WO2010073930A1 - 捲回型蓄電源 - Google Patents

捲回型蓄電源 Download PDF

Info

Publication number
WO2010073930A1
WO2010073930A1 PCT/JP2009/070823 JP2009070823W WO2010073930A1 WO 2010073930 A1 WO2010073930 A1 WO 2010073930A1 JP 2009070823 W JP2009070823 W JP 2009070823W WO 2010073930 A1 WO2010073930 A1 WO 2010073930A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive electrode
negative electrode
wound
lithium ion
Prior art date
Application number
PCT/JP2009/070823
Other languages
English (en)
French (fr)
Inventor
真 田口
渡辺 裕
信雄 安東
安田 直史
千郷 丸茂
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008333567A external-priority patent/JP5317688B2/ja
Priority claimed from JP2008333566A external-priority patent/JP5317687B2/ja
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to US13/141,180 priority Critical patent/US9496584B2/en
Priority to EP09834733.9A priority patent/EP2372732B1/en
Priority to CN200980155555.0A priority patent/CN102301439B/zh
Publication of WO2010073930A1 publication Critical patent/WO2010073930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a wound-type storage power source having an electrode winding unit in which a positive electrode and a negative electrode are stacked via a separator and wound.
  • a battery having a negative electrode made of a carbon material such as graphite and a positive electrode made of a lithium-containing metal oxide such as LiCoO2 has been developed.
  • lithium ions are supplied from the lithium-containing metal oxide constituting the positive electrode to the negative electrode, and when further discharged, lithium ions are returned from the negative electrode to the positive electrode.
  • It is a so-called rocking chair type battery, and it is called a lithium ion secondary battery because it uses only lithium ions for charging and discharging without using metal lithium for the negative electrode, and is distinguished from lithium batteries using lithium metal. .
  • This lithium ion secondary battery is characterized by high voltage, high capacity, and high safety.
  • a storage power source for applications that require high energy density and high output characteristics
  • a storage power source called a hybrid capacitor which combines the storage principle of lithium ion secondary batteries and electric double layer capacitors. Attention has been paid.
  • a carbon material capable of inserting and extracting lithium ions is previously occluded and supported (hereinafter also referred to as “doping”) by a chemical method or an electrochemical method, and a negative electrode.
  • An organic electrolyte capacitor having a negative electrode made of a carbon material that can obtain a high energy density has been proposed (see, for example, Patent Document 1).
  • Such an organic electrolyte capacitor is expected to have high performance, but it takes a very long time when lithium ions are doped in advance on the negative electrode, and it is necessary to uniformly carry lithium ions on the entire negative electrode.
  • it has been difficult to put into practical use as a large-sized high-capacity cell such as a cylindrical battery in which electrodes are wound or a square battery in which a plurality of electrodes are stacked.
  • a positive electrode and a negative electrode each having a current collector formed with holes penetrating the front and back surfaces, each of which includes a negative electrode active material capable of reversibly carrying lithium ions, And a negative electrode winding unit wound in a state where the negative electrode and the negative electrode are stacked via a separator, and a lithium ion supply source provided on either the outer peripheral surface or the inner peripheral surface of the electrode winding unit And a wound-type storage power source in which lithium ions are doped into the negative electrode by electrochemical contact between the negative electrode and lithium metal has been proposed (see, for example, Patent Document 2).
  • the lithium ion supply source is disposed on either the outer peripheral surface or the inner peripheral surface of the electrode winding unit.
  • the lithium ions move between the electrodes through the holes of the current collector without being blocked by the current collector, so that not only the negative electrode portion in the vicinity of the lithium ion source but also the lithium ion source It is possible to electrochemically dope lithium ions into the remote anode part.
  • the negative electrode in which lithium ions are doped in advance into a carbon material that can occlude and desorb lithium ions has a lower potential than the activated carbon used in the electric double layer capacitor.
  • the withstand voltage of the cell is improved and the capacity of the negative electrode is extremely large compared to the activated carbon, a high energy density can be obtained according to the wound-type storage power source provided with the negative electrode.
  • an electrode layer containing a positive electrode active material capable of reversibly carrying lithium ions and / or anions is formed on at least one surface of a current collector having holes penetrating the front and back surfaces.
  • a negative electrode in which an electrode layer containing a negative electrode active material capable of reversibly supporting lithium ions is formed on at least one surface of a current collector having a hole penetrating the front and back surfaces via a separator.
  • a lithium ion source is arranged on both the inner and outer peripheral surfaces of the electrode winding unit, and the negative electrode And / or a wound-type storage power source in which lithium ions are doped into the negative electrode and / or the positive electrode by electrochemical contact between the positive electrode and the lithium ion source.
  • JP-A-8-107048 Japanese Patent No. 3485935 JP 2007-67105 A
  • the present invention has been made based on the circumstances as described above, and an object of the present invention is to simplify the arrangement of the lithium ion supply source and to inject the aprotic organic solvent electrolyte solution.
  • an object of the present invention is to simplify the arrangement of the lithium ion supply source and to inject the aprotic organic solvent electrolyte solution.
  • Another object of the present invention is to provide a wound-type storage power source in which an electrolyte solution penetrates into an electrode winding unit in a short time, and lithium ions are uniformly doped into the electrode in a short period of time so that high productivity can be obtained. Is to provide.
  • an electrode layer containing a positive electrode active material capable of reversibly carrying lithium ions and / or anions is formed on at least one surface of a current collector having holes penetrating the front and back surfaces.
  • a negative electrode in which an electrode layer containing a negative electrode active material capable of reversibly carrying lithium ions is formed on at least one surface of a current collector having holes penetrating the front and back surfaces,
  • a cylindrical electrode winding unit in which an electrode stack formed by stacking a positive electrode and the negative electrode via a separator is wound from one end thereof, and Comprising an electrolyte comprising an aprotic organic solvent electrolyte solution of a lithium salt,
  • a wound-type storage power source in which lithium ions and / or anions are doped into the negative electrode and / or the positive electrode by electrochemical contact between the negative electrode and / or the positive electrode and a lithium ion supply source, The lithium ion supply source is provided so as not to contact the positive electrode and the negative electrode
  • a positive electrode gap is formed in the positive electrode, It is preferable that at least one lithium ion supply source is provided in a position not in contact with the positive electrode at a position facing the positive electrode gap or the positive electrode gap in the negative electrode.
  • the electrode winding unit has an outermost peripheral part and / or an innermost peripheral part as the separator, and an inner peripheral surface of the outermost peripheral part of the electrode winding unit and / or Or it is preferable that the lithium ion supply source is provided in the inner peripheral surface of the innermost peripheral part.
  • the positive electrode is inserted and wound An electrode winding unit may be configured.
  • the said positive electrode has a some positive electrode piece, and each positive electrode piece is mutually arrange
  • the positive electrode is formed with a slit, and the positive electrode gap is preferably formed by the slit.
  • the negative electrode is preferably overlapped with at least a part of the positive electrode.
  • the lithium ion supply source provided at a position corresponding to the positive electrode gap in the negative electrode gap or the negative electrode is after the wound body to be covered by the lithium ion supply source is covered at the outermost periphery of the negative electrode.
  • the electrode winding unit is preferably configured by being inserted and wound.
  • the electrode winding unit has an outermost peripheral portion and / or an innermost peripheral portion as the separator, and an inner peripheral surface of the outermost peripheral portion of the electrode winding unit.
  • / or a lithium ion supply source is provided on the inner peripheral surface of the innermost peripheral portion,
  • the ratio of the area not covered with the lithium ion supply source on the inner peripheral surface of the outermost peripheral portion and / or the outer peripheral surface of the innermost peripheral portion of the electrode winding unit provided with the lithium ion supply source is 10 respectively. It is preferably ⁇ 70%.
  • the electrode stack is stacked in the order of the first separator, the negative electrode, the second separator, and the positive electrode, and at one end side portion of the first separator,
  • the lithium supply source provided on the inner peripheral surface of the innermost peripheral portion of the electrode winding unit is disposed on the surface opposite to the surface on which the negative electrode is disposed, and the electrode stack is wound from one end thereof to form the electrode
  • a winding unit is preferably configured.
  • the lithium ion supply source is pressure-bonded or stacked on a lithium electrode current collector.
  • the lithium electrode current collector on which the lithium ion supply source is pressure-bonded or stacked is preferably made of a porous foil.
  • the electrode winding unit has an outermost peripheral portion of the positive electrode covered with a separator and an outermost peripheral portion of the negative electrode, and further, an outermost peripheral portion of the negative electrode is covered with an outermost peripheral portion of the separator. It is preferable that a lithium supply source is provided on the inner peripheral surface in the outermost peripheral portion.
  • the wound storage power source of the present invention is suitable as a lithium ion capacitor or a lithium ion secondary battery.
  • the electrode winding unit includes: Since the lithium ion supply source is arranged in the positive electrode gap portion or the negative electrode gap portion to form an electrode stack, and this is obtained by winding, the electrode winding unit can be easily assembled, Therefore, the assembly can be completed in a short time, and the pre-doping time can be shortened because the lithium ion supply source is arranged in the positive electrode gap portion or the negative electrode gap portion. As a result, high productivity can be obtained. It is done.
  • the speed of pre-doping can be increased, but the distance between the positive electrode and the negative electrode is partially different from others.
  • lithium metal remains between the positive electrode and the negative electrode, or that lithium metal is deposited on the lithium ion current collector when a lithium ion supply source is laminated on the lithium electrode current collector. May occur.
  • the wound-type storage power source manufactured in this way since the pre-dope is speeded up and uniformed, the internal resistance is reduced even if the assembly is completed in a short time. As a result, high performance is obtained and high durability is obtained.
  • the outermost peripheral part and / or the innermost peripheral part of the electrode winding unit is a separator, and lithium ions are supplied to the inner peripheral surface of the outermost peripheral part and / or the inner peripheral surface of the innermost peripheral part of the electrode winding unit.
  • the outer peripheral portion of the electrode winding unit provided with the lithium ion supply source and / or the area not covered with the lithium ion supply source on the outer peripheral surface of the innermost peripheral portion the electrolytic solution penetrates into the electrode winding unit in a short time, and the lithium ions are uniformly doped in the entire electrode in a short time. Sex is obtained.
  • the electrode stack is wound in a state where the lithium ion supply source is previously arranged in the separator, the production of the electrode winding unit and the arrangement of the lithium ion supply source can be performed in the same process. Higher productivity can be obtained.
  • FIG. 2 is an explanatory cross-sectional view schematically showing a cross-sectional state of an electrode stack in which a wound state of an electrode winding unit of the wound lithium ion capacitor of FIG. 1 is solved. It is a top view for explanation showing typically an example of composition of a positive electrode.
  • FIG. 2 is an explanatory perspective view showing an electrode winding unit in the wound lithium ion capacitor shown in FIG. 1. It is a front view for description which shows the electrode winding unit in the winding type lithium ion capacitor shown in FIG.
  • FIG. 17 is an explanatory cross-sectional view schematically showing a cross-sectional state of the electrode stack in which the wound state of the electrode winding unit of the wound LIC of FIG. 16 is solved.
  • FIG. 17 is an explanatory sectional view schematically showing a method for obtaining the electrode winding unit of the wound LIC of FIG. 16. It is sectional drawing for description which shows typically the method of obtaining the winding type lithium ion capacitor by another structure. It is sectional drawing for description which shows the structure of the winding type
  • mold LIC which concerns on the 3rd Embodiment of this invention. It is sectional drawing for description which shows the structure of an electrode stack. It is explanatory drawing which shows the electrode winding unit in the winding type
  • wound-type storage power source of the present invention is implemented as a wound-type lithium ion capacitor (hereinafter also referred to as “winding-type LIC”) will be described.
  • FIG. 1 is an explanatory cross-sectional view schematically showing a configuration of a wound LIC according to the first embodiment of the present invention
  • FIG. 2 is a winding of an electrode winding unit of the wound LIC in FIG.
  • It is sectional drawing for description which shows typically the state of the cross section of the electrode stack body which solved the state.
  • a strip-like positive electrode 11 having a positive electrode gap portion 11S and a strip-like negative electrode 12 having a negative electrode gap portion 12S are interposed via a separator, specifically, a negative electrode 12, a separator 13A, and a separator 13B.
  • An electrode stack 10A in which the positive electrodes 11 are stacked in this order has a cylindrical electrode winding unit 10 configured by winding from one end thereof, and this is accommodated in a cylindrical outer container 20.
  • the inside is filled with an electrolytic solution made of an aprotic organic solvent electrolyte solution of a lithium salt.
  • the outermost peripheral portion and the innermost peripheral portion are separators (not shown in FIG. 1), and each of the inner peripheral surface of the outermost peripheral portion and the inner peripheral surface of the innermost peripheral portion.
  • lithium ion supply sources 16 ⁇ / b> A and 16 ⁇ / b> B are provided with lithium ion supply sources 16 ⁇ / b> A and 16 ⁇ / b> B, and a lithium ion supply source 16 ⁇ / b> C is provided in the positive electrode gap 11 ⁇ / b> S of the positive electrode 11 so as not to contact the positive electrode 11.
  • the lithium ion supply sources 16A to 16C are preferably disposed so as not to contact the negative electrode 12 via the separators 13A and 13B. In such a wound type LIC, the negative electrode 12 and the lithium ion supply sources 16A to 16C are short-circuited, and electrochemical contact between the negative electrode 12 and / or the positive electrode 11 and the lithium ion supply sources 16A to 16C.
  • the negative electrode 12 and / or the positive electrode 11 are doped with lithium ions and / or anions.
  • the “positive electrode” means that a current flows out during discharging, the electrode into which current flows in during charging, and the “negative electrode” means that current flows in during discharging, and during charging. It means the pole where the current flows out.
  • the specific structure of the positive electrode 11 includes a plurality of positive electrode pieces (two in FIG. 1 to FIG. 3) 111 and 112, and the positive electrode pieces 111 and 112 are mutually connected to the positive electrode gap. It arrange
  • the specific structure of the negative electrode 12 includes a plurality of negative electrode pieces (two in FIG. 1 and FIG. 2) 121 and 122, similar to the positive electrode 11, and the negative electrode pieces 121 and 122 are mutually connected to the negative electrode gap. It arranges via part 12S.
  • the positive electrode 11 is superimposed on the negative electrode 12 over the entire length.
  • the state in which the negative electrode and the positive electrode are superposed means a state in which the negative electrode and the positive electrode are stacked without any other elements than the separator.
  • the electrode winding unit 10 includes a negative electrode piece 121 that covers a wound body in which a lithium ion supply source 16A provided on the inner peripheral surface of the innermost peripheral portion of the separator is wound. It is preferable that the piece 111 is inserted and wound.
  • the outer peripheral surface of a pair of electrode pairs (for example, a portion surrounded by a chain line Z in FIG. 1) composed of the positive electrode portion (111) and the negative electrode portion (121) facing each other is the negative electrode portion (121) of the electrode pair portion.
  • a winding body is configured by being covered with the surplus portion (121 ⁇ ) of the winding body, and the outer peripheral surface of the winding body is covered with the lithium ion supply source 16C related to the positive electrode gap portion 11S. It is preferable that the electrode is covered with the electrode pair portion.
  • the lithium ion supply source 16B provided on the inner peripheral surface of the outermost peripheral part of the separator is inserted and wound after the wound body to be covered is covered with the outermost peripheral part of the negative electrode, whereby the electrode winding unit.
  • the electrode winding unit Is preferably configured.
  • high durability can be obtained for the wound LIC.
  • pre-doping becomes insufficient and lithium metal remains, or the lithium ion supply source is placed on the lithium electrode current collector.
  • dendritic lithium metal called dendrites may be deposited on the lithium electrode current collector and cause a short circuit.
  • FIG. 1 shows a configuration in which one lithium ion source 16C is arranged between two electrode pair portions
  • the electrode pair portions are not limited to two sets. You may be comprised by the electrode pair part of 3 or more sets. In such a case, the lithium ion supply source is arranged in at least one of the electrode pair portions.
  • Lithium ion supply sources 16A and 16B provided on the inner peripheral surface of the innermost peripheral portion and the inner peripheral surface of the outermost peripheral portion of the electrode winding unit 10, and a gap formed on the outer peripheral surface of the wound body by the electrode pair portion
  • the lithium ion supply source 16C inserted in the unit is formed with intermittent portions S (see FIG. 4) without the lithium ion supply sources 16A to 16C, respectively, and intermittent portions in the lithium ion supply sources 16A to 16C are formed.
  • the ratio of S (hereinafter also referred to as “lithium electrode non-occupancy ratio”) is preferably 10 to 70%, more preferably 15 to 50%, and particularly preferably 20 to 30%.
  • Each of the lithium ion supply sources 16A to 16C is formed by arranging plate-like lithium ion supply source pieces in parallel via the intermittent portion S.
  • the lithium electrode non-occupancy in the lithium ion supply sources 16A to 16C is less than 10% of each circumferential surface, it takes time for the aprotic organic solvent electrolyte solution to permeate and shortens the injection time. I can't.
  • the lithium electrode non-occupancy ratio in the lithium ion supply sources 16A to 16C exceeds 70% of each circumferential surface, lithium ions and / or anions that donate lithium ions and / or anions to the positive electrode and / or the negative electrode are provided. Since the area of the supply source becomes small, it takes time to complete the pre-doping, and the pre-doping time cannot be shortened.
  • the gaps are preferably formed uniformly distributed over the entire area.
  • such an electrode winding unit 10 has a wound body in which the electrode stack 10 ⁇ / b> A is wound from the outside in order to improve the assembly workability of the wound LIC. It is preferable that the outer container 20 is housed in a fixed state.
  • 17 is a positive terminal electrically connected to the positive electrode
  • 18 is a negative terminal electrically connected to the negative electrode. In FIG. 5, these are extended in the opposite direction with respect to the electrode winding unit 10, but may be extended in the same direction.
  • the insertion of the lithium ion supply source 16A provided on the inner peripheral surface of the innermost peripheral portion is provided on the inner peripheral surface of the outermost peripheral portion as shown in FIG.
  • a lithium electrode current collector 26c is crimped and wound on the lithium ion supply source 16A so as to be in close contact with the source 16A, thereby electrically connecting the lithium ion supply source 16A to the negative electrode 12 and short-circuiting them. be able to.
  • the lithium ion supply source 16C in the assembly process of the electrode winding unit 10, in the insertion of the lithium ion supply source 16C disposed in the positive electrode gap portion 11S, lithium provided on the inner peripheral surface of the innermost peripheral portion and the inner peripheral surface of the outermost peripheral portion. Similar to the insertion of the ion supply sources 16A and 16B, it is preferable to wind the lithium ion supply source 16C in a state in which the lithium ion supply source 16C is previously press-bonded to the separator 13A. In addition, by pressing and winding a lithium electrode current collector on the lithium ion supply source 16C, the lithium ion supply source 16C can be electrically connected to the negative electrode 12 and both can be short-circuited.
  • the negative electrode gap portion 11S, the negative electrode piece 121, the negative electrode gap portion 11S, and the negative electrode piece 122 are arranged in this order from one end to the other end on the separator 13B.
  • a lithium ion supply source 16A, a positive electrode piece 111, a lithium ion supply source 16C, a positive electrode piece 112, and an electrode plate that are the innermost peripheral surface of the electrode winding unit 10
  • the lithium ion supply source 16B which becomes the outermost peripheral surface of the rotating unit 10 produces a second strip formed in this order from one end to the other end.
  • the positive electrode piece faces the negative electrode piece only through the separator.
  • the lithium ion supply source is also set based on the thickness of each constituent member so that the negative electrode piece is opposed to the negative electrode piece only through the separator, and the inner peripheral surface and the outer peripheral surface are configured by the lithium ion supply source. .
  • belt material are piled up, and this electrode stacking body 10A is wound by the core rod from the one end (one end of lithium ion supply source 16A), The electrode winding unit 10 Is obtained.
  • the electrode winding unit 10 configured in this way is housed in the outer container 20 together with the aprotic organic solvent electrolyte solution, and left in this state for a predetermined time (for example, 10 days), so that the lithium ion supply sources 16A to 16A- Since 16C and the negative electrode 12 are short-circuited, the negative electrode 12 is previously doped with lithium ions.
  • the positive electrode 11 and the negative electrode 12 are each formed by forming an electrode layer on at least one surface of a strip-shaped current collector, and both have substantially the same structure. Therefore, the following description will be made with reference to the same drawing.
  • FIG. 11 is an explanatory plan view showing the electrode winding unit in an expanded state
  • FIG. 12 is an explanatory view showing an AA section of the electrode shown in FIG. 11 in an enlarged manner.
  • the negative electrode 12 positive electrode 11
  • the negative electrode 12 is formed on one surface (upper surface in FIG. 12) of a strip-shaped negative electrode current collector 12a (positive electrode current collector 11a) via a base layer 12c (11c).
  • An electrode layer 12b (11b) containing a substance is formed, and a negative electrode terminal 18 (positive electrode terminal 17) is stitched or cold, for example, on the other surface of the negative electrode current collector 12a (positive electrode current collector 11a). Fixed and connected by welding. In the case where the electrode layer 12b or the electrode layer 11b is formed on both surfaces of the negative electrode current collector 12a or the positive electrode current collector 11a, the electrode layer 12b or the electrode layer 11b is partially made of the negative electrode current collector.
  • the negative electrode terminal 18 or the positive electrode terminal 17 can be connected to the electrode layer 12b or the electrode layer 11b by peeling from the body 12a or the positive electrode current collector 11a.
  • the negative electrode terminal 18 and the positive electrode terminal 17 may be drawn separately from both ends of the electrode winding unit 10 or may be drawn from one end portion. Further, it is sufficient that one negative electrode terminal 18 and one positive electrode terminal 17 are provided, but it is preferable that a plurality of each of the negative electrode terminal 18 and the positive electrode terminal 17 is provided because the internal resistance is reduced.
  • the positive electrode current collector 11a and the negative electrode current collector 12a are made of a porous material having holes P penetrating the front and back surfaces. Examples of the form include expanded metal, punched metal, metal net, foam, porous foil having a through-hole formed by etching, and the like.
  • the shape of the hole P of the electrode current collector can be set to a circular shape, a rectangular shape, or any other appropriate shape.
  • the thickness of the electrode current collector is preferably 20 to 50 ⁇ m from the viewpoint of strength and weight reduction.
  • the porosity of the electrode current collector is usually 10 to 79%, preferably 20 to 60%.
  • the porosity is calculated by [1 ⁇ (mass of electrode current collector / true specific gravity of electrode current collector) / (apparent volume of electrode current collector)] ⁇ 100.
  • the material of the electrode current collector various materials generally used for applications such as organic electrolyte batteries can be used.
  • Specific examples of the material of the negative electrode current collector 12a include stainless steel, copper, and nickel, and examples of the material of the positive electrode current collector 11a include aluminum and stainless steel.
  • lithium ions can be supplied even when the lithium ion supply sources 16A to 16C are disposed on the inner and outer peripheral surfaces of the electrode winding unit 10 and the positive electrode gap portion 11S. Lithium ions can be doped into the negative electrode 12 and / or the positive electrode 11 because the lithium ion sources 16A to 16C freely move between the electrodes through the holes P of the electrode current collector.
  • the electrode layers 11b and 12b are formed on one surface of the electrode current collector.
  • a higher output density can be obtained.
  • the shape and number of holes P in the electrode current collector are such that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the current collector, and depending on the conductive material. It can set suitably so that it may close easily.
  • the electrode layer 12b in the negative electrode 12 contains a negative electrode active material capable of reversibly carrying lithium ions.
  • the negative electrode active material constituting the electrode layer 12b is, for example, a heat-treated product of graphite, non-graphitizable carbon, or aromatic condensation polymer, and the hydrogen atom / carbon atom number ratio (hereinafter referred to as “H / C”).
  • H / C hydrogen atom / carbon atom number ratio
  • PAS polyacene skeleton structure
  • PAS has a high capacity. Is more preferable.
  • the potential decreases as the amount of lithium ions to be carried increases, so that the withstand voltage (charge voltage) of the obtained storage power source is reduced. Since the voltage rise rate (discharge curve slope) during discharge increases, the amount of lithium ions is appropriately set within the range of lithium ion storage capacity of the active material, depending on the required operating voltage of the storage power source. It is preferable to do.
  • PAS has an amorphous structure, it does not undergo structural changes such as swelling / shrinkage due to the insertion / desorption of lithium ions, so it has excellent cycle characteristics. Since it has an isotropic molecular structure (higher order structure), it has excellent characteristics for rapid charge and rapid discharge, and is therefore suitable as a negative electrode active material.
  • the aromatic condensation polymer that is a precursor of PAS is a condensate of an aromatic hydrocarbon compound and aldehydes.
  • aromatic hydrocarbon compound for example, phenols such as phenol, cresol and xylenol can be suitably used. Examples thereof include methylene / bisphenols, hydroxy / biphenyls, and hydroxynaphthalenes represented by the following formula. Of these, phenols, and particularly phenols, are suitable for practical use.
  • x and y are each independently an integer of 0 to 2.
  • the aromatic condensation polymer may be a modified aroma obtained by substituting a part of an aromatic hydrocarbon compound having a phenolic hydroxyl group with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, aniline, etc.
  • a group condensation polymer such as a condensate of phenol, xylene and formaldehyde can also be used.
  • a modified aromatic polymer substituted with melamine or urea can be used, and a furan resin is also suitable.
  • PAS is used as an insoluble and infusible substrate
  • the insoluble and infusible substrate can also be produced, for example, from the aromatic condensation polymer as follows. That is, by gradually heating the aromatic condensation polymer to a temperature of 400 to 800 ° C. in a non-oxidizing atmosphere (including vacuum), H / C is preferably 0.5 to 0.05, preferably Can obtain an insoluble and infusible substrate of 0.35 to 0.10.
  • the method for producing the insoluble and infusible substrate is not limited to this.
  • H / C is in the above range, and 600 m 2 / g. It is also possible to obtain an insoluble and infusible substrate having a specific surface area by the above BET method.
  • the position of the main peak is expressed as 2 ⁇ , which is 24 ° or less, and in addition to the main peak, the position is 41 to 46 °. There are other broad peaks in between. That is, the insoluble infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, has an amorphous structure, and can be stably doped with lithium ions. It is suitable as a negative electrode active material for a storage power source.
  • the negative electrode active material preferably has a pore diameter of 3 nm or more and a pore volume of 0.10 mL / g or more, and the upper limit of the pore diameter is not limited, but is usually in the range of 3 to 50 nm. is there.
  • the range of the pore volume is not particularly limited, but is usually 0.10 to 0.5 mL / g, preferably 0.15 to 0.5 mL / g.
  • the electrode layer 12b in the negative electrode 12 is formed on the negative electrode current collector 12a using a material containing a negative electrode active material such as the above carbon material or PAS.
  • the method is not specified and a known method can be used. Specifically, a negative electrode active material powder, a binder and, if necessary, a slurry in which a conductive powder is dispersed in an aqueous medium or an organic solvent are prepared, and this slurry is applied to the surface of the negative electrode current collector 12a.
  • the electrode layer 12b can be formed by drying or by previously forming the slurry into a sheet shape and attaching the resulting molded body to the surface of the negative electrode current collector 12a.
  • examples of the binder used for preparing the slurry include rubber-based binders such as SBR, synthetic fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride, and thermoplastic resins such as polypropylene and polyethylene.
  • a fluorine-based resin is preferable as the binder, and a fluorine-based resin having a fluorine atom / carbon atom atomic ratio (hereinafter referred to as “F / C”) of 0.75 or more and less than 1.5 is used. It is preferable that a fluorine-based resin having F / C of 0.75 or more and less than 1.3 is more preferable.
  • the amount of the binder used varies depending on the type of the negative electrode active material, the electrode shape, and the like, but is 1 to 20% by mass, preferably 2 to 10% by mass with respect to the negative electrode active material.
  • an electroconductive material used as needed acetylene black, a graphite, a metal powder etc. are mentioned, for example.
  • the amount of the conductive material used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is preferably used in a proportion of 2 to 40% by mass with respect to the negative electrode active material.
  • the electrode layer 12b is formed by applying the slurry to the negative electrode current collector 12a, as shown in FIG. 12, an underlying layer 12c of a conductive material is formed on the coated surface of the negative electrode current collector 12a. It is preferable to do.
  • the negative electrode current collector 12a is a porous material, so that the slurry leaks from the hole P of the negative electrode current collector 12a, or the negative electrode current collector Since the surface of 12a is not smooth, it may be difficult to form the electrode layer 12b having a uniform thickness.
  • the hole P is blocked by the base layer 12c and a smooth coating surface is formed, so that the slurry can be easily applied,
  • the electrode layer 12b having a uniform thickness can be formed.
  • the electrode layer 12b is formed on only one surface of the negative electrode current collector 12a.
  • the negative electrode terminal can be connected to the uncoated region by intermittently coating the slurry on either side to form an uncoated region on the negative electrode current collector 12a.
