WO2010081310A1 - 共享字线的分栅式闪存 - Google Patents

共享字线的分栅式闪存 Download PDF

Info

Publication number
WO2010081310A1
WO2010081310A1 PCT/CN2009/071774 CN2009071774W WO2010081310A1 WO 2010081310 A1 WO2010081310 A1 WO 2010081310A1 CN 2009071774 W CN2009071774 W CN 2009071774W WO 2010081310 A1 WO2010081310 A1 WO 2010081310A1
Authority
WO
WIPO (PCT)
Prior art keywords
word line
control gate
bit cell
memory bit
gate
Prior art date
Application number
PCT/CN2009/071774
Other languages
English (en)
French (fr)
Inventor
顾靖
Original Assignee
上海宏力半导体制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宏力半导体制造有限公司 filed Critical 上海宏力半导体制造有限公司
Priority to US12/988,852 priority Critical patent/US20110038214A1/en
Publication of WO2010081310A1 publication Critical patent/WO2010081310A1/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0441Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
    • G11C16/0458Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates comprising two or more independent floating gates which store independent data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42332Gate electrodes for transistors with a floating gate with the floating gate formed by two or more non connected parts, e.g. multi-particles flating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7887Programmable transistors with more than two possible different levels of programmation

Definitions

  • the present invention relates to the field of semiconductor design and manufacture, and in particular to a split-gate flash memory sharing word lines. Background technique
  • Flash memory has become a hot research topic in non-volatile memory due to its convenience, high storage density and good reliability. Since the advent of the first flash memory products in the 1980s, with the development of technology and the storage requirements of various electronic products, flash memory is widely used in mobile and communication devices such as mobile phones, notebooks, handheld computers and USB flash drives. Flash memory is a non-volatile memory. Its operation principle is to control the switching of the gate channel by changing the threshold voltage of the transistor or the memory cell to achieve the purpose of storing data, so that the data stored in the memory is not interrupted by the power supply. Disappeared, and flash memory is a special structure of electrically erasable and programmable read-only memory. Flash memory now accounts for the majority of non-volatile semiconductor memory market share and is the fastest growing non-volatile semiconductor memory.
  • the flash memory is a split gate structure or a stacked gate structure or a combination of both structures. Due to its special structure, the split-gate flash memory exhibits its unique performance advantages compared to stacked gate flash memory during programming and erasing. Therefore, due to the high programming efficiency of the split-gate structure, the word line structure can be avoided. Over erase, etc., the application is particularly extensive. However, since the split-gate flash memory has one more word line than the stacked gate flash memory, the area of the chip is also increased. Therefore, how to further reduce the chip size while improving the performance of the chip is an urgent problem to be solved. Summary of the invention
  • the present invention proposes a split-gate flash memory sharing a word line, which can effectively reduce the area of the chip while maintaining the electrical isolation performance of the chip, and can also avoid the problem of over-erasing.
  • the present invention provides a split-gate flash memory sharing a word line, which includes: a semiconductor substrate having spaced apart source regions and drain regions thereon;
  • a word line disposed between the source region and the drain region
  • the two memory bit cells and the word line are separated by a tunneling oxide layer, the two memory bit cells respectively having a first control gate, a first floating gate and a second control gate, and a second floating a gate, the two control gates are respectively disposed on the two floating gates at intervals.
  • control gates are polysilicon control gates
  • the two floating gates are polysilicon floating gates
  • the word lines are polysilicon selection gates.
  • the tunneling oxide layer is a silicon oxide layer, a silicon nitride layer or a composite structure thereof. Further, applying a first memory bit cell read voltage to the word line, the first control gate, the second control gate, the source region, and the drain region, respectively, to implement a first memory bit Unit read.
  • the read voltages of the first memory bit cells applied to the word lines, the first control gate, the second control gate, the source region and the drain region are respectively 2.5V, 2.5 V, 4V, 0 V, and 2V enable the first memory bit cell read.
  • the read voltages of the second memory bit cells applied to the word lines, the first control gate, the second control gate, the source region and the drain region are respectively 2.5V, 4V , 2.5V, 2 V and 0V, to achieve the second memory bit unit read.
  • a programming voltage of the first memory bit cell applied to the word line, the first control gate, the second control gate, the source region and the drain region is 1.5V, 10V, respectively 4V, 5 V and 0V for first memory bit cell programming.
  • the word line, the first control gate, the second control gate, and the source are respectively A second memory bit cell programming voltage is applied to the polar region and the drain region to effect programming of the second memory bit cell.
