1C illustrated in FIG. 7C, the leakage reduction unit 50C may be disposed between two adjacent core fibers 15.
  • FIGS. 8 to 9 show an example of the multi-core optical fiber 1A shown in FIG. 6, but the other multi-core optical fibers 1B and 1C are similarly configured with the leakage reduction units 50B and 50C, respectively.
  • Any of the leakage reduction units 50A to 50C has a deflection control function by absorption, scattering, confinement, and the like.
  • FIG. 8 is a diagram for explaining a first specific example of a leakage reduction unit 50A applicable to the multi-core optical fiber 1A.
  • FIG. 8A shows a cross-sectional structure of the multi-core optical fiber 1A, which matches the cross-sectional structure of FIG.
  • a layer having a low refractive index called a trench layer formed in an annular shape so as to surround the core region 10 is provided as the leakage reduction portion 50A. That is, the leakage reduction unit 50A according to the first specific example performs the leakage light deflection control by confining the leakage light in a region inside the leakage reduction unit 50A.
  • FIG. 8B is a refractive index profile of one core fiber region in the multi-core light 1A.
  • FIG. 8C is an enlarged view of a portion D in FIG. 8A, and a layer having a low refractive index is formed by forming a plurality of holes 510 as the leakage reduction portion 50A according to the first specific example. It is an example which implement
  • FIG. 8D is an enlarged view of a portion D in FIG. 8A, and a layer having a low refractive index is realized by forming a plurality of voids 520 as the leakage reduction unit 50A according to the first specific example. It is an example.
  • the multi-core optical fiber 1A is a silica-based glass fiber, and a plurality of core fiber regions are arranged on the cross section shown in FIG. 8A, and the plurality of core fiber regions includes a corresponding one core region 10 and , A common clad region 20 is formed.
  • the clad region 20 can be distinguished into an optical clad 21 and a physical clad 22 around the core region, and an annular leakage reduction portion 50A surrounding the core region 10 is provided in the physical clad 22.
  • the leakage reduction unit 50A according to the first example propagates leakage light to the adjacent core region 10 by confining the leakage light propagating from the core region 10 in the inner region surrounded by the leakage reduction unit 50A. Function to suppress.
  • the core region 10 is made of silica glass to which GeO 2 is added, the cladding region 20 is made of pure silica glass, and the relative refractive index difference of the core region 10 with respect to the cladding region 20 is 0. .35% (0.4% or less).
  • the outer diameter of the core region 10 is 8.5 ⁇ m.
  • Such a core fiber region has an MFD of 10.2 ⁇ m at a wavelength of 1.55 ⁇ m.
  • the electric field amplitude in the core fiber region takes a peak value at the center of the core region 10 (hereinafter referred to as the core center), and the position where the peak value is 10 ⁇ 4 is a position away from the core center by 28.5 ⁇ m. is there.
  • the leakage reduction portion 50A is separated from the core center by 25.5 ⁇ m (a distance of 5/2 times the MFD) or more along the radial direction R, or separated from the core center by 28.5 ⁇ m or more along the radial direction R. Further, it is preferably provided in the physical cladding 22.
  • the leakage reduction portion 50A is a ring-shaped region formed in a range from 35 ⁇ m to 50 ⁇ m from the core center.
  • the first means for realizing the leakage reduction unit 50A realizes the deflection control of the leakage light from each core region 10 by designing the refractive index profile as shown in FIG. 8B. To do.
  • the deflection control of the leakage light is performed by adopting the refractive index profile of the trench structure as the refractive index profile of each of the plurality of core fiber regions in the multi-core optical fiber 1A. That is, as shown in FIG. 8B, by adding F to the silica glass region corresponding to the leakage reduction portion 50A, the relative refractive index difference of the leakage reduction portion 50A with respect to the optical cladding 21 is -0.7%.
  • the multi-core optical fiber 1A is a silica-based fiber.
  • the core region 10 is made of quartz glass to which GeO 2 is added, and the cladding region 20 is pure. Made of silica glass. Further, the relative refractive index difference between the core region 10 and the cladding region 20 is 0.4% or less.
  • the refractive index of the leakage reducing portion 50A provided in the physical cladding 22 is lower than that of pure silica glass by adding F (refractive index lowering agent).
  • FIG. 8C is an enlarged view of a portion D in FIG. 8A, and the leakage reduction unit 50A according to the first specific example is for realizing the deflection control of the leakage light from the core region 10.
  • 2nd means is shown. This second means performs the deflection control of the leaked light by providing a plurality of holes 510 extending along the optical axis AX in a region corresponding to the leak reducing unit 50A.
  • FIG. 8D is an enlarged view of the portion D in FIG. 8A, and shows a third means for realizing the deflection control of leaked light as the leak reducing unit 50A according to the first specific example.
  • This third means is an annular region surrounding the core region 10 on the cross section shown in FIG. 8A, and is formed by scattering voids 520 in a region extending along the optical axis AX.
  • the leakage light deflection control is performed by forming the leakage reduction portion 50A.
  • the leakage reduction portion 50A is formed as a low refractive index region, a hole formation region, or a void scattering region, so that the ratio of the leakage reduction portion 50A to the cladding region 20 is increased.
  • the refractive index difference is significantly lower. As a result, a part of the leaked light from the core region 10 toward the adjacent core region 10 due to the small-diameter bending or the like is confined in the inner region surrounded by the leakage reduction unit 50A.
  • the ratio of the light confined in the inner region surrounded by the leakage reduction unit 50A out of the leakage light from each core region 10 toward the resin coating 30 of the multi-core optical fiber 1A is from the core region 10 to the leakage reduction unit.
  • the configuration can be adjusted by the arrangement of voids.
  • the leakage reduction unit 50A configured as described above has a peak value (core value) in each core fiber region at a position that is 5/2 times or more MFD from the core region center or in each core fiber region. It exists outside the position that is 10 ⁇ 4 or less of the peak value at the center. Therefore, the presence of the leakage reduction unit 50A is at a level where the influence on the light propagating in the core region 10 can be effectively ignored, and the influence of the leakage reduction unit 50A on the characteristics such as transmission loss can be ignored. . In addition, part of the leaked light leaks to the outside of the leakage reducing unit 50A, so that the light component confined in the inner region of the leakage reducing unit 50A gradually attenuates as it propagates.
  • the light component confined in the inner region surrounded by the leakage reducing unit 50A is not coupled to the propagating light in the core region 10 again (the light component confined in the inner region of the leakage reducing unit 50A is not Influencing the transmission characteristics of the propagating light in the core region 10 can be substantially avoided).
  • FIG. 9 is a figure for demonstrating the 2nd specific example of the leakage reduction part applicable to the multi-core optical fiber which concerns on this invention.
  • the leakage reduction unit 50A according to the second specific example performs deflection control of leakage light by increasing scattering of leakage light reaching from the core region 10 in each core fiber region.
  • FIG. 9A shows a cross-sectional structure of the multi-core optical fiber 1A, which matches the cross-sectional structure of FIG.
  • the leakage reduction portion 50A is formed in an annular shape so as to surround the core region 10.
  • FIG. 9B is an enlarged view of the portion D in FIG. 9A, and at least one of the absorption coefficient and the scattering coefficient is larger than the cladding region as the leakage reduction unit 50A according to the second specific example. It is an example which implement
  • a multi-core optical fiber 1 ⁇ / b> A shown in FIG. 9A has a plurality of core fiber regions arranged on a cross section thereof, and the plurality of core fiber regions have a corresponding one core region 10 and a common cladding region 20. It is composed of The clad region 20 can be distinguished into an optical clad 21 and a physical clad 22 around the core region, and an annular leakage reduction portion 50A surrounding the core region 10 is provided in the physical clad 22.
  • the leakage reduction unit 50A according to the second specific example functions to reduce the amount of leakage light reaching the adjacent core region 10 by scattering the leakage light propagating from the core region 10 by the leakage reduction unit 50A. To do.
  • the core region 10 is made of silica glass to which GeO 2 is added, the cladding region 20 is made of pure silica glass, and the relative refractive index difference of the core region 10 with respect to the cladding region 20 is 1 %.
  • the outer diameter of the core region 10 is 30 ⁇ m.
  • the core region 10 light is multimode at a wavelength of 1.55 ⁇ m, but the MFD of the base mode is 19.8 ⁇ m.
  • the electric field amplitude in each core fiber region has a peak value at the core center, and the position where the peak value is 10 ⁇ 4 is a position away from the core center by 23.1 ⁇ m.
  • the leakage reduction unit 50AC according to the second specific example is separated from the core center by 49.5 ⁇ m (a distance that is 5/2 times the MFD) or more along the radial direction R, or from the core center in the radial direction R. And 23.1 ⁇ m or more along the physical cladding 22.
  • the leakage reduction portion 50A is a ring-shaped region formed in a range from 35 ⁇ m to 50 ⁇ m from the core center.
  • the leak light deflection control means shown in FIG. 9B performs the leak light deflection control by increasing the scattering of the leak light by the micro anisotropic body 530 added to the region corresponding to the leak reduction section 50A.
  • a leakage reduction part 50A for example, glass containing elongated silver halide grains (micro anisotropic body 530) can be considered.
  • the leakage reduction unit 50A As described above, by adding the minute anisotropic body 530 to the annular leakage reduction unit 50A, the leakage light is scattered in the leakage reduction unit 50A (as a result, the leakage light is deflected), and the leakage light. Absorption (leakage of light leaks) is greater than other glass regions. That is, the leakage reduction unit 50 ⁇ / b> A has a larger absorption coefficient and scattering coefficient than the cladding region 20. Therefore, the leakage reduction unit 50A according to the second specific example can also effectively reduce the amount of leakage light that passes through the leakage reduction unit 50A and travels toward the adjacent core region 10.
  • the leakage reduction unit 50A of the multicore optical fiber 1A shown in FIG. 6 has been described as an example, but any leakage reduction unit 50B of the multicore optical fibers 1B and 1C shown in FIG. , 50C.
  • 1, 1A, 1B, 1C multi-core optical fiber, 10, 160 ... core region, 21, 151 ... optical cladding, 22, 152 ... physical cladding, 20, 150 ... cladding region, 50, 50A, 50B, 50C ... leakage reduction Part, 30 ... resin coating, 510 ... hole, 520 ... void, 530 ... silver halide grain (micro anisotropic body).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 複数のコア領域のうち隣接するコア領域間のクロストークを効果的に低減するための構造を備えたマルチコア光ファイバに関する。当該マルチコア光ファイバ(1)は、少なくとも一部が複数のコア領域(10)のうち隣接するコア領域同士を結ぶ直線上に位置するよう配置された漏洩低減部(50)を備える。漏洩低減部(50)が、各コア領域(10)から当該マルチコア光ファイバ(1)の漏れ光を低減することにより、隣接するコア領域間におけるクロストークが効果的に低減される。