  • the thickness of the electrode layer 12b in the negative electrode 12 is designed in balance with the thickness of the electrode layer 11b in the positive electrode 11 so as to ensure a sufficient energy density for the obtained wound LIC. From the viewpoint of output density, energy density, industrial productivity, etc., when formed on one surface of the negative electrode current collector 12a, the thickness is usually 15 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • the electrode layer 11b in the positive electrode 11 contains a positive electrode active material capable of reversibly carrying lithium ions and / or anions such as tetrafluoroborate.
  • the positive electrode active material constituting the electrode layer 11b is, for example, a heat-treated product of activated carbon, conductive polymer, aromatic condensation polymer, and has a polyacene skeleton structure with H / C of 0.05 to 0.50. PAS or the like can be used.
  • the electrode layer 11b in the positive electrode 11 can be formed by the same method as the electrode layer 12b in the negative electrode 12.
  • the potential of the positive electrode 11 and the negative electrode 12 after the positive electrode 11 and the negative electrode 12 are short-circuited is preferably 2.0 V or less.
  • the same type mainly activated carbon
  • This active material has a potential of about 3 V when the capacitor is assembled.
  • an anion forms an electric double layer on the surface of the positive electrode, thereby increasing the potential of the positive electrode.
  • the cation forms an electric double layer on the surface of the negative electrode, thereby lowering the potential of the negative electrode.
  • the organic electrolyte capacitor in which the carbon material is used for both the positive electrode and the negative electrode is the positive electrode and the negative electrode after the positive electrode and the negative electrode are short-circuited.
  • Each of the potentials is about 3V.
  • the potential of the positive electrode after the positive electrode 11 and the negative electrode 12 are short-circuited as described above is 2.0 V (Li / Li + , the same shall apply hereinafter) or less. It is preferable. That is, in the wound LIC according to the present invention, a positive electrode active material that can reversibly carry lithium ions and / or anions is used, while an active material that can reversibly carry lithium ions as a negative electrode active material. It is preferable to carry lithium ions on the negative electrode 12 and / or the positive electrode 11 in advance so that the potential of the positive electrode and the negative electrode becomes 2.0 V or less after the positive electrode 11 and the negative electrode 12 are short-circuited using a substance.
  • the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited is 2.0 V or less.
  • the potential of the positive electrode determined by one of the following two methods (A) or (B) The case where it becomes 2.0V or less.
  • the positive electrode potential of 2.0 V or less after the positive electrode and the negative electrode are short-circuited is not limited to immediately after the lithium ions are doped, and is repeatedly charged, discharged or charged / discharged.
  • the positive electrode potential after short-circuiting is 2.0 V or less.
  • activated carbon and carbon materials usually have a potential of about 3 V (Li / Li + ), and when a capacitor is formed using activated carbon for both the positive electrode and the negative electrode as an active material, any potential is used. Therefore, even if the positive electrode and the negative electrode are short-circuited, the potential of the positive electrode does not change and remains at about 3V.
  • so-called hybrid capacitors using activated carbon as the positive electrode active material and carbon materials such as graphite and non-graphitizable carbon used in lithium ion secondary batteries as the negative electrode active material.
  • the potential of the positive electrode Since the potential is also about 3V, even if the positive electrode and the negative electrode are short-circuited, the potential of the positive electrode does not change and remains at about 3V. Therefore, although depending on the mass balance between the positive electrode and the negative electrode, the potential of the negative electrode transitions to around 0 V when charged, so that the charging voltage can be increased, and thus a capacitor having a high voltage and a high energy density can be obtained.
  • the upper limit of the charging voltage is determined to be a voltage at which the electrolyte does not decompose due to an increase in the positive electrode potential. Therefore, when the positive electrode potential is set as the upper limit, the charging voltage is increased by a value that decreases the negative electrode potential. Can be increased.
  • the positive electrode potential at the time of discharge is up to 3.0 V.
  • the change is about 1.0 V, and the capacity of the positive electrode cannot be fully utilized.
  • the initial charge / discharge efficiency is often low, and it is known that there are lithium ions that cannot be desorbed during discharge. .
  • the surface of the negative electrode is consumed for decomposition of the electrolytic solution or trapped in the structural defect portion of the carbon material, but in this case, compared to the charge / discharge efficiency of the positive electrode
  • the positive electrode potential becomes higher than 3V and the utilization capacity further decreases.
  • the positive electrode can be discharged from 4.0 V to 2.0 V.
  • the positive electrode can only be discharged from 4.0 V to 3.0 V, or only half of the available capacity is used.
  • it is possible to obtain a high voltage it is difficult to obtain a high capacity. Therefore, in order to obtain not only a high voltage and a high energy density as a capacitor, but also a high capacity and a high energy density, it is necessary to improve the utilization capacity of the positive electrode.
  • the capacity used increases and the capacity increases accordingly.
  • the potential of the positive electrode after a short circuit between the positive electrode and the negative electrode is lower than 3.0 V
  • the capacity used increases and the capacity increases accordingly.
  • the potential of the positive electrode is set to 2.0 V or less after a short circuit between the positive electrode and the negative electrode, not only the amount charged by charging / discharging of the capacitor but also lithium ions from a lithium ion supply source such as lithium metal to the negative electrode separately. It is preferable to charge.
  • the positive electrode, the negative electrode, and the lithium metal are in an equilibrium potential, so both the positive electrode potential and the negative electrode potential are 3.0 V. It becomes as follows.
  • the equilibrium potential decreases as the amount of lithium metal constituting the lithium ion supply source increases. If the negative electrode active material and the positive electrode active material change, the equilibrium potential also changes. Therefore, the negative electrode in consideration of the characteristics of the negative electrode active material and the positive electrode active material so that the positive electrode potential after the short circuit between the positive electrode and the negative electrode is 2.0 V or less. It is necessary to adjust the amount of lithium ions to be supported.
  • the potential of the positive electrode 11 after the positive electrode 11 and the negative electrode 12 are short-circuited is 2.0 V or less. That is, lithium ions are supplied to the positive electrode 11 and / or the negative electrode 12 from other than the negative electrode 12.
  • the supply of lithium ions may be either one or both of the negative electrode 12 and the positive electrode 11.
  • the amount of lithium ions supported increases and the potential of the positive electrode decreases. Since problems such as irreversible consumption of lithium ions and a decrease in the capacity of the capacitor may occur, the amount of lithium ions supplied to the negative electrode and the positive electrode needs to be appropriately controlled so as not to cause problems. In any case, since the lithium ions previously supplied to the positive electrode and / or the negative electrode are supplied to the negative electrode by charging the cell, the potential of the negative electrode is lowered.
  • the potential of the positive electrode 11 after the positive electrode 11 and the negative electrode 12 are short-circuited is higher than 2.0 V, it is obtained because the amount of lithium ions supplied to the positive electrode 11 and / or the negative electrode 12 is small.
  • the energy density of the wound LIC is small.
  • the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited becomes lower and the energy density is improved.
  • 2.0 V or less is preferable, and in order to obtain a higher energy density, 1.0 V (Li / Li + ) or less is preferable.
  • the amount of lithium ions supplied to the negative electrode 12 is increased by charging the wound LIC.
  • the electrostatic capacity of the negative electrode 12 increases and the potential change amount of the negative electrode 12 decreases, as a result, the potential change amount of the positive electrode 11 increases and the electrostatic capacity and capacity of the wound LIC increase. High energy density can be obtained.
  • the potential of the positive electrode 11 is less than 0.1 V, although depending on the positive electrode active material, problems such as gas generation and irreversible consumption of lithium ions occur. It becomes difficult. Moreover, when the electric potential of the positive electrode 11 becomes too low, it means that the mass of the negative electrode active material is excessive, and conversely, the energy density decreases. Therefore, generally, the potential of the positive electrode 11 is 0.1 V or higher, preferably 0.3 V or higher.
  • capacitance and capacitance are defined as follows.
  • the capacitance of the capacitor indicates the slope of the discharge curve of the capacitor, the unit is F (farad), and the capacitance per unit mass of the capacitor is the capacitance of the capacitor based on the mass of the positive electrode active material and the negative electrode active material.
  • the unit is F / g
  • the capacitance of the positive electrode indicates the slope of the discharge curve of the positive electrode
  • the unit is F
  • the positive electrode capacitance is divided by the mass of the positive electrode active material
  • the unit is F / g
  • the negative electrode capacitance is a value obtained by dividing the negative electrode capacitance by the mass of the negative electrode active material.
  • the unit is F / g.
  • the capacitance of the capacitor is the difference between the discharge start voltage and the discharge end voltage of the capacitor, that is, the product of the voltage change amount and the capacitance of the capacitor.
  • the unit is C (coulomb), but 1C is 1 Since this is the amount of charge when a current of 1 A flows per second, in this specification, it is converted and displayed as mAh.
  • the capacity of the positive electrode is the product of the difference between the potential of the positive electrode at the start of discharge and the potential of the positive electrode at the end of discharge (amount of change in positive electrode potential) and the capacitance of the positive electrode, and the unit is C or mAh.
  • the capacity is a product of the difference between the potential of the negative electrode at the start of discharge and the potential of the negative electrode at the end of discharge (amount of change in negative electrode potential) and the capacitance of the negative electrode, and the unit is C or mAh.
  • the capacity of the capacitor matches the capacity of the positive electrode and the capacity of the negative electrode.
  • the capacitance per unit mass of the negative electrode active material is three times or more than the capacitance per unit mass of the positive electrode active material, and the mass of the positive electrode active material is negative electrode active material.
  • the mass of the negative electrode is preferably larger than the mass of the material.
  • the electric capacity can be set to three times or more the electrostatic capacity per unit mass of the positive electrode active material, and the mass of the positive electrode active material can be made larger than the mass of the negative electrode active material. As a result, a capacitor having a higher voltage and a higher capacity than the conventional electric double layer capacitor can be obtained.
  • the mass of the negative electrode active material is reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the wound LIC can be increased.
  • the mass of the positive electrode active material is preferably larger than the mass of the negative electrode active material, but more preferably 1.1 to 10 times the mass of the negative electrode active material. When the mass of the positive electrode active material is less than 1.1 times the mass of the negative electrode active material, the capacity difference becomes small, which is not preferable.
  • the mass of the positive electrode active material exceeds 10 times the mass of the negative electrode active material, the capacity may be reduced, and the thickness difference between the positive electrode 11 and the negative electrode 12 becomes too large. This is not preferable in the configuration of the rotary LIC.
  • separators 13A and 13B As the separators 13A and 13B, a porous body having durability against an electrolytic solution, a positive electrode active material, or a negative electrode active material and having continuous air holes, and the like having a small electrical conductivity can be used.
  • materials for the separators 13A and 13B cellulose (paper), polyethylene, polypropylene, and other known materials can be used. Among these, cellulose (paper) is preferable from the viewpoint of durability and economy.
  • the thickness of the separators 13A and 13B is not particularly limited, but usually about 20 to 50 ⁇ m is preferable.
  • the lithium ion supply sources 16A to 16C are preferably pressure-bonded or stacked on a metal lithium electrode current collector.
  • the lithium electrode current collector can be electrically connected to, for example, the negative electrode terminal 18 through the lithium electrode terminal by providing a lithium electrode terminal.
  • this lithium electrode current collector one having a porous structure similar to that of the electrode current collector is used so that the lithium metal constituting the lithium ion supply sources 16A to 16C can be pressure-bonded easily and lithium ions can pass if necessary. It is preferable.
  • the lithium electrode current collector When a conductive porous material such as a stainless mesh is used as the lithium electrode current collector, at least a part of lithium metal constituting the lithium ion supply sources 16A to 16C, particularly 80% by mass or more, is a lithium electrode current collector. It is preferable to be embedded in the holes of the electric body, so that even after lithium ions are supported on the negative electrode 12, gaps generated between the electrodes due to the disappearance of lithium metal are reduced, and the reliability of the obtained wound LIC Sex can be maintained more reliably.
  • the thickness of the lithium electrode current collector is preferably about 10 to 200 ⁇ m.
  • the thickness of the lithium metal to be pressure-bonded to the lithium electrode current collector is appropriately determined in consideration of the amount of lithium ions supported in advance on the negative electrode 12, but is usually preferably about 50 to 300 ⁇ m.
  • the amount of lithium metal that constitutes the lithium ion supply sources 16A to 16C is such that the lithium ion is doped so that the potential of the positive electrode 11 becomes 2.0 V or less after the positive electrode 11 and the negative electrode 12 are short-circuited. It is preferable to set the inner peripheral surface so that, for example, lithium ions are doped to the negative electrode 12 in a balanced manner and rapidly from both the outer peripheral surface and the inner peripheral surface of the electrode winding unit 10 as much as possible.
  • the amount of lithium metal constituting the lithium ion source 16A according to the above, the amount of lithium metal constituting the lithium ion source 16C relating to the electrode gap portion, and the amount of lithium metal constituting the lithium ion source 16B relating to the outer peripheral surface It is preferable to distribute.
  • the material of the negative electrode terminal 18 and the positive electrode terminal 17 is not particularly limited as long as it has conductivity, and various materials can be used, but the same material as that of the negative electrode current collector 12a and the positive electrode current collector 11a, respectively. A thing is preferable from points, such as connectivity and expansibility.
  • the material of the tape 25 is not particularly limited as long as it has durability against the electrolytic solution and does not adversely affect the obtained wound LIC, but the same material as that of the separators 13A and 13B is preferable. . Further, the tape 25 having a thickness of about 50 to 100 ⁇ m and a width of about 5 to 10 mm is preferable because the electrode winding unit 10 can be stably fixed and workability is improved. Further, the number of tapes 25 and the positions fixed by the tapes 25 are appropriately determined mainly depending on the dimensions of the electrode winding unit 10. Usually, when the number of tapes 25 is 2 to 3, the electrode winding unit is used. 10 can be stably fixed.
  • the material of the outer container 20 is not particularly limited, and various materials generally used for batteries or capacitors can be used. For example, a metal material such as iron or aluminum, a plastic material, or a composite material obtained by laminating them is used.
  • the outer container 20 may be a film type using a laminate film of aluminum and a polymer material such as nylon or polypropylene from the viewpoint of reducing the size and weight of the wound LIC. preferable.
  • the shape of the outer container 20 is not particularly limited, and can be appropriately selected depending on the application, such as a cylindrical shape or a rectangular shape. However, when a cylindrical electrode winding unit is accommodated, a cylindrical shape is flattened. When a cylindrical electrode winding unit body is accommodated, a rectangular type is preferable.
  • an aprotic organic solvent electrolyte solution of lithium salt is used as the electrolytic solution filled in the outer container 20 as the electrolytic solution filled in the outer container 20, an aprotic organic solvent electrolyte solution of lithium salt is used.
  • the lithium salt constituting the electrolyte any lithium salt can be used as long as it can transfer lithium ions, does not cause electrolysis even under high voltage, and lithium ions can exist stably. Specific examples thereof include LiClO4, LiAsF6. , LiBF4, LiPF6, and Li (C2F5SO2) 2N.
  • aprotic organic solvent electrolyte solution examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like.
  • These aprotic organic solvent electrolyte solutions can be used alone or in admixture of two or more.
  • the electrolytic solution is prepared by mixing the above-described electrolyte and solvent in a sufficiently dehydrated state, and the concentration of the electrolyte in the electrolytic solution is at least 0.1 in order to reduce the internal resistance due to the electrolytic solution. It is preferably at least mol / L, more preferably from 0.5 to 1.5 mol / L.
  • the electrode winding unit 10 is obtained by winding the lithium ion supply source 16C in the positive electrode gap portion 11S to form the electrode stack 10A. Therefore, the electrode winding unit 10 can be easily assembled. Therefore, the assembly can be completed in a short time, and the lithium ion supply source 16C is arranged in the positive electrode gap portion 11S. Therefore, the pre-doping time can be shortened, and as a result, high productivity can be obtained.
  • the wound-type storage power source manufactured in this way since the pre-doping can be speeded up and uniformed, the internal resistance is reduced even if the assembly is completed in a short time. Thus, high performance is obtained and high durability is obtained.
  • the positive electrode can have a positive electrode gap formed by a plurality of slits 31 ⁇ / b> T.
  • the lithium ion supply source 36 ⁇ / b> C related to the positive electrode gap is disposed in the slit 31 ⁇ / b> T without being in contact with the positive electrode 31, and is wound together with the negative electrode, whereby an electrode winding unit is configured.
  • the negative electrode is not limited to a negative electrode constituted by a plurality of negative electrode pieces, and a negative electrode 42 having a negative electrode gap portion as shown in FIGS. 14 and 15 may be used.
  • such an electrode winding unit includes a first strip member 42Q in which a strip-like negative electrode 42 is disposed on a separator 43B, and an inner peripheral surface of the electrode winding unit on the separator 43A.
  • the positive electrode gap portion 41S, the positive electrode piece 411, the positive electrode gap portion 41S, the positive electrode piece 412, the positive electrode piece 412, and the outermost peripheral surface of the electrode winding unit are arranged.
  • the positive electrode gap portion 41S in which the lithium ion supply source 16B is disposed produces the second strip member 41Q formed in this order from one end to the other end.
  • the positive electrode piece opposes the negative electrode piece only through the separator, and lithium
  • the ion supply source is also set on the basis of the thickness of each component so that the negative electrode piece is opposed to the negative electrode piece only through the separator, and the inner peripheral surface and the outer peripheral surface are configured by the lithium ion supply source.
  • the first strip member 42Q and the second strip member 41Q are stacked, and this electrode stack 40A is wound around the core rod 19 from one end thereof (one end of the lithium ion supply source 16A) in the direction of the arrow in the figure.
  • an electrode winding unit is obtained.
  • the material of the core rod 19 a metal material such as stainless steel, copper, or nickel, or a resin having a high electrolytic solution resistance such as polypropylene or polyphenylene sulfide can be used. Further, the diameter of the core rod 19 can be appropriately set according to the diameter of the inner periphery of the electrode winding unit 10. Further, the core rod 19 is used in the manufacturing process of the electrode winding unit 10. In the completed electrode winding unit 10, the core rod 19 may be left as it is. Thus, the electrode winding unit may not have a core rod.
  • the electrode winding unit is not limited to a substantially cylindrical shape, and may be a flat cylindrical shape formed by winding an electrode stack on a plate-like body, for example.
  • the electrode winding unit 50 has a belt-like positive electrode 51 having a positive electrode gap 51S and a belt-like electrode having a negative electrode gap 52S.
  • An electrode stack 50A in which the negative electrode 52 is wound through a separator, specifically, the negative electrode 52, the separator 53A, and the positive electrode 51 are stacked in this order on the separator 53B.
  • the same reference numerals as those in the first embodiment denote the same components.
  • the negative electrode 52 is superimposed on at least a part of the positive electrode 51.
  • the electrode winding unit 50 is configured such that the outer peripheral surface of a pair of electrode pairs composed of opposing positive electrode portions and negative electrode portions is covered with a negative electrode portion extended from the negative electrode portion of the electrode pair portions, The outer peripheral surface of the winding body covered with the extended negative electrode portion is covered with the lithium ion supply source 16C, and the outer peripheral surface is covered with another electrode pair portion. preferable.
  • the positive electrode piece 511 is inserted and wound to form an electrode. It is preferable that the winding unit 50 is configured. By adopting such a configuration, high durability can be obtained for the wound LIC.
  • pre-doping becomes insufficient and lithium metal remains, or the lithium ion supply source is placed on the lithium electrode current collector.
  • dendritic lithium metal called dendrites may be deposited on the lithium electrode current collector and cause a short circuit.
  • a lithium ion supply source 16A, a negative electrode piece 521, and a lithium ion supply source 16C serving as the inner peripheral surface of the electrode winding unit 50 are provided.
  • the negative electrode piece 522 and the lithium ion supply source 16B that becomes the outermost peripheral surface of the electrode winding unit 50 are formed on the first strip 52Q formed in this order from one end to the other end, and on the separator 53A
  • the gap member 51S, the positive electrode piece 511, the positive electrode gap part 51S, and the positive electrode piece 512 form the second band member 51Q formed in this order from one end to the other end.
  • the length of the gap between the positive electrode 51 and the negative electrode 52 and the length and arrangement position of the electrode pieces are turned into the negative electrode pieces only through the separator.
  • the lithium ion supply source is also opposed to the negative electrode piece through only the separator, and is set based on the thickness of each component so that the inner peripheral surface and the outer peripheral surface are configured by the lithium ion supply source. ing. Then, the first strip 52Q and the second strip 51Q are stacked, and the electrode stack 50A is wound around the core rod 19 from one end (one end of the lithium ion supply source 16A) in the direction of the arrow in the figure. Thus, the electrode winding unit 50 is obtained.
  • the positive electrode 51, the negative electrode 52, the separators 53A and 53B, and the lithium ion supply sources 16A to 16C are basically the positive electrode 11 and the negative electrode in the first embodiment. 12, separators 13A and 13B, and lithium ion supply sources 16A to 16C can be used.
  • the lithium ion supply sources 16A to 16C are the same as those of the wound LIC according to the first embodiment.
  • it is preferable that the lithium electrode current collector is pressure-bonded or bonded.
  • the same effects as those of the wound type LIC of the first embodiment can be obtained.
  • the electrode winding unit is not limited to a configuration in which the negative electrode is composed of a plurality of negative electrode pieces and a lithium ion supply source is disposed in the gap portion, and has a negative electrode gap portion as shown in FIG.
  • a negative electrode 62 having no configuration may be used, and lithium ion supply sources 16A to 16C may be arranged at positions facing the positive electrode gap portion 11S.
  • the same reference numerals as those in the first embodiment denote the same components.
  • a positive electrode gap 61S, a positive electrode piece 611, a positive electrode gap 61S, a positive electrode piece 612, and a positive electrode gap 61S are formed in this order from one end to the other end on the separator 63A.
  • the strip-shaped negative electrode 62 is disposed on the second band member 61Q and the separator 63B, and the lithium that becomes the inner peripheral surface of the electrode winding unit is located on the negative electrode 62 so as to face each of the positive electrode gaps 61S.
  • An ion supply source 16A, a lithium ion supply source 16C, and a lithium ion supply source 16B, which is the outermost peripheral surface of the electrode winding unit, are provided with a first strip member 62Q disposed in a state of not facing the positive electrode pieces 611 and 612 at all. Make it.
  • the first strip member 62Q and the second strip member 61Q the length and arrangement position of the positive electrode gap portion and the electrode piece are opposed to the negative electrode piece through the separator alone when the length and the arrangement position of the positive electrode gap are wound.
  • the ion supply source is also set on the basis of the thickness of each component so that the negative electrode piece is opposed to the negative electrode piece only through the separator, and the inner peripheral surface and the outer peripheral surface are configured by the lithium ion supply source. Then, the first strip member 62Q and the second strip member 61Q are stacked, and this electrode stack 60A is wound around the core rod 19 from one end (one end of the lithium ion supply source 16A) in the direction of the arrow in the figure. Thus, an electrode winding unit is obtained.
  • FIG. 20 is an explanatory cross-sectional view showing a wound LIC configuration according to the third embodiment of the present invention.
  • the electrode winding unit 10 is provided in the outer container 20.
  • the electrode winding unit 10 includes an electrode stack 10A in which the negative electrode 12, the second separator 14B, and the positive electrode 11 are stacked in this order on one surface of the first separator 14A. From one end, the core rod 19 is wound around in a cylindrical shape.
  • the positive electrode 11 and the negative electrode 12 are disposed so that respective electrode layers described later face each other with the second separator 14B interposed therebetween.
  • the electrode stack 10A is wound so that the first separator 14A is on the inner side, whereby the innermost peripheral portion of the entire electrode winding unit 10 is the innermost periphery of the first separator 14A.
  • a portion 14a is formed.
  • the negative electrode 12 is longer than the positive electrode 11, and the outermost peripheral portion of the positive electrode 11 is wound around and covered with the outermost peripheral portion of the negative electrode 12.
  • the separator 14B is longer than the negative electrode 12, and the outermost peripheral portion of the negative electrode 12 is wound around the outermost peripheral portion of the first separator 14A and the outermost peripheral portion 14b of the second separator 14B in this order.
  • the outermost peripheral portion of the entire electrode winding unit 10 is made the outermost peripheral portion 14b of the second separator 14B.
  • the inner circumferential surface of the innermost circumferential portion of the electrode winding unit 10 (the innermost circumferential portion 14a of the first separator 14A), that is, the one surface on the one end side portion of the first separator 14A opposite to the one surface on which the negative electrode 12 is disposed.
  • lithium ion supply sources 15A made of a plurality of rectangular film-like lithium metals each extending in the width direction of the first separator 14A (direction perpendicular to the paper surface in FIG. 20) are spaced apart from each other in the circumferential direction.
  • the lithium ion supply source 15A is not in direct contact with each of the positive electrode 11 and the negative electrode 12 by the first separator 14A.
  • the inner peripheral surface of the outermost peripheral portion of the electrode winding unit 10 (the outermost peripheral portion 14b of the second separator 14B), that is, the surface of the other end side portion of the second separator 14B, respectively,
  • a plurality of rectangular lithium ion sources 15B made of lithium metal extending in the width direction (the direction perpendicular to the paper surface in FIG. 20) are arranged apart from each other in the circumferential direction.
  • the separator 14B is not in direct contact with each of the positive electrode 11 and the negative electrode 12.
  • the “inner peripheral surface” means a surface on the center side of the electrode winding unit
  • the “outer peripheral surface” means a surface opposite to the inner peripheral surface.
  • the electrode winding unit 10 is fixed by being wound by the tape 25, whereby the electrode winding unit 10 is fixed to the outer container.
  • the work to be accommodated in 20 becomes easy, and the assembly workability of the wound LIC is improved.
  • a positive electrode terminal 17 and a negative electrode terminal 18 that are electrically connected to the positive electrode 11 and the negative electrode 12 are drawn out from both ends of the electrode winding unit 10.
  • the exterior container 20 is filled with an electrolytic solution made of an aprotic organic solvent electrolyte solution of lithium salt.
  • the positive electrode 11, the negative electrode 12, the first separator 14A, the second separator 14B, and the lithium ion supply sources 15A and 15B are basically the same as those in the first implementation.
  • the positive electrode 11, the negative electrode 12, the separators 13A and 13B, and the lithium ion supply sources 16A to 16C having the same configuration can be used.
  • the lithium ion supply sources 15A and 15B are the same as those in the first embodiment.
  • the lithium electrode current collector is preferably crimped or bonded.
  • the lithium ion supply sources 15A and 15B need only be provided on the inner peripheral surface of at least one of the outermost peripheral portion and the innermost peripheral portion of the electrode winding unit 10. Regions (hereinafter referred to as lithium ion supply sources 15A, 15B) on the inner peripheral surface of the outermost peripheral portion and / or the inner peripheral surface of the innermost peripheral portion of the electrode winding unit 10 provided with the supply sources 15A, 15B.
  • the ratio of R (the ratio of the area of the non-occupied region R to the area of the inner peripheral surface of the outermost peripheral portion and / or the area of the unoccupied region R relative to the area of the inner peripheral surface of the innermost peripheral portion %) Is 10 to 70%, preferably 15 to 50%, more preferably 20 to 30%. If the ratio of the non-occupied region R is within the above range, the penetration of the electrolyte solution can be achieved in a short time, whereby lithium ions are uniformly doped in the entire negative electrode 12 in a short time, and the pre-doping can be performed in a short time. Completed.
  • the proportion of the unoccupied region R is less than 10%, it takes a long time for the electrolyte solution to penetrate, so that a long time is required until lithium ions are uniformly doped in the entire electrode layer of the negative electrode 12 after all. Since it is necessary, it is not preferable.
  • the proportion of the non-occupied region R exceeds 70%, the area of the lithium ion supply sources 15A and 15B facing the positive electrode 11 and / or the negative electrode 12 is small, so that it takes a long time to complete the pre-doping. It is not preferable because it requires.
  • the non-occupied region R is preferably distributed uniformly over the entire inner peripheral surface of the outermost peripheral portion and / or innermost peripheral portion of the electrode winding unit 10.
  • a non-occupied region R having a predetermined area instead of using one lithium ion supply source having a small area, it is possible to secure a non-occupied region R having a predetermined area by arranging a plurality of small area lithium ion supply sources apart from each other. This is preferable because a wide flow path of the electrolyte can be secured. Further, when a lithium ion supply source that is made porous by punching or the like is used, it is more preferable because an unoccupied area having a predetermined area can be secured by one lithium ion supply source.
