WO2010077544A1 - Method for edge sealing barrier films - Google Patents
Method for edge sealing barrier films Download PDFInfo
- Publication number
- WO2010077544A1 WO2010077544A1 PCT/US2009/066518 US2009066518W WO2010077544A1 WO 2010077544 A1 WO2010077544 A1 WO 2010077544A1 US 2009066518 W US2009066518 W US 2009066518W WO 2010077544 A1 WO2010077544 A1 WO 2010077544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- decoupling
- barrier
- barrier layer
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/564—Details not otherwise provided for, e.g. protection against moisture
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/851—Division of substrate
Definitions
- the invention relates generally to multilayer, thin film barrier composites, and more particularly, to multilayer, thin film barrier composites having the edges sealed against lateral moisture and gas diffusion.
- Multilayer, thin film barrier composites having alternating layers of barrier material and polymer material are known. These composites are typically formed by depositing alternating layers of barrier material and polymer material, such as by vapor deposition. If the polymer layers are deposited over the entire surface of the substrate, then the edges of the polymer layers are exposed to oxygen, moisture, and other contaminants. This potentially allows the moisture, oxygen, or other contaminants to diffuse laterally into an encapsulated environmentally sensitive device from the edge of the composite, as shown in Fig. 1.
- the multilayer, thin film barrier composite 100 includes a substrate 105 and alternating layers of decoupling material 110 and barrier material 115. The scale of Fig. 1 is greatly expanded in the vertical direction.
- the area of the substrate 105 will typically vary from a few square centimeters to several square meters.
- the barrier layers 115 are typically a few hundred Angstroms thick, while the decoupling layers 110 are generally less than ten microns thick.
- the lateral diffusion rate of moisture and oxygen is finite, and this will eventually compromise the encapsulation.
- One way to reduce the problem of edge diffusion is to provide long edge diffusion paths. However, this decreases the area of the substrate which is usable for active environmentally sensitive devices. In addition, it only lessens the problem, but does not eliminate it.
- a similar edge diffusion problem will arise when a substrate containing a multilayer, thin film barrier composite is scribed and separated to create individual components.
- the method includes providing an environmentally sensitive device with a contact on a substrate; depositing a decoupling layer adjacent to the environmentally sensitive device, the decoupling layer having a discrete area and covering the environmentally sensitive device and not covering the contact, the decoupling layer deposited using a printing process; depositing a first barrier layer adjacent to the decoupling layer, the first barrier layer having a first area greater than the discrete area of the decoupling layer covering the decoupling layer, the first barrier layer having a second area covering the contact, the decoupling layer being sealed between the edges of the first barrier layer and the substrate or an optional second barrier layer; and removing the second area of the first barrier layer from the contact.
- the method includes providing an environmentally sensitive device on a substrate; depositing a decoupling layer using a thermal gradient, the decoupling layer adjacent to the environmentally sensitive device, the decoupling layer having a discrete area and covering the environmentally sensitive device; and depositing a first barrier layer adjacent to the decoupling layer, the first barrier layer having an area greater than the discrete area of the decoupling layer and covering the decoupling layer, the decoupling layer being sealed between the edges of the first barrier layer and the substrate or an optional second barrier layer.
- Fig. 1 is a cross-section of a barrier composite of the prior art.
- Fig. 2 is a cross-section of one embodiment of an edge-sealed, encapsulated environmentally sensitive device of the present invention.
- Fig. 3 shows a successful barrier layer without a seal after 750 hours at 60 0 C and 90% relative humidity.
- Fig. 4 shows a successful edge seal after 750 hours at 60°C and 90% relative humidity.
- Fig. 5 shows a failed edge seal after 750 hours at 60 0 C and 90% relative humidity.
- Fig. 6 shows a cross-section of one embodiment of a substrate and mask arrangement and a plan view of the resulting seal.
- Fig. 7 shows a cross-section of another embodiment of a substrate and mask arrangement and a plan view of the resulting seal.
- Fig. 8 shows a cross-section of one embodiment of an edge-sealed, encapsulated environmentally sensitive device made according to the present invention.
- Fig. 9 is a schematic showing an environmentally sensitive device with a contact on a substrate.
- Fig. 10 is a schematic showing a barrier layer covering the environmentally sensitive device and contact.
- Fig. 11 is a schematic showing a decoupling layer covering the environmentally sensitive device.
- Fig. 12 is a schematic showing a hardcoat layer covering the environmentally sensitive device but not the contact.
- Fig. 13 is a schematic showing a release layer deposited on the contacts.
- Fig. 2 shows an edge-sealed, encapsulated environmentally sensitive device 400.
- a substrate 405 which can be removed after the device is made, if desired.
- the environmentally sensitive device 430 is encapsulated between initial barrier stack 422 on one side and additional barrier stack 440 on the other side.
- the environmentally sensitive device can be any device requiring protection from moisture, gas, or other contaminants.
- Environmentally sensitive devices include, but are not limited to, organic light emitting devices, liquid crystal displays, displays using electrophoretic inks, light emitting diodes, light emitting polymers, electroluminescent devices, phosphorescent devices, organic photovoltaic devices, inorganic photovoltaic -A- devices, thin film batteries, and thin film devices with vias, microelectromechanical systems ⁇ MEMS), Electro-Optic Polymer Modulators, and combinations thereof.
- the substrate which is optional, can be any suitable substrate, and can be either rigid or flexible.
- Suitable substrates include, but are not limited to: polymers, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or high temperature polymers, such as polyether sulfone (PES), polyimides, or TransphanTM (a high glass transition temperature cyclic olefin polymer available from Lofo High Tech Film, GMBH of Weil am Rhein, Germany) (including polymers with barrier stacks thereon); metals and metal foils; paper; fabric; glass, including thin, flexible, glass sheet (for example, flexible glass sheet available from Corning Inc. under the glass code 0211. This particular thin, flexible glass sheet has a thickness of less than 0.6 mm and will bend at a radium of about 8 inches.); ceramics; semiconductors; silicon; and combinations thereof.
- Barrier stack 420 has a barrier layer 415 which has an area greater than the area of the decoupling layer 410 which seals the decoupling layer 410 within the area of the barrier layer 415.
- Barrier stack 422 has two barrier layers 415, 417 and two decoupling layers 410, 412.
- Barrier layer 415 has an area greater than that of the decoupling layers 410, 412 which seals the decoupling layers 410, 412 within the area of the barrier layer 415.
- Barrier stack 440 includes two decoupling layers 410 and two barrier layers 415 which may be of approximately the same size. Barrier stack 440 also includes barrier layer 435 which has an area greater than the area of the decoupling layers 410 which seals the decoupling layers 410 within the area of barrier layer 435.
- the barrier layers It is not required that all of the barrier layers have an area greater than all of the decoupling layers, but at least one of the barrier layers must have an area greater than at least one of the decoupling layers. If not all of the barrier layers have an area greater than of the decoupling layers, the barrier layers which do have an area greater than the decoupling layers should form a seal around those which do not so that there are no exposed decoupling layers within the barrier composite, although, clearly it is a matter of degree. The fewer the edge areas of decoupling layers exposed, the less the edge diffusion. If some diffusion is acceptable, then a complete barrier is not required.