Description

マルチコア光ファイバ
 本発明は、光通信用の伝送用媒体として、同一断面上に複数のコア領域が配置されたマルチコア光ファイバに関するものである。
 現在、光ファイバ通信網は幹線系から一般家庭にまで拡大し、FTTH(Fiber To The Home)サービスとして広く認知されている。このような通信網に適用される光ファイバのほとんどは、石英系ファイバであって、コア領域に例えばGeOなどの屈折率増加剤を添加することによりクラッド領域に対して屈折率差を持たせた全反射型の光導波路構造を備える。特に、上記FTTHサービスは、インターネットなどの既存の通信システムの最終中継局である端局内、及び、端局から加入者宅までの間に多段の光スプリッタを介在させることで1本の光ファイバを各加入者が共有する、いわゆるPON(Passive Optical Network)システムにより実現されている。
 しかしながら、上述のように多段の光スプリッタを介することで複数の加入者が一本の光ファイバを共有するPONシステムでは、輻輳制御(Congestion Control)や受信ダイナミックレンジの確保など、将来的な伝送容量の増加に対して技術的課題を抱えているのは事実である。本技術的課題(輻輳制御・ダイナミックレンジの確保など)を解決する手段の一つとして、SS(Single Star)システムへの移行が考えられる。SSシステムへ移行する場合は、局内側においてファイバ心数がPONシステムに対して増大するため、局内側光ケーブルにおいて極細径化・超高密度化が必須となる。このような要望に応えられる極細径・超高密度化用の光ファイバとしては、マルチコア光ファイバが好適である。
 マルチコア光ファイバは、それぞれが光学的に独立した光導波路として機能する複数コアを有する光ファイバである。ところが、コア領域同士が近接しているため、ハイパワー光が各コアを伝搬している状態で小径曲げが加えられた場合には各コアから漏洩した光の伝搬に起因して、また、ファイバ長が長い場合には曲げが加えられない状態でもコア領域外を伝搬する一部の光に起因してクロストークが発生してしまう。そこで、例えば以下の非特許文献1では、コア領域間のクロストーク目標値を-30dB以下とした、マルチコア光ファイバの設計例が図3に開示されており、比屈折率差Δを1.2%とした設計例(図3(c))では、19個のコア領域のマルチコア光ファイバが提案されている。なお、本明細書においては、その発生の原因に拠らずコア領域間のクロストークに寄与する光を以下において漏れ光と表現する。
IEICE Electronics Express, Vol.6, No.2, pp.98-103, January 26, 2009
 発明者らは、上述のようなマルチコア光ファイバにおける従来のクロストーク低減技術について詳細に検討した結果、以下のような課題を発見した。
 まず、上記非特許文献1に開示された、コア領域間におけるクロストークの目標値では、長距離光伝送を考慮すると不十分な可能性がある。すなわち、上記非特許文献1では、100km光伝搬後のクロストークとして-30dB以下を目標としているが、陸上幹線系ではシステム長(全ファイバ長)が1000km以上となる場合もある。さらに、大洋横断システムではシステム長が10000kmに達する場合もある。クロストークが比較的小さいファイバ区間において、伝搬長が10倍になるとコア領域間におけるクロストークは20dB程度劣化すると考えられるため、100km光伝搬後のクロストークが-30dBの場合、1000km光伝搬後にはクロストークが-10dB程度まで劣化すると予想され、高品質光伝送を実現するには、係る目標値では不十分となる可能性が高い。
 また、クロストーク低減技術として上記非特許文献1に紹介された高Δ化(コア領域-クラッド領域間の比屈折率差を大きくすること)は、不適切な可能性がある。すなわち、高Δ化は、コア領域への光の閉じ込めを強化するため、コア領域間におけるクロストーク低減には有効である一方、光ファイバの伝送損失増大・非線形性増大を招く可能性が高い。そのため、マルチコア光ファイバにおいて、コア領域一つ当りの伝送性能は劣化させてしまう危険性が高い。
 一方、マルチコア光ファイバを長距離光伝送用の伝送媒体への適用を考慮すると、その伝送損失はより小さいことが望ましいことは自明である。大容量伝送を実現する手段として波長多重伝送が行われる場合、より多くの伝送容量を実現するために、より多くの波長の信号光を光ファイバに入射する必要がある。また、大容量伝送を実現する手段として変調速度を上げる、あるいは、変調の多値度を上げる場合、従来の光伝送と同等の誤り率を維持するために、光SN比を向上させる必要がある。具体的には、光ファイバへの入射光パワーを増大させる必要がある。何れにしても光ファイバを伝搬する総光パワーを増加させる必要があり、より高い伝送品質を確保するためには上述の高Δ化(コア領域への光の閉じ込め強化)に替わるクロストーク低減技術が必要となることは容易に予測できる。
 本発明は、上述のような課題を解決するためになされたものであり、複数のコア領域間におけるクロストーク発生に起因した伝送品質の劣化を効果的に抑制するための構造を備えたマルチコア光ファイバを提供することを目的としている。
 本発明に係るマルチコア光ファイバは、それぞれが光学的に独立した光導波路として機能する複数コア領域を有する光ファイバであり、より具体的には、光軸に沿って伸びたコア領域と、コア領域の外周に設けられたクラッド領域とを備えたコアファイバ領域を、同一断面内に複数有する。特に、本発明に係るマルチコア光ファイバは、各コア領域から当該マルチコア光ファイバの漏れ光を低減するための漏洩低減部を備え、この漏洩低減部の少なくとも一部は、複数のコアファイバ領域のうち隣接するコアファイバ領域におけるコア領域同士を結ぶ直線上に存在する。
 上述のように、本願発明に係るマルチコア光ファイバでは、隣接するコア領域間に位置するよう配置された漏洩低減部が配置されたことにより、当該マルチコア光ファイバの伝送損失を増大させることなく、各コア領域からの漏れ光に起因したクロストークが効果的に低減され得る。
また、本発明に係るマルチコア光ファイバの漏洩低減部は、同一断面上でコア領域を取り囲む環状になるようにクラッド領域内に形成されるのが好ましい。なお、漏洩低減部は、少なくともその一部がコア領域間に位置していればよく、また、複数のコアファイバ領域は、1つのクラッド領域を共有することにより構成されてもよい。この場合、複数のコアファイバ領域のうち隣接するコアファイバ領域は、漏洩低減部を介して接触した状態となる。
 さらに、本発明に係るマルチコア光ファイバにおいて、漏洩低減部は、当該漏洩低減部により取り囲まれた領域における伝搬光の閉じ込め率を高めた屈折率分布を形成する領域であるのが好ましい。具体的には、実質的に屈折率を低減するよう漏洩低減部を構成する。例えば、屈折率を低減する構成として、漏洩低減部には、複数のコアファイバ領域のクラッド領域それぞれにおいて、屈折率低下剤を添加するか、又は、空孔を形成することにより漏洩低減部を構成する。あるいは、漏れ光を漏洩低減部内に閉じ込めるように、漏洩低減部の屈折率を増加させるように構成することも考えられる。屈折率を増加させる構成として、複数のコアファイバ領域のクラッド領域それぞれにおいて、屈折率増加剤を添加することにより漏洩低減部を構成してもよい。
 また、本発明に係るマルチコア光ファイバにおいて、漏洩低減部は、漏れ光のパワーを低減する素材で構成されてもよい。この場合、構成素材は、吸収係数、及び、散乱係数の少なくとも何れか一方がクラッド領域よりも大きい。
 本発明に係るマルチコア光ファイバによれば、少なくとも一部が隣接するコア間に位置するよう漏洩低減部が配置されたことにより、当該マルチコア光ファイバにおける伝送損失を増大させることなく、隣接するコア間におけるクロストークの低減効果が得られる。
は、本発明に係るマルチコア光ファイバの代表的な断面構造を示す斜視図である。
は、マルチコア光ファイバにおけるクロストーク低減技術の一例を説明するための図である。
は、本発明に係るマルチコア光ファイバに適用される漏洩低減部の配置条件を説明するための図である。
は、漏れ光低減メカニズムとともに漏洩低減部の構造及び機能を説明するための図である。
は、本実施形態に係るマルチコア光ファイバの各製造工程を説明するための図である。
は、図5に示す製造工程により得られる本実施形態に係るマルチコア光ファイバの断面構造を示す図である。
は、本発明に係るマルチコア光ファイバの他の実施形態の断面構造を示す図である。
は、本発明に係るマルチコア光ファイバに適用可能な漏洩低減部の第1具体例を説明するための図である。
は、本発明に係るマルチコア光ファイバに適用可能な漏洩低減部の第2具体例を説明するための図である。
 以下、本発明に係る光ファイバの各実施形態を、図1~図9を参照しながら詳細に説明する。なお、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
 図1は、本発明に係るマルチコア光ファイバの代表的な断面構造を示す図である。図1に示すように、マルチコア光ファイバ1は、光軸AXに沿ってそれぞれ伸びた複数のコア領域10を含む裸光ファイバと、この裸光ファイバの外周に設けられた樹脂被覆30を備える。裸光ファイバは、複数のコア領域10と、これらコア領域10を取り囲むクラッド領域20により構成される。なお、コア領域10それぞれを覆うクラッド領域は、コア領域10それぞれを一体的に覆う共通のクラッド領域であっても、コア領域10それぞれに用意されたクラッド領域であってもよい。何れの構成においても、本明細書では、コア領域とその周辺に位置するクラッド領域で構成される領域を、基本的な導波路構造を有する領域としてコアファイバ領域と呼ぶこととする。
 上述のような構造を有するマルチコア光ファイバにおいて、光学特性の異なるコア領域同士を隣接させた状態で、複数のコア領域を配置することにより、クロストーク低減効果が得られる。このクロストーク低減効果を、図2を参照しながら説明すれば、この図2に示すマルチコア光ファイバ11は、所定の光学特性を有する第1グループに属するコア領域10aと、第1グループとは異なる光学特性を有する第2グループに属するコア領域10bが、共通のクラッド領域20で一体的に覆われた構造を有し、クラッド領域20の外周には樹脂被覆30が設けられている。具体的に第1グループに属するコア領域10aと第2グループに属するコア領域10bとの間では、コア領域の屈折率分布・コア径等を変化させることによりコア領域間の伝搬定数が異なっている。また、当該マルチコア光ファイバ11では、光学特性の異なるコア領域10a、10bを隣接するように配列することにより、隣接コア領域間でのクロストークを抑制するという効果が得られる。