  • Such a wound LIC can be manufactured, for example, as follows.
  • the positive electrode 11 and the negative electrode 12 shown in FIGS. 11 and 12 are produced. Specifically, by forming a base layer 11c made of, for example, a carbon-based conductive material on one surface of the positive electrode current collector 11a, the hole P of the positive electrode current collector 11a is blocked, and then the surface of the base layer 11c
  • a positive electrode 11 is formed by applying a slurry containing a positive electrode active material and a binder to form the electrode layer 11a, and on one surface of the negative electrode current collector 12a, for example, a carbon-based conductive material.
  • the holes P of the negative electrode current collector 12a are closed, and then a slurry containing a negative electrode active material and a binder is applied to the surface of the base layer 12c to form the electrode layer 12a.
  • the negative electrode 12 is produced.
  • the positive electrode terminal 17 and the negative electrode terminal 18 are fixedly connected to the positive electrode current collector 11a in the positive electrode 11 and the negative electrode current collector 12a in the negative electrode 12 by, for example, stitching.
  • the electrode stack 10A is manufactured by stacking the negative electrode 12, the second separator 14B, and the positive electrode 11 in this order on one surface of the first separator 14A.
  • the positive electrode 11 and the negative electrode 12 are disposed such that the electrode layers 11b and 12b face each other with the second separator 14B interposed therebetween.
  • the electrode winding unit 10A is produced by winding the produced electrode stack 10A from one end of the electrode stack 10A so that the first separator 14A is on the inner side of the core bar 19, The electrode winding unit 10 is fixed by rolling the tape 25.
  • the first separator 14A has an electrode on the other surface opposite to the one surface on which the negative electrode 12 is disposed on the one end side portion which is the innermost peripheral portion of the electrode winding unit 10.
  • a lithium ion supply source 15A disposed on the inner peripheral surface of the innermost peripheral portion of the winding unit 10 is pressure-bonded and fixed.
  • the lithium ion supply source 15A As shown in FIG. A lithium electrode current collector 15a is fixed by pressure bonding.
  • the second separator 14 ⁇ / b> B has lithium ions disposed on the outer peripheral surface of the electrode winding unit 10 on the surface of the other end side portion that is the outermost peripheral portion of the electrode winding unit 10.
  • the supply source 15B is crimped and fixed, and further, a lithium electrode current collector 15b is crimped and fixed on the lithium ion supply source 15B as shown in FIG. In this way, the lithium ion supply sources 15A and 15B are arranged on the inner peripheral surface and the outer peripheral surface of the electrode winding unit 10, respectively.
  • the electrode winding unit 10 thus produced is housed in the outer container 20 and filled with an electrolyte solution. Further, the positive electrode terminal 17 and the negative electrode terminal 18 in the electrode winding unit 10 are A wound type LIC is obtained by sealing the outer container 20 in a state where the outer container 20 is pulled out.
  • the outer container 20 is filled with an electrolyte solution capable of supplying lithium ions, when left for an appropriate period, the negative electrode 12 and / or the positive electrode
  • the lithium ions released from the lithium ion supply sources 15A and 15B are doped into the negative electrode 12 and / or the positive electrode 11 by electrochemical contact between the lithium ion supply sources 15A and 15B.
  • the lithium ion supply sources 15A, 15B are provided on the outermost peripheral portion and / or the inner peripheral surface of the innermost peripheral portion of the electrode winding unit 10 provided with the lithium ion supply sources 15A, 15B.
  • the electrode stacking unit 10A and the lithium ion supply are prepared by winding the electrode stack 10A in a state where the lithium ion supply sources 15A and 15B are arranged in advance on the first separator 14A and the second separator 14B. Since the arrangement of the sources 15A and 15B can be performed in the same process, higher productivity can be obtained.
  • FIG. 27 is a cross-sectional view illustrating the configuration of the electrode winding unit in the wound LIC according to the fourth embodiment of the present invention.
  • the electrode winding unit 10 in the wound type LIC of this example has an electrode stack in which the negative electrode 12, the second separator 14B, and the positive electrode 11 are stacked in this order on one surface of the first separator 14A.
  • the separator 14 ⁇ / b> A is wound inside a flat cylinder from one end of the electrode stack so that the innermost peripheral portion of the entire electrode winding unit 10 is the first separator 14 ⁇ / b> A.
  • the innermost peripheral portion 14a is used.
  • the outermost peripheral portion of the positive electrode 11 is wound and covered by the outermost peripheral portion of the negative electrode 12, and the outermost peripheral portion of the negative electrode 12 is the outermost peripheral portion of the first separator 14 ⁇ / b> A and the second separator 14 ⁇ / b> B.
  • the outermost peripheral portion 14b is wound and covered in this order, so that the outermost peripheral portion of the entire electrode winding unit 10 is the outermost peripheral portion 14b of the second separator 14B.
  • the inner circumferential surface of the innermost circumferential portion of the electrode winding unit 10 (the innermost circumferential portion 14a of the first separator 14A), that is, the one surface on the one end side portion of the first separator 14A opposite to the one surface on which the negative electrode 12 is disposed.
  • a plurality of rectangular film-like lithium metals which are respectively crimped to both surfaces of the lithium electrode current collector 15a, extend in the width direction of the first separator 14A (direction perpendicular to the paper surface in FIG. 27).
  • the lithium ion supply source 15A is arranged in a state of being separated from each other, and the lithium ion supply source 15A is not in direct contact with each of the positive electrode 11 and the negative electrode 12 by the first separator 14A.
  • the supply source 15B is not in direct contact with each of the positive electrode 11 and the negative electrode 12 by the second separator 14B.
  • two lithium ion supply sources 15B are arranged on one surface of the outer periphery of the electrode winding unit 10 and the other surface facing this.
  • the ratio of the non-occupied region R on the inner peripheral surface of the outermost peripheral portion and / or the inner peripheral surface of the innermost peripheral portion of the electrode winding unit 10 provided with the lithium ion supply sources 15A, 15B is 10 to 70, respectively. %, Preferably 15 to 50%, more preferably 20 to 30%.
  • the positive electrode 11, the negative electrode 12, the first separator 14A, the second separator 14B, and the lithium ion supply sources 15A and 15B are basically the same as those in the first implementation.
  • the positive electrode 11, the negative electrode 12, the separators 13A and 13B, and the lithium ion supply sources 16A to 16C having the same configuration can be used.
  • the lithium electrode current collector is pressure-bonded or bonded.
  • the electrode winding unit 10 in the wound LIC according to the fourth embodiment can be manufactured in the same manner as the electrode winding unit 10 in the wound LIC according to the fourth embodiment.
  • the wound type LIC having such an electrode winding unit 10 accommodates the electrode winding unit 10 in an outer container, fills the outer container with an electrolyte, and further, a positive electrode in the electrode winding unit 10.
  • the terminal 17 and the negative electrode terminal 18 are obtained by sealing the exterior container in a state where the terminal 17 and the negative electrode terminal 18 are pulled out of the exterior container.
  • the negative electrode 12 and / or the positive electrode 11 Since the exterior container is filled with an electrolyte solution capable of supplying lithium ions, when left for an appropriate period, the negative electrode 12 and / or the positive electrode 11 The lithium ions released from the lithium ion supply sources 15A and 15B are doped into the negative electrode 12 and / or the positive electrode 11 by electrochemical contact between the lithium ion supply sources 15A and 15B.
  • the unoccupied region on the inner peripheral surface of the outermost peripheral part and / or the innermost peripheral part of the electrode winding unit 10 provided with the lithium ion supply sources 15A, 15B According to such a wound-type LIC, the unoccupied region on the inner peripheral surface of the outermost peripheral part and / or the innermost peripheral part of the electrode winding unit 10 provided with the lithium ion supply sources 15A, 15B.
  • the electrolytic solution penetrates into the electrode winding unit 10 in a short time, and lithium ions are uniformly doped in the entire negative electrode 12 in a short time, resulting in high production. Sex is obtained.
  • the electrode stacking unit 10A and the lithium ion supply are prepared by winding the electrode stack 10A in a state where the lithium ion supply sources 15A and 15B are arranged in advance on the first separator 14A and the second separator 14B. Since the arrangement of the sources 15A and 15B can be performed in the same process, higher productivity can be obtained.
  • the present invention is not limited to a wound LIC, but can be suitably applied to a lithium ion secondary battery, and can also be applied to other wound storage power sources.
  • Example 1 [Negative electrode production example 1] A 0.5 mm thick phenolic resin molded plate is placed in a siliconite electric furnace, heated to 500 ° C. at a rate of 50 ° C./hour in a nitrogen atmosphere, and further heated to 660 ° C. at a rate of 10 ° C./hour. PAS was synthesized by heat treatment. The obtained plate-like PAS was pulverized with a disk mill to obtain a PAS powder. The H / C ratio of this PAS powder was 0.21.
  • a negative electrode [1] was obtained. Further, after the negative electrode layer was patterned so that the coated part length was 36.1 cm and the uncoated part length was 10 cm in the same manner, the thickness of the whole negative electrode (the thickness of the negative electrode layers on both sides) And a negative electrode current collector thickness) of 77 ⁇ m were obtained.
  • a prototype cell using this negative electrode [1] and negative electrode [2] as working electrodes, lithium metal as a counter electrode and reference electrode, and a solution of LiPF6 dissolved in propylene carbonate at a concentration of 1 mol / L as an electrolytic solution was prototyped.
  • a positive electrode slurry is obtained by dispersing 100 parts by mass of a commercially available activated carbon powder having a specific surface area of 1950 m 2 / g, 10 parts by mass of acetylene black, 7 parts by mass of an acrylic binder and 4 parts by mass of carboxymethyl cellulose and mixing them well. It was. On the other hand, a non-aqueous carbon-based conductive paint “EB-815” (manufactured by Nippon Atchison Co., Ltd.) is applied to both sides of an aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) with a thickness of 35 ⁇ m (porosity 50%).
  • the positive electrode current collector [1] was obtained by intermittently coating on both sides, patterning the conductive layer so that the coated part length was 13.2 cm, and the uncoated part length was 10 cm, and drying.
  • the total thickness (the sum of the thickness of the aluminum expanded metal and the thickness of the conductive layer) was 52 ⁇ m, and the through hole in the coated part was almost blocked by the conductive paint.
  • the positive electrode slurry [1] is intermittently applied onto the conductive layers on both sides by a die coater, and the electrode layer of the positive electrode is patterned so that the coated part length is 13.2 cm and the uncoated part length is 10 cm.
  • a positive electrode [1] was obtained in which the total thickness of the positive electrode (the sum of the electrode layer thickness of both positive electrodes and the thickness of the positive electrode current collector [1]) was 212 ⁇ m. Furthermore, after patterning the electrode layer of the positive electrode so that the coated part length is 26.1 cm and the uncoated part is 10 cm in the same manner and pressing, the total thickness of the positive electrode (the electrode layer thickness of the positive electrode on both sides) A positive electrode [2] having a positive electrode current collector [1] (total thickness) of 212 ⁇ m was obtained.
  • a counter cell and a reference electrode were made of lithium metal, and an electrolytic solution was made as a simulation cell using a solution of LiPF6 dissolved in propylene carbonate at a concentration of 1 mol / L.
  • the electrostatic capacity per unit mass of the positive electrode [1] and the positive electrode [2] was determined from the discharge time between 3.5 V and 2.5 V, and both were 119 F / g.
  • the negative electrode [1] having a thickness of 77 ⁇ m was cut into a width of 5.6 ⁇ length of 16.2 cm 2 so as to include an uncoated portion at a position 10 mm from the end, and a nickel terminal was connected to the negative electrode current collector. It arrange
  • the positive electrode [1] having a thickness of 212 ⁇ m was cut into a width of 5.4 ⁇ length of 14.2 cm 2 so as to include an uncoated portion at a position 10 mm from the end, and the aluminum terminal was connected to the positive electrode current collector It arrange
  • the negative electrode [2] was cut into a width of 5.6 ⁇ 37.1 cm 2 and a nickel terminal was placed on the uncoated portion of the negative electrode current collector.
  • the positive electrode [2] was cut to a width of 5.4 ⁇ length of 27.1 cm 2 , an aluminum terminal was placed on the uncoated part of the positive electrode current collector, Connected by ultrasonic welding.
  • a cellulose / rayon mixed nonwoven fabric having a thickness of 35 ⁇ m was used as a separator, and in accordance with FIG. 18, the separator (53A) was arranged side by side in the order of the positive electrode [1] and the positive electrode [2] from the core rod (19) side.
  • the lithium ion supply source [1], the negative electrode [1], the lithium ion supply source [2], the negative electrode [2], and the lithium ion supply source [3] are arranged in this order from the core rod (19) side.
  • An electrode stack was formed, and the electrode stack was wound from one end so that the positive and negative terminals were in opposite directions, and the outermost periphery was taped to produce an electrode winding unit [1]. . A total of three of these were produced.
  • a winding start portion has one lithium metal having a thickness of 60 ⁇ m ⁇ width 5.4 ⁇ length 1.1 cm 2 and a gap portion.
  • lithium ion source [2] As a lithium ion source [2] related to the above, one lithium metal having a thickness of 60 ⁇ m ⁇ width 5.4 ⁇ length 3.1 cm 2 and a lithium ion source [3] related to the outer peripheral surface as a thickness 120 ⁇ m ⁇ width 5.4 ⁇ 5.0 cm 2 length of lithium metal was used, and this was pre-bonded to the separator, and on top of these lithium metals, a 7.4 cm wide copper expanded metal (lithium electrode current collector) ) Were cut into the same length as each lithium metal, placed, and pressed by pressing. For this reason, the lithium ion supply source could be inserted easily. In this electrode winding unit [1], the lithium electrode non-occupancy ratio on the inner peripheral surface, the outer peripheral surface, and the outer peripheral surface of the wound body was all 0%.
  • the electrode winding unit [1] is inserted into an iron-nickel plated outer can having an outer diameter of 18 mm ⁇ and a height of 65 mm, and the negative electrode terminal and the outer can are resistance-welded at the bottom of the can, Grooving was performed. Subsequently, after attaching a polypropylene gasket to the upper part of the can, the positive electrode terminal and the positive electrode cap were resistance welded. When 8 g of a solution obtained by dissolving LiPF6 in a concentration of 1 mol / L was injected into propylene carbonate as an electrolytic solution and impregnated with vacuum, it took 4 minutes. Thereafter, three cylindrical lithium ion capacitor cells [1] were assembled by covering the outer can with a positive electrode cap.
  • the electrode winding unit [1] including the lithium ion supply source can be obtained in a short time in the production process of the lithium ion capacitor cell [1]. This is presumably because the lithium ion supply source (lithium metal) was previously pressure-bonded to the separator. Further, it was confirmed that the lithium ion doping time was short, although the time required to complete the electrolyte injection was long. This is presumably because the lithium ion supply source (lithium metal) was disposed not only on the inner and outer peripheral surfaces but also on the gaps between the electrodes.
  • non-aqueous carbon conductive paint “EB-815” (manufactured by Nippon Atchison Co., Ltd.) is applied to both sides of aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) with a thickness of 35 ⁇ m (porosity 50%).
  • the positive electrode current collector [2] was obtained by intermittently coating on both sides, patterning the conductive layer so as to have a length of 46.3 cm and an uncoated portion length of 10 cm, and drying.
  • the total thickness (the sum of the thickness of the aluminum expanded metal and the thickness of the conductive layer) was 52 ⁇ m, and the through hole in the coated part was almost blocked by the conductive paint.
  • the positive electrode slurry [1] obtained in the same manner as in the positive electrode production example 1 is intermittently applied onto the conductive layers on both sides by a die coater so that the coated part length is 46.3 cm and the uncoated part length is 10 cm.
  • the positive electrode [3] having a total thickness of the positive electrode (the sum of the electrode layer thickness of the positive electrodes on both sides and the thickness of the positive electrode current collector [2]) is 212 ⁇ m. Obtained.
  • the negative electrode [3] having a thickness of 77 ⁇ m was cut into a width of 5.6 ⁇ length of 49.3 cm 2 so as to include an uncoated portion at a position 10 mm from the end, and a nickel terminal was connected to the negative electrode current collector. It arrange
  • the positive electrode [3] having a thickness of 212 ⁇ m was cut into a width of 5.4 ⁇ length of 46.3 cm 2 so as to include an uncoated portion at a position 10 mm from the end, and the aluminum terminal was connected to the positive electrode current collector It arrange
  • a cellulose / rayon mixed nonwoven fabric having a thickness of 35 ⁇ m was used as a separator, and an electrode stack was formed so as to be composed of a continuous strip of negative electrode and positive electrode without forming the positive electrode gap and negative electrode gap in FIG.
  • the electrode stack was wound from one end so that the positive and negative terminals were in opposite directions, and the outermost periphery was taped to produce an electrode winding unit [2]. A total of three of these were produced.
  • a lithium ion supply source related to the inner peripheral surface one lithium metal having a thickness of 135 ⁇ m ⁇ width 5.4 ⁇ length 1.1 cm 2 at the winding start portion and lithium related to the outer peripheral surface
  • an ion supply source one piece of lithium metal having a thickness of 135 ⁇ m ⁇ width of 5.4 ⁇ length of 5.0 cm 2 is preliminarily pressure-bonded to a separator, and further on the lithium metal, a width of 7.4 cm is provided.
  • the copper expanded metal (lithium electrode current collector) was cut into the same length as each lithium metal, arranged, and pressed by pressing. For this reason, the lithium ion supply source could be inserted easily.
  • the lithium electrode non-occupancy ratio on the inner peripheral surface, the outer peripheral surface, and the outer peripheral surface of the wound body was all 0%.
  • the electrode winding unit [2] is inserted into an iron-nickel-plated outer can with an outer diameter of 18 mm ⁇ and a height of 65 mm, and the negative electrode terminal and the outer can are resistance-welded at the bottom of the can, Grooving was performed. Subsequently, after attaching a polypropylene gasket to the upper part of the can, the positive electrode terminal and the positive electrode cap were resistance welded. When 9 g of a solution obtained by dissolving LiPF6 in a concentration of 1 mol / L was injected into propylene carbonate as an electrolytic solution and impregnated with vacuum, it took 4 minutes. After that, three cylindrical lithium ion capacitor cells [2] were assembled by covering the outer can with a positive electrode cap.
  • the electrode winding unit [2] including the lithium ion supply source can be obtained in a short time in the production process of the lithium ion capacitor cell [2]. This is presumably because the lithium ion supply source (lithium metal) was previously pressure-bonded to the separator. However, it was confirmed that the time until the electrolyte injection was completed was long, and the lithium ion doping time was longer than that of the lithium ion capacitor cell [1] according to Example 1. This is presumably because the number of lithium ion supply sources (lithium metal) is less than that of the lithium ion capacitor cell [1] according to the first embodiment.
  • the electrode winding unit [3] is inserted into an iron-nickel-plated outer can with an outer diameter of 18 mm ⁇ and a height of 65 mm, and the negative electrode terminal and the outer can are resistance-welded at the bottom of the can, Grooving was performed. Subsequently, after attaching a polypropylene gasket to the upper part of the can, the positive electrode terminal and the positive electrode cap were resistance welded. When 9 g of a solution obtained by dissolving LiPF6 in a concentration of 1 mol / L was injected into propylene carbonate as an electrolytic solution and impregnated with vacuum, it took 4 minutes. After that, three cylindrical lithium ion capacitor cells [3] were assembled by covering the outer can with a positive electrode cap.
  • the electrode winding unit [3] including the lithium ion supply source can be obtained in a short time. This is presumably because the lithium ion supply source (lithium metal) was previously pressure-bonded to the separator. Further, it was confirmed that the lithium ion doping time was as short as that of the lithium ion capacitor cell [1] according to Example 1, although the time required for completing the injection of the electrolytic solution was long. This is presumably because the number of lithium ion supply sources (lithium metal) is large as in the lithium ion capacitor cell [1] according to the first embodiment. However, it was confirmed that the internal resistance was high.
  • Example 2 Production of negative electrode: A phenol resin molded plate having a thickness of 0.5 mm is placed in a siliconite electric furnace, heated to 500 ° C. at a rate of 50 ° C./hour in a nitrogen atmosphere, and further heated to 660 ° C. at a rate of 10 ° C./hour. A PAS plate was manufactured by heat treatment. The obtained PAS plate was pulverized with a disk mill to prepare a PAS powder. The H / C ratio of this PAS powder was 0.21.
  • a negative electrode slurry 100 parts by mass of the prepared PAS powder and 10 parts by mass of polyvinylidene fluoride powder were added to 80 parts by mass of N-methylpyrrolidone, and dissolved and dispersed to prepare a negative electrode slurry.
  • the slurry for negative electrode was coated on the both sides of a negative electrode current collector made of a copper expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) having a thickness of 32 ⁇ m and a porosity of 50% by a die coater. 3 cm, the length of the uncoated part is intermittently applied and dried so as to be 10 cm, and the resulting coating film is pressed to form an electrode layer, thereby producing a negative electrode. .
  • the thickness of the obtained negative electrode (total thickness of the negative electrode current collector and the electrode layers formed on both surfaces thereof) was 77 ⁇ m.
  • this negative electrode was used as a working electrode, lithium metal as a counter electrode, and a reference electrode, and a capacitor was formed using an electrolytic solution in which LiPF6 was dissolved in propylene carbonate at a concentration of 1 mol / L.
  • the lithium ion of 400 mAh / g was charged and the capacitance per unit weight of the negative electrode was determined to be 661 F / g.
  • the prepared slurry for positive electrode is applied to both sides of the positive electrode current collector on which the underlayer is formed by a die coater so that the length of the coated portion is 46.3 cm and the length of the uncoated portion is 10 cm.
  • the resulting coating film was subjected to press working to form an electrode layer, thereby producing a positive electrode.
  • the thickness of the obtained positive electrode (the total thickness of the positive electrode current collector and the base layer and electrode layer formed on both surfaces thereof) was 212 ⁇ m.
  • the positive electrode is used as a working electrode, lithium metal as a counter electrode, and a reference electrode, and a capacitor is constructed using an electrolytic solution in which LiPF6 is dissolved in propylene carbonate at a concentration of 1 mol / L.
  • the capacitance per unit weight of the positive electrode was determined from the discharge time between them and found to be 119 F / g.
  • the manufactured negative electrode was cut to a size of 5.6 cm (width) ⁇ 49.3 cm (length) so as to include an uncoated portion of the negative electrode current collector at a position 10 mm from the end, and then made of nickel.
  • the negative electrode terminal was placed on the uncoated part of the negative electrode current collector and connected by ultrasonic welding.
  • the manufactured positive electrode was cut into a dimension of 5.4 cm (width) ⁇ 46.3 cm (length) so as to include an uncoated portion of the positive electrode current collector at a position 10 mm from the end portion, and was made of aluminum.
  • the positive electrode terminal was placed on the uncoated part of the positive electrode current collector and connected by ultrasonic welding.
  • the surface of the one end side part of the 1st separator used as the innermost peripheral part of the electrode winding unit obtained by preparing the 1st separator and 2nd separator which consist of a cellulose / rayon mixed nonwoven fabric each having a thickness of 35 ⁇ m
  • a lithium ion source consisting of a lithium metal foil having a vertical and horizontal dimension of 5.4 cm ⁇ 0.9 cm and a thickness of 170 ⁇ m is arranged and fixed by crimping, and the vertical and horizontal dimensions are fixed on the lithium ion source.
  • a lithium electrode current collector made of a copper expanded metal having a size of 7.4 cm ⁇ 0.9 cm, a thickness of 32 ⁇ m, and a porosity of 50% was placed and fixed by pressure bonding.
  • the surface of the other end side portion of the second separator which is the outermost peripheral portion of the obtained electrode winding unit is made of a lithium metal foil having a vertical and horizontal dimension of 5.4 cm ⁇ 2.0 cm and a thickness of 170 ⁇ m.
  • Two lithium ion sources are spaced apart at a distance of 0.5 cm and fixed by crimping, on these lithium ion sources, the vertical and horizontal dimensions are 5.4 cm ⁇ 2.0 cm,
  • a lithium electrode current collector made of a copper expanded metal having a thickness of 32 ⁇ m and a porosity of 50% was placed and fixed by pressure bonding.
  • the negative electrode, the second separator, and the positive electrode were stacked in this order on the surface of the first separator opposite to the surface to which the lithium ion supply source was pressure-bonded, thereby forming an electrode stack.
  • the positive electrode and the negative electrode were arranged so that the respective electrode layers face each other with the second separator interposed therebetween.
  • This electrode stack is wound around one end of the electrode stack with a stainless steel core rod having a diameter of 3.5 mm so that the first separator is on the inside.
  • a 5 mm cylindrical electrode winding unit was prepared and fixed by winding a tape on the electrode winding unit.
  • the ratio of the region (non-occupied region) not covered with the lithium ion supply source on the inner peripheral surface of the outermost peripheral portion and innermost peripheral portion of the electrode winding unit was 20%. Moreover, since each lithium ion supply source was previously pressure-bonded to the first separator and the second separator, the electrode winding unit could be easily manufactured.
  • a bottomed cylindrical outer packaging material made of iron-nickel plating having an outer diameter of 18 mm and a height of 65 mm is prepared, and the produced electrode winding unit is accommodated in the outer packaging material, and the electrode The negative electrode terminal of the rotating unit was resistance welded to the inner bottom of the outer container material, and then grooving was performed on the upper portion of the outer container material. Next, after attaching a polypropylene gasket to the top of the outer container material, the positive electrode terminal of the electrode winding unit was resistance welded to the lid material.
  • the electrode winding unit can be easily manufactured, the electrolyte solution can be permeated in a short time, and lithium ions can be uniformly doped in the entire negative electrode in a short time. Therefore, it was confirmed that a wound type LIC with high productivity, high capacitance and energy density, and low internal resistance was obtained.
  • region) which is not covered with the lithium ion supply source in the inner peripheral surface of the outermost periphery part of an electrode winding unit and an innermost periphery part was 0%, respectively.
  • the time until completion was 4 minutes.
  • the manufactured wound type LIC was initially evaluated in the same manner as in Example 2, it was confirmed that the lithium metal foil remained. Further, the fabricated wound LIC was evaluated for characteristics in the same manner as in Example 2. The results are shown in Table 5 below.
  • Comparative Example 3 since the proportion of the non-occupied region is 0%, it takes a longer time for the electrolyte to penetrate than in Example 2, and lithium ions are dispersed throughout the negative electrode. It took a long time to dope uniformly.
  • a negative electrode and a positive electrode were produced in the same manner as in Example 2.
  • the manufactured negative electrode was cut to a size of 5.6 cm (width) ⁇ 49.3 cm (length) so as to include an uncoated portion of the negative electrode current collector at a position 10 mm from the end, and then made of nickel.
  • the negative electrode terminal was placed on the uncoated part of the negative electrode current collector and connected by ultrasonic welding.
  • the manufactured positive electrode was cut into a dimension of 5.4 cm (width) ⁇ 46.3 cm (length) so as to include an uncoated portion of the positive electrode current collector at a position 10 mm from the end portion, and was made of aluminum.
  • the positive electrode terminal was placed on the uncoated part of the positive electrode current collector and connected by ultrasonic welding. And, by preparing a first separator and a second separator made of cellulose / rayon mixed nonwoven fabric each having a thickness of 35 ⁇ m, and stacking the first separator, the negative electrode, the second separator and the positive electrode in this order, An electrode stack was constructed. Here, the positive electrode and the negative electrode were arranged so that the respective electrode layers face each other with the second separator interposed therebetween. The electrode stack is wound from one end of the electrode stack with an aluminum core rod having a diameter of 3.5 mm so that the first separator is on the inner side, whereby an inner diameter of 3.5 mm and an outer diameter of 15.
  • a 5 mm electrode winding unit was prepared, and fixed by winding a tape on the electrode winding unit.
  • a copper expanded metal having a vertical and horizontal dimension of 5.4 cm ⁇ 5.0 cm and a thickness of 32 ⁇ m
  • a lithium ion source made of a lithium metal foil having a vertical and horizontal dimension of 5.4 cm ⁇ 5.0 cm and a thickness of 134 ⁇ m.
  • the lithium electrode current collector was crimped, and the lithium ion supply source to which the lithium electrode current collector was crimped was disposed so as to be in contact with the outer peripheral surface of the electrode winding unit.
  • a lithium ion supply source made of a lithium metal foil having a vertical and horizontal dimension of 5.4 cm ⁇ 1.0 cm and a thickness of 134 ⁇ m, and a copper expanded metal having a vertical and horizontal dimension of 5.4 cm ⁇ 1.0 cm and a thickness of 32 ⁇ m.
  • the lithium electrode current collector was crimped, and the lithium ion supply source to which the lithium electrode current collector was crimped was disposed so as to be in contact with the inner peripheral surface of the electrode winding unit.
  • the ratio of the region (non-occupied region) not covered with the lithium ion supply source on the inner peripheral surface and the outer peripheral surface of the electrode winding unit was 0%. In the above, it took a long time to arrange the lithium ion supply source.
  • a bottomed cylindrical outer packaging material made of iron-nickel plating having an outer diameter of 18 mm and a height of 65 mm is prepared, and the produced electrode winding unit is accommodated in the outer packaging material, and the electrode The negative electrode terminal of the rotating unit was resistance welded to the inner bottom of the outer container material, and then grooving was performed on the upper portion of the outer container material. Next, after attaching a polypropylene gasket to the top of the outer container material, the positive electrode terminal of the electrode winding unit was resistance welded to the lid material.
  • the wound LIC was again disassembled, and it was confirmed that the lithium metal foil as the lithium ion supply source had disappeared. . From this, it is judged that the intended amount of lithium ions has been doped into the negative electrode after 9 days from the production. Further, the fabricated wound LIC was evaluated for characteristics in the same manner as in Example 2. The results are shown in Table 6 below.
  • Comparative Example 4 since the proportion of the non-occupied region is 0%, it takes a longer time for the electrolyte to penetrate than in Example 2, and lithium ions are dispersed throughout the negative electrode. It took a long time to dope uniformly. Moreover, the internal resistance of the obtained wound type LIC was high. This is considered because the contact pressure between the electrode winding unit and the lithium ion supply source was insufficient because the lithium ion supply source was arranged after the electrode winding unit was manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、リチウムイオン供給源の配置の簡便化、並びに、非プロトン性有機溶媒電解質溶液の注液時間およびプレドープ時間の短縮化が図られ、従って、短時間で組立を完了させることができて高い生産性が得られる捲回型蓄電源を提供することを目的とする。  本発明の捲回型蓄電源は、帯状の正極と負極とを有し、正極および負極がセパレータを介して積重されてなる電極積重体が、その一端から捲回されて構成された筒状の電極捲回ユニット、および、電解液を備えてなり、負極および/または正極とリチウムイオン供給源との電気化学的接触によって、リチウムイオンおよび/またはアニオンが負極および/または正極にドーピングされるものであって、正極に正極間隙部が形成され、前記正極間隙部、または、負極における当該正極間隙部に対向する位置に、当該正極と接触しない状態に少なくとも一つのリチウムイオン供給源が設けられることを特徴とする。