- the barrier stacks of the present invention on polymeric substrates, such as PET have measured oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) values well below the detection limits of current industrial instrumentation used for permeation measurements (Mocon OxTran 2/20L and Permatran).
- OTR oxygen transmission rate
- WVTR water vapor transmission rate
- Table 1 shows the OTR and WVTR values (measured according to ASTM F 1927-98 and ASTM F 1249-90, respectively) measured at Mocon (Minneapolis, MN) for several barrier stacks on 7 mil PET, along with reported values for other materials.
- the barrier stacks of the present invention provide oxygen and water vapor permeation rates several orders of magnitude better than PET coated with aluminum, silicon oxide, or aluminum oxide. Typical oxygen permeation rates for other barrier coatings range from about 1 to about 0.1 cc/m 2 /day.
- the oxygen transmission rate for the barrier stacks of the present invention is less than 0.005 cc/m 2 /day at 23°C and 0% relative humidity, and at 38°C and 90% relative humidity.
- the water vapor transmission rate is less than 0.005 g/m /day at 38°C and 100% relative humidity.
- the actual transmission rates are lower, but cannot be measured with existing equipment.
- a good edge seal should be no more permeable than the overall barrier layer. This should result in failure at the edges occurring at a rate statistically the same as that observed anywhere else. In practice, the areas closest to the edge show failure first, and the inference is that edge failure is involved.
- the Mocon test for the barrier layers requires significant surface area, and cannot be used to test the edge seal directly.
- a test using a layer of calcium was developed to measure barrier properties.
- the calcium test is described in Nisato et al., "Thin Film Encapsulation for OLEDs: Evaluation of Multi-layer Barriers using the Ca Test," SID 03 Digest, 2003, p. 550-553, which is incorporated herein by reference.
- the calcium test can be used to evaluate edge seal performance for both oxygen transmission rate and water vapor transmission rate. An encapsulated device is made, and the edges are observed for degradation in response to permeation by oxygen and water. The determination is qualitative: pass/fail. Failure is noted at the edges, and the failure progresses inwards from the edges over time.
- An edge seal which passes the calcium test has an oxygen transmission rate for the edge seal of less than 0.005 cc/m /day at 23°C and 0% relative humidity, and at 38°C and 90% relative humidity. It would also have a water vapor transmission rate of less than 0.005 g/m 2 /day at 38°C and 100% relative humidity.
- Figs. 3-5 show results from calcium tests after 750 hours at 60 0 C and 90% relative humidity.
- Fig. 3 shows a successful barrier layer without a seal. The edge of the barrier layer is more than 50 mm from the calcium edge.
- Fig. 4 shows a successful edge seal. The edge of the barrier layer is 3 mm from the calcium edge, and no degradation is observed.
- Fig. 5 shows an edge seal which failed. The edge of the barrier layer is 3 mm from the calcium edge, and severe degradation can be seen.
- barrier stacks are not limited. The number of barrier stacks needed depends on the substrate material used and the level of permeation resistance needed for the particular application. One or two barrier stacks may provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.
- the barrier stacks can have one or more decoupling layers and one or more barrier layers. There could be one decoupling layer and one barrier layer, there could be one or more decoupling layers on one side of one or more barrier layers, there could be one or more decoupling layers on both sides of one or more barrier layers, or there could be one or more barrier layers on both sides of one or more decoupling layers.
- the important feature is that the barrier stack have at least one decoupling layer and at least one barrier layer.
- the barrier layers in the barrier stacks can be made of the same material or of a different material, as can the decoupling layers.
- the barrier layers are typically about 100 to about 2000 A thick.
- the initial barrier layer can be thicker than later barrier layers, if desired.
- the first barrier layer might be in the range of about 1000 to about 1500 A, while later barrier layers might be about 400 to about 500 A. In other situations, the first barrier layer might be thinner than later barrier layers.
- the first barrier layer might be in the range of about 100 to about 400 A, while later barrier layers might be about 400 to about 500 A.
- the decoupling layers are typically about 0.1 to about 10 ⁇ m thick.
- the first decoupling layer can be thicker than later decoupling layers, if desired.
- the first decoupling layer might be in the range of about 3 to about 5 ⁇ m, while later decoupling layers might be about 0.1 to about 2 ⁇ m.
- the barrier stacks can have the same or different layers, and the layers can be in the same or different sequences.
- the decoupling layer must be first in order for the barrier layer to seal it.
- the decoupling layer will be sealed between the substrate (or the upper layer of the previous barrier stack) and the barrier layer.
- a device can be made with a single barrier stack having one decoupling layer and one barrier layer on each side of the environmentally sensitive device, there will typically be at least two barrier stacks on each side, each stack having one (or more) decoupling layer and one (or more) barrier layer.
- the first layer in the stack can be either a decoupling layer or a barrier layer, as can the last layer.
- the barrier layer which seals the decoupling layer may be the first barrier layer in the barrier stack, as shown in barrier stack 420. It may also be a second (or later) barrier layer as shown in barrier stack 440. Barrier layer 435 which seals the barrier stack 440 is the third barrier layer in the barrier stack following two barrier layers 415 which do not seal the barrier stack.
- first decoupling layer and first barrier layer in the claims does not refer to the actual sequence of layers, but to layers which meet the limitations.
- first initial barrier stack and first additional barrier stack do not refer to the actual sequence of the initial and additional barrier stacks.
- the decoupling layers may be made from the same decoupling material or different decoupling material.
- the decoupling layer can be made of any suitable decoupling material, including, but not limited to, organic polymers, inorganic polymers, organometallic polymers, hybrid organic/inorganic polymer systems, and combinations thereof.
- Organic polymers include, but are not limited to, urethanes, polyamides, polyimides, polybutylenes, isobutylene isoprene, polyolefins, epoxies, parylenes, benzocyclobutadiene, polynorbornenes, polyarylethers, polycarbonates, alkyds, polyaniline, ethylene vinyl acetate, ethylene acrylic acid, and combinations thereof.
- Inorganic polymers include, but are not limited to, silicones, polyphosphazenes, polysilazanes, polycarbosilanes, polycarboranes, carborane siloxanes, polysilanes, phosphonitriles, sulfur nitride polymers, siloxanes, and combinations thereof.
- Organometallic polymers include, but are not limited to, organometallic polymers of main group metals, transition metals, and lanthanide/actinide metals, or combinations thereof.
- Hybrid organic/inorganic polymer systems include, but are not limited to, organically modified silicates, preceramic polymers, polyimide-silica hybrids, (meth)acrylate-silica hybrids, polydimethylsiloxane-silica hybrids, and combinations thereof.
- the barrier layers may be made from the same barrier material or different barrier material.
- the barrier layers can be made of any suitable barrier material.
- suitable inorganic materials based on metals include, but are not limited to, individual metals, two or more metals as mixtures, inter-metallics or alloys, metal and mixed metal oxides, metal and mixed metal fluorides, metal and mixed metal nitrides, metal and mixed metal carbides, metal and mixed metal carbonitrides, metal and mixed metal oxynitrides, metal and mixed metal borides, metal and mixed metal oxyborides, metal and mixed metal suicides, or combinations thereof.
