WO2010081752A1 - Sinterwerkstoff, sinterverbindung sowie verfahren zum herstellen einer sinterverbindung - Google Patents
Sinterwerkstoff, sinterverbindung sowie verfahren zum herstellen einer sinterverbindung Download PDFInfo
- Publication number
- WO2010081752A1 WO2010081752A1 PCT/EP2010/050013 EP2010050013W WO2010081752A1 WO 2010081752 A1 WO2010081752 A1 WO 2010081752A1 EP 2010050013 W EP2010050013 W EP 2010050013W WO 2010081752 A1 WO2010081752 A1 WO 2010081752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- sintered
- sintered material
- auxiliary
- joining
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/105—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04026—Bonding areas specifically adapted for layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05639—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05644—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05655—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/2612—Auxiliary members for layer connectors, e.g. spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/29294—Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29344—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29363—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29364—Palladium [Pd] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29363—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29369—Platinum [Pt] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29363—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29384—Tungsten [W] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/29386—Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2224/29387—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29399—Coating material
- H01L2224/294—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29438—Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29455—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29499—Shape or distribution of the fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/325—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
- H01L2224/331—Disposition
- H01L2224/3318—Disposition being disposed on at least two different sides of the body, e.g. dual array
- H01L2224/33181—On opposite sides of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8312—Aligning
- H01L2224/83136—Aligning involving guiding structures, e.g. spacers or supporting members
- H01L2224/83138—Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/832—Applying energy for connecting
- H01L2224/83201—Compression bonding
- H01L2224/83203—Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83439—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83444—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83455—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00013—Fully indexed content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01032—Germanium [Ge]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1027—IV
- H01L2924/10272—Silicon Carbide [SiC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1032—III-V
- H01L2924/10329—Gallium arsenide [GaAs]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1032—III-V
- H01L2924/1033—Gallium nitride [GaN]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/1026—Compound semiconductors
- H01L2924/1032—III-V
- H01L2924/10338—Indium gallium phosphide [InGaP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12043—Photo diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/15786—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2924/15787—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
Definitions
- the invention relates to a sintered material for sintering together two joining partners according to the preamble of claim 1, a sintered connection according to the preamble of claim 9 and a method for producing a sintered connection according to the preamble of claim 12.
- Lead-free solder joints are currently state of the art for connecting electronic components to another joining partner. It is also known for applications with high power losses and high ambient temperatures to use silver sintering technology, as for example in the
- the sintered layer in addition to electrical and mechanical contacting, must also ensure heat dissipation via a thermal conductivity, in particular if a power semiconductor is connected to a further joining partner by means of the sintered layer, these gas bubbles, which in extreme cases can even reach the dimension of the layer thickness, disadvantageous.
- the high process pressure which must be applied to a sintering process described, for example, in EP 0 330 895 B1, can be applied uniaxially or isostatically.
- the joint In the complex isostatic process, the joint must be encapsulated, for example with a silicone material, during the pressurization in order to avoid lateral squeezing out of the sintering paste.
- the joining force In the case of uniaxial pressurization, the joining force is limited since the sintering paste can be squeezed out without encapsulation.
- the invention has for its object to provide a sintered material with which the formation of gas during the sintering process can be reduced.
- the sintered material should be designed such that a lateral squeezing out of the sintered material during the pressurization of the joining partners is at least largely avoided.
- the object is to provide an optimized sintered connection in which no too large gas bubbles are present in the sintered layer.
- the sintered compound should also be able to be produced at high process pressures without the necessity of having to encapsulate the sintered material.
- the object is to provide a method for producing a sintered connection, wherein by the method extreme gas formation during the sintering process in the sintered layer is to be avoided.
- the method should allow sintering of at least two joining partners by means of sintered material, without the need to encapsulate the sintering paste before the pressurization.
- the invention is based on the idea, in addition to the metallic, provided with an organic coating structure particles, in particular copper, silver and / or gold particles to provide auxiliary particles, wherein the Hilfssparti- no to Metallic and / or ceramic particles are, which are not organically coated in contrast to the structural particles, thus the formation to avoid gas during the sintering process.
- the auxiliary particles can be used, for example, as a fine powder, as granules or as a powder-granule mixture.
- auxiliary particles are provided in the region of the joint between at least two joining partners, the auxiliary particles are not necessarily previously introduced into the sintered material must - it is also a direct introduction / application in the joint or on at least one joint partner possible.