Description

捲回型蓄電源
 本発明は、正極および負極がセパレータを介して積重されて捲回されてなる電極捲回ユニットを有する捲回型蓄電源に関する。
 近年、グラファイト等の炭素材料よりなる負極と、LiCoO2 等のリチウム含有金属酸化物よりなる正極とを有する電池が開発されている。この電池は、電池を組み立てた後に充電することにより、正極を構成するリチウム含有金属酸化物から負極にリチウムイオンが供給され、更に放電する際には、負極からリチウムイオンが正極に戻されるという、いわゆるロッキングチェア型電池であり、負極に金属リチウムを使用せずにリチウムイオンのみが充放電に関与することから、リチウムイオン二次電池と称され、リチウム金属を用いるリチウム電池とは区別されている。このリチウムイオン二次電池は、高電圧および高容量で、高安全性を有することを特長とするものである。
 また、環境問題がクローズアップされる中、太陽光発電や風力発電によるクリーンエネルギーの貯蔵システムや、ガソリン車に代わる電気自動車またはハイブリッド電気自動車に用いられる電源の開発が盛んに行われている。さらに、最近では、パワーウインドウやIT関連機器などの車載装置や設備が高性能・高機能化されることに伴い、高いエネルギー密度および高い出力密度を有する新しい電源の開発が求められている。
 そして、高エネルギー密度および高出力特性を必要とする用途に対応する蓄電源として、近年、リチウムイオン二次電池および電気二重層キャパシタの蓄電原理が組み合わされた、ハイブリッドキャパシタと称される蓄電源が注目されている。かかるハイブリッドキャパシタとしては、リチウムイオンを吸蔵、脱離し得る炭素材料に、予め化学的方法または電気化学的方法によって、リチウムイオンを吸蔵、担持(以下、「ドーピング」ということもある。)させて負極の電位を下げることにより、高いエネルギー密度が得られる炭素材料よりなる負極を有する有機電解質キャパシタが提案されている(例えば特許文献1参照。)。
 このような有機電解質キャパシタにおいては、高性能が期待されるものの、負極に予めリチウムイオンをドーピングさせるときに極めて長時間を要することや、負極全体にリチウムイオンを均一に担持させることが必要となる、という問題を有し、特に電極を捲回した円筒型電池や複数枚の電極を積層した角型電池のような大型の高容量セルとしては、実用化が困難とされていた。
 このような問題を解決するために、それぞれ表裏面に貫通する孔が形成された集電体を有する正極および負極を備え、負極がリチウムイオンを可逆的に担持可能な負極活物質よりなり、正極および負極がセパレータを介して積重された状態で捲回されてなる筒状の電極捲回ユニットと、この電極捲回ユニットにおける外周面および内周面のいずれかに設けられたリチウムイオン供給源とにより構成され、負極とリチウム金属との電気化学的接触によって、リチウムイオンが負極にドーピングされる捲回型蓄電源が提案されている(例えば特許文献2参照。)。
 この捲回型蓄電源においては、集電体に表裏面を貫通する孔が設けられているため、リチウムイオン供給源が電極捲回ユニットにおける外周面および内周面のいずれかに配置されていても、リチウムイオンが集電体に遮断されることなく、当該集電体の孔を通って電極間を移動し、これにより、リチウムイオン供給源近傍の負極部分だけでなく、リチウムイオン供給源から離れた負極部分にも、リチウムイオンを電気化学的にドーピングさせることが可能である。
 そして、リチウムイオンを吸蔵、脱離し得る炭素材料等に予めリチウムイオンをドーピングさせた負極は、上述のように、電気二重層キャパシタに用いられる活性炭よりも電位が卑となるため、正極活性炭と組み合わせたセルの耐電圧が向上し、また、負極の容量が活性炭に比較して極めて大きいため、当該負極を備えた捲回型蓄電源によれば、高いエネルギー密度が得られる。
 然るに、このような捲回型蓄電源においては、リチウム金属が電極素子の外周面および内周面のいずれか一方のみに設けられるため、リチウムイオンを負極全体に均一にドーピングするために長い時間が必要となる、という問題がある。また、電極捲回ユニットの外周面のみにリチウムイオン供給源が設けられる場合には、高電圧および高容量が得られるものの、ドーピングされるリチウムイオン量が多くなることから、厚みの大きいリチウムイオン供給源を用いることが必要となるため、電極の充填量が低下し、十分に高いエネルギー密度を得ることが困難となる、という問題がある。
 このような問題を解決するため、表裏面を貫通する孔を有する集電体の少なくとも一面に、リチウムイオンおよび/またはアニオンを可逆的に担持可能な正極活物質を含有する電極層が形成されてなる正極と、表裏面を貫通する孔を有する集電体の少なくとも一面に、リチウムイオンを可逆的に担持可能な負極活物質を含有する電極層が形成されてなる負極とが、セパレータを介して積重された状態で捲回されてなる筒状の電極捲回ユニットとを有し、この電極捲回ユニットにおける内周面および外周面の両方にリチウムイオン供給源が配置されて構成され、負極および/または正極とリチウムイオン供給源との電気化学的接触によって、リチウムイオンが当該負極および/または当該正極にドーピングされる捲回型蓄電源が提案されている(例えば特許文献3参照。)。
特開平8-107048号公報 特許第3485935号公報 特開2007-67105号公報
 しかしながら、このような捲回型蓄電源においては、電解液の浸透に長い時間を要し、しかも、リチウムイオンを負極全体に均一にドーピングするために長い期間が必要となり、高い生産性が得られないことが判明した。これは、リチウムイオン供給源によって電極捲回ユニットの表面が覆われているため、電解液が電極捲回ユニットの内部に拡散されにくいためと考えられる。特に、大型の捲回型リチウムイオン電池を製造する場合には、捲回数を増加させることによってこのドーピング所要時間が例えば約30日間にまで増大するため、その生産性が著しく低かった。
 また、特許文献3に記載の捲回型蓄電源においては、電極捲回ユニットを組み立てた後、その内周面および外周面にリチウムイオン供給源が配置されるため、製造工程が煩雑であり、これによっても、高い生産性が得られない、という問題がある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、リチウムイオン供給源の配置の簡便化を図ることができると共に、非プロトン性有機溶媒電解質溶液を注液する時間、並びに、予め負極および/または正極に対してリチウムイオンをドーピングする(以下、この行為を「プレドープ」ともいう。)時間を短縮することができ、従って、短時間で組立を完了させることができて高い生産性が得られる捲回型蓄電源を提供することにある。
 また、本発明の他の目的は、電極捲回ユニットの内部に短時間で電解液が浸透し、短期間でリチウムイオンが電極に均一にドーピングされ、高い生産性が得られる捲回型蓄電源を提供することにある。
 本発明の捲回型蓄電源は、表裏面を貫通する孔を有する集電体の少なくとも一面に、リチウムイオンおよび/またはアニオンを可逆的に担持可能な正極活物質を含有する電極層が形成されてなる正極と、表裏面を貫通する孔を有する集電体の少なくとも一面に、リチウムイオンを可逆的に担持可能な負極活物質を含有する電極層が形成されてなる負極とを有し、当該正極および当該負極がセパレータを介して積重されてなる電極積重体が、その一端から捲回されて構成された筒状の電極捲回ユニット、および、
 リチウム塩の非プロトン性有機溶媒電解質溶液よりなる電解液を備えてなり、
 前記負極および/または前記正極と、リチウムイオン供給源との電気化学的接触によって、リチウムイオンおよび/またはアニオンが、当該負極および/または当該正極にドーピングされる捲回型蓄電源であって、
 前記リチウムイオン供給源は、前記セパレータによって前記正極および前記負極と接触しないよう設けられていることを特徴とする。
 本発明の捲回型蓄電源においては、前記正極に正極間隙部が形成され、
 前記正極間隙部、または、負極における当該正極間隙部に対向する位置に、当該正極と接触しない状態に少なくとも一つのリチウムイオン供給源が設けられることが好ましい。   
 このような捲回型蓄電源においては、前記電極捲回ユニットは、その最外周部分および/または最内周部分が前記セパレータであり、この電極捲回ユニットの最外周部分の内周面および/または最内周部分の内周面にリチウムイオン供給源が設けられていることが好ましい。
また、前記電極捲回ユニットの最内周部分の内周面に設けられるリチウムイオン供給源が捲回された捲回体が負極にて覆われた後に、正極が挿入され捲回されることによって電極捲回ユニットが構成されていてもよい。
 また、前記正極は、複数の正極片を有し、各正極片が互いに前記正極間隙部を介して配置されてなるものであることが好ましい。
 また、前記正極は、スリットが形成されたものであり、当該スリットにより前記正極間隙部が構成されることが好ましい。
 また、前記負極は、前記正極の少なくとも一部と重畳されていることが好ましい。
 また、前記正極間隙部または前記負極における当該正極間隙部に対応する位置に設けられたリチウムイオン供給源は、当該リチウムイオン供給源が覆うべき捲回体が負極最外周部にて覆われた後に挿入され捲回されることによって電極捲回ユニットが構成されていることが好ましい。
 また、本発明の捲回型蓄電源においては、前記電極捲回ユニットは、その最外周部分および/または最内周部分が前記セパレータであり、この電極捲回ユニットの最外周部分の内周面および/または最内周部分の内周面にリチウムイオン供給源が設けられており、
 前記リチウムイオン供給源が設けられた前記電極捲回ユニットの最外周部分の内周面および/または最内周部分の外周面における当該リチウムイオン供給源に覆われていない領域の割合が、それぞれ10~70%であることが好ましい。
 このような捲回型蓄電源においては、電極積重体は、第1のセパレータ、負極、第2のセパレータおよび正極の順で積重されてなり、当該第1のセパレータの一端側部分には、負極が配置される面とは反対の面に、電極捲回ユニットの最内周部分における内周面に設けられるリチウム供給源が配置され、電極積重体がその一端から捲回されることによって電極捲回ユニットが構成されていることが好ましい。
 また、本発明の捲回型蓄電源においては、前記リチウムイオン供給源は、リチウム極集電体に圧着または積重されていることが好ましい。
 また、前記リチウムイオン供給源が圧着または積重されたリチウム極集電体は多孔箔よりなることが好ましい。
 また、電極捲回ユニットは、正極の最外周部分がセパレータを介して負極の最外周部分に覆われ、更に、当該負極の最外周部分がセパレータの最外周部分に覆われており、当該セパレータの最外周部分における内周面にリチウム供給源が設けられていることが好ましい。
 また、本発明の捲回型蓄電源は、リチウムイオンキャパシタまたはリチウムイオン二次電池として好適である。
 本発明の捲回型蓄電源によれば、以下のような効果が得られる。
 正極に形成された正極間隙部、または、負極における当該正極間隙部に対向する位置に、当該正極と接触しない状態に少なくとも一つのリチウムイオン供給源が設けられる構成によれば、電極捲回ユニットが、正極間隙部または負極間隙部にリチウムイオン供給源が配されて電極積重体が構成されてこれが捲回されて得られるものであるために、当該電極捲回ユニットを簡単に組立てることができ、従って、短時間で組立を完了させることができると共に、正極間隙部または負極間隙部にリチウムイオン供給源が配されているためにプレドープ時間を短縮することができ、その結果、高い生産性が得られる。
 なお、対向して配置される正極と負極との間にリチウムイオン供給源を配置させた場合においては、プレドープの迅速化は図られるものの、部分的に正極-負極間の距離が他と異なったり、正極-負極間にリチウム金属が残留したり、リチウムイオン供給源をリチウム極集電体上に積層させて使用した場合に当該リチウムイオン極集電体上にリチウム金属が析出したりする問題が生じることがある。
 そして、このように製造された捲回型蓄電源によれば、プレドープの迅速化および均一化が図られるために、短時間で組立が完了されたものであっても、内部抵抗が低減されたものとなって高い性能が得られると共に、高い耐久性が得られる。
 また、電極捲回ユニットの最外周部分および/または最内周部分がセパレータであり、この電極捲回ユニットの最外周部分の内周面および/または最内周部分の内周面にリチウムイオン供給源が設けられ、このリチウムイオン供給源が設けられた電極捲回ユニットの最外周部分の内周面および/または最内周部分の外周面における当該リチウムイオン供給源に覆われていない領域の割合が、それぞれ10~70%である構成によれば、電極捲回ユニットの内部に短時間で電解液が浸透し、しかも、短期間でリチウムイオンが電極全体に均一にドーピングされるため、高い生産性が得られる。
 また、予めセパレータにリチウムイオン供給源を配置した状態で電極積重体が捲回されることによって、電極捲回ユニットの作製とリチウムイオン供給源の配置とを同一の工程で行うことができるため、一層高い生産性が得られる。
本発明の第1の実施の形態に係る捲回型リチウムイオンキャパシタの構成を模式的に示す説明用断面図である。 図1の捲回型リチウムイオンキャパシタの電極捲回ユニットの捲回状態を解いた電極積重体の断面の状態を模式的に示す説明用断面図である。 正極の構成の一例を模式的に示す説明用平面図である。 図1に示す捲回型リチウムイオンキャパシタにおける電極捲回ユニットを示す説明用斜視図である。 図1に示す捲回型リチウムイオンキャパシタにおける電極捲回ユニットを示す説明用正面図である。 外周面に係るリチウムイオン供給源の挿入方法の一例を示す説明図である。 外周面に係るリチウム極集電体の挿入方法の一例を示す説明図である。 外周面に係るリチウム極集電体の挿入方法の別の一例を示す説明図である。 内周面に係るリチウムイオン供給源の挿入方法の一例を示す説明図である。 内周面に係るリチウム極集電体の挿入方法の一例を示す説明図である。 電極捲回ユニットにおける電極を展開した状態で示す説明用平面図である。 図11に示す電極のA-A断面を拡大して示す説明図である。 正極の構成の別の一例を模式的に示す説明用平面図である。 第1の実施の形態において、電極積重体の変形例を模式的に示す説明用断面図である。 図14の電極積重体から電極捲回ユニットを得る方法を模式的に示す説明用断面図である。 本発明の第2の実施の形態に係る捲回型リチウムイオンキャパシタの構成を模式的に示す説明用断面図である。 図16の捲回型LICの電極捲回ユニットの捲回状態を解いた電極積重体の断面の状態を模式的に示す説明用断面図である。 図16の捲回型LICの電極捲回ユニットを得る方法を模式的に示す説明用断面図である。 さらに別の構成による捲回型のリチウムイオンキャパシタを得る方法を模式的に示す説明用断面図である。 本発明の第3の実施の形態に係る捲回型LICの構成を示す説明用断面図である。 電極積重体の構成を示す説明用断面図である。 本発明の第3の実施の形態に係る捲回型LICにおける電極捲回ユニットを示す説明図である。 第1のセパレータの一端側部分における他面に、リチウムイオン供給源が圧着された状態を示す説明図である。 第1のセパレータに圧着されたリチウムイオン供給源に、リチウム極集電体が圧着された状態を示す説明図である。 第2のセパレータの余剰部分における表面に、リチウムイオン供給源が圧着された状態を示す説明図である。 第2のセパレータに圧着されたリチウムイオン供給源に、リチウム極集電体が圧着された状態を示す説明図である。 本発明の第4の実施の形態に係る捲回型LICの他の例における電極捲回ユニットの構成を示す説明用断面図である。
 以下、本発明の捲回型蓄電源を、捲回型リチウムイオンキャパシタ(以下、「捲回型LIC」ともいう。)として実施した場合について説明する。
<第1の実施の形態>
 図1は、本発明の第1の実施の形態に係る捲回型LICの構成を模式的に示す説明用断面図、図2は、図1の捲回型LICの電極捲回ユニットの捲回状態を解いた電極積重体の断面の状態を模式的に示す説明用断面図である。
 この例の捲回型LICは、正極間隙部11Sを有する帯状の正極11および負極間隙部12Sを有する帯状の負極12がセパレータを介して、具体的にはセパレータ13B上に負極12、セパレータ13Aおよび正極11がこの順に積重されてなる電極積重体10Aが、その一端から捲回されて構成された筒状の電極捲回ユニット10を有し、これが筒状の外装容器20内に収容されて内部にリチウム塩の非プロトン性有機溶媒電解質溶液よりなる電解液が充填されてなるものである。
 そして、この電極捲回ユニット10は、その最外周部分および最内周部分がセパレータ(図1において図示省略)であり、この最外周部分の内周面および最内周部分の内周面の各々にリチウムイオン供給源16A,16Bが設けられていると共に、正極11の正極間隙部11Sに、当該正極11と接触しない状態にリチウムイオン供給源16Cが設けられている。このリチウムイオン供給源16A~16Cは、負極12に対してセパレータ13A,13Bを介してこれらに接触しない状態に配置されていることが好ましい。
 このような捲回型LICにおいては、負極12とリチウムイオン供給源16A~16Cとが短絡されており、負極12および/または正極11と、リチウムイオン供給源16A~16Cとの電気化学的接触によって、リチウムイオンおよび/またはアニオンが、当該負極12および/または正極11にドーピングされる。
 なお、本発明において、「正極」とは放電の際に電流が流出し、充電の際に電流が流入する側の極、「負極」とは放電の際に電流が流入し、充電の際に電流が流出する側の極を意味する。
 正極11の具体的な構造は、図3にも示すように、複数の正極片(図1~図3においては2つ)111,112を有し、各正極片111,112が互いに前記正極間隙部11Sを介して配置されている。
 また、負極12の具体的な構造は、正極11と同様に、複数の負極片(図1,図2においては2つ)121,122を有し、各負極片121,122が互いに前記負極間隙部12Sを介して配置されている。
 このような正極11、負極12、リチウムイオン供給源16A~16Cをセパレータ13A,13B上に積層して捲回した電極捲回ユニット10においては、正極11が全長にわたって負極12と重畳されていることが好ましい。本発明において、負極と正極が重畳された状態とは、当該負極および正極の間にセパレータ以外のものを介さずに積重された状態をいう。
 電極捲回ユニット10は、具体的には、セパレータの最内周部分の内周面に設けられるリチウムイオン供給源16Aが捲回された捲回体が負極片121にて覆われた後に、正極片111が挿入され捲回された構成とされることが好ましい。また、対向する正極部分(111)および負極部分(121)よりなる1組の電極対部分(例えば図1において鎖線Zで囲まれた部分)の外周面が前記電極対部分の負極部分(121)の余剰部分(121α)によって覆われて捲回体が構成され、この捲回体の外周面が正極間隙部11Sに係るリチウムイオン供給源16Cによって覆われた状態とされ、さらにその外周面が別の電極対部分によって覆われた構成とされることが好ましい。さらに、セパレータの最外周部分の内周面に設けられるリチウムイオン供給源16Bは、これが覆うべき捲回体が負極最外周部にて覆われた後に挿入され捲回されることによって電極捲回ユニットが構成されていることが好ましい。
 このような構成とされることにより、捲回型LICに高い耐久性が得られる。なお、リチウムイオン供給源と正極との間に負極を介在させずに対向させた場合には、プレドープが不十分となってリチウム金属が残留したり、リチウムイオン供給源をリチウム極集電体上に積層させて使用した場合に充放電の条件によっては当該リチウム極集電体上にデンドライトと呼ばれる樹状のリチウム金属が析出し、短絡の原因になる場合がある。
 図1においては2組の電極対部分によってその電極対部分間に1つのリチウムイオン供給源16Cが配置される構成が示されているが、電極対部分は2組に限定されるものではなく、3組以上の電極対部分によって構成されていてもよい。このような場合、それぞれの電極対部分間の少なくとも1つにリチウムイオン供給源が配置された構成とされる。
 電極捲回ユニット10の最内周部分の内周面および最外周部分の内周面に設けられるリチウムイオン供給源16A,16B、並びに電極対部分による捲回体の外周面上に形成された間隙部に挿入されるリチウムイオン供給源16Cには、それぞれリチウムイオン供給源16A~16Cのない間欠部S(図4参照)が形成されていることが好ましく、リチウムイオン供給源16A~16Cにおける間欠部Sの割合(以下、「リチウム極非占有率」ともいう。)はそれぞれ10~70%であることが好ましく、より好ましくは15~50%、特に好ましくは20~30%である。
 リチウムイオン供給源16A~16Cは、いずれも板状体のリチウムイオン供給源片が間欠部Sを介して並設されてなるものである。
 リチウムイオン供給源16A~16Cにおけるリチウム極非占有率が各円周面の10%未満である場合は、非プロトン性有機溶媒電解質溶液の浸透に時間を要し、注液時間の短縮化を図ることができない。一方、リチウムイオン供給源16A~16Cにおけるリチウム極非占有率が各円周面の70%を超える場合は、正極および/または負極に対向してこれらにリチウムイオンおよび/またはアニオンを供与するリチウムイオン供給源の面積が小さいものとなることから、プレドープの完了までに時間を要し、プレドープ時間の短縮化を図ることができない。
 リチウムイオン供給源16A~16Cにおけるリチウム極非占有率が各円周面の20~30%である場合は、非プロトン性有機溶媒電解質溶液の浸透時間の短縮化、およびプレドープ時間の短縮化の両方を図ることができる。
 また、間隙部は、全域にわたって均一に分布して形成されていることが好ましい。例えば、面積の大きな1枚のリチウムイオン供給源を用いるのではなく、複数枚の小さな面積のリチウムイオン供給源を分離して配置させ、所定の間隙部を形成させることが好ましい。これにより、非プロトン性有機溶媒電解質溶液の流通経路を広く確保することができる。また、パンチングなどにより多孔化された、面積の大きな1枚のリチウムイオン供給源を用いることが、1枚のリチウムイオン供給源によって所定の間隙部が得られるために、さらに好ましい。
 このような電極捲回ユニット10は、図5に示すように、電極積重体10Aが捲回されてなる捲回体は、捲回型LICの組立て作業性の向上の観点から、外側からテープ25で固定された状態で外装容器20に収容されていることが好ましい。なお、図5において、17は正極に電気的に接続された正極端子、18は負極に電気的に接続された負極端子である。図5においてこれらは電極捲回ユニット10について反対の方向に伸長されているが、同じ方向に伸長されていてもよい。
〔電極積重体の捲回方法〕
 以上のような電極捲回ユニット10の組立工程における、最外周部分の内周面に設けられるリチウムイオン供給源16Bの挿入においては、図6に示すように、当該リチウムイオン供給源16Bを予めセパレータ13Aに圧着させた状態で捲回することが、組立時間の短縮化の観点から、好ましい。また、図7および図8に示すように、セパレータ13Aへ圧着したリチウムイオン供給源16Bと密着するように、当該リチウムイオン供給源16B上にリチウム極集電体26a(26b)を圧着し捲回することにより、リチウムイオン供給源16Bを負極12に電気的に接続し、両者を短絡させることができる。
 また、電極捲回ユニット10の組立工程における、最内周部分の内周面に設けられるリチウムイオン供給源16Aの挿入においては、図9に示すように、最外周部分の内周面に設けられるリチウムイオン供給源16Bの挿入と同様に、リチウムイオン供給源16Aを予めセパレータ13Aに圧着させた状態で捲回することが好ましく、また、図10に示すように、セパレータ13Aへ圧着したリチウムイオン供給源16Aと密着するように、当該リチウムイオン供給源16A上にリチウム極集電体26cを圧着し捲回することにより、リチウムイオン供給源16Aを負極12に電気的に接続し、両者を短絡させることができる。
 さらに、電極捲回ユニット10の組立工程における、正極間隙部11Sに配置されたリチウムイオン供給源16Cの挿入においては、最内周部分の内周面および最外周部分の内周面に設けられるリチウムイオン供給源16A,16Bの挿入と同様に、リチウムイオン供給源16Cを予めセパレータ13Aに圧着させた状態で捲回することが好ましく、また、セパレータ13Aへ圧着したリチウムイオン供給源16Cと密着するように、当該リチウムイオン供給源16C上にリチウム極集電体を圧着し捲回することにより、リチウムイオン供給源16Cを負極12に電気的に接続し、両者を短絡させることができる。
 このような電極捲回ユニット10は、具体的には、まず、セパレータ13B上に、負極間隙部11S、負極片121、負極間隙部11Sおよび負極片122が、一端から他端に向かってこの順に形成された第1帯材と、セパレータ13A上に、電極捲回ユニット10の最内周面となるリチウムイオン供給源16A、正極片111、リチウムイオン供給源16C、正極片112、および、電極捲回ユニット10の最外周面となるリチウムイオン供給源16Bが、一端から他端に向かってこの順で形成された第2帯材とを作製する。この第1帯材および第2帯材においては、正極11および負極12の間隙部および電極片の長さおよび配置位置が、捲回したときに正極片がセパレータのみを介して負極片に対向すると共に、リチウムイオン供給源もセパレータのみを介して負極片と対向し、内周面および外周面がリチウムイオン供給源により構成された状態となるよう、各構成部材の厚みに基づいて設定されている。
 そして、この第1帯材および第2帯材を積重し、この電極積重体10Aがその一端(リチウムイオン供給源16Aの一端)から芯棒に捲回されることによって、電極捲回ユニット10が得られる。
 このように構成された電極捲回ユニット10を、非プロトン性有機溶媒電解質溶液と共に外装容器20内に収容させ、この状態において所定時間(例えば10日間)放置することによって、リチウムイオン供給源16A~16Cと負極12とが短絡されているので、負極12に予めリチウムイオンがドーピングされる。
〔電極〕
 正極11および負極12(以下、両者を併せて「電極」ともいう。)は、それぞれ帯状の集電体の少なくとも一面に電極層が形成されてなるものであり、両者は実質的に同一の構造であるので、以下、同一の図面を用いて説明する。
 図11は、電極捲回ユニットにおける電極を展開した状態で示す説明用平面図であり、図12は、図11に示す電極のA-A断面を拡大して示す説明図である。
 この例の負極12(正極11)は、帯状の負極集電体12a(正極集電体11a)の一面(図12において上面)に、下地層12c(11c)を介して負極活物質または正極活物質を含有してなる電極層12b(11b)が形成されてなり、負極集電体12a(正極集電体11a)の他面には、負極端子18(正極端子17)が例えばステッチングまたはコールドウェルディングによって固定されて接続されている。
 電極として、負極集電体12aまたは正極集電体11aの両面に電極層12bまたは電極層11bが形成されてなるものを用いる場合には、電極層12bまたは電極層11bを部分的に負極集電体12aまたは正極集電体11aから剥離して、当該電極層12bまたは当該電極層11bに負極端子18または正極端子17を接続することができる。