- Metals include, but are not limited to, transition ("d" block) metals, lanthanide (“f ' block) metals, aluminum, indium, germanium, tin, antimony and bismuth, and combinations thereof. Many of the resultant metal based materials will be conductors or semiconductors.
- the fluorides and oxides will include dielectrics (insulators), semiconductors and metallic conductors.
- Non-limiting examples of conductive oxides include aluminum doped zinc oxide, indium tin oxide (ITO), antimony tin oxide, titanium oxides (TiO x where 0.8 ⁇ x ⁇ 1) and tungsten oxides (WO x where 2.7 ⁇ x ⁇ 3.0).
- Suitable inorganic materials based on p block semiconductors and non-metals include, but are not limited to, silicon, silicon compounds, boron, boron compounds, carbon compounds including amorphous carbon and diamond- like carbon, and combinations of.
- Silicon compounds include, but are not limited to silicon oxides (SiO x where 1 ⁇ x ⁇ 2), polysilicic acids, alkali and alkaline earth silicates, aluminosilicates (Al x SiO y ), silicon nitrides (SN x H 5 , where 0 ⁇ y ⁇ 1), silicon oxynitrides (SiN x O y H z where 0 ⁇ z ⁇ 1), silicon carbides (SiC x H 5 , where 0 ⁇ y ⁇ 1), and silicon aluminum oxynitrides (SIALONs).
- Boron compounds include, but are not limited to, boron carbides, boron nitrides, boron oxynitrides, boron carbonitrides, and combinations thereof with silicon.
- the barrier layers may be deposited by any suitable process including, but not limited to, conventional vacuum processes such as sputtering, evaporation, sublimation, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.
- the decoupling layer can be produced by a number of known processes which provide improved surface planarity, including both atmospheric processes and vacuum processes.
- the decoupling layer may be formed by depositing a layer of liquid and subsequently processing the layer of liquid into a solid film. Depositing the decoupling layer as a liquid allows the liquid to flow over the defects in the substrate or previous layer, filling in low areas, and covering up high points, providing a surface with significantly improved planarity. When the decoupling layer is processed into a solid film, the improved surface planarity is retained.
- Suitable processes for depositing a layer of liquid material and processing it into a solid film include, but are not limited to, vacuum processes and atmospheric processes.
- Suitable vacuum processes include, but are not limited to, those described in U.S. Patent Nos.
- 5,547,508 can be further configured to print liquid monomer in discrete, precisely placed regions of the receiving substrate.
- Suitable atmospheric processes include, but are not limited to, spin coating, printing, ink jet printing, and/or spraying.
- atmospheric processes we mean processes run at pressures of about 1 atmosphere that can employ the ambient atmosphere.
- the use of atmospheric processes presents a number of difficulties including the need to cycle between a vacuum environment for depositing the barrier layer and ambient conditions for the decoupling layer, and the exposure of the environmentally sensitive device to environmental contaminants, such as oxygen and moisture.
- One way to alleviate these problems is to use a specific gas (purge gas) during the atmospheric process to control exposure of the receiving substrate to the environmental contaminants.
- the process could include cycling between a vacuum environment for barrier layer deposition and an ambient pressure nitrogen environment for the atmospheric process.
- Printing processes including ink jet printing, allow the deposition of the decoupling layer in a precise area without the use of masks.
- One way to make a decoupling layer involves depositing a polymer precursor, such as a (meth)acrylate containing polymer precursor, and then polymerizing it in situ to form the decoupling layer.
- a polymer precursor means a material which can be polymerized to form a polymer, including, but not limited to, monomers, oligomers, and resins.
- a preceramic precursor could be deposited as a liquid by spin coating and then converted to a solid layer. Full thermal conversion is possible for a film of this type directly on a glass or oxide coated substrate.
- Electron beam techniques could be used to crosslink and/or densify some of these types of polymers and can be combined with thermal techniques to overcome some of the substrate thermal limitations, provided the substrate can handle the electron beam exposure.
- a decoupling layer involves depositing a material, such as a polymer precursor, as a liquid at a temperature above its melting point and subsequently freezing it in place.
- One method of making the composite of the present invention includes providing a substrate, and depositing a barrier layer adjacent to the substrate at a barrier deposition station.
- the substrate with the barrier layer is moved to a decoupling material deposition station.
- a mask is provided with an opening which limits the deposition of the decoupling layer to an area which is smaller than, and contained within, the area covered by the barrier layer.
- the first layer deposited could be either the barrier layer or the decoupling layer, depending on the design of the composite.
- the decoupling material may be deposited through multiple openings in a single shadow mask, or through multiple shadow masks.
- the decoupling layer may be deposited in multiple discrete areas by a printing process, e.g., by ink jet printing.
- the barrier layer may similarly be deposited through multiple openings in a single shadow mask, or through multiple shadow masks.
- the barrier layer could also be deposited as an overall layer without the use of a mask.
- deposition of a barrier layer as an overall layer may also include methods to provide electrical contacts free of the encapsulation, as discussed below.
- the mask may be in the form of a rectangle with the center removed (like a picture frame).
- the decoupling material is then deposited through the opening in the mask.
- the layer of decoupling material formed in this way will cover an area less than the area covered by the layer of barrier material.
- This type of mask can be used in either a batch process or a roll coating process operated in a step and repeat mode. With these processes, all four edges of the decoupling layer will be sealed by the barrier material when a second barrier layer which has an area greater than the area of the decoupling layer is deposited over the decoupling layer.
- the method can also be used in a continuous roll to roll process using a mask having two sides which extend inward over the substrate.
- the opening is formed between the two sides of the mask which allows continuous deposition of decoupling material.
- the mask may have transverse connections between the two sides so long as they are not in the deposition area for the decoupling layer.
- the mask is positioned laterally and at a distance from the substrate so as to cause the decoupling material to be deposited over an area less than that of the barrier layer. In this arrangement, the lateral edges of the decoupling layer are sealed by the barrier layer.
- the substrate can then be moved to a barrier deposition station (either the original barrier deposition station or a second one), and a second layer of barrier material deposited on the decoupling layer. Since the area covered by the first barrier layer is greater than the area of the decoupling layer, the decoupling layer is sealed between the two barrier layers. These deposition steps can be repeated if necessary until sufficient barrier material is deposited for the particular application.
- a barrier deposition station either the original barrier deposition station or a second one
- the decoupling layer may be deposited using a printing process, either as a continuous coating applied in a width less than that covered by a barrier layer, or as multiple discrete areas. Deposition of the decoupling layer in multiple discrete areas allows roll to roll processing to provide a substrate upon which multiple environmentally sensitive devices can be formed (within the confines of the previously deposited decoupling layer). Repetition of these processing steps allows encapsulation of the environmentally sensitive devices in a manner that provides an edge seal around the devices, permitting separation of the devices without compromising the barrier.
- the substrate can be passed by one or more decoupling material deposition stations one or more times before being moved to the barrier deposition station.
- the decoupling layers can be made from the same decoupling material or different decoupling material.