 なお、上述の図2では均一クラッド領域の例を示しているが、各コア領域周辺に空孔を設けたホールアシスト構造を採用するか、あるいは、各コア領域周辺にトレンチを設けた構造を採用することにより、曲げ損失を低減させるとともに、より一層のコア間クロストークの低減も可能になる。そこで、本発明は、図1に示すように、各コア領域10から当該マルチコア光ファイバ1の漏れ光を低減するための漏洩低減部50を設けることにより、コア領域10間におけるクロストークの効果的な低減技術を実現する。
 すなわち、図3に示すように、本実施形態に係るマルチコア光ファイバ1において、隣接するコア領域10の中心を結んだ直線E上に漏洩低減部50が配置される。より具体的な構成を図4に示す。この図4は、漏れ光低減メカニズムとともに漏洩低減部の構造及び機能を説明するための図であり、図1に示す領域A(光軸AXに直交する当該マルチコア光ファイバ1の断面上の領域)に相当している。
 図4に示す例では、環状の漏洩低減部50Aが各コア領域10それぞれに対して用意されており、コア領域10とともに一つのコアファイバ領域を構成するクラッド領域20内に、対応するコア領域10を取り囲んでいる。特に、図4に示す例では、クラッド領域20は、コア領域10内を伝搬する光の伝送特性に影響を与える領域としてコア領域10の外周に設けられた光学クラッド21と、コア領域10内を伝搬する光の伝送特性に影響を与えない領域として光学クラッド21の外周に設けられた物理クラッド22を備える。漏洩低減部50Aは、コア領域10それぞれの伝送性能の劣化を避けるべく、物理クラッド22内に形成されるのがより好ましい。なお、光学クラッド21と物理クラッド22は、伝送特性に影響を与えるか否かという機能の観点から区別される領域であり、組成等により構造上区別することはできない。そこで、添付された図面では、本願発明に理解を容易にするため、クラッド領域20を構成する光学クラッド21と物理クラッド22の境界が便宜的に破線で示されている。
 また、図4に示すように、漏洩低減部50Aは、コア領域10からの漏れ光のパワーを低減する領域であって、吸収、散乱、閉じ込め等の偏向制御により漏れ光の光量を効果的に低減するよう機能する。また、光軸AXに対して直交する当該マルチコア光ファイバ1の断面において、漏洩低減部50Aは、コア領域10の中心からの距離が、コア領域10を含むコアファイバ領域の波長1.55μmにおけるMFDの5/2倍になる位置からクラッド領域の外周面(物理クラッド22と樹脂被覆30との界面)までの間に設けられる。あるいは、漏洩低減部50Aは、コア領域10を含むコアファイバ領域の電界振幅がそのピーク値から10-4以下になる位置からクラッド領域20の外周面までの間に設けられてもよい。
 上述のような構成において、小径曲げ(ハイパワー光伝搬時に当該マルチコア光ファイバ1に対して加えられる小さな曲率半径での曲げ)に起因してコア領域10から光量Pの漏れ光が漏洩低減部50Aに到達すると、漏洩低減部50Aにおいて漏れ光の光量が吸収、散乱、閉じ込め等の偏向制御により低減される。具体的には、漏洩低減部50を通過した漏れ光の光量は、漏洩低減部50Aに到達してきた漏れ光の光量Pの1/10まで低減される(図4参照)。その結果、漏れ光が隣接するコア領域10に到達することに起因して発生するクロストークが効果的に低減される。
 次に、本実施形態に係るマルチコア光ファイバ1として、各コア領域10の外周、特にコア領域10を含むコアファイバ領域の物理クラッド22に相当する領域に環状の漏洩低減部50Aが形成されたマルチコア光ファイバ(図4参照)の各製造工程を、図5を参照しながら説明する。なお、製造するマルチコア光ファイバは石英系光ファイバであって、コアファイバ領域(コア領域10とその周辺に位置するクラッド領域20により構成)それぞれにおいて、各コア領域10には屈折率増加剤としてGeOが添加され、各コア領域10の外周に設けられたクラッド領域20は純シリカからなる。製造するマルチコア光ファイバにおける同一断面上に配置された複数のコアファイバ領域それぞれは、ステップ構造の屈折率プロファイルを有する。また、このステップ構造屈折率プロファイルにおいて、コア、クラッド間の比屈折率差は、0.4%以下である。このように構成されたマルチコア光ファイバにより、100km光伝搬後におけるコア領域間のクロストークを-50dBにすることも可能になる。
 まず、製造されるべきマルチコア光ファイバの同一断面上に配置される複数のコアファイバ領域となる部材をそれぞれ用意する。具体的には、図5(a)に示すように、コアファイバ領域となるべき部材100Aは、漏洩低減部50Aとなるべき層が最外層まで達しているファイバ部材200aと、このファイバ部材200aの断面形状に一致した貫通孔を有する中空部材200bを備える。ファイバ部材200aは、石英系ガラスからなり、その中心側外周面に向かって順に、コア領域10となるべき中心領域110、クラッド領域20の一部となるべき中間領域120、漏洩低減部50Aとなるべき最外層500を備える。また、中間領域120は、最終的に光学クラッドとなるべき内側領域121と、物理クラッドとなるべき外側領域122から構成されている。中空部材200bも石英ガラスからなり、この中空部材200bの貫通孔にファイバ部材200aを挿入することにより、コアファイバ領域となるべき部材100Aが得られる。
 続いて、上述のように製造された複数の部材100A(それぞれがコアファイバ領域となるべき複数の部材)を束ねた状態で、ヒーター300を矢印Bで示された方向(複数の部材100Aの長手方向に一致)に移動させることにより、一体化させる(図5(b)参照)。この一体化工程を経て、マルチコア光ファイバの母材100Bが得られる。なお、以下の具体例でも説明するが、漏洩低減部50Aとなるべき最外層500は、その光吸収係数又は光散乱係数が、物理クラッドとなるべき外側領域122より大きいのが好ましい。また、漏洩低減部50Aとなるべき最外層500は、加熱による一体化工程において、その粘度が物理クラッドとなるべき外側領域122より低い。
 そして、図5(c)に示すように、得られた母材100Bの一端をヒーター310で加熱しながら線引きすることにより、図6に示す断面構造を有するマルチコア光ファイバ1が得られる。なお、母材100Bの線引き装置は、矢印Cで示す方向に回転することで線引きされた当該マルチコア光ファイバ1を巻き取るローラ330と、母材100Bから線引きされた直後の裸光ファイバの表面に樹脂を被覆する装置320を、少なくとも備える。
 以上の製造工程を経て得られたマルチコア光ファイバ1の断面構造を図6に示す。この図6に示すマルチコア光ファイバ1Aの断面構造は、実質的に図4の断面構造を含んでいる。すなわち、マルチコア光ファイバ1Aは、複数のコア領域10を含む裸光ファイバと、この裸光ファイバの外周に設けられた樹脂被覆30を備える。裸光ファイバは、同一断面上に複数のコアファイバ領域が配置されており、各コアファイバ領域は、コア領域10とコア領域10を取り囲むクラッド領域20で構成されている。また、クラッド領域20は、光学クラッド21と物理クラッド22に区別することが可能であり、漏洩低減部50Aは、クラッド領域20内、特に物理クラッド22内に配置されるのが好ましい。このように、マルチコア光ファイバ1Aは、複数のコア領域10が共通のクラッド領域20内に存在し、かつ、各コア領域10の周りを漏洩低減部50Aが囲む構造を有しており、コア領域10から漏れた光を漏洩低減部50Aが遮断することで、コア領域10間におけるクロストークが効果的に低減され得る。
 なお、本実施形態に係るマルチコア光ファイバ1の断面構造は、上述の図4、図6に示された断面構造には限定されず、種々の変形が可能である。図7は、本発明に係るマルチコア光ファイバの他の実施形態の断面構造を示す図である。
 すなわち、図7(a)に示すマルチコア光ファイバ1Bは、複数のコア領域10がクラッド領域20内に存在し、かつ、各コア領域10間に漏洩低減部50Bが配置された構造を有する。なお、図7(a)の例では、対角線上に位置するコア領域10間にも漏洩低減部50Bが配置しているが、係る対角線上のコア領域10の間隔が十分離れており、クロストークの影響が小さいと予測される場合は、中央に位置する漏洩低減部50Bはなくても良い。
 また、このマルチコア光ファイバ1Bにおいても、共通するクラッド領域20は、各コア領域10の周辺に位置する光学クラッド21と、光学クラッド21を覆う物理クラッド22に区別することが可能であり、当該マルチコア光ファイバ1Bでは、コア領域10をそれぞれ含むコアファイバ領域では、物理クラッド22が共有されている。すなわち、当該マルチコア光ファイバ1Bでは、複数のコアファイバ領域のうち隣接するコアファイバ領域は、漏洩低減部50Bを介して接触している。
 一方、図7(b)に示すマルチコア光ファイバ1Cは、それぞれ、コア領域160とそれを取り囲むクラッド領域150からなる複数のコアファイバ15を一体化させた構造を有する。コアファイバ15それぞれにおいて、クラッド領域150は、コア領域160を直接覆う光学クラッド151と、光学クラッド151の外周に設けられた物理クラッド152から構成されている。また、物理クラッド152内には、図7(b)の断面上において、コア領域160を取り囲む環状の漏洩低減部50Cが位置する。特に、マルチコア光ファイバ1Cでは、一体化されたコアファイバ15の外周を覆うようにジャケット層40が設けられており、このジャケット層40の外周に樹脂被覆30が設けられている。
 上述のような断面構造(図6及び図7参照)を有するマルチコア光ファイバ1A、1B、1Cそれぞれにおいて、コア領域10、160、及び、クラッド領域20、150は、石英系ガラスからなる。クラッド領域20又はジャケット層40の外周に設けられた樹脂被覆30は、例えばプラスチック被覆である。また、上述の実施形態に係るマルチコア光ファイバ1A~1Cにおいて、漏洩低減部50A~50Cは、クラッド領域20、150のうち物理クラッド22、152に設けられているが、コア領域10、160からある程度の距離を有する位置であれば、特に制限はない。また、図7(c)に示すマルチコア光ファイバ1Cの例では、隣接する2つのコアファイバ15の間に漏洩低減部50Cが配置されてもよい。
 次に、漏洩低減部50(図6及び図7における50A~50Cに相当)のより具体的な構造を図8~図9を参照しながら説明する。なお、図8~図9には、図6に示すマルチコア光ファイバ1Aの例が示されているが、他のマルチコア光ファイバ1B、1Cについても同様に漏洩低減部50B、50Cをそれぞれ構成することが可能であり、漏洩低減部50A~50Cの何れも、吸収、散乱、閉じ込め等による偏向制御機能を有する。