 ここで、負極端子18および正極端子17は、電極捲回ユニット10の両端から別々に引き出されていても、一方の端部から引き出されていてもよい。また、負極端子18および正極端子17は、それぞれ1つ設けられていればよいが、それぞれ複数設けられることが、内部抵抗が低下するため好ましい。
 正極集電体11aおよび負極集電体12a(以下、両者を併せて「電極集電体」ともいう。)は、表裏面を貫通する孔Pを有する多孔材よりなるものであり、かかる多孔材の形態としては、エキスパンドメタル、パンチングメタル、金属網、発泡体、あるいはエッチングにより貫通孔が多孔質箔等が挙げられる。
 電極集電体の孔Pの形状は、円形、矩形、その他適宜の形状に設定することができる。また、電極集電体の厚みは、強度および軽量化の観点から、20~50μmであることが好ましい。
 電極集電体の気孔率は、通常、10~79%、好ましくは20~60%である。ここで、気孔率は、[1-(電極集電体の質量/電極集電体の真比重)/(電極集電体の見かけ体積)]×100によって算出されるものである。
 電極集電体の材質としては、一般に有機電解質電池などの用途で使用されている種々のものを用いることができる。負極集電体12aの材質の具体例としては、ステンレス、銅、ニッケル等が挙げられ、正極集電体11aの材質のとしては、アルミニウム、ステンレス等が挙げられる。
 このような多孔材を電極集電体として用いることにより、リチウムイオン供給源16A~16Cが電極捲回ユニット10における内周面および外周面並びに正極間隙部11Sに配置されていても、リチウムイオンがリチウムイオン供給源16A~16Cから電極集電体の孔Pを通って自由に各電極間を移動するので、負極12および/または正極11にリチウムイオンをドーピングすることができる。
 また、本発明においては、電極集電体における少なくとも一部の孔Pを、脱落しにくい導電性材料を用いて閉塞し、この状態で、電極集電体の一面に、電極層11b,12bが形成されることが好ましく、これにより、電極の生産性を向上させることができると共に、電極集電体から電極層11b,12bが脱落することによって生じる蓄電源の信頼性の低下を防止または抑制することができる。
 また、電極の厚み(電極集電体および電極層の合計の厚み)を小さくすることにより、一層高い出力密度を得ることができる。
 また、電極集電体における孔Pの形態および数等は、後述する電解液中のリチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるように、また、導電性材料によって閉塞し易いように適宜設定することができる。
 負極12における電極層12bは、リチウムイオンを可逆的に担持可能な負極活物質を含有してなるものである。
 電極層12bを構成する負極活物質としては、例えば黒鉛、難黒鉛化炭素、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子数比(以下「H/C」と記す。)が0.50~0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(以下、「PAS」という。)等を好適に用いることができ、これらの中では、PASは高容量が得られる点でより好ましい。例えばH/Cが0.2程度のPASに400mAh/gのリチウムイオンを担持(充電)させた後に放電させると、650F/g以上の静電容量が得られ、また、500mAh/g以上のリチウムイオンを担持(充電)させると、750F/g以上の静電容量が得られる。このことから、PASが非常に大きな静電容量を有することが理解される。
 本発明において、負極活物質としてPAS等のアモルファス構造を有するものを用いた場合には、担持させるリチウムイオン量を増加させるほど電位が低下するので、得られる蓄電源の耐電圧(充電電圧)が高くなり、また、放電における電圧の上昇速度(放電カーブの傾き)が低くなるため、求められる蓄電源の使用電圧に応じて、リチウムイオン量は活物質のリチウムイオン吸蔵能力の範囲内において適宜設定することが好ましい。
 また、PASはアモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨潤・収縮等の構造変化が生じないため、サイクル特性に優れ、また、リチウムイオンの挿入・脱離に対して等方的な分子構造(高次構造)であるため、急速充電、急速放電にも優れた特性を有することから、負極活物質として好適である。
 PASの前駆体である芳香族系縮合ポリマーは、芳香族炭化水素化合物とアルデヒド類との縮合物である。芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノール等のフェノール類を好適に用いることができる。例えば、下記式で表されるメチレン・ビスフェノール類、ヒドロキシ・ビフェニル類、ヒドロキシナフタレン類などが挙げられる。これらの中では、実用的に、フェノール類、特にフェノールが好適である。
Figure JPOXMLDOC01-appb-C000001
(式中、xおよびyはそれぞれ独立に、0~2の整数である。)
 また、上記芳香族系縮合ポリマーとしては、フェノール性水酸基を有する芳香族炭化水素化合物の一部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えばキシレン、トルエン、アニリン等で置換した変成芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもできる。更に、メラミン、尿素で置換した変成芳香族系ポリマーを用いることもでき、フラン樹脂も好適である。
 PASは、不溶不融性基体として使用され、当該不溶不融性基体は例えば上記芳香族系縮合ポリマーから次のようにして製造することもできる。すなわち、上記芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含む)中で400~800°Cの温度まで徐々に加熱することにより、H/Cが0.5~0.05、好ましくは0.35~0.10の不溶不融性基体を得ることができる。
 但し、不溶不融性基体の製造方法はこれに限定されることなく、例えば、特公平3-24024号公報等に記載の方法で、H/Cが上記の範囲にあり、かつ600m/g以上のBET法による比表面積を有する不溶不融性基体を得ることもできる。
 上記不溶不融性基体においては、X線回折(CuKα)によれば、メイン・ピークの位置が2θで表して24°以下に存在し、また、該メイン・ピークの他に41~46°の間にブロードな他のピークが存在する。すなわち、上記不溶不融性基体は、芳香族系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造を有し、リチウムイオンを安定にドーピングすることができることから、リチウムイオン蓄電源用の負極活物質として好適である。
 本発明において、負極活物質は、細孔直径が3nm以上で細孔容積が0.10mL/g以上のものが好ましく、その細孔直径の上限は限定されないが、通常は3~50nmの範囲である。また、細孔容積の範囲についても特に限定されないが、通常0.10~0.5mL/gであり、好ましくは0.15~0.5mL/gである。
 本発明に係る捲回型LICにおいて、負極12における電極層12bは、上記の炭素材料やPAS等の負極活物質を含有してなる材料を用いて負極集電体12a上に形成されるが、その方法は特定されず公知の方法が利用することができる。具体的には、負極活物質粉末、バインダーおよび必要に応じて導電性粉末が水系媒体または有機溶媒中に分散されてなるスラリーを調製し、このスラリーを負極集電体12aの表面に塗布して乾燥することによって、或いは上記スラリーを予めシート状に成形し、得られる成形体を負極集電体12aの表面に貼り付けることによって、電極層12bを形成することができる。
 ここで、スラリーの調製に用いられるバインダーとしては、例えばSBR等のゴム系バインダーや、ポリ四フッ化エチレン、ポリフッ化ビニリデン等の合フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂が挙げられる。これらの中では、バインダーとしてフッ素系樹脂が好ましく、特にフッ素原子/炭素原子の原子比(以下、「F/C」という。)が0.75以上で1.5未満であるフッ素系樹脂を用いることが好ましく、F/Cが0.75以上で1.3未満のフッ素系樹脂が更に好ましい。
 バインダーの使用量は、負極活物質の種類や電極形状等により異なるが、負極活物質に対して1~20質量%、好ましくは2~10質量%である。
 また、必要に応じて使用される導電性材料としては、例えばアセチレンブラック、グラファイト、金属粉末等が挙げられる。この導電性材料の使用量は、負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2~40質量%の割合で用いることが好ましい。
 負極集電体12aに上記スラリーを塗工することによって、電極層12bを形成する場合には、図12に示すように、負極集電体12aの塗工面に導電性材料の下地層12cを形成することが好ましい。負極集電体12aの表面にスラリーを直接塗工する場合には、負極集電体12aが多孔材であるため、スラリーが負極集電体12aの孔Pから洩れ出したり、あるいは負極集電体12aの表面が平滑でないため、均一な厚みを有する電極層12bを形成することが困難となることがある。そして、負極集電体12aの表面に下地層12cを形成することにより、孔Pが下地層12cによって塞がれると共に、平滑な塗工面が形成されるので、スラリーを塗工しやすくなると共に、均一な厚みを有する電極層12bを形成することができる。
 図示の例では、電極層12bが負極集電体12aの一面のみに形成されているが、電極層12bが負極集電体12aの両面に形成される場合には、例えば負極集電体12aの両面のいずれかにスラリーを間欠塗工して負極集電体12aに未塗工領域を形成することにより、当該未塗工領域に負極端子を接続することができる。
 負極12における電極層12bの厚みは、得られる捲回型LICに十分なエネルギー密度を確保されるよう正極11における電極層11bの厚みとのバランスで設計されるが、得られる捲回型LICの出力密度、エネルギー密度および工業的生産性等の観点から、負極集電体12aの一面に形成される場合では、通常、15~100μm、好ましくは20~80μmである。
 正極11における電極層11bは、リチウムイオンおよび/または例えばテトラフルオロボレートのようなアニオンを可逆的に担持できる正極活物質を含有してなるものである。
 電極層11bを構成する正極活物質としては、例えば活性炭、導電性高分子、芳香族系縮合ポリマーの熱処理物であってH/Cが0.05~0.50であるポリアセン系骨格構造を有するPAS等を用いることができる。
 正極11における電極層11bは、負極12における電極層12bと同様の方法によって形成することができる。
 本発明に係る捲回型LICにおいては、正極11と負極12とを短絡させた後における正極11および負極12の電位が2.0V以下となることが好ましい。
 従来の電気二重層キャパシタにおいては、通常、正極および負極における活物質としてそれぞれ同種のもの(主に活性炭)が略同量用いられている。この活物質はキャパシタの組立時においては、約3Vの電位を有しており、キャパシタに充電することにより、正極の表面においてアニオンが電気二重層を形成することによって、正極の電位が上昇し、一方、負極の表面においてカチオンが電気二重層を形成することによって、負極の電位が降下する。逆に、放電時においては、正極からアニオンが、負極からはカチオンがそれぞれ電解液中に放出されることにより、電位がそれぞれ下降または上昇し、最終的に電位が約3Vとなる。このように、通常の炭素材料は約3Vの電位を有しているため、正極および負極の両方に炭素材料が用いられた有機電解質キャパシタは、正極と負極とを短絡させた後における正極および負極の電位はいずれも約3Vとなる。
 これに対し、本発明に係る捲回型LICにおいては、上記したように正極11と負極12とを短絡した後における正極の電位は2.0V(Li/Li、以下同じ。)以下となることが好ましい。すなわち、本発明に係る捲回型LICにおいては、正極活物質としてリチウムイオンおよび/またはアニオンを可逆的に担持可能なものを用い、一方、負極活物質としてリチウムイオンを可逆的に担持可能な活物質を用い、正極11と負極12とを短絡させた後における正極および負極の電位が2.0V以下になるように、負極12および/または正極11に予めリチウムイオンを担持させることが好ましい。
 なお、本発明において、正極と負極とを短絡させた後における正極の電位が2.0V以下とは、以下の(A)又は(B)の2つのいずれかの方法で求められる正極の電位が2.0V以下となる場合をいう。
(A)リチウムイオンによってドーピングされた後、正極端子と負極端子とを導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、0.5~1.5時間内に測定した正極の電位。
(B)充放電試験機により12時間以上かけて0Vまで定電流放電させた後に、正極端子と負極端子とを導線で結合させた状態で12時間以上放置した後に短絡を解除し、0.5~1.5時間内に測定した正極の電位。
 また、本発明において、正極と負極とを短絡させた後における正極電位が2.0V以下とは、リチウムイオンがドーピングされた直後に限られるものではなく、充電状態、放電状態あるいは充放電を繰り返した後に短絡した場合など、いずれかの状態で短絡後の正極電位が2.0V以下となることである。
 本発明において、正極と負極とを短絡させた後における正極の電位が2.0V以下になるということに関し、更に詳細に説明する。
 上述のように活性炭や炭素材は通常3V(Li/Li)前後の電位を有しており、活物質として正極および負極の両方に活性炭を用いてキャパシタを構成した場合には、いずれの電位も約3Vとなるため、正極と負極とを短絡しても正極の電位は変化せず約3Vのままである。また、正極活物質として活性炭を用い、負極活物質としてリチウムイオン二次電池に使用されている黒鉛や難黒鉛化炭素等の炭素材料を用いた、いわゆるハイブリットキャパシタの場合も同様であり、いずれの電位も約3Vとなるため、正極と負極とを短絡しても正極の電位は変化せず約3Vのままである。従って、正極および負極の質量バランスにもよるが、充電すると負極の電位が0V近傍まで推移するので、充電電圧を高くすることが可能となるため、高電圧、高エネルギー密度を有するキャパシタが得られる。一般的に、充電電圧の上限は正極の電位の上昇による電解液の分解が起こらない電圧に定められるので、正極の電位を上限にした場合には、負極の電位が低下する値だけ、充電電圧を高めることが可能となる。
 しかしながら、短絡時に正極電位が約3Vとなる上述のハイブリットキャパシタにおいては、正極の上限電位が例えば4.0Vとした場合に、放電時の正極の電位は3.0Vまでであり、正極の電位の変化は1.0V程度と正極の容量を充分に利用することができない。更に、負極にリチウムイオンを挿入(充電)、脱離(放電)した場合に、初期の充放電効率が低い場合が多く、放電時に脱離できないリチウムイオンが存在していることが知られている。これは、負極の表面において電解液の分解に消費されたり、炭素材の構造欠陥部にトラップされたりすること等の説明がなされているが、この場合には、正極の充放電効率に比べて負極の充放電効率が低くなり、充放電を繰り返した後に正極と負極とを短絡させると、正極電位は3Vよりも高くなり、さらに利用容量は低下する。すなわち、正極は4.0Vから2.0Vまで放電可能であるところ、4.0Vから3.0Vまでしか放電することができない場合や、利用可能容量の半分の量しか利用していないこととなり、高電圧を得ることは可能であるが、高容量を得ることは困難である。
 従って、キャパシタとして、高電圧および高エネルギー密度を得るだけでなく、高容量および高エネルギー密度を得るためには、正極の利用容量を向上させることが必要となる。
 正極と負極との短絡後における正極の電位が3.0Vよりも低ければ、それだけ利用容量が増加し、高容量になるということである。正極と負極との短絡後における正極の電位を2.0V以下とするためには、キャパシタの充放電により充電される量だけでなく、別途リチウム金属などのリチウムイオン供給源から負極にリチウムイオンを充電することが好ましい。正極および負極以外からリチウムイオンが供給されることにより、正極と負極とを短絡させたときには、正極、負極およびリチウム金属が平衡電位になるため、正極の電位および負極の電位の両方ともに3.0V以下となる。また、リチウムイオン供給源を構成するリチウム金属の量が多くなる程、平衡電位は低くなる。負極活物質および正極活物質が変われば平衡電位も変わるので、正極と負極との短絡後における正極電位が2.0V以下となるように、負極活物質および正極活物質の特性を考慮して負極に担持させるリチウムイオン量の調整が必要である。
 本発明に係る捲回型LICにおいて、正極11と負極12とを短絡させた後における正極11の電位が2.0V以下となるということは、上記したように、捲回型LICの正極11および負極12以外から正極11および/または負極12にリチウムイオンが供給されるということである。リチウムイオンの供給は、負極12と正極11の一方あるいは両方のいずれでもよいが、例えば正極活物質として活性炭を用いた場合には、リチウムイオンの担持量が多くなり、正極の電位が低くなると、リチウムイオンを不可逆的に消費してしまい、キャパシタの容量が低下するなどの不具合が生じる場合があるため、負極および正極に供給するリチウムイオンの量は不具合が生じないよう適宜制御が必要である。いずれの場合でも、予め正極および/または負極に供給されたリチウムイオンはセルの充電により負極に供給されるので、負極の電位は低下する。
 また、正極11と負極12とを短絡させた後における正極11の電位が2.0Vよりも高い場合には、正極11および/または負極12に供給されたリチウムイオンの量が少ないため、得られる捲回型LICのエネルギー密度は小さい。リチウムイオンの供給量が多くなるほど、正極と負極とを短絡させた後における正極の電位は低くなり、エネルギー密度は向上する。高いエネルギー密度を得るには2.0V以下が好ましく、更に高いエネルギー密度を得るには1.0V(Li/Li)以下が好ましい。正極11と負極12とを短絡させた後における正極の電位が低くなるということは、換言すると、捲回型LICに充電することにより、負極12に供給されるリチウムイオンの量が多くなるということであり、負極12の静電容量が増大すると共に、負極12の電位変化量が小さくなり、結果的に正極11の電位変化量が大きくなって捲回型LICの静電容量および容量が大きくなり、高いエネルギー密度が得られるのである。
 また、正極11の電位が0.1Vを下回ると、正極活物質にもよるが、ガスの発生や、リチウムイオンを不可逆に消費してしまう等の不具合が生じるため、正極11の電位の測定が困難となる。また、正極11の電位が低くなりすぎる場合には、負極活物質の質量が過剰ということであり、逆にエネルギー密度は低下する。従って、一般的には、正極11の電位は0.1V以上であり、好ましくは0.3V以上である。
 なお、本発明において、静電容量および容量は次のように定義する。キャパシタの静電容量とは、キャパシタの放電カーブの傾きを示し、単位はF(ファラッド)、キャパシタの単位質量当たりの静電容量とは、キャパシタの静電容量を正極活物質の質量および負極活物質の質量の合計で割った値であり、単位はF/g、正極の静電容量とは、正極の放電カーブの傾きを示し、単位はF、正極の単位質量当たりの静電容量とは、正極の静電容量を正極活物質の質量で割った値であり、単位はF/g、負極の静電容量とは、負極の静電容量を負極活物質の質量で割った値であり、単位はF/gである。
 更に、キャパシタの容量とは、キャパシタの放電開始電圧と放電終了電圧との差、すなわち電圧変化量とキャパシタの静電容量との積であり、単位はC(クーロン)であるが、1Cは1秒間に1Aの電流が流れたときの電荷量であるので、本明細書においては、換算してmAh表示する。正極の容量とは、放電開始時の正極の電位と放電終了時の正極の電位の差(正極電位変化量)と、正極の静電容量との積であり、単位はCまたはmAh、負極の容量とは、放電開始時の負極の電位と放電終了時の負極の電位の差(負極電位変化量)と、負極の静電容量との積であり、単位はCまたはmAhである。キャパシタの容量と、正極の容量および負極の容量とは一致する。
 本発明に係る捲回型LICにおいては、負極活物質の単位質量当たりの静電容量が正極活物質の単位質量当たりの静電容量の3倍以上で、かつ、正極活物質の質量が負極活物質の質量よりも大きいことが好ましく、例えば、正極の静電容量を考慮して負極へのリチウムイオンの充填量(プレドープ量)を適切に制御することにより、負極活物質の単位質量当たりの静電容量を正極活物質の単位質量当たり静電容量の3倍以上とし、かつ、正極活物質の質量を負極活物質の質量よりも大きくすることができる。これにより、従来の電気二重層キャパシタよりも高電圧かつ高容量のキャパシタが得られる。
 さらに、正極活物質の単位質量当たりの静電容量よりも大きい単位質量当たりの静電容量を有する負極活物質を用いる場合には、負極の電位変化量を変えずに負極活物質の質量を減らすことが可能となるため、正極活物質の充填量が多くなり、捲回型LICの静電容量および容量を大きくすることができる。
 正極活物質の質量は、負極活物質の質量よりも大きいことが好ましいが、負極活物質の質量の1.1~10倍であることが更に好ましい。正極活物質の質量が負極活物質の質量の1.1倍未満である場合には、容量差が小さくなるため好ましくない。一方、正極活物質の質量が負極活物質の質量の10倍を超える場合には、逆に容量が小さくなる場合もあり、また、正極11と負極12との厚み差が大きくなり過ぎるので、捲回型LICの構成上好ましくない。
〔セパレータ〕
 セパレータ13A,13Bとしては、電解液、正極活物質或いは負極活物質に対して耐久性があり、連通気孔を有する電気伝導性の小さい多孔体等を用いることができる。
 セパレータ13A,13Bの材質としては、セルロース(紙)、ポリエチレン、ポリプロピレン、その他公知のものを用いることができる。これらの中では、セルロース(紙)が耐久性および経済性の点で好ましい。
 セパレータ13A,13Bの厚みは特に限定されないが、通常、20~50μm程度が好ましい。
〔リチウムイオン供給源〕
 リチウムイオン供給源16A~16Cは、金属製のリチウム極集電体に圧着または積重されていることが好ましい。このような構成においては、リチウム極集電体にはリチウム極端子を設けることにより、当該リチウム極端子を介して例えば負極端子18に電気的に接続することかできる。
 このリチウム極集電体としては、リチウムイオン供給源16A~16Cを構成するリチウム金属が圧着しやすく、必要に応じてリチウムイオンが通過するよう、電極集電体と同様な多孔構造のものを用いることが好ましい。また、リチウム極集電体の材質は、ステンレス等のリチウムイオン供給源と反応しないものを用いることが好ましい。
 また、リチウム極集電体として、ステンレスメッシュ等の導電性多孔体を用いる場合には、リチウムイオン供給源16A~16Cを構成するリチウム金属の少なくとも一部、特に80質量%以上が、リチウム極集電体の孔に埋め込まれていることが好ましく、これにより、リチウムイオンが負極12に担持された後も、リチウム金属の消失によって電極間に生じる隙間が少なくなり、得られる捲回型LICの信頼性をより確実に維持することができる。
 また、リチウム極集電体の厚みは、10~200μm程度であることが好ましい。
 また、リチウム極集電体に圧着されるリチウム金属の厚みは、負極12に予め担持するリチウムイオンの量を考慮して適宜定められるが、通常、50~300μm程度が好ましい。
 リチウムイオン供給源16A~16Cを構成するリチウム金属の量は、正極11と負極12とを短絡させた後における正極11の電位が2.0V以下となるように、リチウムイオンがドーピングされる量に設定することが好ましく、更に、例えば負極12に対して、リチウムイオンが電極捲回ユニット10の外周面および内周面の両側から可能な限り均衡して迅速にドーピングされるように、内周面に係るリチウムイオン供給源16Aを構成するリチウム金属の量、電極間隙部に係るリチウムイオン供給源16Cを構成するリチウム金属の量外周面に係るおよびリチウムイオン供給源16Bを構成するリチウム金属の量を配分することが好ましい。
 負極端子18および正極端子17の材質としては、導電性を有するものあれば特に限定されず種々のものを用いることができるが、それぞれ負極集電体12aおよび正極集電体11aの材質と同一のものが、接続性や膨張性などの点から好ましい。
 テープ25の材質としては、電解液に対して耐久性を有し、得られる捲回型LICに悪影響を与えないものであれば特に限定されないが、セパレータ13A,13Bの材質と同一のものが好ましい。
 また、テープ25の厚みは、厚さ50~100μm程度、幅が5~10mm程度のものが、電極捲回ユニット10を安定して固定することができ、かつ、作業性も向上するので好ましい。
 また、テープ25の数やテープ25によって固定される位置は、主として電極捲回ユニット10の寸法に応じて適宜定められるが、通常、テープ25の数が2~3であれば、電極捲回ユニット10を安定的に固定することができる。
 外装容器20の材質は特に限定されず、一般に電池またはキャパシタに用いられている種々のものを用いることができ、例えば鉄、アルミニウム等の金属材料、プラスチック材料、あるいはそれらを積層した複合材料等を用いることができるが、外装容器20としては、捲回型LICの小型化、軽量化の観点からは、アルミニウムと、ナイロン、ポリプロピレンなどの高分子材料とのラミネートフィルムを用いたフィルム型のものが好ましい。
 外装容器20の形状も特に限定されず、円筒型や角型など、用途に応じて適宜選択することができるが、円柱状の電極捲回ユニットを収容する場合には円筒型のものを、扁平円柱状の電極捲回ユニット体を収容する場合には角型のものが好ましい。
 外装容器20内に充填される電解液としては、リチウム塩の非プロトン性有機溶媒電解質溶液が用いられる。
 電解質を構成するリチウム塩としては、リチウムイオンを移送可能で、高電圧下においても電気分解を起こさず、リチウムイオンが安定に存在し得るものであればよく、その具体例としては、LiClO4 、LiAsF6 、LiBF4 、LiPF6 、Li(C2 F5 SO2 )2 Nなどが挙げられる。
 非プロトン性有機溶媒電解質溶液の具体例としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホランなどが挙げられる。これらの非プロトン性有機溶媒電解質溶液は、単独でまたは2種以上を混合して用いることができる。
 電解液は、上記の電解質および溶媒を充分に脱水された状態で混合することによって調製されるが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするために、少なくとも0.1モル/L以上であることが好ましく、0.5~1.5モル/Lであることが更に好ましい。
 以上のような捲回型蓄電源によれば、電極捲回ユニット10が、正極間隙部11Sにリチウムイオン供給源16Cが配されて電極積重体10Aが構成されてこれが捲回されて得られる構成のものであるために、当該電極捲回ユニット10を簡単に組立てることができ、従って、短時間で組立を完了させることができると共に、正極間隙部11Sにリチウムイオン供給源16Cが配されているためにプレドープ時間を短縮することができ、その結果、高い生産性が得られる。
