WO2010073524A1 - 有機el素子、有機el表示装置および有機el素子の製造方法 - Google Patents

有機el素子、有機el表示装置および有機el素子の製造方法 Download PDF

Info

Publication number
WO2010073524A1
WO2010073524A1 PCT/JP2009/006813 JP2009006813W WO2010073524A1 WO 2010073524 A1 WO2010073524 A1 WO 2010073524A1 JP 2009006813 W JP2009006813 W JP 2009006813W WO 2010073524 A1 WO2010073524 A1 WO 2010073524A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photosensitive resin
resin layer
light
organic
Prior art date
Application number
PCT/JP2009/006813
Other languages
English (en)
French (fr)
Inventor
西山誠司
太田高志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010543802A priority Critical patent/JP5468018B2/ja
Priority to CN200980133957.0A priority patent/CN102217421B/zh
Publication of WO2010073524A1 publication Critical patent/WO2010073524A1/ja
Priority to US13/052,540 priority patent/US8390015B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an organic EL (Electro-Luminescence) element, an organic EL display using the same, and a method of manufacturing the organic EL element.
  • organic EL Electro-Luminescence
  • a light emitting device using an organic EL element is a thin and light, light emitting device that can be realized as a light emitting device of a self light emitting type, as a next generation display replacing CRT (Cathode Ray Tube), LCD (Liquid Crystal Display), and PDP (Plasma Display Panel) Application is expected.
  • CTR Cathode Ray Tube
  • LCD Liquid Crystal Display
  • PDP Plasma Display Panel
  • Organic EL elements can be classified into a coating type and a vapor deposition type according to the manufacturing process.
  • an inkjet process is currently mainstream.
  • the light emitting material is applied by this inkjet process, it is necessary to print the light emitting material only at specific portions of the pixels, but it is difficult to apply with the application accuracy required only by the ejection accuracy in the inkjet process. .
  • a bank-like shape called a bank is formed on the pixel electrode, and discharge and application of a light emitting material are performed to a hole existing at the center of the bank (Patent Document 1).
  • a photosensitive resin is used as a bank preparation method. That is, on a substrate coated with a positive photosensitive resin or a negative photosensitive resin, a predetermined pattern is drawn with light from a light source including i ray, g ray, h ray or all of them.
  • the banks are often produced by exposure through a mask that has been exposed to light and development and other processing.
  • the method of producing a bank using a short wavelength light source is the mainstream.
  • a transparent electrode, a reflective electrode, a hole transport layer (hereinafter referred to as HTL) or the like is already laminated on the substrate
  • HTL hole transport layer
  • a problem that occurs in a so-called top emission type organic electroluminescent device (hereinafter referred to as an organic EL device) in which a metal having a relatively high reflectance is used as a reflective electrode will be described.
  • a molybdenum chromium electrode (hereinafter, MoCr electrode) of 100 nm in thickness is formed as a reflective electrode, and an indium tin oxide electrode (hereinafter, ITO electrode) of 40 nm in thickness is laminated.
  • ITO electrode indium tin oxide electrode
  • the so-called cavity effect of the MoCr electrode, the ITO electrode, and the bank layer causes wavelength dependency of the reflectance.
  • the wavelength dependency of the reflectance is based on the so-called optical resonance effect in which the light of the wavelength is strongly emitted from the MoCr electrode when the optical path length between each layer is equal to an integral multiple of a certain wavelength. is there.
  • the optical path length changes according to the amount of change, so the intensity of the reflected light changes significantly.
  • the reflection intensity of short-wavelength light such as the ultraviolet region used for exposure changes sensitively to changes in thickness.
  • the photosensitive resin used for the bank is affected by the reflected light from the base at the time of exposure.
  • a positive photosensitive resin when the intensity of light reflected from the base changes, the generation of acid upon exposure changes, and the shape of the bank after development changes.
  • a negative photosensitive resin when the intensity of light reflected from the base changes, the degree of polymerization and the degree of crosslinking change, and as a result, the shape of the bank after development changes.
  • the intensity of light reflected from the base becomes uneven in the plane due to the variation in the thickness of the ITO electrode in the plane.
  • the uniformity in the surface of the finished shape (thickness and taper angle) of the bank is lost, and as a result, the uniformity in the surface of the shape of the light emitting material layer to be inkjet-coated is lost.
  • the finished shape of the bank is influenced by the thickness of the ITO electrode, which makes it difficult to produce the organic EL element having the intended bank shape, and it also has a light emitting property in the organic EL display device.
  • Undesirable problems such as in-plane non-uniformity (so-called uneven brightness) occur.
  • the object of the present invention is made in view of such conventional problems, and an organic EL element capable of reducing an error in the finished shape of a bank, and uniformity of light emission characteristics in a plane using such an organic EL element
  • An object of the present invention is to provide an organic EL display device excellent in quality.
  • one mode of the organic EL element concerning the present invention is a light reflection layer laminated on a substrate, a transparent electrode layer, a hole transport layer, an insulating layer, photosensitive resin.
  • Layer, and a light emitting functional layer separated by the photosensitive resin layer, and the incident light to the light reflecting layer having a specific wavelength ⁇ directed to the light reflecting layer from the photosensitive resin layer side is the light reflecting layer