 まず、図8は、マルチコア光ファイバ1Aに適用可能な漏洩低減部50Aの第1具体例を説明するための図である。図8(a)は、マルチコア光ファイバ1Aの断面構造を示し、図6の断面構造に一致している。この第1具体例では、漏洩低減部50Aとして、コア領域10と取り囲むように環状の形成されたトレンチ層といわれる屈折率の低い層が設けられている。すなわち、この第1具体例に係る漏洩低減部50Aは、当該漏洩低減部50Aよりも内側の領域内に漏れ光を閉じ込めることにより、漏れ光の偏向制御を行う。なお、図8(b)はマルチコア光1Aにおける一つのコアファイバ領域の屈折率プロファイルである。また、図8(c)は、図8(a)における部分Dの拡大図であり、第1具体例に係る漏洩低減部50Aとして、複数の空孔510を形成することにより屈折率の低い層を実現する例である。図8(d)は、図8(a)における部分Dの拡大図であり、第1具体例に係る漏洩低減部50Aとして、複数のボイド520を形成することにより屈折率の低い層を実現する例である。
 マルチコア光ファイバ1Aは、石英系ガラスファイバであり、図8(a)に示す断面上に複数のコアファイバ領域が配置されており、これら複数のコアファイバ領域は、対応する一つのコア領域10と、共通するクラッド領域20から構成されている。また、クラッド領域20はコア領域周辺の光学クラッド21と物理クラッド22に区別可能であり、コア領域10を取り囲む環状の漏洩低減部50Aは、物理クラッド22内に設けられている。この第1具体例に係る漏洩低減部50Aは、コア領域10から伝搬してきた漏れ光を当該漏洩低減部50Aで取り囲まれた内側領域に閉じ込めることにより、隣接するコア領域10への漏れ光の伝搬を抑制するよう機能する。なお、このような構造を有するコアファイバ領域において、コア領域10はGeOが添加されたシリカガラス、クラッド領域20は純シリカガラスからなり、クラッド領域20に対するコア領域10の比屈折率差は0.35%(0.4%以下)である。また、コア領域10の外径は8.5μmである。このようなコアファイバ領域は、波長1.55μmにおいて10.2μmのMFDを有する。さらに、このコアファイバ領域における電界振幅はコア領域10の中心(以下、コア中心という)でピーク値をとり、ピーク値の10-4となる位置は、コア中心から28.5μmだけ離れた位置である。したがって、漏洩低減部50Aは、コア中心から半径方向Rに沿って25.5μm(MFDの5/2倍の距離)以上離れるか、あるいは、コア中心から半径方向Rに沿って28.5μm以上離れた、物理クラッド22内に設けられるのが好ましい。この第1具体例において、漏洩低減部50Aは、コア中心から35μmから50μmまで範囲に形成されたリング状領域である。
 この第1具体例に係る漏洩低減部50Aを実現する第1手段は、図8(b)に示すように屈折率プロファイルを設計することにより、各コア領域10からの漏れ光の偏向制御を実現する。特に、この第1手段では、当該マルチコア光ファイバ1Aにおける複数のコアファイバ領域それぞれの屈折率プロファイルとして、トレンチ構造の屈折率プロファイルを採用することにより漏れ光の偏向制御を行う。すなわち、図8(b)に示すように、漏洩低減部50Aに相当するシリカガラス領域にFを添加することにより、光学クラッド21に対する当該漏洩低減部50Aの比屈折率差は-0.7%に設定される。なお、マルチコア光ファイバ1Aは、石英系ファイバであり、図8(b)の屈折率プロファイルからも分かるように、コア領域10は、GeOが添加された石英ガラスからなり、クラッド領域20は純シリカガラスからなる。また、コア領域10とクラッド領域20の比屈折率差は0.4%以下である。物理クラッド22内に設けられた漏洩低減部50Aの屈折率は、F(屈折率低下剤)が添加されることにより、純シリカガラスよりも低くなっている。
 また、図8(c)は図8(a)における部分Dの拡大図であり、当該第1具体例に係る漏洩低減部50Aとして、コア領域10からの漏れ光の偏向制御を実現するための第2手段を示す。この第2手段は、漏洩低減部50Aに相当する領域に、光軸AXに沿って伸びた複数の空孔510を設けることにより漏れ光の偏向制御を行う。
 さらに、図8(d)は図8(a)における部分Dの拡大図であり、当該第1具体例に係る漏洩低減部50Aとして、漏れ光の偏向制御を実現するための第3手段を示す。この第3手段は、図8(a)に示す断面上においてコア領域10を取り囲む環状の領域であって、光軸AXに沿って伸びた領域内に、ボイド520を散在させることによって形成された漏洩低減部50Aを形成することにより漏れ光の偏向制御を行う。
 上述の第1~第3手段のように、漏洩低減部50Aを、低屈折率領域、空孔形成領域、あるいはボイド散在領域として形成することにより、当該漏洩低減部50Aの、クラッド領域20に対する比屈折率差は有意に低くなる。この結果、小径曲げ等に起因してコア領域10から隣接するコア領域10へ向かう漏れ光の一部は、漏洩低減部50Aに取り囲まれた内側領域内に閉じ込められる。
 ここで、各コア領域10から当該マルチコア光ファイバ1Aの樹脂被覆30へ向かう漏れ光のうち、漏洩低減部50Aで取り囲まれた内側領域内に閉じ込められる光の割合は、コア領域10から漏洩低減部50Aまでの距離、漏洩低減部50Aの厚さ、第1手段の構成でのクラッド領域20に対する漏洩低減部50Aの比屈折率差、第2手段による構成では空孔の配置等、第3手段による構成ではボイドの配置等によって調節することが可能である。したがって、クラッド領域20の一部(光学クラッド21)を介して漏洩低減部50Aに到達した漏れ光の光量Pの1/10以下まで、当該漏洩低減部50Aを通過した漏れ光の光量を低減することが可能である。なお、空孔、ボイドを適切な配置することにより、フォトニックバンドギャップの効果で漏れ光を漏洩低減部50Aで取り囲まれた内側領域内に閉じ込めることも可能である。
 なお、上述のように構成される漏洩低減部50Aは、各コアファイバ領域において、コア領域中心からMFDの5/2倍以上である位置、あるいは、各コアファイバ領域における電界振幅がピーク値(コア中心においてピーク値をとる)の10-4以下になる位置よりも外側に存在する。そのため、漏洩低減部50Aの存在が、コア領域10内を伝搬する光への影響は実効的に無視出来るレベルであり、漏洩低減部50Aが伝送損失等の特性に与える影響も無視出来るレベルとなる。また、漏れ光の一部は漏洩低減部50Aの外側にも漏れ出すため、漏洩低減部50Aの内側領域内に閉じ込められた光成分も伝搬とともに次第に減衰する。このため、漏洩低減部50Aに取り囲まれた内側領域内に閉じ込められた光成分が再びコア領域10内の伝搬光に結合することない(漏洩低減部50Aの内側領域内に閉じ込められた光成分がコア領域10内の伝搬光の伝送特性に影響を与えることが実質的に回避され得る)。
 次に、図9は、本発明に係るマルチコア光ファイバに適用可能な漏洩低減部の第2具体例を説明するための図である。この第2具体例に係る漏洩低減部50Aは、各コアファイバ領域において、コア領域10から到達してきた漏れ光の散乱を増大させることにより、漏れ光の偏向制御を行う。なお、図9(a)は、マルチコア光ファイバ1Aの断面構造を示し、図6の断面構造に一致している。この第2具体例でも、第1具体例と同様に、コア領域10と取り囲むように環状に
漏洩低減部50Aが形成されている。なお、図9(b)は、図9(a)における部分Dの拡大図であり、第2具体例に係る漏洩低減部50Aとして、吸収係数及び散乱係数の少なくとも何れかがクラッド領域よりも大きくなるよう形成された領域を実現する例である。
 図9(a)に示すマルチコア光ファイバ1Aは、その断面上に複数のコアファイバ領域が配置されており、これら複数のコアファイバ領域は、対応する一つのコア領域10と、共通するクラッド領域20から構成されている。また、クラッド領域20はコア領域周辺の光学クラッド21と物理クラッド22に区別可能であり、コア領域10を取り囲む環状の漏洩低減部50Aは、物理クラッド22内に設けられている。この第2具体例に係る漏洩低減部50Aは、コア領域10から伝搬してきた漏れ光を当該漏洩低減部50Aで散乱させることにより、隣接するコア領域10へ達する漏れ光の光量を低減するよう機能する。なお、このような構造を有するコアファイバ領域において、コア領域10はGeOが添加されたシリカガラス、クラッド領域20は純シリカガラスからなり、クラッド領域20に対するコア領域10の比屈折率差は1%である。また、コア領域10の外径は30μmである。このようなコアファイバ領域では、コア領域10光は、波長1.55μmにおいてマルチモードとなるが、基底モードのMFDは19.8μmである。さらに、各コアファイバ領域における電界振幅はコア中心でピーク値をとり、ピーク値の10-4となる位置は、コア中心から23.1μmだけ離れた位置である。したがって、この第2具体例に係る漏洩低減部50ACは、コア中心から半径方向Rに沿って49.5μm(MFDの5/2倍の距離)以上離れるか、あるいは、コア中心から半径方向Rに沿って23.1μm以上離れた、物理クラッド22内に設けられる。この第2具体例において、漏洩低減部50Aは、コア中心から35μmから50μmまで範囲に形成されたリング状領域である。
 図9(b)に示す漏れ光の偏向制御手段は、漏洩低減部50Aに相当する領域に添加された微小異方体530により漏れ光の散乱を増大させることにより漏れ光の偏向制御を行う。このような漏洩低減部50Aとしては、例えば伸長されたハロゲン化銀粒子(微小異方体530)を含んだガラスが考えられる。
 上述のように環状の漏洩低減部50Aに上記微小異方体530を添加することにより、当該漏洩低減部50Aにおける漏れ光の散乱(この結果として、漏れ光が偏向される)、及び、漏れ光の吸収(漏れ光は減衰する)は、他のガラス領域よりも大きくなる。すなわち、漏洩低減部50Aは、クラッド領域20と比較して大きな吸収係数、及び、散乱係数を有する。したがって、この第2具体例に係る漏洩低減部50Aによっても、当該漏洩低減部50Aを通過して隣接するコア領域10へ向かう漏れ光の光量を効果的に低減することが可能になる。
 なお、上述の第1及び第2具体例は、図6に示すマルチコア光ファイバ1Aの漏洩低減部50Aを例に説明したが、図7に示すマルチコア光ファイバ1B、1Cの何れの漏洩低減部50B、50Cにも適用可能である。
 1、1A、1B、1C…マルチコア光ファイバ、10、160…コア領域、21、151…光学クラッド、22、152…物理クラッド、20、150…クラッド領域、50、50A、50B、50C…漏洩低減部、30…樹脂被覆、510…空孔、520…ボイド、530…ハロゲン化銀粒子(微小異方体)。

