WO2010081289A1 - 一种常温下脱除气体中的硫化氢的工艺 - Google Patents
一种常温下脱除气体中的硫化氢的工艺 Download PDFInfo
- Publication number
- WO2010081289A1 WO2010081289A1 PCT/CN2009/001597 CN2009001597W WO2010081289A1 WO 2010081289 A1 WO2010081289 A1 WO 2010081289A1 CN 2009001597 W CN2009001597 W CN 2009001597W WO 2010081289 A1 WO2010081289 A1 WO 2010081289A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- hydrogen sulfide
- reactor
- desulfurization
- normal temperature
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/52—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/12—Methods and means for introducing reactants
- B01D2259/126—Semi-solid reactants, e.g. slurries
Definitions
- the invention relates to a process for removing 3 ⁇ 4 hydrogen in a gas under normal temperature and normal pressure, and is a field of gas purification for wet desulfurization. Background technique
- the gas desulfurization method is basically divided into two types, one is dry desulfurization, mainly used in occasions requiring high desulfurization rate, and the other is wet desulfurization, which is mainly used for occasions where the desulfurization precision is not high, but the treatment volume is large. .
- Alcoholamine decalcification is a typical absorption-regeneration process.
- the principle is to absorb H 2 S in the raw material gas (while absorbing C0 2 and other impurities) by using a weakly alkaline aqueous solution (alcoholamine) as an absorbent.
- the aqueous solution (rich solution) in which H 2 S is absorbed is desorbed in a regeneration column at normal pressure after being heated, and the solution is regenerated.
- the regenerated lean liquid is cooled and sent to the absorption tower for recycling.
- the acid gas at the top of the regeneration tower is condensed and separated, and then sent to a sulfur recovery device to recover sulfur.
- the disadvantage of this method is that (1) the alcohol amine compound has a high vapor pressure, so it is easy to be taken away by the purified gas, and the evaporation loss is large; (2) the alcohol amine solution is easy to foam, which causes difficulty in operation and causes processing of the device. Decreased capacity, increased solvent loss and reduced gas purification; (3) No selectivity to acid gases, the same effect on C0 2 ; (4) Desulfurization accuracy is not high.
- the generated gas contains a relatively large amount of H 2 S and a small amount of organic sparse and unsaturated hydrocarbons.
- H 2 S a relatively large amount of H 2 S
- organic sparse and unsaturated hydrocarbons a relatively large amount of organic sparse and unsaturated hydrocarbons.
- the low temperature methanol washing method is one of the physical absorption methods in wet desulfurization.
- the principle is to use C0 2 , H 2 S, organic sulfur, cyanide and unsaturated hydrocarbons can be highly soluble in sterols under high pressure and low temperature. When the pressure is lowered, the characteristics can be desorbed from the sterols, so that the above substances can be removed from the gas. the goal of.
- the process is in the lower part of the absorption tower, the crude gas is washed by -7 (TC sterol solution, C0 2 and H 2 S in the crude gas are absorbed by the solution, and the temperature of the sterol rises, the solution is absorbed by the absorption tower
- the bottom of the column flows out into the upper part of the sterol regeneration column, at which point the pressure is lowered. Due to the pressure drop, some of the C0 2 and H 2 S are desorbed and escape from the top of the column, while the decyl alcohol solution is cooled to -35 °C. In the regeneration tower, as the solution flows downward, the pressure drops to 0.
- the sodium sulfonate disulphide solution method is a chemical absorption method in wet desulfurization.
- the ADA method sodium sulfonate disodium (ADA) solution is added as the de-L agent, which is called the ADA method, wherein the sodium carbonate solution is an absorbent and the sodium sulfonate disodium is used as a catalyst.
- ADA method sodium sulfonate disodium
- vanadate is added to the desulfurizing agent, which is called an improved ADA method.
- the improved ADA method has been in use since the 1960s and is one of the main means of gas desulfurization.
- the process of the modified sodium disulfonate solution method is that gas enters the absorption tower from the bottom of the tower, and the desulfurization solution is sprayed from the top of the tower, and the H 2 S in the gas is absorbed by the solution through gas-liquid countercurrent contact.
- the gas after degassing escapes from the top of the absorption tower, and the solution that absorbs H 2 S exits the bottom of the dewatering tower and enters the reaction tank.
- the solution is reacted, it is sent to the heater for heating and then enters the regeneration tower from the bottom of the regeneration tower.
- air is blown from the bottom of the regeneration tower to regenerate the solution.
- the sulfur foam accumulated in the reaction tank is placed in a collecting tank, and then compressed into a foaming tank by compressed air.
- the disadvantages of this method are as follows: The consumption of sodium carbonate is large, and the sodium carbonate consumed is continuously supplemented, and during the circulation of the solution, sodium thiosulfate and sodium thiocyanate will gradually accumulate, and it has no use value as a waste agent. , 'and will lead to a serious decline in desulfurization effect.
- the sulfolane method is a mixed aqueous solution of sulfolane and alkylalkanol as an adsorbent, and C0 2 or H 2 S
- the acid gas is dissolved in the sulfolane by physical action.
- the solubility of hydrogen sulfide in sulfolane is 7 times higher than in water.
- This method is a physical absorption method in the wet method. Since the solution contains 20-30% ethanolamine, the reaction of ethanolamine with hydrogen sulfide can form an unstable complex, so this absorption method is a comprehensive method of physical absorption and chemical reaction. Under a certain pressure, the ability of sulfolane to absorb acid gases increases as the partial pressure of acid gas increases.
- the operating pressure of the absorption tower of the method is usually 7. OMpa, that is, it needs to be operated under high pressure, so the method is rarely used.
- Se 1 exo 1 method uses polyethylene glycol dicarboxylic acid as an absorbent, and the polyethylene glycol diterpene ether is named Selexol, hence the name. This method has been eliminated because it is absorbed by high pressure operation.
- the wet desilschification in the prior art generally has problems such as harsh desulfurization conditions, complicated process, large consumption of absorbent, high requirements on equipment, and poor desulfurization effect.
- amorphous iron oxyhydroxide can be used as a desulfurizing agent in many literatures, but in the amorphous iron oxyhydroxide desulfurizing agent prepared in the prior art, the content of amorphous iron oxyhydroxide is very low (less than 40%).
- an object of the present invention is to provide a wet stripping method which removes hydrogen sulfide in a gas at normal temperature and pressure and has a simple process, high desulfurization efficiency, and low cost.
- Another object of the present invention is to provide a method for recycling a desulfurizing agent in a process for removing hydrogen sulfide in a gas.
- the following step is a cyclic process comprising: (a) a hydrogen sulfide-containing gas and a suspension containing a desulfurizing agent a step of contacting the liquid in the desulfurization reactor; (b) feeding the waste material containing the desulfurization agent in the step (a) to the regeneration reactor, and introducing the oxygen-containing gas into the a step of oxidizing the waste agent for regeneration; (C) feeding the material containing the regenerated desulfurizing agent in the step (b) to the desulfurization reactor in the step (a) to be in contact with the gas containing hydrogen sulfide
- the step of reacting; before the step) further comprises the step of mixing the gas containing hydrogen and the suspension containing the detergent in a static mixer.
- the desulfurizing agent is a material containing amorphous iron oxyhydroxide, wherein the amorphous hydroxy oxidation
- the iron content is 65-100% by weight, and the remaining components are water and reaction by-products.
- the pH of the material in the regeneration reactor is 6.5-7.5.