- the decoupling layers can be deposited using the same process or using different processes.
- one or more barrier stacks can include two or more barrier layers.
- the barrier layers can be formed by passing the substrate (either before or after the decoupling layers have been deposited) past one or more barrier deposition stations one or more times, building up the number of layers desired.
- the layers can be made of the same or different barrier material, and they can be deposited using the same or different processes.
- the method involves providing a substrate and depositing a layer of barrier material on the surface of the substrate at a barrier deposition station.
- the substrate with the barrier layer is moved to a decoupling material deposition station where a layer of decoupling material is deposited over substantially the whole surface of the barrier layer.
- a solid mask is then placed over the substrate with the barrier layer and the decoupling layer. The mask protects the central area of the surface, which would include the areas covered by the active environmentally sensitive devices.
- a reactive plasma can be used to etch away the edges of the layer of decoupling material outside the mask, which results in the layer of etched decoupling material covering an area less than the area covered by the layer of barrier material.
- Suitable reactive plasmas include, but are not limited to, O 2 , CF 4 , and H 2 , and combinations thereof.
- a layer of barrier material covering an area greater than that covered by the etched decoupling layer can then be deposited, sealing the etched decoupling layer between the layers of barrier material.
- the deposition and etching steps can be repeated until sufficient barrier material is deposited.
- This method can be used in a batch process or in a roll coating process operated in a step and repeat mode. In these processes, all four edges of the decoupling layer may be etched.
- This method can also be used in continuous roll to roll processes. In this case, only the edges of the decoupling material in the direction of the process are etched.
- two masks can be used, one for the decoupling material and one for the barrier material. This would allow encapsulation with an edge seal of a device which has electrical contacts which extend outside the encapsulation.
- the electrical contacts can remain uncoated (or require only minimal post-encapsulation cleaning.)
- the electrical contacts will typically be thin layer constructions that are sensitive to post-encapsulation cleaning or may be difficult to expose by selective etching of the encapsulation.
- a mask is applied only for the decoupling material, a thick barrier layer could extend over the areas between the devices and cover the contacts. Furthermore, cutting through the thick barrier layer could be difficult.
- the mask 500 for the decoupling material has a smaller opening than the mask 505 for the barrier material. This allows the barrier layer 510 to encapsulate the decoupling layer 515.
- the masks 500, 505 can optionally have an undercut 520, 525 that keeps the deposited decoupling material and/or barrier material from contacting the mask at the point where the mask contacts the substrate 530.
- the undercut 520 for the decoupling mask 500 can be sufficient to place the decoupling mask contact point 535 outside edge of barrier layer 510, as shown in Fig. 7.
- a composite is made using a continuous process and the edged sealed composite is cut in the transverse direction, the cut edges will expose the edges of the decoupling layers. These cut edges may require additional sealing if the exposure compromises barrier performance.
- One method for sealing edges which are to be cut involves depositing a ridge on the substrate before depositing the barrier stack.
- the ridge interferes with the deposition of the decoupling layer so that the area of barrier material is greater than the area of decoupling material and the decoupling layer is sealed by the barrier layer within the area of barrier material.
- the ridge should be fairly pointed, for example, triangular shaped, in order to interrupt the deposition and allow the layers of barrier material to extend beyond the layers of decoupling material.
- the ridge can be deposited anywhere that a cut will need to be made, such as around individual environmentally sensitive devices.
- the ridge can be made of any suitable material, including, but not limited to, photoresist and barrier materials, such as described previously.
- Figs. 8-13 show alternate processes which reduce or eliminate the use of masks. This is desirable because masks must be accurately aligned and frequently cleaned, adding to the cost and complexity of the process.
- the decoupling layer can be deposited in discrete areas using a printing process, and the barrier layers can be deposited over larger areas either with or without a mask. These methods provide more cost effective ways to create barrier stacks with edge seals. Throughput can also be increased using these methods. They also permit increased flexibility in equipment design.
- Fig. 8 shows one embodiment of an encapsulated OLED.
- a substrate 805 with an environmentally sensitive device 810 on it.
- a barrier layer 815 covering the environmentally sensitive device.
- Decoupling layer 820 covers a portion of the barrier layer 815, followed by a second barrier layer 815 which extends beyond the area covered by the decoupling layer, sealing the decoupling layer 820 between the two barrier layers 815.
- the barrier layers have an area greater than the discrete area of the decoupling layer, and they are in contact with each other outside the discrete area covered by the decoupling layer, forming the seal around the decoupling layer. If the first layer in the stack is a decoupling layer, the seal is formed between the barrier layer and the substrate.
- Figs. 9-13 illustrate methods by which the device of Fig. 8 can be produced.
- four environmentally sensitive devices 810 are placed on the substrate 805 and connected to contacts 830.
- a barrier layer 815 is deposited over the entire substrate (Fig. 10).
- the decoupling layer 820 is deposited in discrete areas over the devices, but not over the contacts.
- the decoupling layer can be deposited in discrete areas by a printing process. Suitable printing processes include, but are not limited to, ink jet printing, screen printing, gravure printing, offset printing, Flexo printing. This would be followed by deposition of a second barrier layer, a second decoupling layer, and a third barrier layer to make the device shown in Fig. 8.
- a functional layer 825 could then be deposited in a discrete area not covering the contacts (which are covered by three layers of barrier material), as shown in Fig. 12.
- One or more functional layers can be included, if desired.
- Various types of functional layers could be used if desired, including, but not limited to hardcoat layers, photoresist layers, antiglare layers, antireflection layers, impact protective coatings, and antismear/fingerprint coatings, and the like.
- the functional layer can be deposited in discrete areas, e.g., using a printing process as discussed above. Alternatively, the functional layer can be deposited using processes that cover an overall area, either with or without the use of a mask. If the functional layer is deposited in a discrete area, it would not need to be removed to expose the contacts.
- the functional layer could be a hardcoat layer which is an etch resistant material. It would then act as an etch mask.
- Suitable etch resistant hardcoat materials include, but are not limited to, silanes or siloxanes, hexafluorobenzene, pentafluorostyrene, perfluoro- 1,3 -butadiene or chlorocarbon compounds, and thermoplastic polymer (e.g., mr-I 8000 from micro resist technology GmbH).
- the three layers of barrier material are then removed to expose the contacts 830.
- the environmentally sensitive devices can then be separated with each device being protected by the edge sealed barrier layers.
- the process is shown with three barrier layers and two decoupling layers, it is to be understood that the process is not so limited. As discussed above, the number of barrier layers and decoupling layers can vary as needed.
- the barrier material can be removed using a variety of processes. Suitable processes include, but are not limited to, a release layer; locally printed etching material; printing a protective layer and either wet etching, dry etching, or sandblasting; lithography and either wet etching, dry etching, or sandblasting; laser ablation; laser ablation combined with a release layer; breaking the substrates and polishing the barrier material; and local mechanical grinding.
- a release layer 835 can be deposited on the contacts before the barrier layers are deposited. In that case, after all of the layers have been deposited, the release layer and the barrier layers deposited over it can be removed, exposing the contacts.