- the auxiliary particles used for the sintered material need not be sorted - it may also be a mixture of metallic and ceramic particles or a mixture of different metallic and / or ceramic particles.
- auxiliary particles a change in the thermal expansion coefficient of the sintered material can be achieved, which brings advantages in terms of thermal shock resistance of the composite of joining partners and sintered material with it. Particularly preferred is a reduction in the thermal expansion behavior through the use of ceramic auxiliary particles, since the sintered layer (connecting layer) can be adapted in this way to the coefficient of expansion of the adding semiconductor elements. Furthermore, the provision of auxiliary particles formed in the sintered material as described above and / or directly on at least one of the joining partners makes it possible to achieve a targeted adjustment of the sintering gap.
- the grain size of the auxiliary particles preferably exceeds the grain size of the structural particles by a multiple. By choosing the particle size and the proportion of auxiliary particles can be a minimum distance between the joining partners pretend.
- a minimum gap width between the joining partners is ensured since one or more layers of the auxiliary particles avoid further compression of the joining partners. This leads to a higher one Form fidelity of the particular printed structure. In this way, a squeezing out of the auxiliary particle having sintered material can be controlled or minimized. A pressing out of the sintered material can lead to a short circuit in the worst case.
- the sintered material is preferably sintering paste, very particularly preferably silver sintering paste, and it is further preferred if the sintering paste comprises organic solvent to ensure pasty properties.
- the sintered material may also be a powder mixture. Likewise is one
- Embodiment can be realized in which the sintered material as a sintered material preform (preform), that is already formed as a shaped body.
- preform sintered material preform
- the sintered material formed according to the concept of the invention is used in products in which an electrical connection to electrical components has to be produced.
- previously used solder joints can be substituted by a sintered bond produced by means of a sintered material formed according to the concept of the invention.
- the sintered compound produced by means of the sintered material can be used at high temperatures and / or in components with high power losses.
- the sintered material designed according to the invention can be used to overcome the life-time restrictions that have occurred up to now. This is possible in particular when forming the auxiliary particles as spacers, since a defined gap size can be maintained despite a high process pressure.
- Examples of application areas are: power output stages of electric power steering systems, power output stages of universal inverter units, control electronics, in particular on the starter and / or generator, press-in diodes on generator plates, high-temperature-stable semiconductors, such as silicon carbide, or even sensors which are operated at high temperature and close to the sensor Need evaluation. Also, the use is
- the sintered material can also be used in modules for inverters, in particular photovoltaic systems.
- the auxiliary particles used are distinguished by the fact that their melting temperature is greater than a sintering process temperature in order to avoid melting of the auxiliary particles during the sintering process. It is particularly preferred if the melting temperature of the auxiliary particles is greater than that of the structural particles used. Particularly preferably, the method used in the sintering process is used
- the process pressure used zero, which is hardly realizable.
- the process pressure is at most 40 MPa, preferably less than 15 MPa, more preferably less than 10 MPa, or less than 6 MPa, or less than 3 MPa, or less than 1 MPa, or less than 0.5 MPa.
- the auxiliary particles are designed such that they sinter with the structural particles during the sintering process.
- the auxiliary particles may, for example, have a sinterable surface that can be realized, for example, by means of a suitable coating. It is also possible to select the auxiliary particles in such a way that they diffuse into the structural particles.
- the auxiliary particles are ceramic and / or metallic particles.
- the adhesion of the auxiliary particles in the sintered material can be improved.
- metal particles as auxiliary particles, these can be formed from the same material as the structural particles (but without organic coating). Although this results in no change in the thermal expansion behavior, but reduces the volume of the resulting gas during the sintering process, resulting in a denser sintered layer.
- the structural particles there are also different possibilities. Very particular preference is given to an embodiment in which the structural particles are silver particles. Additionally or alternatively, copper particles, gold particles or palladium particles can be formed
- Structure be provided. It is also possible to use a mixture of the aforementioned particles as structural particles. Additionally or alternatively, it is possible to form the structural particles from alloys which preferably comprise at least one of the aforementioned metals.
- the thermal conductivity of the auxiliary particles should be ensured. Therefore, materials such as alumina (also doped), aluminum nitride, beryllium oxide and silicon nitride are particularly suitable here.