  • a programming voltage of the second memory bit cell applied to the word line, the first control gate, the second control gate, the source region and the drain region is 1.5V, 4V, respectively 10V, 0 V and 5V for second memory bit cell programming.
  • a memory bit cell erase voltage is applied to the word line, the first control gate, the second control gate, the source region, and the drain region, respectively, to implement a first memory bit unit and The second memory bit cell is erased.
  • the erase voltages of the memory bit cells applied to the word line, the first control gate, the second control gate, the source region and the drain region are respectively 11V, 0V, 0V, 0 V and 0 V, the first memory bit unit and the second memory bit unit are erased.
  • the split-gate flash memory of the shared word line proposed by the present invention shares two word-slot cells using one word line, and implements a pair of memory cells by applying different operating voltages to the word lines, the two control gates, and the source-drain regions.
  • Read, program, and erase, the structure of the shared bit line enables the split-gate flash memory to effectively reduce the area of the chip while maintaining the electrical isolation performance of the chip, while avoiding the problem of over-erasing.
  • FIG. 1 is a schematic diagram showing the structure of a split-gate flash memory sharing a word line according to a preferred embodiment of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of a split-gate flash memory sharing a word line according to a preferred embodiment of the present invention.
  • the present invention provides a split-gate flash memory sharing a word line, comprising: a semiconductor substrate 100 having spaced apart source regions 200 and drain regions 300 thereon; a word line 400 disposed in the source region 200 Between the drain region 300; a first memory bit cell 500 between the word line 400 and the source region 200; a second memory bit cell 600 located between the word line 400 and the drain region Between 300, wherein the two memory bit cells 500, 600 and the word line 400 are separated by a tunnel oxide layer 700, and the two memory bit cells 500, 600 respectively have a first control gate 510, First floating gate 520 And the second control gate 610 and the second floating gate 620, the two control gates 510 and 520 are respectively disposed on the two floating gates 610 and 620 at intervals.
  • the two control gates 510 and 520 are polysilicon control gates
  • the two floating gates 610 and 620 are polysilicon floating gates
  • the word line 400 is a polysilicon selection gate
  • the tunneling is performed.
  • the oxide layer 700 is a silicon oxide layer, a silicon nitride layer, or a composite structure thereof.
  • the present invention achieves read, program, and erase operations on memory bit cells 500, 600 by applying different operating voltages to word line 400, two control gates 510, 520, and source region 200 and drain region 300.
  • the cell read voltages are 2.5V, 2.5V, 4V, 0 V, and 2V, realizing the first memory bit cell 500 read operation.
  • a current flows from the source region 200 to the drain region 300.
  • the presence or absence of charge storage of the polysilicon floating gates 520 and 620 affects the channel current.
  • the current in the channel is small.
  • the floating gates 520 and 620 have no charge, the current in the channel is large, and the small current state in the channel is set to "0", and the large current state in the channel is set to "1".
  • the state in which the floating gates 520, 620 have or without charge storage can be used to distinguish the state of the information stored in the "0" or "1", and the memory bit unit 500, 600 can be read and stored.
  • the cell programming voltages are 1.5V, 10V, 4V, 5 V, and 0V, enabling the first memory bit cell 500 programming operation.
  • Applying a second memory bit cell programming voltage to the word line 400, the first control gate 510, the second control gate 520, the source region 200, and the drain region 300, respectively, is 1.5V, 4V , 10V, 0 V, and 5V, the second memory bit unit 600 programming operation is implemented.
  • the composition of the insulating dielectric layer is an oxide of silicon or a nitride of silicon, such as silicon dioxide or silicon nitride.
  • a memory cell eraser is applied to the word line 400, the first control gate 510, the second control gate 520, the source region 200, and the drain region 300, respectively.
  • the first memory bit cell 500 and the second memory bit cell 600 are erased except that the voltages are 11V, 0V, 0V, 0 V, and 0V.
  • the electrons stored in the floating gates 520, 620 are tunneled to the word line 400 at a high electric field FN (Fowler-Nordheim), and flow away through the word line 400 to realize the memory bit cells 500, 600. Erase operation.
  • the split-gate flash memory of the shared word line proposed by the present invention shares two word-slot cells using one word line, and implements a pair of memory cells by applying different operating voltages to the word lines, the two control gates, and the source-drain regions.
  • Read, program, and erase, the structure of the shared bit line enables the split-gate flash memory to effectively reduce the area of the chip while maintaining the electrical isolation performance of the chip, while avoiding the problem of over-erasing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)