- Suitable release layers include, but are not limited to polytetrafluoroethylene, other fluorinated polymers, polydimethyl siloxane, graphite, M0S 2 , photodecomposable aryltriazene polymers, and polyimides (e.g., du Pont 5878 (PMDA-ODA) polyimide, for excimer laser).
- polytetrafluoroethylene other fluorinated polymers
- polydimethyl siloxane polydimethyl siloxane
- graphite graphite
- M0S 2 photodecomposable aryltriazene polymers
- polyimides e.g., du Pont 5878 (PMDA-ODA) polyimide, for excimer laser.
- the deposition of the decoupling layer can be controlled using a thermal gradient on the substrate (with or without the environmentally sensitive device).
- the area in which the decoupling layer is to be deposited is cooled, while the surrounding area is not cooled, creating a temperature gradient in the area surrounding the cooled area.
- the monomer condenses. more rapidly on the cooled portion, and less rapidly (or not at all) on the surrounding area which is not cooled.
- the area which is not cooled could be heated if desired.
- the monomer can then be processed into a polymer as discussed above.
- the resulting polymeric decoupling layer will be thicker in the cooled area and thinner in the surrounding area, tapering off from the cooled portion to the surrounding portion. This allows the formation of a patterned polymeric decoupling layer.
- the barrier layer can then be deposited over the area covered by decoupling layer as well as the surrounding area at least a portion of which is not covered by the decoupling area.
- the barrier layer surrounding the decoupling layer will be in contact with a previously deposited barrier layer or the substrate, sealing the decoupling layer between the barrier layer and either the previous barrier layer or the substrate. While this process may not be able to provide an edge seal with the precision needed for some devices, it may be satisfactory for other devices.
- the area on which monomer should not be deposited can be heated while the remaining area on which the monomer is to be deposited is not heated.
- the area on which the monomer is to be deposited can be cooled if desired.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP09774785.1A EP2373487B1 (en) | 2008-12-30 | 2009-12-03 | Method for edge sealing barrier films |
| KR1020117014924A KR101354578B1 (ko) | 2008-12-30 | 2009-12-03 | 배리어 박막을 모서리 밀봉하는 방법 |
| JP2011540785A JP5882060B2 (ja) | 2008-12-30 | 2009-12-03 | バリアフィルムをエッジシーリングする方法 |
| CN2009801519107A CN102256786A (zh) | 2008-12-30 | 2009-12-03 | 对阻挡膜进行边缘密封的方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/345,787 US20090191342A1 (en) | 1999-10-25 | 2008-12-30 | Method for edge sealing barrier films |
| US12/345,787 | 2008-12-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010077544A1 true WO2010077544A1 (en) | 2010-07-08 |
Family
ID=41626976
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/066518 Ceased WO2010077544A1 (en) | 2008-12-30 | 2009-12-03 | Method for edge sealing barrier films |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20090191342A1 (enExample) |
| EP (2) | EP2373487B1 (enExample) |
| JP (1) | JP5882060B2 (enExample) |
| KR (1) | KR101354578B1 (enExample) |
| CN (2) | CN105609659A (enExample) |
| TW (1) | TWI490953B (enExample) |
| WO (1) | WO2010077544A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102011086689A1 (de) * | 2011-11-21 | 2013-05-23 | Osram Opto Semiconductors Gmbh | Verfahren zum herstellen eines opto-elektronischen bauelements und opto-elektronisches bauelement |
| JP2015513609A (ja) * | 2012-02-15 | 2015-05-14 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 封止膜を堆積するための方法 |
| US11950444B2 (en) | 2019-05-03 | 2024-04-02 | Samsung Display Co., Ltd. | Display device and method of manufacturing the same |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9853245B2 (en) | 2011-10-14 | 2017-12-26 | Samsung Display Co., Ltd. | Organic light emitting diode display and method for manufacturing the same |
| KR101809659B1 (ko) * | 2011-10-14 | 2017-12-18 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
| KR101900362B1 (ko) | 2012-01-16 | 2018-11-09 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조방법 |
| KR20130089039A (ko) | 2012-02-01 | 2013-08-09 | 삼성디스플레이 주식회사 | 증착 소스, 증착 장치 및 유기 발광 표시 장치 제조 방법 |
| US9312511B2 (en) * | 2012-03-16 | 2016-04-12 | Universal Display Corporation | Edge barrier film for electronic devices |
| KR101937258B1 (ko) | 2012-09-04 | 2019-01-11 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 |
| KR102777021B1 (ko) | 2012-12-27 | 2025-03-05 | 카티바, 인크. | 정밀 공차 내로 유체를 증착하기 위한 인쇄 잉크 부피 제어를 위한 기법 |
| US12330178B2 (en) | 2012-12-27 | 2025-06-17 | Kateeva, Inc. | Techniques for arrayed printing of a permanent layer with improved speed and accuracy |
| US11141752B2 (en) | 2012-12-27 | 2021-10-12 | Kateeva, Inc. | Techniques for arrayed printing of a permanent layer with improved speed and accuracy |
| US11673155B2 (en) | 2012-12-27 | 2023-06-13 | Kateeva, Inc. | Techniques for arrayed printing of a permanent layer with improved speed and accuracy |
| US9352561B2 (en) | 2012-12-27 | 2016-05-31 | Kateeva, Inc. | Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances |
| US9700908B2 (en) | 2012-12-27 | 2017-07-11 | Kateeva, Inc. | Techniques for arrayed printing of a permanent layer with improved speed and accuracy |
| KR101980769B1 (ko) * | 2012-12-28 | 2019-05-21 | 엘지디스플레이 주식회사 | 유기 발광 다이오드 표시 장치 및 이의 제조 방법 |
| US9368749B2 (en) | 2013-03-12 | 2016-06-14 | Samsung Sdi Co., Ltd. | Patterned multilayered stack, and system and method for making the same |
| KR102096054B1 (ko) * | 2013-08-14 | 2020-04-02 | 삼성디스플레이 주식회사 | 표시장치 및 이의 제조방법 |
| KR102141205B1 (ko) * | 2013-08-16 | 2020-08-05 | 삼성디스플레이 주식회사 | 박막 봉지 제조 장치 및 이를 이용한 표시 장치의 제조 방법 |
| CN107825886B (zh) | 2013-12-12 | 2020-04-14 | 科迪华公司 | 制造电子设备的方法 |
| KR20170036701A (ko) | 2014-07-25 | 2017-04-03 | 카티바, 인크. | 유기 박막 잉크 조성물 및 방법 |
| US9594287B2 (en) * | 2014-08-24 | 2017-03-14 | Royole Corporation | Substrate-less flexible display and method of manufacturing the same |
| EP3344712A4 (en) | 2015-08-31 | 2019-05-15 | Kateeva, Inc. | DI AND MONO (METH) ACRYLATE BASED ORGANIC THIN LAYER INK COMPOSITIONS |
| US10303031B2 (en) * | 2015-11-18 | 2019-05-28 | Gentex Corporation | Electro-optic gas barrier |