- electrically conductive ceramics such as boron carbide or silicon carbide can be used.
- the auxiliary particles are formed as shaped bodies with certain geometric shapes.
- the use of irregularly contoured auxiliary particles as spacers is also possible. It is particularly preferred if the auxiliary particles have a much larger, in particular many times larger particle size than the structural particles. Most preferably, the auxiliary particles are chosen so large that they simultaneously touch both join partners to be joined together and thus define the gap width directly.
- the invention also leads to a sintered connection, comprising at least two joining partners, which are sintered together in a joining region.
- the sintered connection is characterized in that, as in the preceding description, tion and in the claims for the sintered material described auxiliary particles are provided in the joining area, with which on the one hand an excessive gas production can be avoided due to the reduction of organics share and take over with a corresponding grain size a spacer function for setting the joint gap.
- the auxiliary particles In the case of the formation of the auxiliary particles as spacers, it is preferred if the auxiliary particles have a, preferably by a multiple, larger grain size than the structural particles. In a particularly preferred embodiment, the auxiliary particles simultaneously touch both joining partners.
- At least one of the joining partners can be designed, for example, as an electronic component, in particular as a semiconductor component, preferably as a power semiconductor component. It is particularly preferred if this component comprises silicon, silicon carbide, silicon nitride, gallium phosphide or gallium arsenide. It is further preferred if such a component is connected to an electrical circuit carrier by means of a sintered layer. It is also possible to sinter a, in particular equipped, circuit carrier and a base plate and / or a housing by means of a sintered layer. Also, a component, in particular an electronic component, with two, preferably facing away from each sintered layers, sandwiched between two joining partners are introduced, which ensure electrical contact of the device up and / or down. In the case of training one of the joint partners as
- Base plate it is preferable to form this as a so-called DCB substrate or AMB substrate or IMS substrate or PCB substrate or LTCC substrate or standard ceramic substrate.
- the invention leads to a method for producing a sintered connection.
- This comprises at least two joining partners sintered together in a sintering process using sintered material.
- the core of the idea is to provide auxiliary particles formed in the joining region as described in the preceding description or in the claims, it being possible to use a sintered material provided with such auxiliary particles and / or the auxiliary particles as such, which are either present on at least one of the joining elements. be applied partners in the joining area and / or on the applied, in particular printed sintered material.
- the aim of providing the auxiliary particles is to avoid excessive gas bubble formation by a reduction of the organics part.
- the distance, ie the gap, between the joining partners can also be set via this.
- FIG. 3 shows an alternative sintered connection, in which spherical auxiliary particles are provided as spacers,
- auxiliary particles serving as spacers are cuboid-shaped
- FIG. 6 shows a further alternative embodiment of a sintered connection in which the auxiliary particles are formed as coarse-grained powder
- FIG. 7 shows a representation of a sintered connection with spherical auxiliary particles which connect two sintered layers to one another.
- like elements and elements having the same function are denoted by the same reference numerals.
- a sintered connection 1 is shown. This comprises a first joining partner 2 in the drawing plane as well as a second joining partner 3 located underneath.
- the two joining partners 2, 3 are sintered together by means of a sintered layer 4 made of a sintered material (not shown).
- the sintered material contained before the sintering process and the resulting sintered layer 4 contains after the sintering process in addition to metallic structure particles auxiliary particles that were non-organic coated / are.
- the sintering material used may alternatively be a sintering paste, a powder mixture or a sintered shaped part.
- the auxiliary particles serve to reduce the organic content and thus to reduce the formation of gas during sintering of the sintering partners.
- the auxiliary particles are essentially characterized by being inert to the sintering process, i. survive this at least approximately unchanged.
- the first joining partner 2 is, for example, an electronic component, for example a power semiconductor
- the second joining partner 3 is, for example, a circuit carrier. It is also possible that the first joining partner 2 is a populated circuit carrier and the second joining partner 3 is a base plate (heat sink).
- Fig. 2 an alternative sintered connection 1 is shown.
- this includes a third joining partner 5, which in the exemplary embodiment shown is, for example, an electronic component.
- the first and the second joining partners 2, 3 are preferably each formed as a circuit carrier or base plate or housing, etc. Both between the first joining partner 2 and the third joining partner 5 and between the third joining partner 5 and the second joining partner 3 is in each case a sintered layer 4, 6, each consisting of a
- Sintered material was produced. This sintered material contained metallic or ceramic, non-organically coated auxiliary particles that did not outgas during the sintering process using pressure and temperature.