Claims (7)

  1. 光軸に沿って伸びたコア領域と、前記コア領域の外周に設けられたクラッド領域とを備えたコアファイバ領域を、同一断面内に複数有するマルチコア光ファイバであって、
     前記複数のコアファイバ領域のうち隣接するコアファイバ領域におけるコア領域同士を結ぶ直線上に、漏洩低減部が存在することを特徴とするマルチコア光ファイバ。
  2. 請求項1記載のマルチコア光ファイバにおいて、
     前記漏洩低減部は、前記複数のコアファイバ領域それぞれにおいて、前記同一断面上で前記コア領域を取り囲む環状になるように前記クラッド領域内に形成されている。
  3. 請求項1記載のマルチコア光ファイバにおいて、
     前記複数のコアファイバ領域のうち隣接するコアファイバ領域は、前記漏洩低減部を介して接触している。
  4. 請求項1記載のマルチコア光ファイバにおいて、
     前記漏洩低減部は、当該漏洩低減部により取り囲まれた領域内における伝搬光の閉じ込め率を高めた屈折率分布を有する。
  5. 請求項4記載のマルチコア光ファイバにおいて、
     前記漏洩低減部は、実質的に屈折率を低減する構成として、前記複数のコアファイバ領域のクラッド領域それぞれに屈折率低下剤が添加されている、又は、空孔が形成されている。
  6. 請求項1記載のマルチコア光ファイバにおいて、
     前記漏洩低減部は、伝搬光のパワーを低減する素材で構成されている。
  7. 請求項6記載のマルチコア光ファイバにおいて、
     前記素材は、吸収係数、及び、散乱係数の少なくとも何れか一方が前記クラッド領域よりも大きい。
PCT/JP2010/050523 2009-01-19 2010-01-19 マルチコア光ファイバ WO2010082656A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10731325.6A EP2388629A4 (en) 2009-01-19 2010-01-19 OPTICAL FIBER WITH MULTIPLE SOULS
US12/743,175 US8447156B2 (en) 2009-01-19 2010-01-19 Multi-core optical fiber
JP2010546668A JPWO2010082656A1 (ja) 2009-01-19 2010-01-19 マルチコア光ファイバ
CN201080004970.9A CN102282488B (zh) 2009-01-19 2010-01-19 多芯光纤
US13/744,745 US8655131B2 (en) 2009-01-19 2013-01-18 Multi-core optical fiber

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-009095 2009-01-19
JP2009009095 2009-01-19
JP2009-010217 2009-01-20
JP2009010217 2009-01-20
JP2009-181702 2009-08-04
JP2009181702 2009-08-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/743,175 A-371-Of-International US8447156B2 (en) 2009-01-19 2010-01-19 Multi-core optical fiber
US13/744,745 Continuation US8655131B2 (en) 2009-01-19 2013-01-18 Multi-core optical fiber

Publications (1)

Publication Number Publication Date
WO2010082656A1 true WO2010082656A1 (ja) 2010-07-22

Family

ID=42339907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050523 WO2010082656A1 (ja) 2009-01-19 2010-01-19 マルチコア光ファイバ

Country Status (5)