Description

共享字线的分栅式闪存 技术领域
本发明涉及半导体设计制造领域, 且特别涉及一种共享字线的分栅式闪存。 背景技术
闪存以其便捷, 存储密度高, 可靠性好等优点成为非挥发性存储器中研究 的热点。 从二十世纪八十年代第一个闪存产品问世以来, 随着技术的发展和各 类电子产品对存储的需求, 闪存被广泛用于手机, 笔记本, 掌上电脑和 U盘等 移动和通讯设备中, 闪存为一种非易变性存储器, 其运作原理是通过改变晶体 管或存储单元的临界电压来控制门极通道的开关以达到存储数据的目的, 使存 储在存储器中的数据不会因电源中断而消失, 而闪存为电可擦除且可编程的只 读存储器的一种特殊结构。 如今闪存已经占据了非挥发性半导体存储器的大部 分市场份额, 成为发展最快的非挥发性半导体存储器。
然而现有的闪存在迈向更高存储密度的时候, 由于受到编程电压的限制, 通过缩小器件尺寸来提高存储密度将会面临很大的挑战, 因而研制高存储密度 的闪存是闪存技术发展的重要推动力。 传统的闪存在迈向更高存储密度的时候, 由于受到结构的限制, 实现器件的编程电压进一步减小将会面临着很大的挑战。
一般而言, 闪存为分栅结构或堆叠栅结构或两种结构的组合。 分栅式闪存 由于其特殊的结构, 相比堆叠栅闪存在编程和擦除的时候都体现出其独特的性 能优势, 因此分栅式结构由于具有高的编程效率, 字线的结构可以避免 "过擦 除" 等优点, 应用尤为广泛。 但是由于分栅式闪存相对于堆叠栅闪存多了一个 字线从而使得芯片的面积也会增加, 因此如何在提高芯片性能的同时进一步减 小芯片的尺寸是亟需解决的问题。 发明内容
本发明提出一种共享字线的分栅式闪存, 其能够在保持芯片的电学隔离性 能不变的情况下, 有效地缩小芯片的面积, 同时也可以避免过擦除的问题。
为了达到上述目的, 本发明提出一种共享字线的分栅式闪存, 其包括: 半导体村底, 其上具有间隔设置的源极区域和漏极区域;
字线, 设置于所述源极区域和漏极区域之间;
第一存储位单元, 位于所述字线与所述源极区域之间;
第二存储位单元, 位于所述字线与所述漏极区域之间,
其中所述两个存储位单元与所述字线之间由隧穿氧化层隔开, 所述两个存 储位单元分别具有第一控制栅、 第一浮栅和第二控制栅、 第二浮栅, 所述两个 控制栅具有间隔地分别设置于所述两个浮栅上。
进一步的, 所述两个控制栅为多晶硅控制栅, 所述两个浮栅为多晶硅浮栅, 所述字线为多晶硅选择栅。
进一步的, 所述隧穿氧化层为氧化硅层、 氮化硅层或者它们的复合结构。 进一步的, 分别对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源 极区域和所述漏极区域施加第一存储位单元读取电压, 实现第一存储位单元读 取。
进一步的, 对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源极区 域和所述漏极区域施加的第一存储位单元读取电压分别为 2.5V、 2.5V、 4V、 0 V 和 2V , 实现第一存储位单元读取。
进一步的, 分别对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源 极区域和所述漏极区域施加第二存储位单元读取电压, 实现第二存储位单元读 取。
进一步的, 对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源极区 域和所述漏极区域施加的第二存储位单元读取电压分别为 2.5V、 4V、 2.5V, 2 V 和 0V , 实现第二存储位单元读取。
进一步的, 分别对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源 极区域和所述漏极区域施加第一存储位单元编程电压, 实现第一存储位单元编 程。
进一步的, 对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源极区 域和所述漏极区域施加的第一存储位单元编程电压分别为 1.5V、 10V、 4V、 5 V 和 0V, 实现第一存储位单元编程。
进一步的, 分别对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源 极区域和所述漏极区域施加第二存储位单元编程电压, 实现第二存储位单元编 程。
进一步的, 对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源极区 域和所述漏极区域施加的第二存储位单元编程电压分别为 1.5V、 4V、 10V、 0 V 和 5V, 实现第二存储位单元编程。
进一步的, 分别对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源 极区域和所述漏极区域施加存储位单元擦除电压, 实现第一存储位单元和第二 存储位单元擦除。
进一步的, 对所述字线、 所述第一控制栅、 所述第二控制栅、 所述源极区 域和所述漏极区域施加的存储位单元擦除电压分别为 11V、 0V、 0V、 0 V和 0V, 实现第一存储位单元和第二存储位单元擦除。