- FIGS. 3 to 6 show further exemplary embodiments of sintered connections 1, comprising in each case two joining partners 2, 3 joined together by sintering. shows.
- the sintering layer 4 located between the joining partners 2, 3 was in each case produced from a sintered material (for example a sintering paste, a powder mixture or a sintered shaped part) comprising metallic or ceramic, non-organically coated auxiliary particles 7 which do not evolve during the sintering process
- Exemplary embodiments according to FIGS. 3 to 6 serve the auxiliary particles 7 as spacers for adjusting the gap dimension of the sintering gap or the layer thickness of the sinter layer 4.
- the auxiliary particles 7 shown schematically have in all embodiments according to FIGS.
- the structural particles of the sintered layer 4 which are not drawn in for reasons of clarity, are essentially characterized by the fact that they are inert with respect to the sintering process, ie they survive this at least approximately unchanged.
- the auxiliary particles 7 have a spherical shape, as in the embodiment of FIG. 4, with the difference that the auxiliary particles 7 are coated in the embodiment of FIG. Preferably, it is metallic coated ceramic particles.
- auxiliary particles 7 are provided and in the embodiment according to FIG. 6 a coarse-grained powder, wherein the individual auxiliary particles 7 are irregularly contoured.
- the auxiliary particles 7 shown in FIGS. 3 to 5 can also be, for example, shaped bodies which are further punched, for example, from sheets. These shaped bodies are preferably provided with a coating (surface finish), as shown for example in FIG. 4, in order to be able to form a solid compound with respect to the structural particles of the sintered material or of the sintered layer.
- FIG. 7 shows a further exemplary embodiment of a sintered connection 1.
- Two joining partners 2, 3 which are fixedly joined together by sintering can be seen, wherein a sintered layer 4, 6 is formed on each side of each joining partner 2, 3, the sintered layers 4, 6 not touching each other directly in the embodiment shown, but rather comparatively big are dimensioned auxiliary body 7 connected to each other, wherein the auxiliary body 7 are sintered to the structural particles of the sintered layers 4, 6.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Die Bonding (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080004470.5A CN102281973A (zh) | 2009-01-14 | 2010-01-04 | 烧结材料、烧结结合体以及制造烧结结合体的方法 |
EP10700308.9A EP2387477B1 (de) | 2009-01-14 | 2010-01-04 | Verfahren zum herstellen einer sinterverbindung |
JP2011545705A JP2012515266A (ja) | 2009-01-14 | 2010-01-04 | 焼結材料、焼結接合部並びに焼結接合部の製造方法 |
US13/144,469 US20120003465A1 (en) | 2009-01-14 | 2010-01-04 | Sintering material, sintered bond and method for producing a sintered bond |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009000192A DE102009000192A1 (de) | 2009-01-14 | 2009-01-14 | Sinterwerkstoff, Sinterverbindung sowie Verfahren zum Herstellen eines Sinterverbindung |
DE102009000192.1 | 2009-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010081752A1 true WO2010081752A1 (de) | 2010-07-22 |
Family
ID=41653547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/050013 WO2010081752A1 (de) | 2009-01-14 | 2010-01-04 | Sinterwerkstoff, sinterverbindung sowie verfahren zum herstellen einer sinterverbindung |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120003465A1 (de) |
EP (1) | EP2387477B1 (de) |
JP (1) | JP2012515266A (de) |
CN (1) | CN102281973A (de) |
DE (1) | DE102009000192A1 (de) |