- the desulfurizing agent has a particle size of 20 ⁇ m to 160 ⁇ m.
- the oxygen-containing gas is air.
- the above technical solution of the present invention has the following advantages compared with the prior art: (1) The wet desulfurization process for removing hydrogen sulfide in the gas of the present invention, operating at normal temperature and pressure, without auxiliary equipment for cooling or heating The process and the equipment used are simple, compared with the wet desulfurization process in the prior art, the desulfurization principle is different, the energy consumption is reduced, the desulfurization efficiency is improved, and the cost is low; (2) the hydrogen sulfide in the degassing gas of the invention In the wet desulfurization process, a material containing amorphous iron oxyhydroxide is used as a desulfurizing agent, because the content of amorphous iron oxyhydroxide is high, and the content of other non-renewable iron oxides or other crystalline iron oxyhydroxide is low.
- the repeated recycling can be repeatedly used, thereby overcoming the shortcomings of material consumption in the chemical or physical adsorption desulfurization process used in the prior art, saving resources, and also having high desorption speed and high purification degree; (3) the present invention
- the pH of the desulfurization system is stable and maintained at 6.5-7.5. In this pH range, no other forms of sulfide are produced when the waste agent is regenerated by air oxidation.
- FIG 1 is an embodiment of the present invention: Experimental setup of;
- the reference numerals shown in the figure are: 1-regeneration reactor, 2-feed pump, 3-static mixer, 4-desulfurization reactor, 5-outlet pump, 6-air inlet, 7-material inlet, 8- Slurry outlet, 9-hydrogen sulfide-containing gas inlet, 10-purified gas outlet, 11-mud outlet, 12-sampling port, 13-ball condenser.
- the amorphous iron oxyhydroxide has a mass percentage of 85%, the remaining components are Na 2 S0 4 , water and Ti 0 2 (Ti0 2 is an impurity in the industrial FeS0 4 ⁇ 7H 2 0), the amorphous The iron oxyhydroxide has a sulfur capacity of 53%.
- the total Fe content referred to in the examples refers to the total content of iron elements, the Fe 2 7Fe. is determined by the phenanthroline spectrophotometry, and the Na+ content is determined by the flame photometry, the same as in the following examples.
- Process for removing strontium hydrogen from gas Weigh 50 g of the material containing amorphous iron oxyhydroxide having a particle size of 40-160 ⁇ m prepared by the above method, placed in the regeneration reactor 1, and added with 500 ml of water to start stirring. Slurry. The feed pump 2 is started, and the slurry is introduced into the static mixer 3 from the slurry outlet 8 of the regeneration reactor 1 at a flow rate of 1.7 L/h. At the same time, a hydrogen sulfide-containing gas (high-purity nitrogen gas containing 4.0% of fluoridation hydrogen) was introduced through the gas inlet 9 of the static mixer, and the slurry was simultaneously statically mixed at a flow rate of 3 L/h.
- a hydrogen sulfide-containing gas high-purity nitrogen gas containing 4.0% of fluoridation hydrogen
- the gas outlet 10 of the reactor 4 escapes, and the escaping gas is collected or transported to the application site through the sampling port 12, and the collected sample is qualitatively checked for the concentration of hydrogen sulfide by AgN0 3 solution, and the concentration of hydrogen sulfide is quantitatively detected by gas chromatography. Its concentration is 10 ⁇ 50ppm.
- the discharge pump 5 When about 200 ml of slurry is stored in the desulfurization reactor 4, the discharge pump 5 is turned on, adjusted to the same flow rate as the feed pump 2, and the slurry flows out from the mud outlet 1 1 and enters through the spherical condenser 13 and the material inlet 7
- the regeneration reactor 1 then passes compressed air from the air inlet 6 of the regeneration reactor 1 to regenerate the waste agent after the desulfurization reactor 4 is circulated into the regeneration reactor 1 by the amorphous iron oxyhydroxide.
- the regenerated amorphous iron oxyhydroxide enters the static mixer 3 through the slurry outlet 8 (air escapes from the spherical condenser 13), so that the desulfurization cycle begins.
- Example 2 Preparation of a material containing amorphous iron oxyhydroxide: an aqueous solution of Fe(N0 3 ) 2 . 611 2 0 was placed in a reaction kettle, and an aqueous solution prepared by solid NaOH was added under stirring to control NaOH.
- the filter cake was washed with water until the Na + content of the filter cake is less than 0.5 %, then the filter cake is formulated into an aqueous suspension with a solid mass percentage of 10% and oxidized by air until Fe 2 7Fe . a , less than 1%, the material is completely oxidized, filtered, at 70 ° When C is dried, a material containing amorphous iron oxyhydroxide is obtained, wherein the amorphous iron oxyhydroxide has a mass percentage of 100%.
- the amorphous iron oxyhydroxide has a sulfur capacity of 62%.
- the amount of hydroxide to be charged is controlled by controlling the pH of the reaction solution, that is, the feed ratio of the two materials is controlled.
- Process for removing hydrogen sulfide from gas 120 g of amorphous iron oxyhydroxide powder having a particle size of 40-160 ⁇ M prepared by the above method was weighed and placed in a regeneration reactor 1, 60 g ml of water was added thereto, and stirring was started to form a slurry.
- the feed pump 2 is actuated to allow the slurry to enter the static mixer 3 from the slurry outlet 8 of the regeneration reactor at a flow rate of 1.7 L/h, while a gas containing hydrogen sulfide is introduced through the gas inlet 9 of the static mixer (high Pure nitrogen, which contains 4.0% hydrogen sulfide, is passed through the static mixer 3 at a flow rate of 3 L/h, from the static mixer 3, and then into the desulfurization reactor 4, in the desulfurization reactor.
- a gas containing hydrogen sulfide is introduced through the gas inlet 9 of the static mixer (high Pure nitrogen, which contains 4.0% hydrogen sulfide, is passed through the static mixer 3 at a flow rate of 3 L/h, from the static mixer 3, and then into the desulfurization reactor 4, in the desulfurization reactor.
- the hydrogen sulfide and the amorphous iron oxyhydroxide continue to react, and the desulfurized gas after the reaction escapes from the gas outlet 10 of the desulfurization reactor 4, and the escaping gas is collected or transported to the application site through the sampling port 12, and the sample is collected.
- the AgN0 3 solution was used to qualitatively check the concentration of hydrogen sulfide, and the concentration of hydrogen sulfide was quantitatively determined by gas chromatography at a concentration of 30 to 50 ppm.
- the discharge pump 5 When about 200 ml of slurry is stored in the desulfurization reactor 4, the discharge pump 5 is turned on, adjusted to the same flow rate as the feed pump 2, and the slurry is discharged from the slurry outlet 11 and enters through the spherical condenser 13 and the material inlet 7. Regenerating the reactor 1, and then introducing compressed air from the air inlet 6 of the regeneration reactor 1 to regenerate the waste agent after desulfurization of the amorphous iron oxyhydroxide circulated from the desulfurization reactor 4 into the regeneration reactor 1, after regeneration The amorphous iron oxyhydroxide pass slurry outlet 8 enters the static mixer 3 (air escapes from the spherical condenser 13), so that the desulfurization cycle begins.
- Example 3 Preparation of a material containing amorphous iron oxyhydroxide: K0H was placed in an autoclave, and a solid aqueous solution of FeC U was added under stirring to maintain the reaction temperature by controlling the feed rate of the FeCl 2 solution. 5%, and then the filter cake is solid-quality. The filter cake is washed with water until the content of lanthanum in the filter cake is less than 0.5%.