本发明提出的共享字线的分栅式闪存, 将两个存储位单元共享使用一个字 线, 通过对字线, 两个控制栅以及源漏极区域施加不同的工作电压实现对存储 位单元的读取、 编程和擦除, 共享位线的结构使得分栅式闪存其能够在保持芯 片的电学隔离性能不变的情况下, 有效地缩小芯片的面积, 同时也可以避免过 擦除的问题。 附图说明
图 1所示为本发明较佳实施例的共享字线的分栅式闪存结构示意图。 具体实施方式
为了更了解本发明的技术内容, 特举具体实施例并配合所附图式说明如下。 请参考图 1 ,图 1所示为本发明较佳实施例的共享字线的分栅式闪存结构示 意图。 本发明提出一种共享字线的分栅式闪存, 其包括: 半导体村底 100, 其上 具有间隔设置的源极区域 200和漏极区域 300; 字线 400, 设置于所述源极区域 200和漏极区域 300之间; 第一存储位单元 500 , 位于所述字线 400与所述源极 区域 200之间; 第二存储位单元 600,位于所述字线 400与所述漏极区域 300之 间, 其中所述两个存储位单元 500、 600与所述字线 400之间由隧穿氧化层 700 隔开, 所述两个存储位单元 500、 600分别具有第一控制栅 510、 第一浮栅 520 和第二控制栅 610、 第二浮栅 620, 所述两个控制栅 510、 520具有间隔地分别 设置于所述两个浮栅 610、 620上。
根据本发明较佳实施例, 所述两个控制栅 510、 520为多晶硅控制栅, 所述 两个浮栅 610、 620为多晶硅浮栅, 所述字线 400为多晶硅选择栅, 所述隧穿氧 化层 700为氧化硅层、 氮化硅层或者它们的复合结构。
本发明通过对字线 400, 两个控制栅 510、 520以及源极区域 200和漏极区 域 300施加不同的工作电压实现对存储位单元 500、 600的读取、 编程和擦除操 作。
根据本发明较佳实施例, 对所述字线 400、 所述第一控制栅 510、 所述第二 控制栅 520、所述源极区域 200和所述漏极区域 300分别施加第一存储位单元读 取电压为 2.5V、 2.5V、 4V、 0 V和 2V, 实现第一存储位单元 500读取操作。
对所述字线 400、 所述第一控制栅 510、 所述第二控制栅 520、 所述源极区 域 200和所述漏极区域 300分别施加第二存储位单元读取电压为 2.5V、 4V、 2.5V、 2 V和 0V, 实现第二存储位单元 600读取操作。
本发明较佳实施例中, 沟道内有电流从源极区域 200流到漏极区域 300 , 多 晶硅浮栅 520、 620有无电荷存储会影响沟道电流大小, 当浮栅 520、 620有电 荷时, 沟道内电流 ^艮小, 反之当浮栅 520、 620无电荷时, 沟道内电流 4艮大, 设 定沟道内小电流状态为 "0" ,设定沟道内大电流状态为 "1" , 这样浮栅 520、 620 有无电荷存储的状态可以作为区分存储 " 0 " 或 " 1 " 信息状态, 实现存储位 单元 500、 600信息存储读取的功能。
根据本发明较佳实施例, 对所述字线 400、 所述第一控制栅 510、 所述第二 控制栅 520、所述源极区域 200和所述漏极区域 300分别施加第一存储位单元编 程电压为 1.5V、 10V、 4V、 5 V和 0V, 实现第一存储位单元 500编程操作。
对所述字线 400、 所述第一控制栅 510、 所述第二控制栅 520、 所述源极区 域 200和所述漏极区域 300分别施加第二存储位单元编程电压为 1.5V、4V、 10V、 0 V和 5V, 实现第二存储位单元 600编程操作。
当源 -漏极电压足够高, 足以导致某些高能电子越过绝缘介电层, 并进入绝 缘介电层上的浮栅, 这种过程称为热电子注入。 而所述绝缘介电层的成分为硅 的氧化物或者硅的氮化物, 如二氧化硅或者氮化硅等材料。 本发明较佳实施例 中, 在施加读取工作电压后, 沟道内有电子从漏极区域 200流到源极区域 300 , 部分电子通过热电子注入方式注入到纳米硅浮栅 520、 620中, 实现存储位单元 500、 600的编程操作。
根据本发明较佳实施例, 对所述字线 400、 所述第一控制栅 510、 所述第二 控制栅 520、所述源极区域 200和所述漏极区域 300分别施加存储位单元擦除电 压为 11V、 0V、 0V、 0 V和 0V, 实现第一存储位单元 500和第二存储位单元 600 擦除操作。 在该施加工作电压条件下, 存储在浮栅 520、 620的电子在高电场下 FN (Fowler-Nordheim) 隧穿到字线 400端,通过字线 400端流走, 实现存储位单 元 500、 600的擦除操作。
本发明提出的共享字线的分栅式闪存, 将两个存储位单元共享使用一个字 线, 通过对字线, 两个控制栅以及源漏极区域施加不同的工作电压实现对存储 位单元的读取、 编程和擦除, 共享位线的结构使得分栅式闪存其能够在保持芯 片的电学隔离性能不变的情况下, 有效地缩小芯片的面积, 同时也可以避免过 擦除的问题。
虽然本发明已以较佳实施例揭露如上, 然其并非用以限定本发明。 本发明 所属技术领域中具有通常知识者, 在不脱离本发明的精神和范围内, 当可作各 种的更动与润饰。 因此, 本发明的保护范围当视权利要求书所界定者为准。