WO (1) | WO2010081752A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012052191A1 (de) * | 2010-10-20 | 2012-04-26 | Robert Bosch Gmbh | Ausgangswerkstoff und verfahren zur herstellung einer sinterverbindung |
WO2012052251A3 (de) * | 2010-10-20 | 2012-11-01 | Robert Bosch Gmbh | Ausgangswerkstoff einer sinterverbindung und verfahren zur herstellung der sinterverbindung |
WO2012052252A3 (de) * | 2010-10-20 | 2013-04-18 | Robert Bosch Gmbh | Ausgangswerkstoff einer sinterverbindung und verfahren zur herstellung der sinterverbindung |
EP2743973A3 (de) * | 2012-12-11 | 2014-12-03 | Robert Bosch Gmbh | Verfahren zur Kontaktierung eines Halbleiterelements mittels Schweißens eines Kontaktelements an eine Sinterschicht auf dem Halbleiterelement und Halbleiterbauelement mit erhöhter Stabilität gegenüber thermomechanischen Einflüssen |
EP3208845A1 (de) * | 2016-02-19 | 2017-08-23 | Heraeus Deutschland GmbH & Co. KG | Verfahren zur herstellung eines schaltungsträgers, schaltungsträger, verfahren zur herstellung eines halbleitermoduls und halbleitermodul |
CN109643663A (zh) * | 2016-08-22 | 2019-04-16 | 千住金属工业株式会社 | 金属烧结接合体和芯片接合方法 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010044329A1 (de) * | 2010-09-03 | 2012-03-08 | Heraeus Materials Technology Gmbh & Co. Kg | Kontaktierungsmittel und Verfahren zur Kontaktierung elektrischer Bauteile |
DE102010063021A1 (de) * | 2010-12-14 | 2012-06-14 | Robert Bosch Gmbh | Elektronische Baugruppe mit verbesserter Sinterverbindung |
EP2665092B1 (de) * | 2012-05-16 | 2019-02-27 | Microdul AG | Verfahren zur Herstellung eines Halbleiterelementes auf einem Kupfersubstrat mit dazwischenliegender Isolationsschicht |
DE102012208304A1 (de) | 2012-05-16 | 2013-11-21 | Robert Bosch Gmbh | Sinterwerkstoff für eine Verbindungsschicht für Halbleiter mit einstellbarem Porositätsgrad |
DE102012107570B4 (de) * | 2012-08-17 | 2017-08-03 | Rogers Germany Gmbh | Verfahren zur Herstellung von Hohlkörpern, insbesondere von Kühlern, Hohlkörper sowie Kühler enthaltende elektrische oder elektronische Baugruppen |
DE102013200242A1 (de) | 2013-01-10 | 2014-07-10 | Robert Bosch Gmbh | Piezoelektrisches Bauteil und Verfahren zur Herstellung eines piezoelektrischen Bauteils |
DE102013208387A1 (de) | 2013-05-07 | 2014-11-13 | Robert Bosch Gmbh | Silber-Komposit-Sinterpasten für Niedertemperatur Sinterverbindungen |
FI3038824T3 (fi) * | 2013-08-29 | 2024-04-04 | Alpha Assembly Solutions Inc | Monikerroksisia hopeakalvoja sähköisten ja mekaanisten osien liittämiseen |
DE102013226334B4 (de) * | 2013-12-18 | 2019-04-25 | Robert Bosch Gmbh | Schaltungsträger mit einem sinterverbundenen Halbleiterbaustein |
CN105304796B (zh) * | 2014-06-06 | 2018-12-28 | 深圳市光峰光电技术有限公司 | 制备光波长转换片的方法以及光波长转换片和光源 |
DE102014217938B4 (de) * | 2014-09-08 | 2022-11-03 | Robert Bosch Gmbh | Elektronisches Bauelement |
US10923454B2 (en) * | 2015-06-09 | 2021-02-16 | Seyed Amir Paknejad | Method and apparatus for creating a bond between objects based on formation of inter-diffusion layers |
EP3009211B1 (de) | 2015-09-04 | 2017-06-14 | Heraeus Deutschland GmbH & Co. KG | Metallpaste und deren verwendung zum verbinden von bauelementen |
JP6858520B2 (ja) * | 2015-09-30 | 2021-04-14 | 日東電工株式会社 | 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート |
JP2017143134A (ja) * | 2016-02-09 | 2017-08-17 | 株式会社東芝 | 半導体装置の製造方法、及び半導体装置 |
US20170271294A1 (en) * | 2016-03-15 | 2017-09-21 | Indium Corporation | Spacer particles for bond line thickness control in sintering pastes |
JP6737099B2 (ja) * | 2016-09-15 | 2020-08-05 | 株式会社デンソー | 半導体装置の製造方法 |