- Process for removing hydrogen sulfide from gas 20 g of the material containing amorphous iron oxyhydroxide having a particle size of 40-160 ⁇ prepared by the above method is weighed and placed in the regeneration reactor 1, and 10 kg of water is added to start stirring. Slurry.
- the feed pump 2 is actuated to allow the slurry to enter the static mixer 3 from the slurry outlet 8 of the regeneration reactor 1 at a flow rate of 1.7 L/h, while a gas containing strontium hydrogen is introduced through the gas inlet 9 of the static mixer ( High-purity nitrogen gas, which contains 4.0% hydrogen sulfide, is passed through the static mixer 3 at a flow rate of 3 L/h and passed through the static mixer 3, and then enters the desulfurization reactor 4, at The hydrogen sulfide in the desulfurization reactor 4 reacts with the amorphous iron oxyhydroxide, and the desulfurized gas after the reaction escapes from the gas outlet 10 of the desulfurization reactor 4, and the escaped gas is collected or transported to the application site through the sampling port 12, and collected.
- High-purity nitrogen gas which contains 4.0% hydrogen sulfide
- the sample was qualitatively inspected for hydrogen sulfide concentration by AgN0 3 solution, and the concentration of hydrogen sulfide was quantitatively determined by gas chromatography at a concentration of 100 to 150 ppm.
- the discharge pump 5 is turned on, adjusted to the same flow rate as the feed pump 2, and the slurry is discharged from the slurry outlet 11 and passed through the spherical condenser 13 and the material inlet. 7 entering the regeneration reactor 1, and then introducing compressed air from the air inlet 6 of the regeneration reactor 1 to regenerate the waste agent after desulfurization of the amorphous iron oxyhydroxide circulated from the desulfurization reactor 4 into the regeneration reactor 1.
- the regenerated amorphous iron oxyhydroxide enters the static mixer 3 through the slurry outlet 8 (air escapes from the spherical condenser 13), so that the desulfurization cycle begins.
- the feed pump 2 and the discharge pump 5 are connected to another regeneration reactor, and the cycle is continued, and the original The sulfur in the regeneration reactor 1 is separated and then used. 5 ⁇ The pH of the slurry is maintained between 6. 5-7.
- Example 4 Preparation of a material containing amorphous iron oxyhydroxide: A solid FeCl 2 was placed in an aqueous solution, and a solid Ca (OH) was introduced under stirring.
- the sulfur content of the amorphous iron oxyhydroxide is 50%, wherein the content of C 1 - is determined by the mercury thiocyanate colorimetric method.
- the process of removing hydrogen halide from the gas 5 g of the particle size prepared by the above method is weighed 40 - 160 ⁇ ⁇ of the material containing amorphous iron oxyhydroxide is placed in the regeneration reactor 1 and 5 rpm water is added to start stirring to form a slurry.
- the feed pump 2 is actuated to bring the slurry from the slurry outlet 8 of the regeneration reactor 1 to 0.
- the discharge pump 5 When the desulfurization reactor 4 stores about 200nil of mud , the discharge pump 5 is turned on, adjusted to the same flow rate as the feed pump 2, the mud is discharged from the mud outlet 11 and passed through the spherical condenser 13 and the material inlet 7 into the regeneration reactor 1, and then from the regeneration reaction
- the air inlet 6 of the device 1 is supplied with compressed air to regenerate the waste agent after desulfurization of the amorphous iron oxyhydroxide which is circulated from the desulfurization reactor 4 into the regeneration reactor 1, and the amorphous hydroxy oxidation after regeneration Through the slurry outlet 8 into the static mixer 3 (air escapes from the spherical condenser 13), the desulfurization cycle begins.