 このように製造された捲回型蓄電源によれば、プレドープの迅速化および均一化が図られるために、短時間で組立が完了されたものであっても、内部抵抗が低減されたものとなって高い性能が得られると共に、高い耐久性が得られる。
 以上、本発明の第1の実施の形態について説明したが、この第1の実施の形態においては、種々の変更を加えることができる。
 例えば、正極は、図13に示すように、複数のスリット31Tよりなる正極間隙部を有するものとすることができる。このような正極31においては、当該スリット31Tに正極31と接触しない状態において正極間隙部に係るリチウムイオン供給源36Cが配置され、負極と共に捲回されることにより、電極捲回ユニットが構成される。
 また例えば、負極は、複数の負極片による構成の負極には限定されず、図14および図15に示すように、負極間隙部を有さない構成の負極42を用いてもよい。
 このような電極捲回ユニットは、図15に示すように、まず、セパレータ43B上に帯状の負極42が配置された第1帯材42Qと、セパレータ43A上に、電極捲回ユニットの内周面となるリチウムイオン供給源16Aが配置された正極間隙部41S、正極片411、リチウムイオン供給源16Cが配置された正極間隙部41S、正極片412、および、電極捲回ユニットの最外周面となるリチウムイオン供給源16Bが配置された正極間隙部41Sが、一端から他端に向かってこの順に形成された第2帯材41Qとを作製する。この第1帯材42Qおよび第2帯材41Qにおいては、正極間隙部および電極片の長さおよび配置位置が、捲回したときに正極片がセパレータのみを介して負極片に対向すると共に、リチウムイオン供給源もセパレータのみを介して負極片と対向し、内周面および外周面がリチウムイオン供給源により構成された状態となるよう、各構成部材の厚みに基づいて設定されている。
 そして、この第1帯材42Qおよび第2帯材41Qを積重し、この電極積重体40Aがその一端(リチウムイオン供給源16Aの一端)から図の矢印方向に芯棒19に捲回されることによって、電極捲回ユニットが得られる。
 芯棒19の材質としては、ステンレス、銅、ニッケルなどの金属材料やポリプロピレン、ポリフェニレンサルファイドなどの耐電解液性の高い樹脂などを用いることができる。
 また、芯棒19の径は、電極捲回ユニット10の内周の径に応じて適宜設定することができる。また、芯棒19は、電極捲回ユニット10の作製工程において使用されるところ、完成した電極捲回ユニット10においては、芯棒19がそのまま残された構成とされていてもよいが、抜き取られて電極捲回ユニットが芯棒を有さない構成とされていてもよい。
 さらに例えば、電極捲回ユニットは、略円柱状の形状に限定されず、例えば電極積重体を板状体に捲回させることによって形成させた、扁平な円柱状のものであってもよい。
<第2の実施の形態>
 第2の実施の形態に係る捲回型LICは、図16および図17に示すように、電極捲回ユニット50が、正極間隙部51Sを有する帯状の正極51および負極間隙部52Sを有する帯状の負極52がセパレータを介して、具体的にはセパレータ53B上に負極52、セパレータ53Aおよび正極51がこの順に積重されてなる電極積重体50Aが、その一端から捲回されて構成された筒状のものであることの他は、第1の実施の形態と同様の構成を有するものである。なお、図16および図17において、第1の実施の形態に係る符号と同一の符号は、同じ構成部材を示すものとする。
 このような正極51、負極52、リチウムイオン供給源16A~16Cをセパレータ53A,53B上に積層して捲回した電極捲回ユニット50においては、負極52が正極51の少なくとも一部と重畳されていることが好ましい。
 電極捲回ユニット50は、具体的には、対向する正極部分および負極部分よりなる1組の電極対部分の外周面が前記電極対部分の負極部分より延長された負極部分によって覆われ、さらに前記延長された負極部分によって覆われた捲回体の外周面が、リチウムイオン供給源16Cによって覆われた状態とされ、さらにその外周面が別の電極対部分によって覆われた構成とされることが好ましい。
 また、最内周部分の内周面に設けられるリチウムイオン供給源16Aが捲回された捲回体が負極片521にて覆われた後に、正極片511が挿入され捲回されることによって電極捲回ユニット50が構成されていることが好ましい。
 このような構成とされることにより、捲回型LICに高い耐久性が得られる。なお、リチウムイオン供給源と正極との間に負極を介在させずに対向させた場合には、プレドープが不十分となってリチウム金属が残留したり、リチウムイオン供給源をリチウム極集電体上に積層させて使用した場合に充放電の条件によっては当該リチウム極集電体上にデンドライトと呼ばれる樹状のリチウム金属が析出し、短絡の原因になる場合がある。
 このような電極捲回ユニット50は、図18に示すように、まず、セパレータ53B上に、電極捲回ユニット50の内周面となるリチウムイオン供給源16A、負極片521、リチウムイオン供給源16C、負極片522、および、電極捲回ユニット50の最外周面となるリチウムイオン供給源16Bが、一端から他端に向かってこの順に形成された第1帯材52Qと、セパレータ53A上に、正極間隙部51S、正極片511、正極間隙部51S、正極片512が、一端から他端に向かってこの順で形成された第2帯材51Qとを作製する。この第1帯材52Qおよび第2帯材51Qにおいては、正極51および負極52の間隙部および電極片の長さおよび配置位置が、捲回したときに正極片がセパレータのみを介して負極片に対向すると共に、リチウムイオン供給源もセパレータのみを介して負極片と対向し、内周面および外周面がリチウムイオン供給源により構成された状態となるよう、各構成部材の厚みに基づいて設定されている。 そして、この第1帯材52Qおよび第2帯材51Qを積重し、この電極積重体50Aがその一端(リチウムイオン供給源16Aの一端)から図の矢印方向に芯棒19に捲回されることによって、電極捲回ユニット50が得られる。
 第2の実施の形態に係る捲回型LICにおいて、正極51、負極52、セパレータ53A,53B、リチウムイオン供給源16A~16Cとしては、基本的に、第1の実施の形態における正極11、負極12、セパレータ13A,13B、リチウムイオン供給源16A~16Cと同様の構成のものを用いることができ、リチウムイオン供給源16A~16Cには、第1の実施の形態に係る捲回型LICと同様に、リチウム極集電体が圧着または接着されていることが好ましい。
 以上説明したような電極捲回ユニット50を有する捲回型LICによれば、第1の実施の形態の捲回型LICと同様の効果を得ることができる。
 以上、本発明の第2の実施の形態について説明したが、この第2の実施の形態においては、種々の変更を加えることができる。
 例えば、電極捲回ユニットは、負極が複数の負極片よりなりその間隙部にリチウムイオン供給源が配置された構成のものには限定されず、図19に示すように、負極間隙部を有さない構成の負極62を用い、正極間隙部11Sと対向する位置に、リチウムイオン供給源16A~16Cが配置された構成を有していてもよい。なお、図19において、第1の実施の形態に係る符号と同一の符号は、同じ構成要素を示すものとする。
 このような電極捲回ユニットは、まず、セパレータ63A上に、正極間隙部61S、正極片611、正極間隙部61S、正極片612および正極間隙部61Sが、一端から他端に向かってこの順に形成された第2帯材61Qと、セパレータ63B上に帯状の負極62が配置され、さらにこの負極62上における正極間隙部61Sの各々に対向する位置に、電極捲回ユニットの内周面となるリチウムイオン供給源16A、リチウムイオン供給源16Cおよび電極捲回ユニットの最外周面となるリチウムイオン供給源16Bが、正極片611,612とはまったく対向しない状態に配置された第1帯材62Qとを作製する。この第1帯材62Qおよび第2帯材61Qにおいては、正極間隙部および電極片の長さおよび配置位置が、捲回したときに正極片がセパレータのみを介して負極片に対向すると共に、リチウムイオン供給源もセパレータのみを介して負極片と対向し、内周面および外周面がリチウムイオン供給源により構成された状態となるよう、各構成部材の厚みに基づいて設定されている。
 そして、この第1帯材62Qおよび第2帯材61Qを積重し、この電極積重体60Aがその一端(リチウムイオン供給源16Aの一端)から図の矢印方向に芯棒19に捲回されることによって、電極捲回ユニットが得られる。
<第3の実施の形態>
 図20は、本発明の第3の実施の形態に係る捲回型LIC構成を示す説明用断面図である。
 この捲回型LICにおいては、外装容器20内に電極捲回ユニット10が設けられている。この電極捲回ユニット10は、図21に示すように、第1のセパレータ14Aの一面に、負極12、第2のセパレータ14Bおよび正極11がこの順で積重されてなる電極積重体10Aが、その一端から芯棒19に円筒状に捲回されて構成されている。ここで、正極11および負極12は、後述するそれぞれの電極層が第2のセパレータ14Bを介して互いに対向するよう配置されている。図示の例では、電極積重体10Aは第1のセパレータ14Aが内側となるよう捲回されており、これにより、電極捲回ユニット10全体の最内周部分が第1のセパレータ14Aの最内周部分14aとされている。また、負極12は、正極11よりも長尺であって、正極11の最外周部分が負極12の最外周部分に捲回されて覆われており、更に、第1のセパレータ14Aおよび第2のセパレータ14Bは、負極12よりも長尺であって、負極12の最外周部分が、第1のセパレータ14Aの最外周部分および第2のセパレータ14Bの最外周部分14bにこの順で捲回されて覆われており、これにより、電極捲回ユニット10全体の最外周部分が第2のセパレータ14Bの最外周部分14bとされている。
 電極捲回ユニット10の最内周部分(第1のセパレータ14Aの最内周部分14a)の内周面、すなわち第1のセパレータ14Aの一端側部分における負極12が配置される一面とは反対の他面には、それぞれ第1のセパレータ14Aの幅方向(図20において紙面と垂直な方向)に伸びる複数の矩形の膜状のリチウム金属よりなるリチウムイオン供給源15Aが、互いに周方向に離間した状態で、当該第1のセパレータ14Aに圧着されて配置され、当該リチウムイオン供給源15Aは第1のセパレータ14Aによって正極11および負極12の各々とは直接接触しない状態とされている。また、電極捲回ユニット10の最外周部分(第2のセパレータ14Bの最外周部分14b)の内周面すなわち第2のセパレータ14Bの他端側部分の表面には、それぞれ第2のセパレータ14Bの幅方向(図20において紙面と垂直な方向)に伸びる複数の矩形の膜状のリチウム金属よりなるリチウムイオン供給源15Bが互いに周方向に離間して配置され、当該リチウムイオン供給源15Bは第2のセパレータ14Bによって正極11および負極12の各々とは直接接触しない状態とされている。本発明において、「内周面」とは、電極捲回ユニットの中心側の面を意味し、「外周面」とは、内周面とは反対の面を意味する。
 また、この例の捲回型LICにおいては、図22に示すように、電極捲回ユニット10が、テープ25よって捲かられることにより固定されており、これにより、電極捲回ユニット10を外装容器20内に収容する作業が容易となり、捲回型LICの組立て作業性が向上する。また、電極捲回ユニット10の両端には、それぞれ正極11および負極12に電気的に接続された正極端子17および負極端子18が引き出されている。
 そして、外装容器20内には、リチウム塩の非プロトン性有機溶媒電解質溶液よりなる電解液が充填されている。
 第3の実施の形態に係る捲回型LICにおいて、正極11、負極12、第1のセパレータ14A、第2のセパレータ14B、リチウムイオン供給源15A,15Bとしては、基本的に、第1の実施の形態における正極11、負極12、セパレータ13A,13B、リチウムイオン供給源16A~16Cと同様の構成のものを用いることができ、リチウムイオン供給源15A,15Bには、第1の実施の形態に係る捲回型LICにおけるリチウムイオン供給源16A~16Cと同様に、リチウム極集電体が圧着または接着されていることが好ましい。
 第3の実施の形態においては、電極捲回ユニット10の最外周部分および最内周部分の少なくとも一方の内周面にリチウムイオン供給源15A,15Bが設けられていればよいが、当該リチウムイオン供給源15A,15Bが設けられた電極捲回ユニット10の最外周部分の内周面および/または最内周部分の内周面におけるリチウムイオン供給源15A,15Bに覆われていない領域(以下、「非占有領域」という。)Rの割合(最外周部分の内周面の面積に対する非占有領域Rの面積の割合および/または最内周部分の内周面の面積に対する非占有領域Rの面積の割合)が、それぞれ10~70%とされ、好ましくは15~50%、より好ましくは20~30%とされる。非占有領域Rの割合が上記の範囲にあれば、電解液の浸透が短時間で達成され、これにより、リチウムイオンが短時間で負極12全体に均一にドーピングされると共に、プレドープが短時間で完了される。
 この非占有領域Rの割合が10%未満である場合には、電解液の浸透に長い時間を要するため、結局、リチウムイオンが負極12の電極層全体に均一にドーピングされるまでに長い時間が必要となるので好ましくない。一方、この非占有領域Rの割合が70%を超える場合には、正極11および/または負極12に対向するリチウムイオン供給源15A,15Bの面積が小さいため、プレドープが完了するまでに長い時間を要するので好ましくない。
 また、非占有領域Rは電極捲回ユニット10の最外周部分および/または最内周部分の内周面全域にわたって均一に分布していることが好ましい。例えば、面積の小さい1つのリチウムイオン供給源を用いるのではなく、複数の小さい面積のリチウムイオン供給源を互いに離間して配置することにより、所定の面積の非占有領域Rを確保することが、電解液の流通経路を広く確保できることから好適である。また、パンチング等により多孔化したリチウムイオン供給源を用いる場合には、1つのリチウムイオン供給源によって所定の面積の非占有領域を確保できることから、更に好適である。
 このような捲回型LICは、例えば以下のようにして製造することができる。
 先ず、図11および図12に示す正極11および負極12を作製する。具体的には、正極集電体11aの一面に、例えばカーボン系導電性材料よりなる下地層11cを形成することにより、正極集電体11aの孔Pを塞いだ後、当該下地層11cの表面に、正極活物質およびバインダーを含有してなるスラリーを塗工して電極層11aを形成することにより、正極11を作製すると共に、負極集電体12aの一面に、例えばカーボン系導電性材料よりなる下地層12cを形成することにより、負極集電体12aの孔Pを塞いだ後、当該下地層12cの表面に、負極活物質およびバインダーを含有してなるスラリーを塗工して電極層12aを形成することにより、負極12を作製する。そして、正極11における正極集電体11aおよび負極12における負極集電体12aに、正極端子17および負極端子18を、例えばステッチングによって固定して接続する。
 次いで、第1のセパレータ14Aの一面に、負極12、第2のセパレータ14Bおよび正極11をこの順で積重することにより、この電極積重体10Aを作製する。ここで、正極11および負極12は、それぞれの電極層11b,12bが第2のセパレータ14Bを介して互いに対向するよう配置されている。そして、芯棒19に対し、作製した電極積重体10Aを、その第1のセパレータ14Aが内側となるよう当該電極積重体10Aの一端から捲回することにより、電極捲回ユニット10を作製し、この電極捲回ユニット10にテープ25を捲くことによって固定する。
 以上において、第1のセパレータ14Aには、図23に示すように、電極捲回ユニット10の最内周部分となる一端側部分における負極12が配置される一面とは反対の他面に、電極捲回ユニット10の最内周部分の内周面に配置されるリチウムイオン供給源15Aが圧着されて固定されており、更に、このリチウムイオン供給源15A上には、図24に示すように、リチウム極集電体15aが圧着されて固定されている。一方、第2のセパレータ14Bには、図25に示すように、電極捲回ユニット10の最外周部分となる他端側部分の表面に、電極捲回ユニット10の外周面に配置されるリチウムイオン供給源15Bが圧着されて固定されており、更に、このリチウムイオン供給源15B上に、図26に示すように、リチウム極集電体15bが圧着されて固定されている。このようにして、電極捲回ユニット10の内周面および外周面の各々に、リチウムイオン供給源15A,15Bが配置される。
 このようにして作製した電極捲回ユニット10を、外装容器20内に収容すると共に、外装容器20内に電解液を充填し、更に、電極捲回ユニット10における正極端子17および負極端子18を、外装容器20の外部に引き出した状態で、外装容器20を封止することにより、捲回型LICが得られる。
 そして、このようにして作製された捲回型LICにおいては、外装容器20内にリチウムイオンを供給し得る電解液が充填されているため、適宜の期間放置されると、負極12および/または正極11とリチウムイオン供給源15A,15Bとの電気化学的接触によって、リチウムイオン供給源15A,15Bから放出されたリチウムイオンが負極12および/または正極11にドーピングされる。
 而して、本発明によれば、リチウムイオン供給源15A,15Bが設けられた電極捲回ユニット10の最外周部分および/または最内周部分の内周面には、リチウムイオン供給源15A,15Bに覆われていない非占有領域Rが存在し、この非占有領域Rの割合が電極捲回ユニット10の最外周部分および/または最内周部分の内周面全面に対して、それぞれ10~70%であるため、電極捲回ユニット10の内部に短時間で電解液が浸透し、短期間でリチウムイオンが負極12全体に均一にドーピングされるため、高い生産性が得られる。
 また、予め第1のセパレータ14Aおよび第2のセパレータ14Bにリチウムイオン供給源15A,15Bを配置した状態で電極積重体10Aが捲回されることによって、電極捲回ユニット10の作製とリチウムイオン供給源15A,15Bの配置とを同一の工程で行うことができるため、一層高い生産性が得られる。
<第4の実施の形態>
 図27は、本発明の第4の実施の形態に係る捲回型LICにおける電極捲回ユニットの構成を示す説明用断面図である。
 この例の捲回型LICにおける電極捲回ユニット10は、第1のセパレータ14Aの一面に、負極12、第2のセパレータ14Bおよび正極11がこの順で積重された電極積重体が、第1のセパレータ14Aが内側となるよう、当該電極積重体の一端から扁平円筒状に捲回されて構成されており、これにより、電極捲回ユニット10全体の最内周部分が第1のセパレータ14Aの最内周部分14aとされている。また、正極11の最外周部分が負極12の最外周部分に捲回されて覆われており、更に、負極12の最外周部分が第1のセパレータ14Aの最外周部分および第2のセパレータ14Bの最外周部分14bにこの順で捲回されて覆われており、これにより、電極捲回ユニット10全体の最外周部分が第2のセパレータ14Bの最外周部分14bとされている。
 電極捲回ユニット10の最内周部分(第1のセパレータ14Aの最内周部分14a)の内周面、すなわち第1のセパレータ14Aの一端側部分における負極12が配置される一面とは反対の他面には、それぞれ第1のセパレータ14Aの幅方向(図27において紙面と垂直な方向)に伸びる、リチウム極集電体15aの両面の各々に圧着された複数の矩形の膜状のリチウム金属よりなるリチウムイオン供給源15Aが、互いに離間した状態で配置され、当該リチウムイオン供給源15Aは第1のセパレータ14Aによって正極11および負極12の各々とは直接接触しない状態とされている。また、電極捲回ユニット10の最外周部分(第2のセパレータ14Bの最外周部分14b)の内周面すなわち第2のセパレータ14Bの他端側部分の表面には、それぞれ第2のセパレータ14Bの幅方向(図11において紙面と垂直な方向)に伸びる、リチウム極集電体15bの一面に圧着された複数の矩形の膜状のリチウム金属よりなるリチウムイオン供給源15Bが配置され、当該リチウムイオン供給源15Bは第2のセパレータ14Bによって正極11および負極12の各々とは直接接触しない状態とされている。図示の例では、2つのリチウムイオン供給源15Bが、電極捲回ユニット10の外周における一面およびこれに対向する他面に配置されている。
 そして、リチウムイオン供給源15A,15Bが設けられた電極捲回ユニット10の最外周部分の内周面および/または最内周部分の内周面における非占有領域Rの割合が、それぞれ10~70%とされ、好ましくは15~50%、より好ましくは20~30%とされる。
 第4の実施の形態に係る捲回型LICにおいて、正極11、負極12、第1のセパレータ14A、第2のセパレータ14B、リチウムイオン供給源15A,15Bとしては、基本的に、第1の実施の形態における正極11、負極12、セパレータ13A,13B、リチウムイオン供給源16A~16Cと同様の構成のものを用いることができ、リチウムイオン供給源15A,15Bには、第1の実施の形態に係る捲回型LICにおけるリチウムイオン供給源16A~16Cと同様に、リチウム極集電体が圧着または接着されていることが好ましい。
 また、第4の実施の形態に係る捲回型LICにおける電極捲回ユニット10は、第4の実施の形態に係る捲回型LICにおける電極捲回ユニット10と同様にして製造することができる。
 このような電極捲回ユニット10を有する捲回型LICは、電極捲回ユニット10を、外装容器内に収容すると共に、外装容器内に電解液を充填し、更に、電極捲回ユニット10における正極端子17および負極端子18を、外装容器の外部に引き出した状態で、外装容器を封止することによって得られる。
 そして、このようにして作製された捲回型LICにおいては、外装容器内にリチウムイオンを供給し得る電解液が充填されているため、適宜の期間放置されると、負極12および/または正極11とリチウムイオン供給源15A,15Bとの電気化学的接触によって、リチウムイオン供給源15A,15Bから放出されたリチウムイオンが負極12および/または正極11にドーピングされる。
 而して、このような捲回型LICによれば、リチウムイオン供給源15A,15Bが設けられた電極捲回ユニット10の最外周部分および/または最内周部分の内周面における非占有領域Rの割合が、それぞれ10~70%であるため、電極捲回ユニット10の内部に短時間で電解液が浸透し、短期間でリチウムイオンが負極12全体に均一にドーピングされるため、高い生産性が得られる。
 また、予め第1のセパレータ14Aおよび第2のセパレータ14Bにリチウムイオン供給源15A,15Bを配置した状態で電極積重体10Aが捲回されることによって、電極捲回ユニット10の作製とリチウムイオン供給源15A,15Bの配置とを同一の工程で行うことができるため、一層高い生産性が得られる。
 以上、本発明の実施の形態について説明したが、本発明はこれらの形態に限定されず、種々の変更が可能である。
 例えば、本発明は、捲回型LICに限定されず、リチウムイオン二次電池にも好適に適用することができ、また、その他の捲回型蓄電源に適用することもできる。
 以下、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
〔負極の製造例1〕
 厚さ0.5mmのフェノール樹脂成形板をシリコニット電気炉中に入れ、窒素雰囲気下で500℃まで50℃/時間の速度で昇温し、更に10℃/時間の速度で660℃まで昇温して熱処理することにより、PASを合成した。得られた板状のPASをディスクミルで粉砕することにより、PAS粉体を得た。このPAS粉体のH/C比は0.21であった。
 次に、上記のPAS粉体100質量部と、ポリフッ化ビニリデン粉末10質量部をN-メチルピロリドン80質量部に溶解した溶液とを充分に混合することにより負極スラリーを得た。この負極スラリーを厚さ32μm(気孔率50%)の銅製エキスパンドメタル(日本金属工業株式会社製)よりなる負極集電体の両面にダイコーターによって間欠塗工し、塗工部長さ15.2cm、未塗工部長さ10cmになるように負極の電極層をパターン成形し、プレス処理した後、負極全体の厚さ(両面の負極の電極層厚さと負極集電体厚さの合計)が77μmである負極〔1〕を得た。さらに、同様にして塗工部長さ36.1cm、未塗工部長さ10cmになるように負極の電極層をパターン成形し、プレス処理した後、負極全体の厚さ(両面の負極の電極層厚さと負極集電体厚さの合計)が77μmである負極〔2〕を得た。
 この負極〔1〕および負極〔2〕を作用極とし、対極、参照極としてリチウム金属、電解液として、プロピレンカーボネートに1モル/Lの濃度にLiPF6 を溶解した溶液を用いた模擬セルを試作し、負極活物質質量に対して400mAh/g分のリチウムイオンを充電し、負極〔1〕および負極〔2〕の単位質量当たりの静電容量を求めたところ、いずれも661F/gであった。
〔正極の製造例1〕
 市販の比表面積が1950m/gである活性炭粉末100質量部、アセチレンブラック10質量部、アクリル系バインダー7質量部およびカルボキシメチルセルロース4質量部を水に分散させ充分に混合することにより正極スラリーを得た。
 一方、厚さ35μm(気孔率50%)のアルミニウム製エキスパンドメタル(日本金属工業株式会社製)両面に、非水系のカーボン系導電塗料「EB-815」(日本アチソン株式会社製)を、ダイコーターによって両面に間欠塗工し、塗工部長さ13.2cm、未塗工部長さ10cmになるように導電層をパターン成形し、乾燥することにより、正極集電体〔1〕を得た。全体の厚み(アルミニウム製エキスパンドメタル厚みと導電層厚みの合計)は52μmであり、塗工部の貫通孔はほぼ導電塗料により閉塞された。更に、上記の正極スラリー〔1〕をダイコーターによって両面の導電層上に間欠塗工し、塗工部長さ13.2cm、未塗工部長さ10cmになるように正極の電極層をパターン成形し、プレス処理した後、正極全体の厚さ(両面の正極の電極層厚さと正極集電体〔1〕厚さの合計)が212μmである正極〔1〕を得た。さらに、同様にして塗工部長さ26.1cm、未塗工部10cmになるように正極の電極層をパターン成形し、プレス処理した後、正極全体の厚さ(両面の正極の電極層厚さと正極集電体〔1〕厚さの合計)が212μmである正極〔2〕を得た。
 この正極〔1〕および正極〔2〕を作用極とし、対極、参照極としてリチウム金属、電解液として、プロピレンカーボネートに1モル/Lの濃度にLiPF6 を溶解した溶液を用いた模擬セルを試作し、3.5V~2.5V間の放電時間より正極〔1〕および正極〔2〕の単位質量当たりの静電容量を求めたところ、いずれも119F/gであった。
〔電極捲回ユニットの作製例1〕
 厚さ77μmの負極〔1〕を端部から10mmの位置に未塗工部を含むように幅5.6×長さ16.2cmにカットし、ニッケル製の端子を負極集電体の未塗工部上に配置し、負極集電体に超音波溶接により接続した。また、厚さ212μmの正極〔1〕を端部から10mmの位置に未塗工部を含むように幅5.4×長さ14.2cmにカットし、アルミニウム製の端子を正極集電体の未塗工部上に配置し、正極集電体に超音波溶接により接続した。さらに同様にして、負極〔2〕を幅5.6×長さ37.1cmにカットし、ニッケル製の端子を負極集電体の未塗工部上に配置し、負極集電体に超音波溶接により接続し、正極〔2〕を幅5.4×長さ27.1cmにカットし、アルミニウム製の端子を正極集電体の未塗工部上に配置し、正極集電体に超音波溶接により接続した。
 セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用い、図18に従って、セパレータ(53A)に対し、芯棒(19)側から正極〔1〕、正極〔2〕の順で並設すると共に、セパレータ(53B)に対し、芯棒(19)側からリチウムイオン供給源〔1〕、負極〔1〕、リチウムイオン供給源〔2〕、負極〔2〕、リチウムイオン供給源〔3〕の順で並設して電極積重体を形成し、正極と負極の各端子が反対方向になるよう、当該電極積重体を一端から捲回し、最外周をテープ止めして電極捲回ユニット〔1〕を作製した。これを合計3本作製した。
 なお、電極積重体においては、内周面に係るリチウムイオン供給源〔1〕として、捲回開始部に厚さ60μm×幅5.4×長さ1.1cmのリチウム金属1枚、間隙部に係るリチウムイオン供給源〔2〕として、厚さ60μm×幅5.4×長さ3.1cmのリチウム金属1枚、外周面に係るリチウムイオン供給源〔3〕として、厚さ120μm×幅5.4×長さ5.0cmのリチウム金属1枚を用い、これを予めセパレータに圧着し、さらにこれらのリチウム金属の上には、幅7.4cmの銅製エキスパンドメタル(リチウム極集電体)を各リチウム金属と同じ長さにカットして配置し、プレスすることにより圧着した。このため、リチウムイオン供給源を簡便に挿入することができた。
 また、この電極捲回ユニット〔1〕において、内周面、外周面および捲回体の外周面におけるリチウム極非占有率は、いずれも0%とした。
〔セルの作製例1〕
 上記の電極捲回ユニット〔1〕を、外径18mmφ、高さ65mmの鉄-ニッケルメッキ製外装缶の内部へ挿入し、負極端子と外装缶を缶底部にて抵抗溶接した後、缶上部に溝入れ加工を施した。続いて、缶上部にポリプロピレン製ガスケットを取り付けた後、正極端子と正極キャップを抵抗溶接した。
 電解液としてプロピレンカーボネートに、1モル/Lの濃度にLiPF6 を溶解させた溶液を8g注液し、真空含浸させたところ、4分間を要した。
 その後、正極キャップを被せて外装缶をかしめることにより、円筒型のリチウムイオンキャパシタセル〔1〕を3セル組み立てた。
〔セルの初期評価〕
 リチウムイオンキャパシタセル〔1〕について、セル組み立て後4日間放置後に、1セル分解したところ、リチウム金属はいずれも完全に無くなっていた。このことから、セル組み立て後4日間で負極活物質の単位質量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断される。
〔セルの特性評価〕
 リチウムイオンキャパシタセル〔1〕を、750mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流-定電圧充電を0.5時間行った。次いで、750mAの定電流でセル電圧が2.2Vになるまで放電した。この3.8V-2.2Vのサイクルを繰り返し、10回目の放電におけるセル容量およびエネルギー密度、内部抵抗を評価した。評価は、2セルの平均値である。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 上記のリチウムイオンキャパシタセル〔1〕の作製工程においては、リチウムイオン供給源を含む電極捲回ユニット〔1〕が短時間で得られることが確認された。これは、リチウムイオン供給源(リチウム金属)をセパレータに予め圧着していたためと考えられる。また、電解液の注液完了までの時間は長かったものの、リチウムイオンのドーピング時間が短いことが確認された。これは、リチウムイオン供給源(リチウム金属)を、内周面と外周面だけでなく、電極の間隙部にも配置させたためと考えられる。
<比較例1>
〔負極の作製例2〕
 負極の作製例1と同様にして負極スラリーを得、この負極スラリーを厚さ32μm(気孔率50%)の銅製エキスパンドメタル(日本金属工業株式会社製)よりなる負極集電体の両面にダイコーターによって間欠塗工し、塗工部長さ49.3cm、未塗工部長さ10cmになるように負極の電極層をパターン成形し、プレス処理した後、負極全体の厚さ(両面の負極の電極層厚さと負極集電体厚さの合計)が77μmである負極〔3〕を得た。
〔正極の作製例2〕
 一方、厚さ35μm(気孔率50%)のアルミニウム製エキスパンドメタル(日本金属工業株式会社製)両面に、非水系のカーボン系導電塗料「EB-815」(日本アチソン株式会社製)を、ダイコーターによって両面に間欠塗工し、46.3cm、未塗工部長さ10cmになるように導電層をパターン成形し、乾燥することにより、正極集電体〔2〕を得た。全体の厚み(アルミニウム製エキスパンドメタル厚みと導電層厚みの合計)は52μmであり、塗工部の貫通孔はほぼ導電塗料により閉塞された。更に、正極の作製例1と同様にして得た正極スラリー〔1〕をダイコーターによって両面の導電層上に間欠塗工し、塗工部長さ46.3cm、未塗工部長さ10cmになるように正極の電極層をパターン成形し、プレス処理した後、正極全体の厚さ(両面の正極の電極層厚さと正極集電体〔2〕厚さの合計)が212μmである正極〔3〕を得た。
〔電極捲回ユニットの作製例2〕
 厚さ77μmの負極〔3〕を端部から10mmの位置に未塗工部を含むように幅5.6×長さ49.3cmにカットし、ニッケル製の端子を負極集電体の未塗工部上に配置し、負極集電体に超音波溶接により接続した。また、厚さ212μmの正極〔3〕を端部から10mmの位置に未塗工部を含むように幅5.4×長さ46.3cmにカットし、アルミニウム製の端子を正極集電体の未塗工部上に配置し、正極集電体に超音波溶接により接続した。
 セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用い、図18において正極間隙部および負極間隙部を形成させず、一続きの帯状の負極および正極よりなる構成となるように電極積重体を形成し、正極、負極の各端子が反対方向になるよう、当該電極積重体を一端から捲回し、最外周をテープ止めして電極捲回ユニット〔2〕を作製した。これを合計3本作製した。
 なお、電極積重体においては、内周面に係るリチウムイオン供給源として、捲回開始部に厚さ135μm×幅5.4×長さ1.1cmのリチウム金属1枚、外周面に係るリチウムイオン供給源として、厚さ135μm×幅5.4×長さ5.0cmのリチウム金属1枚を用い、これを予めセパレータに圧着し、さらにこれらのリチウム金属の上には、幅7.4cmの銅製エキスパンドメタル(リチウム極集電体)を各リチウム金属と同じ長さにカットして配置し、プレスすることにより圧着した。このため、リチウムイオン供給源を簡便に挿入することができた。
 また、この電極捲回ユニット〔2〕において、内周面、外周面および捲回体の外周面におけるリチウム極非占有率は、いずれも0%とした。
〔セルの作製例2〕
 上記の電極捲回ユニット〔2〕を、外径18mmφ、高さ65mmの鉄-ニッケルメッキ製外装缶の内部へ挿入し、負極端子と外装缶を缶底部にて抵抗溶接した後、缶上部に溝入れ加工を施した。続いて、缶上部にポリプロピレン製ガスケットを取り付けた後、正極端子と正極キャップを抵抗溶接した。
 電解液としてプロピレンカーボネートに、1モル/Lの濃度にLiPF6 を溶解させた溶液を9g注液し、真空含浸させたところ、4分間を要した。
 その後、正極キャップを被せて外装缶をかしめることにより、円筒型のリチウムイオンキャパシタセル〔2〕を3セル組み立てた。
〔セルの初期評価〕
 リチウムイオンキャパシタセル〔2〕について、セル組み立て後4日間放置後に、1セル分解したところ、リチウム金属は30%程度残留していたため、さらに3日間放置後に、当該セルを分解したところ、完全に無くなっていた。このことから、セル組み立て後7日間で負極活物質の単位質量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断される。
〔セルの特性評価〕
 リチウムイオンキャパシタセル〔2〕を、750mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流-定電圧充電を0.5時間行った。次いで、750mAの定電流でセル電圧が2.2Vになるまで放電した。この3.8V-2.2Vのサイクルを繰り返し、10回目の放電におけるセル容量およびエネルギー密度、内部抵抗を評価した。評価は、2セルの平均値である。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 上記のリチウムイオンキャパシタセル〔2〕の作製工程においては、リチウムイオン供給源を含む電極捲回ユニット〔2〕が短時間で得られることが確認された。これは、リチウムイオン供給源(リチウム金属)をセパレータに予め圧着していたためと考えられる。しかしながら、電解液の注液完了までの時間が長く、リチウムイオンのドーピング時間も実施例1に係るリチウムイオンキャパシタセル〔1〕よりも長いことが確認された。これは、リチウムイオン供給源(リチウム金属)の配置数が実施例1に係るリチウムイオンキャパシタセル〔1〕よりも少ないためと考えられる。
<比較例2>
〔電極捲回ユニットの作製例3〕
 比較例1の電極捲回ユニットの作製例2において、内周面に係るリチウムイオン供給源として、厚さ60μm×幅5.4×長さ1.0cmのリチウム金属、外周面に係るリチウムイオン供給源として、厚さ140μm×幅5.4×長さ5.0cmのリチウム金属を用いると共に、電極積重体の負極に係る第1帯材と正極に係る第2帯材との間に、中間部に係るリチウムイオン供給源として、厚さ60μm×幅5.4×長さ3.1cmリチウム金属を負極に積重させて挿入して捲回したことの他は同様にして、電極捲回ユニット〔3〕を作製した。これを合計3本作製した。
 なお、この電極捲回ユニット〔3〕において、内周面、外周面および捲回体の外周面におけるリチウム極非占有率は、いずれも0%とした。
〔セルの作製例3〕
 上記の電極捲回ユニット〔3〕を、外径18mmφ、高さ65mmの鉄-ニッケルメッキ製外装缶の内部へ挿入し、負極端子と外装缶を缶底部にて抵抗溶接した後、缶上部に溝入れ加工を施した。続いて、缶上部にポリプロピレン製ガスケットを取り付けた後、正極端子と正極キャップを抵抗溶接した。
 電解液としてプロピレンカーボネートに、1モル/Lの濃度にLiPF6 を溶解させた溶液を9g注液し、真空含浸させたところ、4分間を要した。
 その後、正極キャップを被せて外装缶をかしめることにより、円筒型のリチウムイオンキャパシタセル〔3〕を3セル組み立てた。
〔セルの初期評価〕
 リチウムイオンキャパシタセル〔3〕について、セル組み立て後4日間放置後に、1セル分解したところ、間隙部に若干のリチウム金属の痕跡が残っていたものの、ほぼ消失していた。このことから、セル組み立て後約4日間で負極活物質の単位質量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断される。
〔セルの特性評価〕
 リチウムイオンキャパシタセル〔3〕を、750mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流-定電圧充電を0.5時間行った。次いで、750mAの定電流でセル電圧が2.2Vになるまで放電した。この3.8V-2.2Vのサイクルを繰り返し、10回目の放電におけるセル容量およびエネルギー密度、内部抵抗を評価した。評価は、2セルの平均値である。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 上記のリチウムイオンキャパシタセル〔3〕の作製工程においては、リチウムイオン供給源を含む電極捲回ユニット〔3〕が短時間で得られることが確認された。これは、リチウムイオン供給源(リチウム金属)をセパレータに予め圧着していたためと考えられる。また、電解液の注液完了までの時間は長かったものの、リチウムイオンのドーピング時間が実施例1に係るリチウムイオンキャパシタセル〔1〕と同様に短いことが確認された。これは、リチウムイオン供給源(リチウム金属)の配置数が実施例1に係るリチウムイオンキャパシタセル〔1〕と同様に多いためと考えられる。しかしながら、内部抵抗が高いことが確認された。これは、リチウム金属と負極とが接触していた箇所の抵抗が上昇していたことから、中間部に配置したリチウム金属が負極上で不具合を起こしたものと推測される。
 また、充放電をさらに100回追加して1セルを分解したところ、中間部のリチウム極集電体上にデンドライト(樹状のリチウム金属)が発生していたことから、耐久性、および安全性にも問題があると考えられる。
 従って、中間部にリチウム金属を配置させる場合には、実施例1に係るリチウムイオンキャパシタセル〔1〕のように、電極を分割してリチウム金属と正極が対向しない構成にする必要があると考えられる。
〈実施例2〉
(1)負極の製造:
 厚みが0.5mmのフェノール樹脂成形板をシリコニット電気炉中に入れ、窒素雰囲気下で50℃/時間の速度で500℃まで昇温し、更に10℃/時間の速度で660℃まで昇温して熱処理することにより、PAS板を製造した。得られたPAS板をディスクミルで粉砕することにより、PAS粉体を調製した。このPAS粉体のH/C比は0.21であった。
 次いで、調製したPAS粉体100質量部と、ポリフッ化ビニリデン粉末10質量部とを、N-メチルピロリドン80質量部に添加して溶解・分散することにより、負極用スラリーを調製した。この負極用スラリーを、厚みが32μmで気孔率が50%の銅製エキスパンドメタル(日本金属工業株式会社製)よりなる負極集電体の両面に、ダイコーターによって、塗工部の長さが49.3cm、未塗工部の長さが10cmとなるよう間欠塗工して乾燥し、得られた塗膜に対してプレス加工を施すことにより、電極層を形成し、以て、負極を製造した。
 得られた負極の厚み(負極集電体とその両面に形成された電極層との合計の厚み)は、77μmであった。
 また、この負極を作用極、リチウム金属を対極、参照極とし、プロピレンカーボネートに1モル/Lの濃度でLiPF6 が溶解されてなる電解液を用いてキャパシタを構成し、負極活物質の質量に対して400mAh/g分のリチウムイオンを充電し、負極の単位重量当たりの静電容量を求めたところ、661F/gであった。
(2)正極の製造:
 比表面積が1950m/gの活性炭粉末100質量部と、アセチレンブラック10質量部と、アクリル系バインダー7質量部と、カルボキシメチルセルロース4質量部とを、水に添加して分散することにより、正極用スラリーを調製した。
 一方、厚さが35μmで気孔率が50%のアルミニウム製エキスパンドメタル(日本金属工業株式会社製)よりなる正極集電体の両面に、非水系のカーボン系導電塗料(日本アチソン株式会社製:EB-815)を、ダイコーターによって、塗工部の長さが46.3cm、未塗工部の長さが10cmとなるよう間欠塗工して乾燥することにより、下地層を形成した。正極集電体とその両面に形成された下地層との合計の厚みは、52μmであり、正極集電体の孔は、下地層によって閉塞されていた。
 次いで、調製した正極用スラリーを、下地層が形成された正極集電体の両面に、ダイコーターによって、塗工部の長さが46.3cm、未塗工部の長さが10cmとなるよう間欠塗工して乾燥し、得られた塗膜に対してプレス加工を施すことにより、電極層を形成し、以て、正極を製造した。
 得られた正極の厚み(正極集電体とその両面に形成された下地層および電極層との合計の厚み)は、212μmであった。
 また、この正極を作用極、リチウム金属を対極、参照極とし、プロピレンカーボネートに1モル/Lの濃度でLiPF6 が溶解されてなる電解液を用いてキャパシタを構成し、3.5V~2.5V間の放電時間より正極の単位重量当たりの静電容量を求めたところ、119F/gであった。
(3)電極捲回ユニットの作製:
 製造した負極を、その端部から10mmの位置で負極集電体の未塗工部を含むように5.6cm(幅)×49.3cm(長さ)の寸法にカットした後、ニッケル製の負極端子を負極集電体の未塗工部上に配置して超音波溶接により接続した。
 また、製造した正極を、その端部から10mmの位置で正極集電体の未塗工部を含むように5.4cm(幅)×46.3cm(長さ)の寸法にカットし、アルミニウム製の正極端子を正極集電体の未塗工部上に配置して超音波溶接により接続した。
 また、それぞれ厚みが35μmのセルロース/レーヨン混合不織布よりなる第1のセパレータおよび第2のセパレータを用意し、得られる電極捲回ユニットの最内周部分となる第1のセパレータの一端側部分の表面に、縦横の寸法が5.4cm×0.9cmで、厚みが170μmのリチウム金属箔よりなるリチウムイオン供給源を配置し、これを圧着することによって固定し、このリチウムイオン供給源上に、縦横の寸法が7.4cm×0.9cm、厚みが32μmで気孔率が50%の銅製エキスパンドメタルよりなるリチウム極集電体を配置し、これを圧着することによって固定した。一方、得られる電極捲回ユニットの最外周部分となる第2のセパレータの他端側部分の表面に、それぞれ縦横の寸法が5.4cm×2.0cmで、厚みが170μmのリチウム金属箔よりなる2つのリチウムイオン供給源を、0.5cmの間隔で離間して配置し、これを圧着することによって固定し、これらのリチウムイオン供給源上に、縦横の寸法が5.4cm×2.0cm、厚みが32μmで気孔率が50%の銅製エキスパンドメタルよりなるリチウム極集電体を配置し、これを圧着することによって固定した。
 そして、第1のセパレータにおけるリチウムイオン供給源が圧着された面とは反対の面上に、負極、第2のセパレータおよび正極をこの順で積重することにより、電極積重体を構成した。ここで、正極および負極は、それぞれの電極層が第2のセパレータを介して互いに対向するよう配置した。この電極積重体を、直径3.5mmのステンレス製の芯棒に対し、第1のセパレータが内側となるよう当該電極積重体の一端から捲回することにより、内径3.5mm、外径15.5mmの円筒状の電極捲回ユニットを作製し、この電極捲回ユニットにテープを捲くことによって固定した。
 電極捲回ユニットの最外周部分および最内周部分の内周面におけるリチウムイオン供給源に覆われていない領域(非占有領域)の割合は、それぞれ20%であった。
 また、各リチウムイオン供給源を予め第1のセパレータおよび第2のセパレータに圧着したため、電極捲回ユニットの作製を容易に行うことができた。
(4)捲回型LICの作製:
 外径が18mmで高さが65mmの鉄-ニッケルメッキ製の有底筒状の外装容器材を用意し、この外装容器材の内部に、作製した電極捲回ユニットを収納すると共に、当該電極捲回ユニットの負極端子を、外装容器材の内底部に抵抗溶接した後、外装容器材の上部に溝入れ加工を施した。次いで、外装容器材の上部にポリプロピレン製ガスケットを取り付けた後、電極捲回ユニットの正極端子を蓋材に抵抗溶接した。そして、外装容器材の内部に、プロピレンカーボネートに1モル/Lの濃度でLiPF6 が溶解されてなる電解液9gを注入し、真空含浸させたところ、完了までの時間が2分間であった。その後、外装容器材に蓋材を被せた状態で当該外装容器材をかしめて密閉することにより、外装容器を構成した。このようにして、円筒状の捲回型LICを合計で3つ作製した。
(5)捲回型LICの初期評価:
 作製した3つの捲回型LICを、作製してから7日間放置した後に、1つの捲回型LICを分解したところ、リチウムイオン供給源であるリチウム金属箔が消失していることが確認された。このことから、作製してから7日間経過後には、所期の量のリチウムイオンが負極にドーピングされたと判断される。
(6)捲回型LICの特性評価
 2つの捲回型LICの各々に対し、750mAの定電流によってキャパシタの電圧が3.8Vになるまで充電し、その後、3.8Vの定電圧を印加する定電流-定電圧充電を0.5時間行った。次いで、750mAの定電流によってキャパシタの電圧が2.2Vになるまで放電した。この操作を1サイクルとして繰り返して行い、10サイクル目の放電におけるキャパシタの容量、エネルギー密度、内部抵抗を測定し、2つの捲回型LICについての平均値を算出した。結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000005
 以上の結果から明らかなように、実施例2によれば、電極捲回ユニットの作製が容易で、短時間で電解液の浸透が行われ、短期間でリチウムイオンが負極全体に均一にドーピングされるため、高い生産性が得られ、しかも、静電容量およびエネルギー密度が高く、内部抵抗の低い捲回型LICが得られることが確認された。
〈比較例3〉
 電極捲回ユニットの内周面に配置されるリチウムイオン供給源として、縦横の寸法が5.4cm×1.0cmで厚みが135μmのリチウム金属箔を1枚用い、電極捲回ユニットの外周面に配置されるリチウムイオン供給源として、縦横の寸法が5.4cm×5.0cmで厚みが135μmのリチウム金属箔を1枚用いたこと以外は、実施例1と同様にして電極捲回ユニットを作製し、捲回型LICを3個作製した。
 以上において、電極捲回ユニットの最外周部分および最内周部分の内周面におけるリチウムイオン供給源に覆われていない領域(非占有領域)の割合は、それぞれ0%であった。
 また、捲回型LICの作製において、電解液を注入して真空含浸させたところ、完了までの時間が4分間であった。
 作製した捲回型LICについて、実施例2と同様して初期評価を行ったところ、リチウム金属箔が残存していることが確認された。
 また、作製した捲回型LICについて、実施例2と同様して特性評価を行った。結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000006
 以上の結果から、比較例3においては、非占有領域の割合が0%であるため、実施例2に比較して、電解液の浸透に長い時間を要し、また、リチウムイオンを負極全体に均一にドーピングするために長い時間が必要であった。
〈比較例4〉
 実施例2と同様にして負極および正極を製造した。
 製造した負極を、その端部から10mmの位置で負極集電体の未塗工部を含むように5.6cm(幅)×49.3cm(長さ)の寸法にカットした後、ニッケル製の負極端子を負極集電体の未塗工部上に配置して超音波溶接により接続した。
 また、製造した正極を、その端部から10mmの位置で正極集電体の未塗工部を含むように5.4cm(幅)×46.3cm(長さ)の寸法にカットし、アルミニウム製の正極端子を正極集電体の未塗工部上に配置して超音波溶接により接続した。
 そして、それぞれ厚みが35μmのセルロース/レーヨン混合不織布よりなる第1のセパレータおよび第2のセパレータを用意し、第1のセパレータ、負極、第2のセパレータおよび正極をこの順で積重することにより、電極積重体を構成した。ここで、正極および負極は、それぞれの電極層が第2のセパレータを介して互いに対向するよう配置した。この電極積重体を、直径3.5mmのアルミニウム製の芯棒に対し、第1のセパレータが内側となるよう当該電極積重体の一端から捲回することにより、内径3.5mm、外径15.5mmの電極捲回ユニットを作製し、この電極捲回ユニットにテープを捲くことによって固定した。
 次いで、縦横の寸法が5.4cm×5.0cmで、厚みが134μmのリチウム金属箔よりなるリチウムイオン供給源に、縦横の寸法が5.4cm×5.0cm、厚みが32μmの銅製エキスパンドメタルよりなるリチウム極集電体を圧着し、当該リチウム極集電体が圧着されたリチウムイオン供給源を、電極捲回ユニットの外周面に対接するよう配置した。また、縦横の寸法が5.4cm×1.0cmで、厚みが134μmのリチウム金属箔よりなるリチウムイオン供給源に、縦横の寸法が5.4cm×1.0cm、厚みが32μmの銅製エキスパンドメタルよりなるリチウム極集電体を圧着し、当該リチウム極集電体が圧着されたリチウムイオン供給源を、電極捲回ユニットの内周面に対接するよう配置した。
 電極捲回ユニットの内周面および外周面におけるにおけるリチウムイオン供給源に覆われていない領域(非占有領域)の割合は、それぞれ0%であった。
 以上において、リチウムイオン供給源の配置には、長時間を要した。
 外径が18mmで高さが65mmの鉄-ニッケルメッキ製の有底筒状の外装容器材を用意し、この外装容器材の内部に、作製した電極捲回ユニットを収納すると共に、当該電極捲回ユニットの負極端子を、外装容器材の内底部に抵抗溶接した後、外装容器材の上部に溝入れ加工を施した。次いで、外装容器材の上部にポリプロピレン製ガスケットを取り付けた後、電極捲回ユニットの正極端子を蓋材に抵抗溶接した。そして、外装容器材の内部に、プロピレンカーボネートに1モル/Lの濃度でLiPF6 が溶解されてなる電解液9gを注入し、真空含浸させたところ、完了までの時間が3分間であった。その後、外装容器材に蓋材を被せた状態で当該外装容器材をかしめて密閉することにより、外装容器を構成した。このようにして、円筒状の捲回型LICを合計で3つ作製した。
 作製した捲回型LICについて、実施例1と同様して初期評価を行ったところ、リチウム金属箔が残存していることが確認された。分解した捲回型LICを組み立て、2日間放置(合計9日間放置)した後、捲回型LICを再度分解したところ、リチウムイオン供給源であるリチウム金属箔が消失していることが確認された。このことから、作製してから9日間経過後には、所期の量のリチウムイオンが負極にドーピングされたと判断される。 また、作製した捲回型LICについて、実施例2と同様して特性評価を行った。結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、比較例4においては、非占有領域の割合が0%であるため、実施例2に比較して、電解液の浸透に長い時間を要し、また、リチウムイオンを負極全体に均一にドーピングするために長い時間が必要であった。また、得られた捲回型LICの内部抵抗が高いものであった。これは、電極捲回ユニットを作製した後、リチウムイオン供給源を配置したため、当該電極捲回ユニットと当該リチウムイオン供給源との接圧が不十分であったためと考えられる。
10 電極捲回ユニット
10A 電極積重体
11 正極
111,112 正極片
11S 正極間隙部
11a 正極集電体
11b 電極層
11c 下地層
12 負極
12S 負極間隙部
121,122 負極片
121α 余剰部分
12a 負極集電体
12b 電極層
12c 下地層
13A,13B セパレータ
14A 第1のセパレータ
14a 最内周部分
14B 第2のセパレータ
14b 最外周部分
15A,15B リチウムイオン供給源
15a,15b リチウム極集電体
16A~16C リチウムイオン供給源
17 正極端子
18 負極端子
19 芯棒
20 外装容器
25 テープ
26a~26c リチウム極集電体
30A 電極積重体
31 正極
31T スリット
36C リチウムイオン供給源
41 正極
411,412 正極片
41S 正極間隙部
41Q 第2帯材
42 負極
43A,43B セパレータ
42Q 第1帯材
50 電極捲回ユニット
50A 電極積重体
51 正極
511,512 正極片
51S 正極間隙部
51Q 第2帯材
52 負極
521,522 負極片
52S 負極間隙部
52Q 第1帯材
53A,53B セパレータ
60A 電極積重体
61 正極
611,612 正極片
61S 正極間隙部
61Q 第2帯材
62 負極
62Q 第1帯材
63A,63B セパレータ
 P 孔
 R 非占有領域
 S 間欠部
 Z 捲回体