JP6780457B2 (ja) | 2016-11-10 | 2020-11-04 | 株式会社デンソー | 半導体装置およびその製造方法 |
EP3584333A4 (de) * | 2017-02-20 | 2020-07-29 | Sekisui Chemical Co., Ltd. | Sintermaterial, verbindungsstruktur, verbundteilchen, verbindungszusammensetzung und verfahren zur herstellung von sintermaterial |
JP6888401B2 (ja) | 2017-04-28 | 2021-06-16 | 日亜化学工業株式会社 | 金属粉焼結ペースト及びその製造方法、ならびに導電性材料の製造方法 |
DE102017126689A1 (de) * | 2017-11-14 | 2019-05-16 | Infineon Technologies Ag | Halbleitersubstrat-Anordnung, Verbindungsschicht für Halbleitersubstrate und Verfahren zum Herstellen einer Verbindungsschicht |
KR102514945B1 (ko) * | 2018-01-26 | 2023-03-27 | 닛신 엔지니어링 가부시키가이샤 | 구리 미립자 |
AT521546B1 (de) * | 2018-08-10 | 2020-07-15 | Miba Sinter Austria Gmbh | Verfahren zur Herstellung einer Verbindung zwischen zwei metallischen Bauteilen |
DE102019217386B4 (de) * | 2019-11-11 | 2023-12-14 | Mahle International Gmbh | Verfahren zum Herstellen einer Elektronikanordnung und die Elektronikanordnung |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4315272A1 (de) | 1993-05-07 | 1994-11-10 | Siemens Ag | Leistungshalbleiterbauelement mit Pufferschicht |
EP0330895B1 (de) | 1988-03-03 | 1994-12-14 | Siemens Aktiengesellschaft | Verfahren zum Befestigen von elektronischen Bauelementen auf Substraten und Anordnung zur Durchführung desselben |
WO2004026526A1 (en) * | 2002-09-18 | 2004-04-01 | Ebara Corporation | Bonding material and bonding method |
EP1478216A1 (de) * | 2003-05-14 | 2004-11-17 | A.B. Mikroelektronik Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung einer Trägerplatte für elektrische Schaltungen |
EP1916709A1 (de) * | 2006-06-05 | 2008-04-30 | Tanaka Kikinzoku Kogyo K.K. | Verfahren zum binden |
US20080160183A1 (en) * | 2006-12-28 | 2008-07-03 | Eiichi Ide | Conductive sintered layer forming composition and conductive coating film forming method and bonding method using the same |
US20080173398A1 (en) * | 2006-12-28 | 2008-07-24 | Yusuke Yasuda | Low temperature bonding material and bonding method |
WO2008145930A2 (fr) * | 2007-04-30 | 2008-12-04 | Valeo Etudes Electroniques | Procede d'assemblage d'un organe sur un support par frittage d'une masse de poudre conductrice |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5899172A (ja) * | 1981-12-07 | 1983-06-13 | 株式会社日立製作所 | 電気絶縁基板 |
JPH0657622B2 (ja) * | 1988-03-30 | 1994-08-03 | 松下電器産業株式会社 | ろう付けペースト |
JP2580843B2 (ja) * | 1990-06-07 | 1997-02-12 | 三菱電機株式会社 | 表面部が多孔状である基材の製造方法 |
US5506179A (en) * | 1993-09-20 | 1996-04-09 | Asahi Glass Company Ltd. | Ceramics binder mixture and binding method |
DE19962915A1 (de) * | 1999-12-23 | 2001-09-06 | Intelligent Implants Gmbh | Vorrichtung für den geschützten Betrieb von Neuroprothesen und Verfahren hierzu |
DE10016129A1 (de) * | 2000-03-31 | 2001-10-18 | Siemens Ag | Verfahren zum Herstellen einer wärmeleitenden Verbindung zwischen zwei Werkstücken |
JP2004130371A (ja) * | 2002-10-11 | 2004-04-30 | Ebara Corp | 接合体 |
JP2004107728A (ja) * | 2002-09-18 | 2004-04-08 | Ebara Corp | 接合材料及び接合方法 |
JP4412072B2 (ja) * | 2003-10-09 | 2010-02-10 | 株式会社日立製作所 | 電子部品の実装方法,半導体モジュール及び半導体装置 |
JP4715628B2 (ja) * | 2006-05-11 | 2011-07-06 | トヨタ自動車株式会社 | 接合材料及び接合方法 |
JP2008004651A (ja) * | 2006-06-21 | 2008-01-10 | Hitachi Ltd | 異方性微粒子を用いた接合材料 |
JP5123633B2 (ja) * | 2007-10-10 | 2013-01-23 | ルネサスエレクトロニクス株式会社 | 半導体装置および接続材料 |
US9017808B2 (en) * | 2008-03-17 | 2015-04-28 | The Research Foundation For The State University Of New York | Composite thermal interface material system and method using nano-scale components |
-
2009
- 2009-01-14 DE DE102009000192A patent/DE102009000192A1/de not_active Withdrawn