Claims

权利 要求书
1. 一种共享字线的分栅式闪存, 其特征在于包括:
半导体村底, 其上具有间隔设置的源极区域和漏极区域;
字线, 设置于所述源极区域和漏极区域之间;
第一存储位单元, 位于所述字线与所述源极区域之间;
第二存储位单元, 位于所述字线与所述漏极区域之间,
其中所述两个存储位单元与所述字线之间由隧穿氧化层隔开, 所述两个存 储位单元分别具有第一控制栅、 第一浮栅和第二控制栅、 第二浮栅, 所述两个 控制栅具有间隔地分别设置于所述两个浮栅上。
2. 根据权利要求 1所述的分栅式闪存, 其特征在于所述两个控制栅为多晶 硅控制栅, 所述两个浮栅为多晶硅浮栅, 所述字线为多晶硅选择栅。
3. 根据权利要求 1所述的分栅式闪存, 其特征在于所述隧穿氧化层为氧化 硅层、 氮化硅层或者它们的复合结构。
4. 根据权利要求 1所述的分栅式闪存, 其特征在于分别对所述字线、 所述 第一控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加第一存储位 单元读取电压, 实现第一存储位单元读取。
5. 根据权利要求 4所述的分栅式闪存, 其特征在于对所述字线、 所述第一 控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加的第一存储位单 元读取电压分别为 2.5V、 2.5V、 4V、 O V和 2V, 实现第一存储位单元读取。
6. 根据权利要求 1所述的分栅式闪存, 其特征在于分别对所述字线、 所述 第一控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加第二存储位 单元读取电压, 实现第二存储位单元读取。
7. 根据权利要求 6所述的分栅式闪存, 其特征在于对所述字线、 所述第一 控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加的第二存储位单 元读取电压分别为 2.5V、 4V、 2.5V, 2 V和 OV, 实现第二存储位单元读取。
8. 根据权利要求 1所述的分栅式闪存, 其特征在于分别对所述字线、 所述 第一控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加第一存储位 单元编程电压, 实现第一存储位单元编程。
9. 根据权利要求 8所述的分栅式闪存, 其特征在于对所述字线、 所述第一 控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加的第一存储位单 元编程电压分别为 1.5V、 10V、 4V、 5 V和 OV, 实现第一存储位单元编程。
10.根据权利要求 1所述的分栅式闪存, 其特征在于分别对所述字线、所述 第一控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加第二存储位 单元编程电压, 实现第二存储位单元编程。
11. 根据权利要求 10所述的分栅式闪存, 其特征在于对所述字线、 所述第 一控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加的第二存储位 单元编程电压分别为 1.5V、 4V、 10V、 O V和 5V, 实现第二存储位单元编程。
12.根据权利要求 1所述的分栅式闪存, 其特征在于分别对所述字线、所述 第一控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加存储位单元 擦除电压, 实现第一存储位单元和第二存储位单元擦除。
13.根据权利要求 12所述的分栅式闪存, 其特征在于对所述字线、 所述第 一控制栅、 所述第二控制栅、 所述源极区域和所述漏极区域施加的存储位单元 擦除电压分别为 11V、 0V、 0V、 O V和 OV, 实现第一存储位单元和第二存储位 单元擦除。
PCT/CN2009/071774 2008-12-30 2009-05-13 共享字线的分栅式闪存 WO2010081310A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/988,852 US20110038214A1 (en) 2008-12-30 2009-05-13 Gate-separated type flash memory with shared word line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810204971.2 2008-12-30
CNA2008102049712A CN101465161A (zh) 2008-12-30 2008-12-30 共享字线的分栅式闪存