| KR102508672B1 (ko) * | 2016-06-15 | 2023-03-13 | 삼성디스플레이 주식회사 | 표시 장치 |
| KR102607711B1 (ko) | 2017-04-21 | 2023-11-28 | 카티바, 인크. | 유기 박막을 형성하기 위한 조성물 및 기술 |
| KR102296795B1 (ko) * | 2017-12-27 | 2021-08-31 | 삼성에스디아이 주식회사 | 유기막 조성물 및 패턴 형성 방법 |
| CN111129031A (zh) * | 2019-12-18 | 2020-05-08 | 武汉华星光电半导体显示技术有限公司 | 显示面板及其制备方法 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0611037A1 (en) * | 1993-01-28 | 1994-08-17 | Du Pont De Nemours International S.A. | Layered product |
| WO1999033651A1 (en) * | 1997-12-31 | 1999-07-08 | Kimberly-Clark Worldwide, Inc. | Microlayer breathable films of degradable polymers and thermoplastic elastomers |
| WO2002051626A1 (en) * | 2000-12-22 | 2002-07-04 | Avery Dennison Corporation | Three-dimensional flexible adhesive film structures |
| DE102004063619A1 (de) * | 2004-12-27 | 2006-07-06 | Cfs Kempten Gmbh | Schrumpfbare Mehrschichtfolie mit einer Releaseschicht |
| WO2006093898A1 (en) * | 2005-03-01 | 2006-09-08 | Milprint, Inc. | Multilayer packaging with peelable coupon |
| EP1719808A2 (en) * | 2005-05-06 | 2006-11-08 | Eastman Chemical Company | Pressure sensitive adhesive laminates |
| EP1857270A1 (en) * | 2006-05-17 | 2007-11-21 | Curwood, Inc. | Myoglobin blooming agent, films, packages and methods for packaging |
Family Cites Families (104)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4266223A (en) * | 1978-12-08 | 1981-05-05 | W. H. Brady Co. | Thin panel display |
| US4313254A (en) * | 1979-10-30 | 1982-02-02 | The Johns Hopkins University | Thin-film silicon solar cell with metal boride bottom electrode |
| US4581337A (en) * | 1983-07-07 | 1986-04-08 | E. I. Du Pont De Nemours And Company | Polyether polyamines as linking agents for particle reagents useful in immunoassays |
| US4426275A (en) * | 1981-11-27 | 1984-01-17 | Deposition Technology, Inc. | Sputtering device adaptable for coating heat-sensitive substrates |
| DE3324106A1 (de) * | 1983-07-05 | 1985-01-17 | Draiswerke Gmbh, 6800 Mannheim | Verfahren zum beleimen von holz-spaenen und dergl. mit fluessigleim und vorrichtung zur durchfuehrung des verfahrens |
| US4722515A (en) * | 1984-11-06 | 1988-02-02 | Spectrum Control, Inc. | Atomizing device for vaporization |
| JPH0193129A (ja) * | 1987-10-02 | 1989-04-12 | Mitsubishi Electric Corp | 化学気相成長装置 |
| US5189405A (en) * | 1989-01-26 | 1993-02-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent panel |
| US5204314A (en) * | 1990-07-06 | 1993-04-20 | Advanced Technology Materials, Inc. | Method for delivering an involatile reagent in vapor form to a CVD reactor |
| US5711816A (en) * | 1990-07-06 | 1998-01-27 | Advanced Technolgy Materials, Inc. | Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same |
| US5203898A (en) * | 1991-12-16 | 1993-04-20 | Corning Incorporated | Method of making fluorine/boron doped silica tubes |
| US5393607A (en) * | 1992-01-13 | 1995-02-28 | Mitsui Toatsu Chemiclas, Inc. | Laminated transparent plastic material and polymerizable monomer |
| US5402314A (en) * | 1992-02-10 | 1995-03-28 | Sony Corporation | Printed circuit board having through-hole stopped with photo-curable solder resist |
| JPH0683403A (ja) | 1992-07-17 | 1994-03-25 | Fanuc Ltd | 適応pi制御方式 |
| GB9215928D0 (en) * | 1992-07-27 | 1992-09-09 | Cambridge Display Tech Ltd | Manufacture of electroluminescent devices |
| US5260095A (en) | 1992-08-21 | 1993-11-09 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers |
| EP0608620B1 (en) * | 1993-01-28 | 1996-08-14 | Applied Materials, Inc. | Vacuum Processing apparatus having improved throughput |
| US5510173A (en) * | 1993-08-20 | 1996-04-23 | Southwall Technologies Inc. | Multiple layer thin films with improved corrosion resistance |
| ATE233939T1 (de) * | 1993-10-04 | 2003-03-15 | 3M Innovative Properties Co | Vernetztes acrylatbeschichtungsmaterial zur herstellung von kondensatordielektrika und sauerstoffbarrieren |
| US5440446A (en) | 1993-10-04 | 1995-08-08 | Catalina Coatings, Inc. | Acrylate coating material |
| JP2846571B2 (ja) * | 1994-02-25 | 1999-01-13 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
| DE4438359C2 (de) * | 1994-10-27 | 2001-10-04 | Schott Glas | Behälter aus Kunststoff mit einer Sperrbeschichtung |
| US6083628A (en) * | 1994-11-04 | 2000-07-04 | Sigma Laboratories Of Arizona, Inc. | Hybrid polymer film |
| US5607789A (en) * | 1995-01-23 | 1997-03-04 | Duracell Inc. | Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same |
| US5620524A (en) * | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
| GB9507817D0 (en) * | 1995-04-18 | 1995-05-31 | Philips Electronics Uk Ltd | Touch sensing devices and methods of making such |
| US5629389A (en) * | 1995-06-06 | 1997-05-13 | Hewlett-Packard Company | Polymer-based electroluminescent device with improved stability |
| US5686360A (en) * | 1995-11-30 | 1997-11-11 | Motorola | Passivation of organic devices |
| US6195142B1 (en) * | 1995-12-28 | 2001-02-27 | Matsushita Electrical Industrial Company, Ltd. | Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element |
| US5738920A (en) * | 1996-01-30 | 1998-04-14 | Becton, Dickinson And Company | Blood collection tube assembly |
| US5734225A (en) * | 1996-07-10 | 1998-03-31 | International Business Machines Corporation | Encapsulation of organic light emitting devices using siloxane or siloxane derivatives |
| US5731661A (en) * | 1996-07-15 | 1998-03-24 | Motorola, Inc. | Passivation of electroluminescent organic devices |
| US5902688A (en) * | 1996-07-16 | 1999-05-11 | Hewlett-Packard Company | Electroluminescent display device |
| US5895228A (en) * | 1996-11-14 | 1999-04-20 | International Business Machines Corporation | Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives |
| US5872355A (en) * | 1997-04-09 | 1999-02-16 | Hewlett-Packard Company | Electroluminescent device and fabrication method for a light detection system |
| JP3290375B2 (ja) * | 1997-05-12 | 2002-06-10 | 松下電器産業株式会社 | 有機電界発光素子 |
| US6198220B1 (en) * | 1997-07-11 | 2001-03-06 | Emagin Corporation | Sealing structure for organic light emitting devices |
| EP2098906A1 (en) * | 1997-08-29 | 2009-09-09 | Sharp Kabushiki Kaisha | Liquid crystal display device |
| US6203898B1 (en) * | 1997-08-29 | 2001-03-20 | 3M Innovatave Properties Company | Article comprising a substrate having a silicone coating |