- the feed pump 2 and the discharge pump 5 are connected to another regeneration reactor, and the circulation is continued, and the sulfur in the original regeneration reactor 1 is separated and then used. In the above cycle, the regeneration reaction is carried out. 5 ⁇
- the pH of the slurry is between 6. 5-7.
- the sulfur capacity of the material containing amorphous iron oxyhydroxide in the above examples is determined by the following method: at normal temperature (refer to ambient temperature, usually -5 ° C to 45 ° C) at atmospheric pressure (ambient pressure, usually 1 atm) The evaluation test was carried out using a standard gas containing H 2 S of 40,000 ⁇ .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Industrial Gases (AREA)
Description
一种常温下脱除气体中的硫化氢的工艺 技术领域
本发明涉及一种在常温常压下脱除气体中的¾化氢的工艺, 为湿法脱 硫, 属于气体净化领域。 背景技术
气体脱硫方法基本上分为两类, 一类为干法脱硫, 主要用于需要较高脱 硫率的场合, 一为湿法脱硫, 主要用于脱硫精度要求不高, 但处理量很大的 场合。
湿法脱石克在不同的行业所用的脱^ L方法也不尽相同。 在炼油行业最常用的方法为醇胺法。 醇胺法脱石克是一种典型的吸收-再生 反应过程。 其原理为以弱碱性水溶液(醇胺类) 为吸收剂, 在吸收塔内吸收 原料气中的 H2S (同时吸收 C02和其它含^ L杂质)。 吸收了 H2S的水溶液(富液) 经升温后在常压的再生塔内解吸, 溶液再生。 再生后的贫液经冷却后送吸收 塔循环使用, 再生塔顶的酸性气体经冷凝分液后送硫回收装置回收硫碌。 该方法存在的缺点是(1 )醇胺类化合物蒸气压高, 因此易被净化后的气 体带走, 蒸发损失大; (2 ) 醇胺类溶液易于发泡, 造成操作困难, 使装置的 处理能力下降, 增加溶剂损失和降低气体净化度; ( 3 )对酸性气体无选择性, 对 C02有同样的作用; ( 4 )脱硫精度不高。
在以煤为原料生产煤气的过程中, 所产生的气体中含有较大量的 H2S及少 量的有机疏和不饱和烃, 以下为常用的几种湿法脱疏方法。
1.低温曱醇洗涤法
低温甲醇洗涤法属于湿法脱硫中的物理吸收法之一。 其原理是利用 C02、
H2S、 有机硫、 氰化物和不饱和烃等物质在高压低温下能高度溶解于曱醇, 当. 压力降低又能从曱醇中解吸出来的特性, 从而达到从煤气中脱除上述物质的 目的。 其工艺流程为在吸收塔的下段, 粗煤气被- 7 (TC的曱醇溶液洗涤, 粗煤 气中的 C02和 H2S被溶液吸收, 而曱醇的温度上升, 此溶液由吸收塔的塔底流出 进入曱醇再生塔的上部, 此时压力降低, 由于压力的降低, 部分 C02和 H2S被解 吸出来, 并从塔顶逸出, 同时曱醇溶液被冷却至 -35 °C左右。 在再生塔中, 随 着溶液的向下流动, 压力降至 0. 02Mpa, 被解吸出来的 C02和 H2S由真空泵抽出, 同时甲醇溶液被冷却至 -7 (TC, 再用泵送至吸收塔下段的顶部循环使用。 该方法的缺点为: 需要在低温高压条件下操作, 工艺复杂, 且对设备的 材质要求很高, 曱醇溶液的损失大。
2.改良蒽醌二磺酸钠法
蒽醌二磺酸钠溶液法属于湿法脱硫中的化学吸收法。 在稀碳酸钠溶液中 只添加蒽醌二磺酸钠 (ADA ) 溶液作为脱^ L剂的, 称为 ADA法, 其中碳酸钠溶 液为吸收剂, 蒽醌二磺酸钠为催化剂。 为了提高反应速度, 在脱硫剂中再加 入一定量钒酸盐的, 称为改良 ADA法。 改良的 ADA法自 20世纪 60年代即开始使 用, 它是煤气脱硫的主要手段之一。
改良蒽醌二磺酸钠溶液法的工艺流程为, 煤气由塔底进入吸收塔, 脱硫 溶液由塔顶喷入, 通过气-液逆流接触, 煤气中的 H2S被溶液吸收。 脱^ L后的煤 气由吸收塔顶逸出, 吸收了 H2S的溶液从脱疏塔底出来进入反应槽。 溶液经过 反应后, 再送入加热器加热后, 由再生塔底部进入再生塔。 同时, 由再生塔 底部鼓入空气, 以使溶液得到再生。 溶液再生后送入吸收塔循环使用, 反应 槽中积累的硫泡沫放入收集槽, 再用压缩空气将其压入疏泡沫槽。
该方法存在的缺点为: 碳酸钠消耗大, 要不断补充消耗的碳酸钠, 且在 溶液的循环过程中, 硫代硫酸钠和硫氰酸钠会逐渐积累增多, 其作为废剂没 有任何利用价值, '且会导致脱硫效果严重下降。
3.环丁石风法 环丁砜法是采用环丁砜和烷基醇胺的混合水溶液作为吸附剂, 将 C02或 H2S
等酸性气体通过物理作用溶解于环丁砜中。 在相同的条件下, 硫化氢在环丁 砜中的溶解度比在水中高 7倍。 此种方法属于湿法中的物理吸收法。 由于溶液 中含有 20-30%的乙醇胺, 乙醇胺与硫化氢反应又可以生成不稳定的络合物, 所以此种吸收法又是物理吸收和化学反应的综合方法。 在一定的压力下, 环 丁砜吸收酸性气体的能力随酸性气体的分压升高而增加。
该方法吸收塔的操作压力通常为 7. OMpa , 即需要在高压下操作, 所以很 少用该方法
4. Se lexol法
所谓 Se 1 exo 1法是采用聚乙二醇二曱酸作为吸收剂, 而聚乙二醇二曱醚的 商品名 为 Selexol , 故此得名。 该方法由于采用高压操作来吸收, 故此法目 前已被淘汰。
综上所述, 现有技术中的湿法脱石克普遍存在脱硫条件苛刻, 工艺复杂, 吸收剂消耗大, 对设备要求高且脱硫效果差等问题。 另外, 无定形羟基氧化 铁可以作为脱硫剂许多文献中都提到过, 但是现有技术中所制备的无定形羟 基氧化铁脱硫剂中, 无定形羟基氧化铁的含量很低(低于 40% ), 而其它不能 再生的铁的氧化物如四氧化三铁、 三氧化二铁或其它晶态的羟基氧化铁的含 量高, 导致这些无定形氧化铁脱硫剂产品无法再生, 不适合湿法循环脱硫。 , 发明内容
为此,本发明的目的在于提供一种在常温常压下脱除气体中的硫化氢且 工艺简单、 脱硫效率高、 成本低的湿式脱疏方法。 本发明的另一个目的在于提供在所述脱除气体中的硫化氢的工艺中脱 硫剂循环再生重复使用的方法。 为解决上述技术问题, 本发明的一种在常温下脱除气体中的硫化氢的湿 式脱硫方法, 以下步骤是一个循环的过程, 包括: (a )含硫化氢的气体与 含脱硫剂的悬浮液在脱硫反应器中接触反应的步骤; (b )将步骤(a ) 中含所 述脱硫剂脱硫后的废剂的物料送入再生反应器中, 通入含氧气的气体对所述
废剂进行氧化使其再生的步骤; (C)将步骤(b) 中含再生后的脱硫剂的物料 送入步骤(a)中的所述脱硫反应器,使其与含硫化氢的气体接触反应的步骤; 在所述步骤 )之前还包括将含 u化氢的气体和含脱¾剂的悬浮液在静 态混合器中混合的步骤。 还包括从再生反应器中分出再生所述废剂时所生成 的单质硫的步骤。 在所述步骤(a) 中, 所述悬浮液中脱硫剂和水的质量比 为 1: 100至 1: 5„ 所述脱硫剂为含无定形羟基氧化铁的物料, 其中, 无定形 羟基氧化铁的质量百分含量为 65-100%, 其余组分为水和反应副产物。
。无定形羟基氧化铁脱硫及再生的原理为: 2FeOOH+3H2S = Fe2S3 ·Η20+3Η20, Fe2S3 · H20+3/202 = 2Fe00II+3So 所述再生反应器中物料的 PH为 6.5-7.5。 在所述步骤( a )中, 所述脱硫 剂的粒度为 20μπι至 160μηι。在所述步骤( b )中, 所述含氧气的气体为空气。 本发明的上述技术方案与现有技术相比具有以下优点:(1)本发明的脱除 气体中的硫化氢的湿法脱硫工艺, 在常温常压下操作, 不需要制冷或加热的 辅助设备, 工艺及所用设备简单, 与现有技术中的湿法脱硫工艺相比, 脱硫 原理不同, 降低了能耗, 提高了脱硫效率且成本低; (2)本发明的脱除气体 中的硫化氢的湿法脱硫工艺中,采用含无定形羟基氧化铁的物料作为脱硫剂, 因其中无定形羟基氧化铁含量高, 其它不能再生的铁的氧化物或其它晶态的 羟基氧化铁的含量低, 因此可以反复再生重复循环使用, 因此克服了现有技 术所用的化学或物理吸附脱硫工艺所存在的物料消耗大的缺点,节约了资源,' 而且脱 速度快, 净化度高; (3)本发明的脱硫体系的 PH值稳定, 保持在 6.5-7.5, 在该 PH范围内, 用空气氧化再生所述废剂时不产生其它形态的硫 化物和各种硫酸的盐类等杂质, 有利于所述废剂的再生以及整个循环工艺; ( 4 )本发明的脱除气体中的硫化氢的工艺,所述悬浮液中脱硫剂和水的质量 比为 1: 100至 1: 5, 在该比例范围内循环脱^ L工艺的脱石充速度快, 且净化 度高; (5 ) 本发明的所述脱硫剂的粒度优选 20 μηι至 160 μηι, 在该范围内, 所述脱石克剂脱石巟效率高, 而且再生速度和效率也高。 附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施 例并结合附图, 对本发明作进一步详细的说明。 首先对附图进行简要说明, 其中:
图 1是本发明实施例 :的实验装置图;
图中所示附图标记分别为: 1-再生反应器、 2-进料泵、 3-静态混合器、 4-脱硫反应器、 5-出料泵、 6-空气入口、 7-物料入口、 8-浆液出口、 9-含硫 化氢的气体入口、 10-净化后气体出口、 11 -泥浆出口、 12-采样口、 13-球形 冷凝管。
具体施 方 实施例 1 含无定形羟基氧化铁的物料制备: 将 456克 FeS04 . 7H20配成水溶液置于反应釜中, 在搅拌条件下加入 135 克固体 NaOH所配成的水溶液, 通过控制 NaOH溶液的加料速度使反应温度不 超过 70 °C,反应结束后,过滤,滤饼用水洗,直至滤饼中 Na+的含量小于 0. 5%, 然后将所述滤饼配成固体质量百分含量为 30%的水悬浮液,并通入空气进行氧 化, 直至 Fe27Fe .¾小于 1%则物料氧化完全, 过滤, 在 90°C时干燥, 即得到含 无定形羟基氧化铁的物料, 其中无定形羟基氧化铁的质量百分含量为 85%, 其 余组分为 Na2S04,水和 Ti 02 ( Ti02为工业 FeS04 · 7H20中的杂质), 所述无定形 羟基氧化铁的硫容为 53%。 实施例中所说的 Fe 总指的是铁元素的总含量, Fe27Fe .的测定采用邻菲啰啉分光光度法, Na+含量的测定采用火焰光度法, 以下实施例同。 脱除气体中石克化氢的工艺: 称取 50克用上述方法制备的粒度为 40-160 μ m的含无定形羟基氧化铁的 物料置于再生反应器 1中, 加入 500ml水, 开始搅拌生成浆液。 开动进料泵 2 使浆液从再生反应器 1的浆液出口 8以 1. 6L/h的流动速度进入静态混合器 3 ,
同时通过静态混合器的气体入口 9通入含硫化氢的气体(高纯氮气, 其中含 4. 0%的石克化氢),使其以 3L/h的流速与所述浆液同时通过静态混合器 3 (这时 脱 H2S反应已开始), 从静态混合器 3 出来后进入脱硫反应器 4, 在脱石克反应 器 4 中硫化氢和无定形羟基氧化铁继续进行反应, 反应后的脱硫气体从脱硫
、
反应器 4的气体出口 10逸出, 逸出的气体通过采样口 12收集或输送到其应 用场所, 采集样本通过 AgN03溶液定性检查硫化氢的浓度, 并用气相色谱法定 量检测硫化氢的浓度,其浓度为 1 0 ~ 50ppm 。当脱硫反应器 4中储存约 200ml 泥浆时, 开启出料泵 5 , 调整为与进料泵 2相同的流速, 使所述泥浆从泥浆出 口 1 1流出并通过球形冷凝管 13及物料入口 7进入所述再生反应器 1 ,然后从 再生反应器 1的空气入口 6通入压缩空气, 使从脱硫反应器 4循环进入所述 再生反应器 1 的无定形羟基氧化铁脱石直后的废剂再生, 再生后的无定形羟基 氧化铁通过浆液出口 8进入静态混合器 3 (空气从球形冷凝管 13逸出), 这样 脱石克循环就开始了。 待所述再生反应器 1 中废剂再生时所生成的单质石充接近 150克时,将所述进料泵 2和出料泵 5连接到另外的再生反应器上,继续循环, 而将原来的再生反应器 1 :中的硫分出后再继续使用。 在上述循环工艺中, 再 生反应器中浆液的 PH保持在 6. 5-7. 5之间。 实施例 2 含无定形羟基氧化铁的物料的制备: 将 Fe ( N03 ) 2 . 61120配成水溶液置于反应釜中, 在搅拌条件下加入用固体 NaOH 配成的水溶液, 通过控制 NaOH 溶液的加料速度使反应温度保持在 30-40 °C , 并控制反应终点时溶液的 PH=7. 5, 过滤所述溶液, 滤饼用水洗, 直 至滤饼中 Na+的含量小于 0. 5%, 然后将所述滤饼配成固体质量百分含量为 10% 的水悬浮液, 并通入空气进行氧化, 直至 Fe27Fe .a、小于 1%则物料氧化完全, 过滤, 在 70 °C时干燥, 即得到含无定形羟基氧化铁的物料, 其中无定形羟基 氧化铁的质量百分含量为 100%。 所述无定形羟基氧化铁的硫容为 62% 。 在本实施例中通过控制反应溶液的 PH值来控制所投入的氢氧化物的量, 也就是控制两种物料的加料比。
脱除气体中硫化氢的工艺: 称取 120克用上述方法制备的粒度为 40-160 μ ΐΏ的无定形羟基氧化铁粉 置于再生反应器 1中, 加入 60Gml水, 开始搅拌生成浆液。 开动进料泵 2使 浆液从再生反应器. 1的浆液出口 8以 1. 6L/h的流动速度进入静态混合器 3 , 同时通过静态混合器的气体入口 9 通入含硫化氢的气体(高纯氮气, 其中含 4. 0%的硫化氢), 使其以 3L/h的流速与所述浆液同时通过静态混合器 3 , 从静 态混合器 3出来后进入脱硫反应器 4,在脱硫反应器 4中硫化氢和无定形羟基 氧化铁继续进行反应,反应后的脱硫气体从脱硫反应器 4的气体出口 10逸出, 逸出的气体通过采样口 12收集或输送到其应用场所, 采集样本通过 AgN03溶 液定性检查硫化氢的浓度, 并用气相色谱法定量检测硫化氢的浓度, 其浓度 为 30 ~ 50ppm。 当脱硫反应器 4中储存约 200ml泥浆时, 开启出料泵 5 , 调整 为与进料泵 2相同的流速, 使所述泥浆从泥浆出口 11流出并通过球形冷凝管 13及物料入口 7进入所述再生反应器 1, 然后从再生反应器 1的空气入口 6 通入压缩空气, 使从脱硫反应器 4循环进入所述再生反应器 1的无定形羟基 氧化铁脱硫后的废剂再生, 再生后的无定形羟基氧化铁通 ^浆液出口 8 进入 静态混合器 3 (空气从球形冷凝管 1 3逸出), 这样脱硫循环就开始了。 待所述 再生反应器 1 中废剂再生时所生成的单质硫约 300克时, 将所述进料泵 1和 出料泵 5 连接到另外的再生反应器上, 继续循环, 而将原来的再生反应器 1 中的硫分出后再继续使用。 在上述循环工艺中, 再生反应器中浆液的 PH保持 在 6. 5-7. 5之间。 实施例 3 含无定形羟基氧化铁的物料的制备: 将 K0H配成水溶液置于反应釜中,在搅拌条件下加入固体 FeC U 成的水 溶液, 通过控制 FeCl2溶液的加料速度使反应温度保持在 40-50°C, 并控制反 应终点时溶液的 ΡίΙ=8, 过滤所述溶液, 滤饼用水洗, 直至滤饼中 Γ的含量小 于 0. 5%, 然后将所述滤饼配成固体质量百分含量为 15%的水悬浮液, 并通入 空气进行氧化, 直至 Fe Fe总小于 1%则物料氧化完全, 过滤,在 6 CTC时干燥,
即得到含无定形羟基氧化铁的物料, 所述物料中无定形羟基氧化铁的质量百 分含量为 92%, 其余组分为 KC1 , 水及未知杂质 , 所述无定形羟基氧化铁的 硫容为 57% 。 其中 K+含量的测定采用火焰光度法, 以下实施例同。 脱除气体中硫化氢的工艺: 称取 20克用上述方法制备的粒度为 40-160 μ ηι的含无定形羟基氧化铁的 物料置于再生反应器 1中, 加入 l OGGml水, 开始搅拌生成浆液。 开动进料泵 2使浆液从再生反应器 1的浆液出口 8 以 1. 6L/h的流动速度进入静态混合器 3 , 同时通过静态混合器的气体入口 9通入含石克化氢的气体(高纯氮气, 其中 含 4. 0%的硫化氢), 使其以 3L/h的流速与所述浆液同时通过静态混合器 3, 从静态混合器 3出.来后进入脱硫反应器 4,在脱硫反应器 4中硫化氢和无定形 羟基氧化铁进行反应,反应后的脱硫气体从脱硫反应器 4的气体出口 10逸出, 逸出的气体通过采样口 12收集或输送到其应用场所, 采集样本通过 AgN03溶 液定性检查硫化氢的浓度, 并用气相色谱法定量检测硫化氢的浓度, 其浓度 为 100 ~ 150ppm。 当脱石克反应器 4中储存约 200ml泥浆时, 开启出料泵 5 , 调 整为与进料泵 2相同的流速, 使所述泥浆从泥桨出口 11流出并通过球形冷凝 管 13及物料入口 7进入所述再生反应器 1, 然后从再生反应器 1的空气入口 6通入压缩空气,使从脱硫反应器 4循环进入所述再生反应器 1的无定形羟基 氧化铁脱硫后的废剂再生, 再生后的无定形羟基氧化铁通过浆液出口 8 进入 静态混合器 3 (空气从球形冷凝管 1 3逸出), 这样脱硫循环就开始了。 待所述 再生反应器 1中废剂再生时所生成的单质硫约 60克时, 将所述进料泵 2和出 料泵 5连接到另外的再生反应器上, 继续循环, 而将原来的再生反应器 1 中 的硫分出后再继续使用。 在上述循环工艺中, 再生反应器中浆液的 PH保持在 6. 5-7. 5之间。 实施例 4 含无定形羟基氧化铁的物料的制备: 将固体 FeC l2配成水溶液置于反应釜中, 在搅拌条件下投入固体 Ca ( OH )