Publications (1)

Publication Number Publication Date
WO2010081310A1 true WO2010081310A1 (zh) 2010-07-22

Family

ID=40805687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071774 WO2010081310A1 (zh) 2008-12-30 2009-05-13 共享字线的分栅式闪存

Country Status (3)

Country Link
US (1) US20110038214A1 (zh)
CN (1) CN101465161A (zh)
WO (1) WO2010081310A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702327B (zh) * 2009-10-28 2012-11-14 上海宏力半导体制造有限公司 一种存储器阵列
CN101783179B (zh) * 2010-01-28 2012-10-31 上海宏力半导体制造有限公司 提高分栅式闪存耐用性的擦除方法
CN101777521B (zh) * 2010-01-28 2013-09-25 上海宏力半导体制造有限公司 共享字线的分栅式闪存制造方法
CN101789399B (zh) * 2010-02-05 2014-03-19 上海宏力半导体制造有限公司 共享字线的无触点分栅式闪存制造方法
CN101819978B (zh) * 2010-04-29 2015-05-27 上海华虹宏力半导体制造有限公司 共享字线的无触点纳米晶分栅式闪存
CN101866930B (zh) * 2010-05-12 2014-10-22 上海华虹宏力半导体制造有限公司 共享字线的无触点纳米晶分栅式闪存及其制造方法
CN101853704A (zh) * 2010-05-28 2010-10-06 上海宏力半导体制造有限公司 共享字线的分栅式闪存的擦除方法
CN102280140B (zh) * 2010-06-09 2015-08-19 上海华虹宏力半导体制造有限公司 双分离栅快闪存储阵列的编程方法
CN101968972B (zh) * 2010-07-23 2016-04-13 上海华虹宏力半导体制造有限公司 分裂栅快闪存储单元的编程验证方法
CN101986389B (zh) * 2010-10-12 2015-06-24 上海华虹宏力半导体制造有限公司 闪存单元、闪存装置及其编程方法
CN102456694B (zh) * 2010-10-29 2013-08-14 上海宏力半导体制造有限公司 一种存储器结构
CN102593060B (zh) * 2011-01-07 2016-03-02 上海华虹宏力半导体制造有限公司 分栅闪存单元及其制造方法
CN102637455A (zh) * 2011-02-10 2012-08-15 上海宏力半导体制造有限公司 存储器阵列
CN102163576B (zh) * 2011-03-10 2015-02-04 上海华虹宏力半导体制造有限公司 分栅闪存单元及其制造方法
CN102169854B (zh) * 2011-03-10 2015-12-09 上海华虹宏力半导体制造有限公司 分栅闪存单元及其制造方法
CN102270608B (zh) * 2011-09-01 2016-12-28 上海华虹宏力半导体制造有限公司 分栅式闪存制造方法
CN102593158B (zh) * 2012-03-09 2017-12-08 上海华虹宏力半导体制造有限公司 闪存单元结构以及闪存装置
CN103824593B (zh) * 2014-03-07 2017-02-22 上海华虹宏力半导体制造有限公司 闪存单元的操作方法
CN103871465A (zh) * 2014-03-17 2014-06-18 上海华虹宏力半导体制造有限公司 非易失性存储器及其操作方法
CN103886908B (zh) * 2014-03-17 2017-09-29 上海华虹宏力半导体制造有限公司 电可擦除可编程只读存储器的控制方法
CN104934328A (zh) * 2015-06-07 2015-09-23 上海华虹宏力半导体制造有限公司 一种减少闪存制造过程中使用的光罩数量的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729573A (zh) * 2002-12-20 2006-02-01 爱特梅尔股份有限公司 带横向浮置分隔离条的多级存储单元
CN101120416A (zh) * 2004-12-23 2008-02-06 桑迪士克股份有限公司 对非易失性电荷存储存储器单元编程的衬底电子注入技术
CN101312160A (zh) * 2007-05-25 2008-11-26 东部高科股份有限公司 半导体存储装置及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278439A (en) * 1991-08-29 1994-01-11 Ma Yueh Y Self-aligned dual-bit split gate (DSG) flash EEPROM cell
US7071060B1 (en) * 1996-02-28 2006-07-04 Sandisk Corporation EEPROM with split gate source side infection with sidewall spacers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1729573A (zh) * 2002-12-20 2006-02-01 爱特梅尔股份有限公司 带横向浮置分隔离条的多级存储单元
CN101120416A (zh) * 2004-12-23 2008-02-06 桑迪士克股份有限公司 对非易失性电荷存储存储器单元编程的衬底电子注入技术
CN101312160A (zh) * 2007-05-25 2008-11-26 东部高科股份有限公司 半导体存储装置及其制造方法