-
2010
- 2010-01-04 WO PCT/EP2010/050013 patent/WO2010081752A1/de active Application Filing
- 2010-01-04 CN CN201080004470.5A patent/CN102281973A/zh active Pending
- 2010-01-04 JP JP2011545705A patent/JP2012515266A/ja active Pending
- 2010-01-04 EP EP10700308.9A patent/EP2387477B1/de active Active
- 2010-01-04 US US13/144,469 patent/US20120003465A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0330895B1 (de) | 1988-03-03 | 1994-12-14 | Siemens Aktiengesellschaft | Verfahren zum Befestigen von elektronischen Bauelementen auf Substraten und Anordnung zur Durchführung desselben |
DE4315272A1 (de) | 1993-05-07 | 1994-11-10 | Siemens Ag | Leistungshalbleiterbauelement mit Pufferschicht |
WO2004026526A1 (en) * | 2002-09-18 | 2004-04-01 | Ebara Corporation | Bonding material and bonding method |
EP1478216A1 (de) * | 2003-05-14 | 2004-11-17 | A.B. Mikroelektronik Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung einer Trägerplatte für elektrische Schaltungen |
EP1916709A1 (de) * | 2006-06-05 | 2008-04-30 | Tanaka Kikinzoku Kogyo K.K. | Verfahren zum binden |
US20080160183A1 (en) * | 2006-12-28 | 2008-07-03 | Eiichi Ide | Conductive sintered layer forming composition and conductive coating film forming method and bonding method using the same |
US20080173398A1 (en) * | 2006-12-28 | 2008-07-24 | Yusuke Yasuda | Low temperature bonding material and bonding method |
WO2008145930A2 (fr) * | 2007-04-30 | 2008-12-04 | Valeo Etudes Electroniques | Procede d'assemblage d'un organe sur un support par frittage d'une masse de poudre conductrice |
Non-Patent Citations (1)
Title |
---|
XU X ET AL: "Bonding behavior of copper thick films containing lead-free glass frit on aluminum nitride substrates", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM, NL, vol. 30, no. 5, 1 January 2004 (2004-01-01), pages 661 - 665, XP004515568, ISSN: 0272-8842 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012052191A1 (de) * | 2010-10-20 | 2012-04-26 | Robert Bosch Gmbh | Ausgangswerkstoff und verfahren zur herstellung einer sinterverbindung |
WO2012052192A1 (de) * | 2010-10-20 | 2012-04-26 | Robert Bosch Gmbh | Ausgangswerkstoff und verfahren zur herstellung einer sinterverbindung |
WO2012052251A3 (de) * | 2010-10-20 | 2012-11-01 | Robert Bosch Gmbh | Ausgangswerkstoff einer sinterverbindung und verfahren zur herstellung der sinterverbindung |
WO2012052252A3 (de) * | 2010-10-20 | 2013-04-18 | Robert Bosch Gmbh | Ausgangswerkstoff einer sinterverbindung und verfahren zur herstellung der sinterverbindung |
EP3695921A1 (de) * | 2010-10-20 | 2020-08-19 | Robert Bosch GmbH | Ausgangswerkstoff einer sinterverbindung und verfahren zur herstellung der sinterverbindung |
EP2743973A3 (de) * | 2012-12-11 | 2014-12-03 | Robert Bosch Gmbh | Verfahren zur Kontaktierung eines Halbleiterelements mittels Schweißens eines Kontaktelements an eine Sinterschicht auf dem Halbleiterelement und Halbleiterbauelement mit erhöhter Stabilität gegenüber thermomechanischen Einflüssen |
EP3208845A1 (de) * | 2016-02-19 | 2017-08-23 | Heraeus Deutschland GmbH & Co. KG | Verfahren zur herstellung eines schaltungsträgers, schaltungsträger, verfahren zur herstellung eines halbleitermoduls und halbleitermodul |
WO2017140550A1 (de) * | 2016-02-19 | 2017-08-24 | Heraeus Deutschland GmbH & Co. KG | Verfahren zur herstellung eines schaltungsträgers, schaltungsträger, verfahren zur herstellung eines halbleitermoduls und halbleitermodul |
CN109643663A (zh) * | 2016-08-22 | 2019-04-16 | 千住金属工业株式会社 | 金属烧结接合体和芯片接合方法 |