2 , 通过控制固体 Ca ( OH ) 2的加料速度使反应温度保持在 40- 5 (TC , 并控制反 应终点时溶液的 PH=8, 过滤所述溶液, 滤饼用水洗, 直至滤饼中 C 1—的含量小 于 0. 5%,然后将所述滤饼配成固体含量为 5%的悬浮液,并通入空气进行氧化, 直至 Fe2+/Fe .小于 1%则物料氧化完全, 过滤, 在 80°C时干燥, 即得到含无定 形羟基氧化铁的物料, 所述物料中无定形羟基氧化铁的质量百分含量为 80%, 其余组分为 CaC l ^p水,。所述无定形羟基氧化铁的硫容为 50% 。其中 C 1— 的含量通过硫氰酸汞比色方法测定。 脱除气体中 υ化氢的工艺: 称取 5克用上述方法制备的粒度为 40- 160 μ ΐΏ的含无定形羟基氧化铁的 物料置于再生反应器 1中, 加入 5 QQml水, 开始搅拌生成浆液。 开动进料泵 2 使浆液从再生反应器 1的浆液出口 8以 0. 8L/h的流动速度进入静态混合器 3, 同时通过静态混合器的气体入口 9 通入含硫化氢的气体(高纯氮气, 其中含 4. 0%的硫化氢), 使其以 lL/h的流速与所述浆液同时通过静态混合器 3 , 从静 态混合器 3出来后进入脱硫反应器 4,在脱硫反应器 4中硫化氢和无定形羟基 氧化铁继续进行反应,反应后的脱硫气体从脱硫反应器 4的气体出口 1 0逸出, 逸出的气体通过采样口 12收集或输送到其应用场所, 采集样本通过 AgN03溶 液定性检查硫化氢的浓度, 并用气相色谱法定量检测硫化氢的浓度, 其浓度 为 200 ~ 250ppm 。 当脱硫反应器 4中储存约 200nil泥浆时, 开启出料泵 5 , 调整为与进料泵 2相同的流速, 使所述泥浆从泥浆出口 11流出并通过球形冷 凝管 1 3及物料入口 7进入所述再生反应器 1, 然后从再生反应器 1的空气入 口 6通入压缩空气, 使从脱石 反应器 4循环进入所述再生反应器 1的无定形 羟基氧化铁脱硫后的废剂再生, 再生后的无定形羟基氧化铁通过浆液出口 8 进入静态混合器 3 (空气从球形冷凝管 1 3逸出), 这样脱硫循环就开始了。 待 所述再生反应器 1中廈剂再生时所生成的单质硫约 15克时, 将所述进料泵 2 和出料泵 5连接到另外的再生反应器上, 继续循环, 而将原来的再生反应器 1 中的硫分出后再继续使用。 在上述循环工艺中, 再生反应器中浆液的 PH保持 在 6. 5-7. 5之间。
以上实施例中含无定形羟基氧化铁的物料的硫容通过以下方法测定: 在 常温(指环境温度, 通常为 - 5 °C至 45 °C)常压(环境压力, 通常为 1大气压)下, 用含 H2S为 40000ρρηι的标准气进行评价测试。 所用仪器为国产 WK- 2C综合微 库仑仪(江苏电分析仪器厂生产)进行检测, 该仪器的最低检测量为 0. 2ppm。 需要指出的是, 实现本发明目的的装置不局限于以上实施例中所使用的, 现有技术中任何可以实现本发明各个步骤的目的的装置, 都是可以的。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式 的限定。对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做 出其它不同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷 之中。
Claims
1. 一种在常温下脱除气体中的克化氢的湿式脱^ <方法, 其特征在于以 下步骤是一个循环的过程, 包括:
( a ),含硫化氢的气体与含脱硫剂的悬浮液在脱硫反应器(4 ) 中接触反 应的步骤; ·
( b ) .将所述步骤(a)中含所述脱硫剂脱硫后生成的废剂的物料送入再生 反应器 (1 ) 中, 通入含氧气的气体对所述廈剂进行氧化使其再生的步骤;
( c ).将所述步骤(b)中含再生后的脱硫剂的物料送入步骤(a)中的所述脱 疏反应器(4 ), 使其与含硫化氢的气体接触反应的步骤;
2. 根据权利要求 1 所述的在常温下脱除气体中的硫化氢的方法, 其特 征在于: 在所述步骤(a)之前还包括将含硫化氢的气体和含脱硫剂的悬浮液在 静态混合器 (3 ) 中混合的步骤。
3. 根据权利要求 1 所述的在常温下脱除气体中的硫化氢的方法, 其特 征在于:在所述步骤(a)中,所述悬浮液中脱硫剂和水的质量比为 1 : 100至 1 : 5。
4. 根据权利要求 1-3 中任意一项所述的在常温下脱除气体中的硫化氢 的方法, 其特征在于: 所述脱硫剂为含无定形羟基氧化铁的物料。
5. 根据权利要求 4 所述的方法, 其特征在于: 所述物料中无定形羟基 氧化铁的质量百分含量为 65-100%, 其余组分为水和反应副产物。。
6. 居权利要求 4或 5所述的方法, 其特征在于: 所述步骤中还包括 从再生反应器 (1 ) 中分出再生所述废剂时所生成的单质硫的步骤。
7. 根据权利要求 1 所述的在常温下脱除气体中的硫化氢的方法, 其特 征在于: 所述再生.反应器中物料的 PH为 6. 5-7. 5。
8. 根据权利要求 1 所述的在常温下脱除气体中的硫化氢的方法, 其特 征在于: 在所述步骤( a ) 中, 所述脱石克剂的粒度为 20 μ m至 160 μ m。
9. 根据权利要求 1-8 中任意一项所述的在常温下脱除气体中的石克化氢 的方法, 其特征在于:—在所述步骤 (b)中., 所述含氧气的气体为空气。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09838076.9A EP2383030B1 (en) | 2008-12-30 | 2009-12-30 | Method for removing h2s from gaseous stream at normal temperature |
EA201170839A EA019826B1 (ru) | 2008-12-30 | 2009-12-30 | Способ удаления сероводорода из газа при нормальной температуре |
US13/172,898 US8591847B2 (en) | 2008-12-30 | 2011-06-30 | Method for removing hydrogen sulfide from gaseous stream at normal temperature |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102475404A CN101766946B (zh) | 2008-12-30 | 2008-12-30 | 一种常温下脱除气体中的硫化氢的工艺 |
CN200810247540.4 | 2008-12-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/172,898 Continuation US8591847B2 (en) | 2008-12-30 | 2011-06-30 | Method for removing hydrogen sulfide from gaseous stream at normal temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010081289A1 true WO2010081289A1 (zh) | 2010-07-22 |
Family
ID=42339397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/001597 WO2010081289A1 (zh) | 2008-12-30 | 2009-12-30 | 一种常温下脱除气体中的硫化氢的工艺 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8591847B2 (zh) |
EP (1) | EP2383030B1 (zh) |
CN (1) | CN101766946B (zh) |
EA (1) | EA019826B1 (zh) |
WO (1) | WO2010081289A1 (zh) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101898108B (zh) * | 2009-05-31 | 2013-10-16 | 北京三聚环保新材料股份有限公司 | 一种可重复再生利用的脱硫剂及其制备方法以及再生方法 |
EP2383036B1 (en) * | 2008-12-30 | 2018-01-24 | Beijing Sanju Environmental Protection and New Material Co., Ltd. | Method for regenerating amorphous iron oxyhydroxide and desulfurizer containing amorphous iron oxyhydroxide as active component |
EA033886B1 (ru) | 2008-12-30 | 2019-12-05 | Беиджинг Санджу Энвиронмент Протекшин Энд Нью Материал Ко., Лтд. | Способ получения состава, содержащего аморфный гидрат окиси железа |