| US6224948B1 (en) * | 1997-09-29 | 2001-05-01 | Battelle Memorial Institute | Plasma enhanced chemical deposition with low vapor pressure compounds |
| US5902641A (en) * | 1997-09-29 | 1999-05-11 | Battelle Memorial Institute | Flash evaporation of liquid monomer particle mixture |
| US6045864A (en) * | 1997-12-01 | 2000-04-04 | 3M Innovative Properties Company | Vapor coating method |
| US6569515B2 (en) * | 1998-01-13 | 2003-05-27 | 3M Innovative Properties Company | Multilayered polymer films with recyclable or recycled layers |
| US6178082B1 (en) * | 1998-02-26 | 2001-01-23 | International Business Machines Corporation | High temperature, conductive thin film diffusion barrier for ceramic/metal systems |
| US6066826A (en) * | 1998-03-16 | 2000-05-23 | Yializis; Angelo | Apparatus for plasma treatment of moving webs |
| US5904958A (en) * | 1998-03-20 | 1999-05-18 | Rexam Industries Corp. | Adjustable nozzle for evaporation or organic monomers |
| US6361885B1 (en) * | 1998-04-10 | 2002-03-26 | Organic Display Technology | Organic electroluminescent materials and device made from such materials |
| US6352777B1 (en) * | 1998-08-19 | 2002-03-05 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
| US6040017A (en) * | 1998-10-02 | 2000-03-21 | Sigma Laboratories, Inc. | Formation of multilayered photonic polymer composites |
| WO2000026973A1 (en) * | 1998-11-02 | 2000-05-11 | Presstek, Inc. | Transparent conductive oxides for plastic flat panel displays |
| US6837950B1 (en) * | 1998-11-05 | 2005-01-04 | Interface, Inc. | Separation of floor covering components for recycling |
| US6207239B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition of conjugated polymer |
| US6217947B1 (en) * | 1998-12-16 | 2001-04-17 | Battelle Memorial Institute | Plasma enhanced polymer deposition onto fixtures |
| US6207238B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition for high and/or low index of refraction polymers |
| US6228436B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making light emitting polymer composite material |
| US6228434B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making a conformal coating of a microtextured surface |
| US6268695B1 (en) * | 1998-12-16 | 2001-07-31 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
| WO2000036665A1 (en) * | 1998-12-16 | 2000-06-22 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
| US6250747B1 (en) * | 1999-01-28 | 2001-06-26 | Hewlett-Packard Company | Print cartridge with improved back-pressure regulation |
| JP3817081B2 (ja) * | 1999-01-29 | 2006-08-30 | パイオニア株式会社 | 有機el素子の製造方法 |
| US6172810B1 (en) * | 1999-02-26 | 2001-01-09 | 3M Innovative Properties Company | Retroreflective articles having polymer multilayer reflective coatings |
| US6358570B1 (en) * | 1999-03-31 | 2002-03-19 | Battelle Memorial Institute | Vacuum deposition and curing of oligomers and resins |
| US7198832B2 (en) * | 1999-10-25 | 2007-04-03 | Vitex Systems, Inc. | Method for edge sealing barrier films |
| US6866901B2 (en) * | 1999-10-25 | 2005-03-15 | Vitex Systems, Inc. | Method for edge sealing barrier films |
| US7394153B2 (en) * | 1999-12-17 | 2008-07-01 | Osram Opto Semiconductors Gmbh | Encapsulation of electronic devices |
| US6867539B1 (en) * | 2000-07-12 | 2005-03-15 | 3M Innovative Properties Company | Encapsulated organic electronic devices and method for making same |
| JP4374765B2 (ja) * | 2000-11-09 | 2009-12-02 | 株式会社デンソー | 有機el素子の製造方法 |
| US6537688B2 (en) * | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
| TWI222838B (en) * | 2001-04-10 | 2004-10-21 | Chi Mei Optoelectronics Corp | Packaging method of organic electroluminescence light-emitting display device |
| US6397776B1 (en) * | 2001-06-11 | 2002-06-04 | General Electric Company | Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators |
| US6888307B2 (en) * | 2001-08-21 | 2005-05-03 | Universal Display Corporation | Patterned oxygen and moisture absorber for organic optoelectronic device structures |
| TW519853B (en) * | 2001-10-17 | 2003-02-01 | Chi Mei Electronic Corp | Organic electro-luminescent display and its packaging method |
| US6888305B2 (en) * | 2001-11-06 | 2005-05-03 | Universal Display Corporation | Encapsulation structure that acts as a multilayer mirror |
| US6948448B2 (en) * | 2001-11-27 | 2005-09-27 | General Electric Company | Apparatus and method for depositing large area coatings on planar surfaces |
| US6681716B2 (en) * | 2001-11-27 | 2004-01-27 | General Electric Company | Apparatus and method for depositing large area coatings on non-planar surfaces |
| US6597111B2 (en) * | 2001-11-27 | 2003-07-22 | Universal Display Corporation | Protected organic optoelectronic devices |
| US6765351B2 (en) * | 2001-12-20 | 2004-07-20 | The Trustees Of Princeton University | Organic optoelectronic device structures |
| US7012363B2 (en) * | 2002-01-10 | 2006-03-14 | Universal Display Corporation | OLEDs having increased external electroluminescence quantum efficiencies |
| US7109653B2 (en) * | 2002-01-15 | 2006-09-19 | Seiko Epson Corporation | Sealing structure with barrier membrane for electronic element, display device, electronic apparatus, and fabrication method for electronic element |
| JP2003258189A (ja) * | 2002-03-01 | 2003-09-12 | Toshiba Corp | 半導体装置及びその製造方法 |
| JP2003292394A (ja) * | 2002-03-29 | 2003-10-15 | Canon Inc | 液相成長方法および液相成長装置 |
| US8808457B2 (en) * | 2002-04-15 | 2014-08-19 | Samsung Display Co., Ltd. | Apparatus for depositing a multilayer coating on discrete sheets |
| US6949389B2 (en) * | 2002-05-02 | 2005-09-27 | Osram Opto Semiconductors Gmbh | Encapsulation for organic light emitting diodes devices |
| TWI336905B (en) * | 2002-05-17 | 2011-02-01 | Semiconductor Energy Lab | Evaporation method, evaporation device and method of fabricating light emitting device |
| NL1020634C2 (nl) * | 2002-05-21 | 2003-11-24 | Otb Group Bv | Werkwijze voor het passiveren van een halfgeleider substraat. |
| US7015640B2 (en) * | 2002-09-11 | 2006-03-21 | General Electric Company | Diffusion barrier coatings having graded compositions and devices incorporating the same |
| US7056584B2 (en) * | 2002-10-11 | 2006-06-06 | General Electric Company | Bond layer for coatings on plastic substrates |