Claims (15)

  1.  表裏面を貫通する孔を有する集電体の少なくとも一面に、リチウムイオンおよび/またはアニオンを可逆的に担持可能な正極活物質を含有する電極層が形成されてなる正極と、表裏面を貫通する孔を有する集電体の少なくとも一面に、リチウムイオンを可逆的に担持可能な負極活物質を含有する電極層が形成されてなる負極とを有し、当該正極および当該負極がセパレータを介して積重されてなる電極積重体が、その一端から捲回されて構成された筒状の電極捲回ユニット、および、
     リチウム塩の非プロトン性有機溶媒電解質溶液よりなる電解液を備えてなり、
     前記負極および/または前記正極と、リチウムイオン供給源との電気化学的接触によって、リチウムイオンおよび/またはアニオンが、当該負極および/または当該正極にドーピングされる捲回型蓄電源であって、
     前記リチウムイオン供給源は、前記セパレータによって前記正極および前記負極と接触しないよう設けられていることを特徴とする捲回型蓄電源。
  2.  前記正極に正極間隙部が形成され、
     前記正極間隙部、または、負極における当該正極間隙部に対向する位置に、当該正極と接触しない状態に少なくとも一つのリチウムイオン供給源が設けられることを特徴とする請求項1に記載の捲回型蓄電源。
  3.  前記電極捲回ユニットは、その最外周部分および/または最内周部分が前記セパレータであり、この電極捲回ユニットの最外周部分の内周面および/または最内周部分の内周面にリチウムイオン供給源が設けられていることを特徴とする請求項2に記載の捲回型蓄電源。
  4.  前記電極捲回ユニットの最内周部分の内周面に設けられるリチウムイオン供給源が捲回された捲回体が負極にて覆われた後に、正極が挿入され捲回されることによって電極捲回ユニットが構成されていることを特徴とする請求項3に記載の捲回型蓄電源。
  5.  前記正極は、複数の正極片を有し、各正極片が互いに前記正極間隙部を介して配置されてなるものであることを特徴とする請求項2乃至請求項4のいずれかに記載の捲回型蓄電源。
  6.  前記正極は、スリットが形成されたものであり、当該スリットにより前記正極間隙部が構成されることを特徴とする請求項2乃至請求項4のいずれかに記載の捲回型蓄電源。
  7.  前記負極は、前記正極の少なくとも一部と重畳されていることを特徴とする請求項2乃至請求項6のいずれかに記載の捲回型蓄電源。
  8.  前記正極間隙部または前記負極における当該正極間隙部に対応する位置に設けられたリチウムイオン供給源は、当該リチウムイオン供給源が覆うべき捲回体が負極最外周部にて覆われた後に挿入され捲回されることによって電極捲回ユニットが構成されていることを特徴とする請求項1乃至請求項7のいずれかに記載の捲回型蓄電源。
  9.  前記電極捲回ユニットは、その最外周部分および/または最内周部分が前記セパレータであり、この電極捲回ユニットの最外周部分の内周面および/または最内周部分の内周面にリチウムイオン供給源が設けられており、
     前記リチウムイオン供給源が設けられた前記電極捲回ユニットの最外周部分の内周面および/または最内周部分の外周面における当該リチウムイオン供給源に覆われていない領域の割合が、それぞれ10~70%であることを特徴とする請求項1に記載の捲回型蓄電源。
  10.  電極積重体は、第1のセパレータ、負極、第2のセパレータおよび正極の順で積重されてなり、当該第1のセパレータの一端側部分には、負極が配置される面とは反対の面に、電極捲回ユニットの最内周部分における内周面に設けられるリチウム供給源が配置され、電極積重体がその一端から捲回されることによって電極捲回ユニットが構成されていることを特徴とする請求項9に記載の捲回型蓄電源。
  11.  前記リチウムイオン供給源は、リチウム極集電体に圧着または積重されていることを特徴とする請求項2乃至請求項10のいずれかに記載の捲回型蓄電源。
  12.  前記リチウムイオン供給源が圧着または積重されたリチウム極集電体は多孔箔よりなることを特徴とする請求項11に記載の捲回型蓄電源。
  13.  電極捲回ユニットは、正極の最外周部分がセパレータを介して負極の最外周部分に覆われ、更に、当該負極の最外周部分がセパレータの最外周部分に覆われており、当該セパレータの最外周部分における内周面にリチウム供給源が設けられていることを特徴とする請求項2乃至請求項12のいずれかに記載の捲回型蓄電源。
  14.  リチウムイオンキャパシタであることを特徴とする請求項1乃至請求項13のいずれかに記載の捲回型蓄電源。
  15.  リチウムイオン二次電池であることを特徴とする請求項1乃至請求項13のいずれかに記載の捲回型蓄電源。
PCT/JP2009/070823 2008-12-26 2009-12-14 捲回型蓄電源 WO2010073930A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/141,180 US9496584B2 (en) 2008-12-26 2009-12-14 Wound-type accumulator having simplified arrangement of a lithium ion source
EP09834733.9A EP2372732B1 (en) 2008-12-26 2009-12-14 Wound-type accumulator
CN200980155555.0A CN102301439B (zh) 2008-12-26 2009-12-14 卷绕型蓄电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-333567 2008-12-26
JP2008-333566 2008-12-26
JP2008333567A JP5317688B2 (ja) 2008-12-26 2008-12-26 捲回型蓄電源およびその製造方法
JP2008333566A JP5317687B2 (ja) 2008-12-26 2008-12-26 捲回型蓄電源

Publications (1)

Publication Number Publication Date
WO2010073930A1 true WO2010073930A1 (ja) 2010-07-01

Family

ID=42287546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070823 WO2010073930A1 (ja) 2008-12-26 2009-12-14 捲回型蓄電源

Country Status (5)

Country Link
US (1) US9496584B2 (ja)
EP (1) EP2372732B1 (ja)
KR (1) KR101573106B1 (ja)
CN (1) CN102301439B (ja)
WO (1) WO2010073930A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091957A1 (ja) 2012-12-13 2014-06-19 Jmエナジー株式会社 蓄電デバイスの製造方法および蓄電デバイス
EP2631924A4 (en) * 2010-10-19 2018-03-14 JM Energy Corporation Lithium ion capacitor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982535B2 (en) * 2011-11-16 2015-03-17 Corning Incorporated Cell design for high energy density electrochemical double layer capacitors
CN102683742A (zh) * 2012-06-12 2012-09-19 东莞新能源科技有限公司 一种锂离子电芯及其制备方法
US8920925B2 (en) 2012-11-09 2014-12-30 Corning Incorporated Stabilized lithium composite particles
US9183994B2 (en) 2012-11-28 2015-11-10 Corning Incorporated Lithium ion capacitors and methods of production
JP5429678B1 (ja) * 2012-12-27 2014-02-26 日新電機株式会社 蓄電デバイスの製造方法
WO2014176267A1 (en) 2013-04-23 2014-10-30 Maxwell Technologies, Inc. Methods for solid electrolyte interphase formation and anode pre-lithiation of lithium ion capacitors
KR101684590B1 (ko) 2013-10-31 2016-12-08 주식회사 엘지화학 전극 조립체
KR102170490B1 (ko) 2014-06-10 2020-10-28 에스케이이노베이션 주식회사 리튬 이차 전지
JP2017069486A (ja) * 2015-10-01 2017-04-06 太陽誘電株式会社 蓄電モジュール及び蓄電ユニット
DE102015122977A1 (de) * 2015-12-30 2017-07-06 Epcos Ag Kondensator-Bauteil
JP6401197B2 (ja) * 2016-02-15 2018-10-03 太陽誘電株式会社 電気化学デバイス及び電気化学デバイスの製造方法
EP3267514B1 (en) * 2016-07-06 2021-01-27 LiCAP Technologies, Inc. Lithium attached electrodes and method of making same
KR102254353B1 (ko) * 2017-03-10 2021-05-21 주식회사 엘지화학 이차전지의 충전방법
JP6866202B2 (ja) * 2017-03-28 2021-04-28 太陽誘電株式会社 電気化学デバイス
JP6829130B2 (ja) * 2017-03-28 2021-02-10 太陽誘電株式会社 電気化学デバイス
WO2019021941A1 (ja) * 2017-07-25 2019-01-31 株式会社村田製作所 リチウムイオン二次電池
CN110959222A (zh) * 2017-12-26 2020-04-03 Tdk株式会社 非水电解液二次电池
EP3905388A1 (de) 2020-04-29 2021-11-03 VARTA Microbattery GmbH Sekundäre elektrochemische lithium-ionen-zelle
CN115719813A (zh) * 2021-08-26 2023-02-28 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324024A (ja) 1989-06-07 1991-02-01 Atochem North America Inc 1,1―ジクロロ―1―フルオロエタンからの不飽和炭素化合物の除去
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
JP3485935B2 (ja) 1997-01-27 2004-01-13 カネボウ株式会社 有機電解質電池
JP2006286919A (ja) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007067105A (ja) 2005-08-30 2007-03-15 Fuji Heavy Ind Ltd 捲回型リチウムイオンキャパシタ
WO2007072713A1 (ja) * 2005-12-22 2007-06-28 Fuji Jukogyo Kabushiki Kaisha 電池又はキャパシタ用金属リチウム箔
JP2008060130A (ja) * 2006-08-29 2008-03-13 Fdk Corp 蓄電素子およびその製造方法
JP2008305928A (ja) * 2007-06-06 2008-12-18 Fdk Corp 非水系蓄電デバイス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990467B1 (ko) 2005-08-30 2010-10-29 후지 주코교 카부시키카이샤 리튬 이온 커패시터

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324024A (ja) 1989-06-07 1991-02-01 Atochem North America Inc 1,1―ジクロロ―1―フルオロエタンからの不飽和炭素化合物の除去
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
JP3485935B2 (ja) 1997-01-27 2004-01-13 カネボウ株式会社 有機電解質電池
JP2006286919A (ja) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007067105A (ja) 2005-08-30 2007-03-15 Fuji Heavy Ind Ltd 捲回型リチウムイオンキャパシタ
WO2007072713A1 (ja) * 2005-12-22 2007-06-28 Fuji Jukogyo Kabushiki Kaisha 電池又はキャパシタ用金属リチウム箔
JP2008060130A (ja) * 2006-08-29 2008-03-13 Fdk Corp 蓄電素子およびその製造方法
JP2008305928A (ja) * 2007-06-06 2008-12-18 Fdk Corp 非水系蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2372732A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631924A4 (en) * 2010-10-19 2018-03-14 JM Energy Corporation Lithium ion capacitor
WO2014091957A1 (ja) 2012-12-13 2014-06-19 Jmエナジー株式会社 蓄電デバイスの製造方法および蓄電デバイス

Also Published As

Publication number Publication date
EP2372732A4 (en) 2014-04-23
US9496584B2 (en) 2016-11-15
KR20110124748A (ko) 2011-11-17
EP2372732B1 (en) 2017-04-26
US20110256438A1 (en) 2011-10-20
CN102301439A (zh) 2011-12-28
KR101573106B1 (ko) 2015-11-30
EP2372732A1 (en) 2011-10-05
CN102301439B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2010073930A1 (ja) 捲回型蓄電源
JP4732072B2 (ja) 捲回型リチウムイオンキャパシタ
JP5236765B2 (ja) 有機電解質キャパシタ
JP4833065B2 (ja) リチウムイオンキャパシタ
JP5317688B2 (ja) 捲回型蓄電源およびその製造方法
JP4833064B2 (ja) リチウムイオンキャパシタ
JP5081214B2 (ja) 有機電解質キャパシタ
US7817403B2 (en) Lithium ion capacitor
JP4705566B2 (ja) 電極材及びその製造方法
JP4842633B2 (ja) 電池又はキャパシタ用リチウム金属箔の製造方法
JP5317687B2 (ja) 捲回型蓄電源
JP4813168B2 (ja) リチウムイオンキャパシタ
JP2006286919A (ja) リチウムイオンキャパシタ
EP1950780A1 (en) Lithium ion capacitor
JP5680868B2 (ja) リチウムイオンキャパシタ
JP5308646B2 (ja) リチウムイオンキャパシタ
JP5576654B2 (ja) 蓄電デバイス
JP2007067097A (ja) 捲回型リチウムイオンキャパシタ
JP2011205016A (ja) リチウムイオンキャパシタ、リチウムイオンキャパシタ用の正極および負極の製造方法、並びに負極に対するリチウムイオンの吸蔵方法
JP5430329B2 (ja) 蓄電源
KR101137714B1 (ko) 탄소가 코팅된 집전체를 이용한 하이브리드 슈퍼커패시터 셀 및 그 제조방법
JP2009076763A (ja) 蓄電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155555.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834733

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009834733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009834733

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13141180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117014964

Country of ref document: KR

Kind code of ref document: A