US8404031B1 (en) | 2009-10-06 | 2013-03-26 | Michael Callaway | Material and method for the sorption of hydrogen sulfide |
US8759252B1 (en) | 2010-10-06 | 2014-06-24 | Michael D. and Anita Kaye | Material and method for the sorption of hydrogen sulfide |
CN103183388B (zh) * | 2011-12-29 | 2016-01-06 | 北京三聚环保新材料股份有限公司 | 一种制备磁性氧化铁的方法 |
CN103183387B (zh) * | 2011-12-29 | 2016-04-13 | 北京三聚环保新材料股份有限公司 | 一种制备无定形羟基氧化铁的方法 |
CN103212293B (zh) * | 2012-01-19 | 2015-10-14 | 北京三聚环保新材料股份有限公司 | 一种以羟基氧化铁为活性组分的脱硫剂的再生方法 |
CA2909345A1 (en) * | 2013-04-15 | 2014-10-23 | Siemens Aktiengesellschaft | Absorption medium, process for producing an absorption medium, and also process and apparatus for separating hydrogen sulfide from an acidic gas |
CN103601262B (zh) * | 2013-10-24 | 2016-05-25 | 北京师范大学 | 一种利用给水厂污泥去除废水中硫化氢的吸附柱方法 |
CN104548906B (zh) * | 2013-10-24 | 2017-02-15 | 中国石油化工股份有限公司 | 一种含硫化氢气体的净化方法 |
CN103752163B (zh) * | 2013-12-30 | 2015-06-03 | 福建三聚福大化肥催化剂国家工程研究中心有限公司 | 一种复配型脱硫浆液及其制备方法 |
CN103952200B (zh) * | 2014-04-15 | 2016-06-22 | 天津大学 | 一种沼气脱硫化氢的方法及装置 |
CN105688643A (zh) * | 2016-02-23 | 2016-06-22 | 北京三聚环保新材料股份有限公司 | 一种氧化锌湿法脱硫与再生方法 |
CN108686488B (zh) * | 2017-04-12 | 2021-01-01 | 北京华石联合能源科技发展有限公司 | 一种悬浮床湿法脱硫及再生一体化系统 |
CN108686487B (zh) * | 2017-04-12 | 2021-01-01 | 北京华石联合能源科技发展有限公司 | 一种悬浮床与固定床的组合脱硫工艺 |
CN108686485B (zh) * | 2017-04-12 | 2020-11-10 | 北京华石联合能源科技发展有限公司 | 一种可再生的高效悬浮床脱硫工艺 |
CN108686486B (zh) | 2017-04-12 | 2021-01-15 | 北京华石联合能源科技发展有限公司 | 一种可再生的悬浮床湿法脱硫工艺 |
CN108686489B (zh) | 2017-04-12 | 2021-01-01 | 北京华石联合能源科技发展有限公司 | 一种悬浮床湿法脱硫工艺 |
CN107831267A (zh) * | 2017-10-12 | 2018-03-23 | 中国海洋石油总公司 | 一种液体脱硫剂室内评价装置及其评价方法 |
CN108970380B (zh) * | 2018-09-07 | 2023-07-21 | 宜宾丝丽雅股份有限公司 | 一种以连续氧化除去废气中硫化氢的方法及装置 |
CN114452766A (zh) * | 2020-10-21 | 2022-05-10 | 中国石油化工股份有限公司 | 一种硫析出装置、含硫废气的处理系统及处理方法 |
CN113247982B (zh) * | 2021-06-07 | 2021-09-17 | 赛恩斯环保股份有限公司 | 一种高硫废水资源化处理方法及其系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105143A (zh) * | 1985-08-23 | 1987-04-22 | 国际壳牌研究有限公司 | 从酸气流中除去硫化氢的方法 |
JPH06262066A (ja) * | 1993-03-15 | 1994-09-20 | Cosmo Sogo Kenkyusho:Kk | 硫化水素吸着剤及びその製造方法並びにガス中の硫化水素除去方法及び除去装置 |
CN101070491A (zh) * | 2006-05-09 | 2007-11-14 | 山东科技大学 | 一种常、低、中温脱硫剂活性组分制备方法 |
CN101134918A (zh) * | 2006-08-28 | 2008-03-05 | 北京三聚环保新材料有限公司 | 具有高硫容的脱硫剂活性组分及其制备方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE565937A (zh) * | 1957-03-27 | 1900-01-01 | ||
JPS5939345A (ja) | 1982-08-30 | 1984-03-03 | Ishikawajima Harima Heavy Ind Co Ltd | 石炭ガス化ガスの脱硫方法 |
JPS6262066A (ja) * | 1985-09-11 | 1987-03-18 | ロング−チヤオ チユアング | 配管流通経路超流量自動制御装置 |
CN1006933B (zh) | 1987-10-24 | 1990-02-21 | 国家机械工业委员会沈阳真空技术研究所 | 闭式真空热风干燥系统 |
DK70693D0 (da) * | 1993-06-14 | 1993-06-14 | Niels Ole Vesterager | Fremgangsmaade til fjernelse af uoenskede stoffer i en gasart |
CN1121950A (zh) | 1994-10-25 | 1996-05-08 | 上海市煤气公司研究所 | 干式成型脱硫剂及其制备和用途 |
CN1114462A (zh) | 1994-11-17 | 1996-01-03 | 白村 | 高放大因数μ冷阴极真空器件 |
GB9507393D0 (en) | 1995-04-10 | 1995-05-31 | Bp Chem Int Ltd | Polyolefin diols |
CN1133817A (zh) * | 1996-02-17 | 1996-10-23 | 魏雄辉 | 加压铁-碱溶液脱碳脱硫 |
JPH10259026A (ja) | 1997-03-19 | 1998-09-29 | Sony Corp | 針状ゲーサイト微粒子の製造方法 |
CN1075832C (zh) * | 1997-04-15 | 2001-12-05 | 马友存 | 固体再生式煤气脱硫剂及其再生工艺 |
CN1368537A (zh) | 2001-02-09 | 2002-09-11 | 王铁钢 | 燃气高效脱硫剂 |
CN1312132A (zh) | 2001-02-21 | 2001-09-12 | 马伟栋 | 常温氧化铁精脱硫剂 |
US7037876B2 (en) | 2002-05-15 | 2006-05-02 | Sud-Chemie Inc. | High temperature shift catalyst prepared with a purity iron precursor |
CN1539545A (zh) | 2003-10-28 | 2004-10-27 | 王晓东 | 可反复再生脱硫剂及其制造方法 |
US7396522B2 (en) | 2003-12-05 | 2008-07-08 | Jayalekshmy Ayyer | Catalyst useful for removal of hydrogen sulphide from gas stream and its conversion to sulphur, a process for preparing such catalyst and a method for removing of hydrogen sulphide using said catalyst |
DE102004016601A1 (de) | 2004-04-03 | 2005-10-13 | Bayer Chemicals Ag | Stabile Adsorber-Granulate |