Also Published As

Publication number Publication date
US20110038214A1 (en) 2011-02-17
CN101465161A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
WO2010081310A1 (zh) 共享字线的分栅式闪存
US8780624B2 (en) Memory array
US7579242B2 (en) High performance multi-level non-volatile memory device
TW200522079A (en) Nonvolatile memory and method of making same
US20070109861A1 (en) Method for operating single-poly non-volatile memory device
CN1967878A (zh) 单层多晶硅非易失性存储器装置的操作方法
WO2006049143A1 (ja) 不揮発性半導体記憶装置およびその書込方法
JP2003332475A (ja) 単層多結晶シリコンによってなる電気的に消去可能なプログラマブル読み出し専用メモリ
CN101419972B (zh) 高效擦写的分栅闪存
CN102456694B (zh) 一种存储器结构
KR100818239B1 (ko) 기계적인 스위치를 이용한 비휘발성 메모리 셀 및 그동작방법
CN101707200A (zh) 共享字线的分栅式闪存
CN101740120A (zh) 一种共享字线的分栅式闪存的编程方法
US10964391B2 (en) Programming circuit and programming method of flash memory and flash memory
CN101866929B (zh) 共享字线的无触点氮化硅分栅式闪存及其制造方法
CN101694844A (zh) 共享字线的基于氮化硅浮栅的分栅式闪存
CN101692452B (zh) 共享存储单元的分栅式闪存
TW200828576A (en) Double-side-bias methods of programing and erasing a virtual ground array memory
CN101694845A (zh) 共享字线的分栅式闪存
CN101794787B (zh) 共享字线的无触点分栅式闪存
CN101692451A (zh) 共享字线的基于多晶硅浮栅的分栅式闪存
CN101866928B (zh) 共享字线的无触点sonos分栅式闪存
CN101819978B (zh) 共享字线的无触点纳米晶分栅式闪存
CN101814510B (zh) 共享字线的无触点sonos分栅式闪存
TWI708397B (zh) 非揮發式記憶體及其操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12988852

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838097

Country of ref document: EP

Kind code of ref document: A1