US11024598B2 (en) | 2016-08-22 | 2021-06-01 | Senju Metal Industry Co., Ltd. | Metallic sintered bonding body and die bonding method |
Also Published As
Publication number | Publication date |
---|---|
EP2387477A1 (de) | 2011-11-23 |
EP2387477B1 (de) | 2019-10-23 |
DE102009000192A1 (de) | 2010-07-15 |
CN102281973A (zh) | 2011-12-14 |
JP2012515266A (ja) | 2012-07-05 |
US20120003465A1 (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2387477B1 (de) | Verfahren zum herstellen einer sinterverbindung | |
DE102005008491B4 (de) | Leistungs-Halbleitervorrichtung und Verfahren zu ihrer Herstellung | |
DE10238320B4 (de) | Keramische Leiterplatte und Verfahren zu ihrer Herstellung | |
DE112006002451B4 (de) | Keramisches mehrlagiges Substrat, keramisches mehrlagiges Modul und Verfahren zum Herstellen desselben | |
EP2743973A2 (de) | Verfahren zur Kontaktierung eines Halbleiterelements mittels Schweißens eines Kontaktelements an eine Sinterschicht auf dem Halbleiterelement und Halbleiterbauelement mit erhöhter Stabilität gegenüber thermomechanischen Einflüssen | |
DE102005054393A1 (de) | Isolierendes Substrat und Halbleiterbauelement | |
DE102011077504B4 (de) | Isolierelement, metallbasissubstrat und halbleitermodul sowie deren herstellungsverfahren | |
DE3414065A1 (de) | Anordnung bestehend aus mindestens einem auf einem substrat befestigten elektronischen bauelement und verfahren zur herstellung einer derartigen anordnung | |
DE102010044709A1 (de) | Leistungshalbleitermodul mit Metallsinter-, vorzugsweise Silbersinterverbindungen sowie Herstellungsverfahren | |
EP2382659A1 (de) | Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils | |
WO2009062757A1 (de) | Verfahren zum verbinden zweier fügeflächen | |
DE102016104844A1 (de) | Verfahren zur Herstellung eines Chipverbunds | |
DE102010024520B4 (de) | Verfahren zur Erhöhung der thermo-mechanischen Beständigkeit eines Metall-Keramik-Substrats | |
WO2019110219A1 (de) | Kühlkörper für eine elektronische komponente, elektronische baugruppe mit einem solchen kühlkörper und verfahren zum erzeugen eines solchen kühlkörpers | |
WO2004102659A2 (de) | Verbundwerkstoff sowie elektrischer schaltkreis oder elektrisches modul | |
WO2012152364A1 (de) | Substrat mit elektrisch neutralem bereich | |
WO2010072667A1 (de) | Elektrisches oder elektronisches verbundbauteil sowie verfahren zum herstellen eines elektrischen oder elektronischen verbundbauteils | |
DE102007036045A1 (de) | Elektronischer Baustein mit zumindest einem Bauelement, insbesondere einem Halbleiterbauelement, und Verfahren zu dessen Herstellung | |
EP2108190A1 (de) | Elektronisches bauelementmodul und verfahren zu dessen herstellung | |
WO2010072534A1 (de) | Hochtemperaturbeständige lötmittelfreie bauelementstruktur und verfahren zum elektrischen kontaktieren | |
DE19930190C2 (de) | Lötmittel zur Verwendung bei Diffusionslötprozessen | |
EP2219211A1 (de) | Substrat zur Aufnahme mindestens eines Bauelements und Verfahren zur Herstellung eines Substrats | |
DE102009040627A1 (de) | Verfahren zum Herstellen eines elektronischen Systems | |
DE102015100868B4 (de) | Integrierte Schaltung und Verfahren zum Herstellen einer integrierten Schaltung | |
EP4189738A1 (de) | Elektronisches schaltungsmodul |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080004470.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10700308 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010700308 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4370/CHENP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2011545705 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13144469 Country of ref document: US |