Country Link
US (2) US8447156B2 (ja)
EP (1) EP2388629A4 (ja)
JP (1) JPWO2010082656A1 (ja)
CN (1) CN102282488B (ja)
WO (1) WO2010082656A1 (ja)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170062A (ja) * 2010-02-18 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ及びその製造方法並びに光ファイバ母材及びその製造方法
JP2011170099A (ja) * 2010-02-18 2011-09-01 Sumitomo Electric Ind Ltd マルチコア光ファイバ
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ
JP2012093520A (ja) * 2010-10-26 2012-05-17 Kohoku Kogyo Kk 光ファイバ
WO2012063775A1 (ja) * 2010-11-08 2012-05-18 株式会社フジクラ マルチコアファイバ
WO2012064579A1 (en) * 2010-11-08 2012-05-18 Corning Incorporated Multi-core optical fiber ribbons and methods for making the same
WO2012118132A1 (ja) 2011-03-02 2012-09-07 株式会社フジクラ マルチコアファイバ
JP2012181282A (ja) * 2011-02-28 2012-09-20 Fujikura Ltd マルチコアファイバ
JP2012203035A (ja) * 2011-03-23 2012-10-22 Mitsubishi Cable Ind Ltd マルチコアファイバおよびその製造方法
JP2013003201A (ja) * 2011-06-13 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> マルチコアファイバおよびその接続方法
JP2013020074A (ja) * 2011-07-11 2013-01-31 Hitachi Cable Ltd マルチコアファイバ
JP2013020075A (ja) * 2011-07-11 2013-01-31 Hitachi Cable Ltd マルチコアファイバの製造方法
WO2013021697A1 (ja) * 2011-08-08 2013-02-14 古河電気工業株式会社 マルチコア光ファイバおよび光伝送システム
JP2013040078A (ja) * 2011-08-17 2013-02-28 Fujikura Ltd 結合型マルチコアファイバ用母材の製造方法、結合型マルチコアファイバの製造方法、及び、結合型マルチコアファイバ
WO2013027776A1 (ja) * 2011-08-25 2013-02-28 国立大学法人横浜国立大学 マルチコアファイバおよびマルチコアファイバのコアの配置方法
JP2013088457A (ja) * 2011-10-13 2013-05-13 Nippon Telegr & Teleph Corp <Ntt> 4芯単一モード光ファイバおよび光ケーブル
JP2013090227A (ja) * 2011-10-20 2013-05-13 Nippon Telegr & Teleph Corp <Ntt> 光受信装置、マルチコア光ファイバ及び光伝送システム
WO2013094568A1 (ja) * 2011-12-22 2013-06-27 住友電気工業株式会社 光伝送システム
WO2013108524A1 (ja) * 2012-01-19 2013-07-25 株式会社フジクラ マルチコアファイバ
WO2013157245A1 (ja) * 2012-04-20 2013-10-24 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
WO2014034810A1 (ja) * 2012-08-31 2014-03-06 株式会社フジクラ 光ファイバおよび光ファイバの製造方法
JP2014506682A (ja) * 2011-01-19 2014-03-17 ファイバー・オプティクス・リサーチ・センター・オブ・ザ・ロシアン・アカデミー・オブ・サイエンシズ(エフオーアールシー・アールエーエス) マルチコア光ファイバ(変形形態)
JP2014509412A (ja) * 2011-02-24 2014-04-17 オーエフエス ファイテル,エルエルシー 空間多重化のためのマルチコア・ファイバ設計
WO2014080953A1 (ja) * 2012-11-26 2014-05-30 住友電気工業株式会社 光導波路、光ファイバケーブル、および光モジュール
JP2015135497A (ja) * 2015-02-02 2015-07-27 古河電気工業株式会社 マルチコア光ファイバおよびマルチコア光ファイバの製造方法
CN104838298A (zh) * 2012-12-05 2015-08-12 住友电气工业株式会社 光波导和光纤传输系统
JP2015159584A (ja) * 2015-04-08 2015-09-03 日本電信電話株式会社 光受信装置、マルチコア光ファイバ及び光伝送システム
JP2015163972A (ja) * 2015-04-06 2015-09-10 株式会社フジクラ 通信用マルチコアファイバ
US20150316714A1 (en) * 2011-06-16 2015-11-05 Furukawa Electric Co., Ltd. Multi-core amplification optical fiber
JP2016075938A (ja) * 2010-11-08 2016-05-12 株式会社フジクラ マルチコアファイバ
US9383515B2 (en) 2011-02-25 2016-07-05 Sumitomo Electric Industries, Ltd. Receiving method and separating apparatus for light outputted from multi-core optical fiber
EP2610656A4 (en) * 2010-08-24 2018-01-10 National University Corporation Yokohama National University Multicore fiber and core placement method for multicore fiber
US10042114B2 (en) 2011-09-05 2018-08-07 Fujikura Ltd. Multicore fiber for communication
JP2019081681A (ja) * 2017-10-31 2019-05-30 古河電気工業株式会社 光ファイバの製造方法及び光ファイバ母材の製造方法
WO2023026574A1 (ja) * 2021-08-26 2023-03-02 株式会社村田製作所 光学素子
WO2023090174A1 (ja) * 2021-11-17 2023-05-25 古河電気工業株式会社 マルチコアファイバおよびその製造方法
WO2023135944A1 (ja) 2022-01-11 2023-07-20 住友電気工業株式会社 マルチコア光ファイバの製造方法及びマルチコア光ファイバ

Families Citing this family (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447156B2 (en) * 2009-01-19 2013-05-21 Sumitomo Electric Industries, Ltd. Multi-core optical fiber
DK2209029T3 (en) 2009-01-19 2015-04-13 Sumitomo Electric Industries optical fiber
EP2209031B1 (en) 2009-01-20 2020-03-11 Sumitomo Electric Industries, Ltd. Arrangement converter
JP5708015B2 (ja) * 2010-02-26 2015-04-30 住友電気工業株式会社 光ファイバケーブル
WO2011112846A1 (en) * 2010-03-10 2011-09-15 Ofs Fitel Llc. A Delaware Limited Liability Company Multicore fibers and associated structures and techniques
DE102011085637B4 (de) * 2011-11-02 2022-02-03 Trumpf Laser Gmbh Optische Transportfaser und Verfahren zu deren Herstellung und Verfahren zum Verkleben
US8811787B2 (en) 2011-11-30 2014-08-19 At&T Intellectual Property I, L.P. Multicore optical fiber with reduced inter-core crosstalk
EP2821823B1 (en) * 2012-02-29 2020-03-25 Sumitomo Electric Industries, Ltd. Multicore optical fiber, multicore optical fiber cable, and multicore optical fiber transmission system
EP2856668B1 (en) * 2012-05-25 2016-12-14 Corning Incorporated Systems for differential optical signaling
WO2013192597A2 (en) * 2012-06-21 2013-12-27 Ofs Fitel, Llc Method of optimizing multicore optical fiber and devices utilizing same
DE102012106806B4 (de) * 2012-07-26 2022-07-28 J-Fiber Gmbh Sensorfaser zur Temperatur-, Dehnungs- und/oder Torsionsdetektion in Form eines Mehrkern-Lichtwellenleiters mit einer Fiber-Bragg-Gitterstruktur
JP6321647B2 (ja) * 2012-08-08 2018-05-09 オーエフエス ファイテル,エルエルシー ファイバ回折格子の刻印中のビーム障害物の回避
US9574911B2 (en) 2012-08-09 2017-02-21 Corning Incorporated Two-core optical fibers for distributed fiber sensors and systems
US8920925B2 (en) 2012-11-09 2014-12-30 Corning Incorporated Stabilized lithium composite particles
US9183994B2 (en) 2012-11-28 2015-11-10 Corning Incorporated Lithium ion capacitors and methods of production
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US20150085352A1 (en) * 2013-09-20 2015-03-26 Alcatel-Lucent Usa Inc. Optical amplifier for space-division multiplexing
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
JP6287179B2 (ja) * 2013-12-25 2018-03-07 住友電気工業株式会社 マルチコア光ファイバ及びマルチコア光ファイバコネクタの製造方法
US10473872B2 (en) * 2014-03-19 2019-11-12 Corning Optical Communications LLC Fiber optic cable with large-diameter optical fibers
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US11025460B2 (en) 2014-11-20 2021-06-01 At&T Intellectual Property I, L.P. Methods and apparatus for accessing interstitial areas of a cable
US10505252B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a coupler for guiding electromagnetic waves through interstitial areas formed by a plurality of stranded uninsulated conductors and method of use
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10516555B2 (en) 2014-11-20 2019-12-24 At&T Intellectual Property I, L.P. Methods and apparatus for creating interstitial areas in a cable
US10505250B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for propagating guided wave modes therein and methods of use
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10554454B2 (en) 2014-11-20 2020-02-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves in a cable
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10411920B2 (en) 2014-11-20 2019-09-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves within pathways of a cable
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10505249B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for guiding electromagnetic waves therein and method of use
US10505248B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication cable having a plurality of uninsulated conductors forming interstitial areas for propagating electromagnetic waves therein and method of use
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
WO2016099976A1 (en) * 2014-12-15 2016-06-23 Intuitive Surgical Operations, Inc. Dissimilar cores in multicore optical fiber for strain and temperature separation
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
JP6226905B2 (ja) * 2015-03-30 2017-11-08 株式会社フジクラ マルチコア光ファイバ、及び、マルチコア光ファイバの製造方法
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
JP2017072818A (ja) * 2015-10-08 2017-04-13 住友電気工業株式会社 マルチコア光ファイバ、マルチコア光ファイバケーブルおよび光ファイバ伝送システム
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10690843B2 (en) 2016-03-17 2020-06-23 Fujikura Ltd. Multicore fiber
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN110300906A (zh) * 2017-06-16 2019-10-01 直观外科手术操作公司 具有集成吸收材料的光纤
CN110568549A (zh) * 2019-09-06 2019-12-13 江苏斯德雷特通光光纤有限公司 一种基于空气孔棒的多芯光纤及其制备方法
JP2023518466A (ja) 2020-03-19 2023-05-01 コーニング インコーポレイテッド 外部クラッド領域を有するマルチコアファイバ
CN116194811A (zh) 2020-07-22 2023-05-30 康宁股份有限公司 多纤芯光纤
CN116068768A (zh) * 2022-03-15 2023-05-05 嘉兴驭光光电科技有限公司 衍射光波导以及具有其的显示设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813504U (ja) * 1981-07-17 1983-01-27 日本電信電話株式会社 低漏話マルチコア光フアイバ
JP2008534995A (ja) * 2005-03-24 2008-08-28 キネティック リミテッド 多コア微細構造体光ファイバ