| JP2004294601A (ja) * | 2003-03-26 | 2004-10-21 | Nitto Denko Corp | 反射防止フィルム、光学素子および画像表示装置 |
| US7018713B2 (en) * | 2003-04-02 | 2006-03-28 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
| JP2004309932A (ja) * | 2003-04-09 | 2004-11-04 | Dainippon Printing Co Ltd | 表示素子用基材、表示パネル、表示装置及び表示素子用基材の製造方法 |
| US7029765B2 (en) * | 2003-04-22 | 2006-04-18 | Universal Display Corporation | Organic light emitting devices having reduced pixel shrinkage |
| US7820255B2 (en) * | 2003-05-29 | 2010-10-26 | Konica Minolta Holdings, Inc. | Transparent film for display substrate, display substrate using the film and method of manufacturing the same, liquid crystal display, organic electroluminescence display, and touch panel |
| JP2005011793A (ja) * | 2003-05-29 | 2005-01-13 | Sony Corp | 積層構造の製造方法および積層構造、表示素子ならびに表示装置 |
| US6998648B2 (en) * | 2003-08-25 | 2006-02-14 | Universal Display Corporation | Protected organic electronic device structures incorporating pressure sensitive adhesive and desiccant |
| US7282244B2 (en) * | 2003-09-05 | 2007-10-16 | General Electric Company | Replaceable plate expanded thermal plasma apparatus and method |
| US7635525B2 (en) * | 2003-09-30 | 2009-12-22 | Fujifilm Corporation | Gas barrier laminate film and method for producing the same |
| JP2005251671A (ja) * | 2004-03-08 | 2005-09-15 | Fuji Photo Film Co Ltd | 表示装置 |
| US7033850B2 (en) * | 2004-06-30 | 2006-04-25 | Eastman Kodak Company | Roll-to-sheet manufacture of OLED materials |
| US7342356B2 (en) * | 2004-09-23 | 2008-03-11 | 3M Innovative Properties Company | Organic electroluminescent device having protective structure with boron oxide layer and inorganic barrier layer |
| US20060063015A1 (en) * | 2004-09-23 | 2006-03-23 | 3M Innovative Properties Company | Protected polymeric film |
| US7621794B2 (en) * | 2005-11-09 | 2009-11-24 | International Display Systems, Inc. | Method of encapsulating an organic light-emitting device |
| KR100699254B1 (ko) * | 2006-02-14 | 2007-03-28 | 삼성전자주식회사 | 표시장치의 제조방법과 이에 의한 표시장치 |
| JP4245032B2 (ja) * | 2006-10-03 | 2009-03-25 | セイコーエプソン株式会社 | 発光装置および電子機器 |
| JP5151234B2 (ja) * | 2007-04-26 | 2013-02-27 | 凸版印刷株式会社 | 加飾成形品 |
-
2008
- 2008-12-30 US US12/345,787 patent/US20090191342A1/en not_active Abandoned
-
2009
- 2009-12-03 EP EP09774785.1A patent/EP2373487B1/en active Active
- 2009-12-03 WO PCT/US2009/066518 patent/WO2010077544A1/en not_active Ceased
- 2009-12-03 KR KR1020117014924A patent/KR101354578B1/ko active Active
- 2009-12-03 CN CN201610127416.9A patent/CN105609659A/zh active Pending
- 2009-12-03 JP JP2011540785A patent/JP5882060B2/ja active Active
- 2009-12-03 EP EP12165686.2A patent/EP2481578B1/en active Active
- 2009-12-03 CN CN2009801519107A patent/CN102256786A/zh active Pending
- 2009-12-30 TW TW098146026A patent/TWI490953B/zh active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0611037A1 (en) * | 1993-01-28 | 1994-08-17 | Du Pont De Nemours International S.A. | Layered product |
| WO1999033651A1 (en) * | 1997-12-31 | 1999-07-08 | Kimberly-Clark Worldwide, Inc. | Microlayer breathable films of degradable polymers and thermoplastic elastomers |
| WO2002051626A1 (en) * | 2000-12-22 | 2002-07-04 | Avery Dennison Corporation | Three-dimensional flexible adhesive film structures |
| DE102004063619A1 (de) * | 2004-12-27 | 2006-07-06 | Cfs Kempten Gmbh | Schrumpfbare Mehrschichtfolie mit einer Releaseschicht |
| WO2006093898A1 (en) * | 2005-03-01 | 2006-09-08 | Milprint, Inc. | Multilayer packaging with peelable coupon |
| EP1719808A2 (en) * | 2005-05-06 | 2006-11-08 | Eastman Chemical Company | Pressure sensitive adhesive laminates |
| EP1857270A1 (en) * | 2006-05-17 | 2007-11-21 | Curwood, Inc. | Myoglobin blooming agent, films, packages and methods for packaging |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102011086689A1 (de) * | 2011-11-21 | 2013-05-23 | Osram Opto Semiconductors Gmbh | Verfahren zum herstellen eines opto-elektronischen bauelements und opto-elektronisches bauelement |
| US9112165B2 (en) | 2011-11-21 | 2015-08-18 | Osram Oled Gmbh | Method for producing an optoelectronic component, and optoelectronic component |
| DE102011086689B4 (de) * | 2011-11-21 | 2017-02-16 | Osram Oled Gmbh | Verfahren zum Herstellen eines opto-elektronischen Bauelements |
| JP2015513609A (ja) * | 2012-02-15 | 2015-05-14 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 封止膜を堆積するための方法 |
| US11950444B2 (en) | 2019-05-03 | 2024-04-02 | Samsung Display Co., Ltd. | Display device and method of manufacturing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5882060B2 (ja) | 2016-03-09 |
| TWI490953B (zh) | 2015-07-01 |
| JP2012512527A (ja) | 2012-05-31 |
| EP2481578A1 (en) | 2012-08-01 |
| EP2373487A1 (en) | 2011-10-12 |
| CN105609659A (zh) | 2016-05-25 |
| EP2481578B1 (en) | 2014-08-13 |
| KR20110091568A (ko) | 2011-08-11 |
| KR101354578B1 (ko) | 2014-01-22 |
| TW201034093A (en) | 2010-09-16 |
| EP2373487B1 (en) | 2014-07-16 |
| CN102256786A (zh) | 2011-11-23 |
| US20090191342A1 (en) | 2009-07-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2373487B1 (en) | Method for edge sealing barrier films | |
| US20090208754A1 (en) | Method for edge sealing barrier films | |
| US7727601B2 (en) | Method for edge sealing barrier films | |
| US6866901B2 (en) | Method for edge sealing barrier films | |
| JP2012512527A5 (enExample) | ||
| US6570325B2 (en) | Environmental barrier material for organic light emitting device and method of making | |
| EP2924760A1 (en) | Barrier film composite and display apparatus including the barrier film composite | |
| US6911667B2 (en) | Encapsulation for organic electronic devices | |
| US8987758B2 (en) | Barrier film composite and display apparatus including the barrier film composite | |
| CN100520538C (zh) | 封装的显示装置 | |
| WO2008094352A1 (en) | Three dimensional multilayer barrier and method of making |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980151910.7 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09774785 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011540785 Country of ref document: JP |
|
| ENP | Entry into the national phase |
Ref document number: 20117014924 Country of ref document: KR Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009774785 Country of ref document: EP |