CN1704144A (zh) * | 2004-05-28 | 2005-12-07 | 长春东狮科贸实业有限公司 | 一种常温氧化铁脱硫剂及其应用 |
EP1857414A1 (en) | 2005-02-16 | 2007-11-21 | Japan Science and Technology Agency | Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide |
JP2008239399A (ja) | 2007-03-27 | 2008-10-09 | Tdk Corp | オキシ水酸化鉄粒子の製造方法 |
US7910085B2 (en) | 2007-12-28 | 2011-03-22 | Tdk Corporation | Process for production of iron oxyhydroxide particles |
CN101584962B (zh) | 2008-05-23 | 2012-07-18 | 北京三聚环保新材料股份有限公司 | 一种高强度羟基氧化铁脱硫剂及其制备方法 |
CN101585557B (zh) | 2008-05-23 | 2013-06-26 | 北京三聚环保新材料股份有限公司 | 一种磁性氧化铁制备方法及其制得的磁性氧化铁脱硫剂 |
CN101585556B (zh) | 2008-05-23 | 2012-05-09 | 北京三聚环保新材料股份有限公司 | 无定形羟基氧化铁制备方法及制得的羟基氧化铁脱硫剂 |
KR20110018434A (ko) | 2008-06-13 | 2011-02-23 | 노파르티스 아게 | 철 함유 인산염 흡착제의 제조를 위한 제조 방법 |
CN101767828B (zh) | 2008-12-30 | 2012-09-26 | 北京三聚环保新材料股份有限公司 | 含无定形羟基氧化铁的物料的制备及其再生方法 |
EP2383036B1 (en) | 2008-12-30 | 2018-01-24 | Beijing Sanju Environmental Protection and New Material Co., Ltd. | Method for regenerating amorphous iron oxyhydroxide and desulfurizer containing amorphous iron oxyhydroxide as active component |
-
2008
- 2008-12-30 CN CN2008102475404A patent/CN101766946B/zh active Active
-
2009
- 2009-12-30 WO PCT/CN2009/001597 patent/WO2010081289A1/zh active Application Filing
- 2009-12-30 EA EA201170839A patent/EA019826B1/ru not_active IP Right Cessation
- 2009-12-30 EP EP09838076.9A patent/EP2383030B1/en not_active Not-in-force
-
2011
- 2011-06-30 US US13/172,898 patent/US8591847B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105143A (zh) * | 1985-08-23 | 1987-04-22 | 国际壳牌研究有限公司 | 从酸气流中除去硫化氢的方法 |
JPH06262066A (ja) * | 1993-03-15 | 1994-09-20 | Cosmo Sogo Kenkyusho:Kk | 硫化水素吸着剤及びその製造方法並びにガス中の硫化水素除去方法及び除去装置 |
CN101070491A (zh) * | 2006-05-09 | 2007-11-14 | 山东科技大学 | 一种常、低、中温脱硫剂活性组分制备方法 |
CN101134918A (zh) * | 2006-08-28 | 2008-03-05 | 北京三聚环保新材料有限公司 | 具有高硫容的脱硫剂活性组分及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US8591847B2 (en) | 2013-11-26 |
EP2383030B1 (en) | 2016-12-14 |
EP2383030A1 (en) | 2011-11-02 |
US20110256044A1 (en) | 2011-10-20 |
EA019826B1 (ru) | 2014-06-30 |
EP2383030A4 (en) | 2012-06-27 |
EA201170839A1 (ru) | 2012-02-28 |
CN101766946A (zh) | 2010-07-07 |
CN101766946B (zh) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010081289A1 (zh) | 一种常温下脱除气体中的硫化氢的工艺 | |
AU2014253837B2 (en) | Absorbent, process for producing an absorbent, and process and device for separating off hydrogen sulphide from an acidic gas | |
JP5275817B2 (ja) | ハロゲンからの軽質ガスの分離 | |
JP2010516596A (ja) | 高純度二酸化炭素の回収方法 | |
CN102989268B (zh) | 一种采用膜分离处理克劳斯尾气的方法 | |
RU2011116413A (ru) | Многостадийный способ очистки диоксида углерода и производства серной кислоты и азотной кислоты | |
CN102059039B (zh) | 烟气净化设备以及硫酸制备方法 | |
CN110683544A (zh) | 一种提高石灰回转窑尾气二氧化碳浓度的方法 | |
CN101480560B (zh) | 一种采用膜分离处理克劳斯尾气的方法 | |
CN110479044A (zh) | 一种气体捕集剂及其制备方法和应用 | |
CN111375274B (zh) | 一种含so2气体的处理方法及装置 | |
JP5963304B2 (ja) | バイオガスの処理方法および処理システム | |
KR101696048B1 (ko) | 탈황공정 발생가스로부터 성분별 분리회수 방법 | |
CN103285722B (zh) | 一种高含硫加压变换气湿法脱硫工艺 | |
CN106166438B (zh) | 一种光解氯气水溶液诱导自由基脱除硫化氢的方法及装置 | |
CN101428773A (zh) | 3n纯度一氧化氮气体的纯化方法 | |
CN210699395U (zh) | 一种低温甲醇洗驰放气脱硫零排放系统 | |
US4113840A (en) | Process for the removal of sulfur dioxide from exhaust flue gases | |
CN111821844B (zh) | 一种干法氧化和湿法氧化结合的脱硫工艺方法 | |
CN109908706B (zh) | 离子液体微胶囊及其制备方法和在除低浓度气体中的应用 | |
RU2568213C1 (ru) | Способ очистки газа от сероводорода | |
CN114159957A (zh) | 一种脱硫再生尾气处理方法及系统 | |
JPS62225226A (ja) | 湿式排煙脱硫装置 | |
RU2764595C1 (ru) | Установка и способ очистки газообразного углеводородного сырья от сероводорода и меркаптанов | |
CN107789953B (zh) | 烟气脱硫的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09838076 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201170839 Country of ref document: EA |
|
REEP | Request for entry into the european phase |
Ref document number: 2009838076 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009838076 Country of ref document: EP |