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2505995C3 (de) 1974-02-16 1979-03-01 Olympus Optical Co., Ltd., Tokio Verfahren zur Herstellung eines Bildzerlegers
US4000416A (en) 1975-07-11 1976-12-28 International Telephone And Telegraph Corporation Multi-core optical communications fiber
JPS56113104A (en) * 1980-02-14 1981-09-05 Sumitomo Electric Ind Ltd Multicore fiber
US4304584A (en) 1980-04-28 1981-12-08 Corning Glass Works Method for making polarizing glasses by extrusion
US4409477A (en) 1981-06-22 1983-10-11 Sanders Associates, Inc. Scanning optical system
JPS5813504A (ja) 1981-07-16 1983-01-26 Toho Chem Ind Co Ltd 表面被覆型粒状農薬
JPS59187301A (ja) 1983-04-08 1984-10-24 Kokusai Denshin Denwa Co Ltd <Kdd> 光フアイバ
JPS6360123A (ja) 1986-08-29 1988-03-16 Furukawa Electric Co Ltd:The シングルモ−ド型光フアイバ用多孔質母材の製造方法
US4820010A (en) 1987-04-28 1989-04-11 Spectra Diode Laboratories, Inc. Bright output optical system with tapered bundle
AU7773291A (en) 1990-04-11 1991-10-30 Washington University Fiber optic beam-imaging apparatus with plastic reducer bundles and method
US5155790A (en) 1990-06-04 1992-10-13 Photon Imaging Corp. Electronic scanner or printer with ordered fiber optic array
US5216738A (en) 1992-04-03 1993-06-01 Photon Imaging Corp. Fiber optic bundle and method of manufacture
JPH05341147A (ja) 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd マルチコア型シングルモード光ファイバおよびこれを用いた伝送方法
GB9221813D0 (en) 1992-10-16 1992-12-02 Univ Montfort Imaging arrangements
US5381505A (en) 1993-08-09 1995-01-10 Uop Optical fibers with a light absorbing coating
EP0802432A1 (en) * 1994-05-24 1997-10-22 Asahi Kasei Kogyo Kabushiki Kaisha Plastic fiber bundle for optical communication
JP3841849B2 (ja) 1995-07-07 2006-11-08 株式会社フジクラ 耐放射線性テープ型マルチコアファイバの製造方法
JP3439892B2 (ja) * 1995-12-11 2003-08-25 日立電線株式会社 希土類元素添加マルチコアファイバ及びその製造方法
JPH10104443A (ja) 1996-09-26 1998-04-24 Nippon Telegr & Teleph Corp <Ntt> マルチコアファイバ
US6188824B1 (en) * 1997-02-07 2001-02-13 Asahi Kasei Kogyo Kabushiki Kaisha Optical signal transmission multicore plastic optical fiber
CA2335879C (en) * 1998-06-25 2004-11-23 Samsung Electronics Co., Ltd. Optical fiber preform having oh barrier and manufacturing method thereof
US6480345B2 (en) 2000-06-30 2002-11-12 Ricoh Company, Ltd. Image magnifying/reducing optical device and manufacturing method thereof
US6636675B2 (en) * 2001-03-12 2003-10-21 Verrillon, Inc. Optical fiber with reduced cladding-mode loss
US6611648B2 (en) * 2001-05-09 2003-08-26 Corning Incorporated Optical fibers having cores with different propagation constants, and methods of manufacturing same
US6556754B2 (en) 2001-08-10 2003-04-29 3M Innovative Properties Company Three dimensional optical circuit
EP1427677A2 (de) 2001-09-10 2004-06-16 Schott Glas Glasfaser mit mindestens zwei glasmänteln
KR20050049559A (ko) 2002-10-30 2005-05-25 메사추세츠 인스티튜트 오브 테크놀로지 파장 둔감성 광집적 편광 스플리터
US6856743B2 (en) 2002-12-02 2005-02-15 Corning Incorporated NZDSF optical fiber with low dispersion zero and low slope
KR100820926B1 (ko) * 2003-04-11 2008-04-10 가부시키가이샤후지쿠라 광파이버
CN1300609C (zh) * 2003-10-28 2007-02-14 长飞光纤光缆有限公司 高性能色散补偿光纤及其制造方法
US20050111801A1 (en) 2003-11-25 2005-05-26 Opto-Knowledge Systems, Inc. Flexible Optical Fiber Ribbon Cable, Fiber Optic Reformattor, and Method for Making Same Cable and Reformattor
KR20070058380A (ko) 2004-04-23 2007-06-08 라이트 프리스크립션즈 이노베이터즈, 엘엘씨 발광 다이오드를 위한 광학 매니폴드
US20080205840A1 (en) 2004-10-28 2008-08-28 Fujifilm Corporation Plastic Optical Member and Producing Method Thereof
JP2006194925A (ja) 2005-01-11 2006-07-27 Tomoegawa Paper Co Ltd 光ファイバ構造体及びその製造方法
US7289707B1 (en) 2006-05-12 2007-10-30 Np Photonics, Inc Multi-core optical fiber image amplifier and method of drawing
WO2008013627A2 (en) * 2006-06-30 2008-01-31 Corning Incorporated Low bend loss optical fiber with high modulus coating
US7450807B2 (en) 2006-08-31 2008-11-11 Corning Incorporated Low bend loss optical fiber with deep depressed ring
US7526169B2 (en) * 2006-11-29 2009-04-28 Corning Incorporated Low bend loss quasi-single-mode optical fiber and optical fiber line
US7283714B1 (en) 2006-12-15 2007-10-16 Ipg Photonics Corporation Large mode area fiber for low-loss transmission and amplification of single mode lasers
US7787731B2 (en) * 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
US7526166B2 (en) 2007-01-31 2009-04-28 Corning Incorporated High numerical aperture fiber
US7437046B2 (en) * 2007-02-12 2008-10-14 Furukawa Electric North America, Inc. Optical fiber configuration for dissipating stray light
FR2914751B1 (fr) 2007-04-06 2009-07-03 Draka Comteq France Fibre optique monomode
WO2008136918A2 (en) 2007-05-07 2008-11-13 Corning Incorporated Large effective area fiber
US8374472B2 (en) 2007-06-15 2013-02-12 Ofs Fitel, Llc Bend insensitivity in single mode optical fibers
WO2009062131A1 (en) * 2007-11-09 2009-05-14 Draka Comteq, B.V. Microbend- resistant optical fiber
CN101680994B (zh) * 2008-02-22 2013-02-20 住友电气工业株式会社 光纤及光缆
FR2930997B1 (fr) * 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
US7590324B1 (en) * 2008-07-24 2009-09-15 Corning Incorporated Double-clad optical fibers and devices with double-clad optical fibers
WO2010036684A2 (en) * 2008-09-26 2010-04-01 Corning Incorporated High numerical aperture multimode optical fiber
US8081854B2 (en) * 2008-12-19 2011-12-20 Sehf-Korea Co., Ltd. Low bend loss optical fiber
US8447156B2 (en) * 2009-01-19 2013-05-21 Sumitomo Electric Industries, Ltd. Multi-core optical fiber
US8295698B2 (en) 2009-08-27 2012-10-23 Maged E Beshai Time-coherent global network
JP5347989B2 (ja) * 2010-01-21 2013-11-20 住友電気工業株式会社 マルチコア光ファイバ
US7903918B1 (en) * 2010-02-22 2011-03-08 Corning Incorporated Large numerical aperture bend resistant multimode optical fiber
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ
JPWO2011114795A1 (ja) * 2010-03-16 2013-06-27 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813504U (ja) * 1981-07-17 1983-01-27 日本電信電話株式会社 低漏話マルチコア光フアイバ
JP2008534995A (ja) * 2005-03-24 2008-08-28 キネティック リミテッド 多コア微細構造体光ファイバ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEICE ELECTRONICS EXPRESS, vol. 6, no. 2, 26 January 2009 (2009-01-26), pages 98 - 103
See also references of EP2388629A4

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170099A (ja) * 2010-02-18 2011-09-01 Sumitomo Electric Ind Ltd マルチコア光ファイバ
US8655132B2 (en) 2010-02-18 2014-02-18 Sumitomo Electric Industries, Ltd. Multi-core optical fiber
JP2011170062A (ja) * 2010-02-18 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ及びその製造方法並びに光ファイバ母材及びその製造方法
JP2011209702A (ja) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd マルチコア光ファイバ
EP2610656A4 (en) * 2010-08-24 2018-01-10 National University Corporation Yokohama National University Multicore fiber and core placement method for multicore fiber
JP2012093520A (ja) * 2010-10-26 2012-05-17 Kohoku Kogyo Kk 光ファイバ
JP2012118495A (ja) * 2010-11-08 2012-06-21 Fujikura Ltd マルチコアファイバ
US8971685B2 (en) 2010-11-08 2015-03-03 Fujikura Ltd. Multicore fiber
WO2012064579A1 (en) * 2010-11-08 2012-05-18 Corning Incorporated Multi-core optical fiber ribbons and methods for making the same
EP2639608A4 (en) * 2010-11-08 2015-06-24 Fujikura Co Ltd MORE CORE FIBER
US9796618B2 (en) 2010-11-08 2017-10-24 Corning Incorporated Multi-core optical fiber ribbons and methods for making the same
US9120693B2 (en) 2010-11-08 2015-09-01 Corning Incorporated Multi-core optical fiber ribbons and methods for making the same
JP2016075938A (ja) * 2010-11-08 2016-05-12 株式会社フジクラ マルチコアファイバ
WO2012063775A1 (ja) * 2010-11-08 2012-05-18 株式会社フジクラ マルチコアファイバ
JP2014500980A (ja) * 2010-11-08 2014-01-16 コーニング インコーポレイテッド マルチコア光ファイバリボン及びその作製方法
JP2014506682A (ja) * 2011-01-19 2014-03-17 ファイバー・オプティクス・リサーチ・センター・オブ・ザ・ロシアン・アカデミー・オブ・サイエンシズ(エフオーアールシー・アールエーエス) マルチコア光ファイバ(変形形態)
JP2014509412A (ja) * 2011-02-24 2014-04-17 オーエフエス ファイテル,エルエルシー 空間多重化のためのマルチコア・ファイバ設計
US9383515B2 (en) 2011-02-25 2016-07-05 Sumitomo Electric Industries, Ltd. Receiving method and separating apparatus for light outputted from multi-core optical fiber
JP2012181282A (ja) * 2011-02-28 2012-09-20 Fujikura Ltd マルチコアファイバ
WO2012118132A1 (ja) 2011-03-02 2012-09-07 株式会社フジクラ マルチコアファイバ
US8965165B2 (en) 2011-03-02 2015-02-24 Fujikura Ltd. Multicore fiber
JP2012203035A (ja) * 2011-03-23 2012-10-22 Mitsubishi Cable Ind Ltd マルチコアファイバおよびその製造方法
JP2013003201A (ja) * 2011-06-13 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> マルチコアファイバおよびその接続方法
US9423559B2 (en) * 2011-06-16 2016-08-23 Furukawa Electric Co., Ltd. Multi-core amplification optical fiber
US20150316714A1 (en) * 2011-06-16 2015-11-05 Furukawa Electric Co., Ltd. Multi-core amplification optical fiber
JP2013020075A (ja) * 2011-07-11 2013-01-31 Hitachi Cable Ltd マルチコアファイバの製造方法
JP2013020074A (ja) * 2011-07-11 2013-01-31 Hitachi Cable Ltd マルチコアファイバ
JP5324012B2 (ja) * 2011-08-08 2013-10-23 古河電気工業株式会社 マルチコア光ファイバおよび光伝送システム
WO2013021697A1 (ja) * 2011-08-08 2013-02-14 古河電気工業株式会社 マルチコア光ファイバおよび光伝送システム
US9128234B2 (en) 2011-08-08 2015-09-08 Furukawa Electric Co., Ltd. Multi-core optical fiber and optical transmission system
JP2013040078A (ja) * 2011-08-17 2013-02-28 Fujikura Ltd 結合型マルチコアファイバ用母材の製造方法、結合型マルチコアファイバの製造方法、及び、結合型マルチコアファイバ
US9335467B2 (en) 2011-08-25 2016-05-10 Nat'l University Corp. Yokohama Nat'l University Multi-core fiber and method of positioning of core of multi-core fiber
JPWO2013027776A1 (ja) * 2011-08-25 2015-03-19 国立大学法人横浜国立大学 マルチコアファイバおよびマルチコアファイバのコアの配置方法
CN103765264A (zh) * 2011-08-25 2014-04-30 国立大学法人横滨国立大学 多芯光纤以及多芯光纤的纤芯的配置方法
WO2013027776A1 (ja) * 2011-08-25 2013-02-28 国立大学法人横浜国立大学 マルチコアファイバおよびマルチコアファイバのコアの配置方法
US10663653B2 (en) 2011-09-05 2020-05-26 Fujikura Ltd. Multicore fiber for communication
US10156674B2 (en) 2011-09-05 2018-12-18 Fujikura Ltd. Multicore fiber for communication
US10042114B2 (en) 2011-09-05 2018-08-07 Fujikura Ltd. Multicore fiber for communication
JP2013088457A (ja) * 2011-10-13 2013-05-13 Nippon Telegr & Teleph Corp <Ntt> 4芯単一モード光ファイバおよび光ケーブル
JP2013090227A (ja) * 2011-10-20 2013-05-13 Nippon Telegr & Teleph Corp <Ntt> 光受信装置、マルチコア光ファイバ及び光伝送システム
WO2013094568A1 (ja) * 2011-12-22 2013-06-27 住友電気工業株式会社 光伝送システム
CN104025478A (zh) * 2011-12-22 2014-09-03 住友电气工业株式会社 光传输系统
US8855488B2 (en) 2011-12-22 2014-10-07 Sumitomo Electric Industries, Ltd. Optical transmission system
CN104025478B (zh) * 2011-12-22 2016-08-24 住友电气工业株式会社 光传输系统
JP5468711B2 (ja) * 2012-01-19 2014-04-09 株式会社フジクラ マルチコアファイバ
WO2013108524A1 (ja) * 2012-01-19 2013-07-25 株式会社フジクラ マルチコアファイバ
US20150316715A1 (en) * 2012-01-19 2015-11-05 Fujikura Ltd. Multi-core fiber
WO2013157245A1 (ja) * 2012-04-20 2013-10-24 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
JPWO2013157245A1 (ja) * 2012-04-20 2015-12-21 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
WO2014034810A1 (ja) * 2012-08-31 2014-03-06 株式会社フジクラ 光ファイバおよび光ファイバの製造方法
JP2014047116A (ja) * 2012-08-31 2014-03-17 Fujikura Ltd 光ファイバおよびその製造方法
WO2014080953A1 (ja) * 2012-11-26 2014-05-30 住友電気工業株式会社 光導波路、光ファイバケーブル、および光モジュール
JPWO2014080953A1 (ja) * 2012-11-26 2017-01-05 住友電気工業株式会社 光導波路、光ファイバケーブル、および光モジュール
CN104838298B (zh) * 2012-12-05 2018-07-17 住友电气工业株式会社 光波导和光纤传输系统
CN104838298A (zh) * 2012-12-05 2015-08-12 住友电气工业株式会社 光波导和光纤传输系统
JP2015135497A (ja) * 2015-02-02 2015-07-27 古河電気工業株式会社 マルチコア光ファイバおよびマルチコア光ファイバの製造方法
JP2015163972A (ja) * 2015-04-06 2015-09-10 株式会社フジクラ 通信用マルチコアファイバ
JP2015159584A (ja) * 2015-04-08 2015-09-03 日本電信電話株式会社 光受信装置、マルチコア光ファイバ及び光伝送システム
JP2019081681A (ja) * 2017-10-31 2019-05-30 古河電気工業株式会社 光ファイバの製造方法及び光ファイバ母材の製造方法
WO2023026574A1 (ja) * 2021-08-26 2023-03-02 株式会社村田製作所 光学素子
WO2023090174A1 (ja) * 2021-11-17 2023-05-25 古河電気工業株式会社 マルチコアファイバおよびその製造方法
WO2023135944A1 (ja) 2022-01-11 2023-07-20 住友電気工業株式会社 マルチコア光ファイバの製造方法及びマルチコア光ファイバ

Also Published As

Publication number Publication date
EP2388629A4 (en) 2014-09-03
JPWO2010082656A1 (ja) 2012-07-05
CN102282488A (zh) 2011-12-14
US20110052129A1 (en) 2011-03-03
US20130136410A1 (en) 2013-05-30
US8655131B2 (en) 2014-02-18
CN102282488B (zh) 2014-04-23
EP2388629A1 (en) 2011-11-23
US8447156B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
WO2010082656A1 (ja) マルチコア光ファイバ
EP2369376B1 (en) Multi-core optical fiber
US8094985B2 (en) Multi-core holey fiber and optical transmission system
EP2209029B1 (en) Optical fiber
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
EP2545400B1 (en) Multicore fibers and associated structures and techniques
Saitoh et al. Multicore fibers for large capacity transmission
US9823413B2 (en) Multicore fiber designs for spatial multiplexing
JP6397898B2 (ja) 空間分割多重のための少モード光ファイバ
WO2011024808A1 (ja) マルチコアファイバ
CN105425335B (zh) 一种通信用抗弯多芯光纤
Sakamoto et al. 120 spatial channel few-mode multi-core fibre with relative core multiplicity factor exceeding 100
JP2014010266A (ja) マルチコアファイバ
CN111474626A (zh) 一种多芯光纤
CN219997338U (zh) 光纤及光纤通信系统
Ponchua et al. Design of Four-Core Uncoupled Multicore Fiber for Next-Generation Inter-Data Center Networks
CN115291318B (zh) 一种19芯超低损耗色散补偿多芯光子晶体光纤
JP7468664B2 (ja) 光コネクタ
Hayashi Ultra-dense space-division-multiplexing optical fibers
Mukasa et al. Photonic Crystal Multi-Core Fibers for Future High-Capacity Transmission Systems
Ponchua et al. 2 Data Center Networks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004970.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12743175

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010731325

Country of ref document: EP