  • the light reflecting layer, the transparent electrode layer, and the holes so that the reflectance, which is the ratio of the reflected light toward the photosensitive resin layer, is reflected at the local minimum value or near the local minimum value.
  • each layer of the optical multilayer film comprising the transport layer, the insulating layer, and the photosensitive resin layer is set, the thickness of the transparent electrode layer is d1, the thickness of the hole transport layer is d2, The thickness of the insulating layer is d3, the thickness of the photosensitive resin layer is d4, and the transparent electrode
  • the film thickness of each layer of the optical multilayer film described above is controlled so that the reflectance of incident light having a specific wavelength ⁇ toward the light reflection layer becomes a minimum value or a value near the minimum value. Control. Even when the film thickness of each layer of the optical multilayer film changes, the change of the reflectance can be suppressed when the reflectance is a minimum value or a value near the minimum value.
  • the total light quantity of the light directly irradiated from the exposure machine to the photosensitive resin layer and the light reflected from the light reflection layer and irradiated to the photosensitive resin layer can be made substantially constant.
  • optical multilayer film itself which constitutes an organic EL element that is used to control the reflectance of incident light to the minimum value or a value close to the minimum value. That is, according to this aspect, in order to control the reflectance of the incident light to the minimum value or the value near the minimum value, members other than the above-described optical multilayer film constituting the organic EL element are not used. Good.
  • the film thickness of each layer of the above-described optical multilayer film constituting the organic EL element is controlled to set the reflectance of the incident light to the minimum value or a value near the minimum value, and thus the organic EL element is a finished product
  • the fluctuation of the reflectance when the thickness of each layer of the optical multilayer film described above is fluctuated based on the optical interference phenomenon is determined by a specific wavelength (g line, h line or Since it suppresses about the light of i line
  • FIG. 1 is a cross-sectional view showing an example of the configuration before forming a bank of the organic EL element according to the embodiment of the present invention.
  • FIGS. 2A and 2B are a cross-sectional view and a top view showing an example of the configuration after bank formation of the organic EL element according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of the configuration after forming the light emitting functional layer of the organic EL element according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing simulation results of light reflectance according to Example 1 of the present invention.
  • FIG. 5 is a diagram showing simulation results of light reflectance according to Example 2 of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of the configuration before forming a bank of the organic EL element according to the embodiment of the present invention.
  • FIGS. 2A and 2B are a cross-sectional view and a top view showing an example of the configuration after bank formation of the organic
  • FIG. 6 is a diagram showing simulation results of light reflectance according to Example 3 of the present invention.
  • FIG. 7 is a diagram showing an example of the completed shape of the bank according to the reflectance of the optical multilayer film.
  • FIGS. 8A and 8B illustrate the influence of the upper structure on the difference in the shape of the bank.
  • FIGS. 9A and 9B are a cross-sectional view and a top view showing another example of the configuration after bank formation of the organic EL element according to the embodiment of the present invention.
  • FIG. 10 is a view showing a simulation result of light reflectance according to the present invention.
  • FIG. 11 is a view showing a simulation result of light reflectance according to the present invention.
  • FIG. 12 is a view showing a simulation result of light reflectance according to the present invention.
  • the organic EL device comprises a light reflection layer laminated on a substrate, a transparent electrode layer, a hole transport layer, an insulating layer, a photosensitive resin layer, and the photosensitive resin layer.
  • a light emitting functional layer isolated from the light emitting functional layer, and a second transparent electrode layer laminated above the light emitting functional layer, the incident light having a specific wavelength ⁇ directed to the light reflecting layer from the photosensitive resin layer side
  • the light reflecting layer such that a reflectance which is a ratio of light reflected by the light reflecting layer toward the photosensitive resin layer is a minimum value or a value near the minimum value;
  • the thickness of each layer of the optical multilayer film comprising the transparent electrode layer, the hole transport layer, the insulating layer, and the photosensitive resin layer is set, and the thickness of the transparent electrode layer is d1, the positive electrode layer
  • the thickness of the hole transport layer is d2, the thickness of the insulating layer is d3, and the thickness of the photosensitive resin layer
  • the film thickness of each layer of the optical multilayer film described above is controlled so that the reflectance of incident light having a specific wavelength ⁇ toward the light reflection layer becomes a minimum value or a value near the minimum value. Control. Even when the film thickness of each layer of the optical multilayer film changes, the change of the reflectance can be suppressed when the reflectance is a minimum value or a value near the minimum value.
  • the total light quantity of the light directly irradiated from the exposure machine to the photosensitive resin layer and the light reflected from the light reflection layer and irradiated to the photosensitive resin layer can be made substantially constant.
  • optical multilayer film itself which constitutes an organic EL element that is used to control the reflectance of incident light to the minimum value or a value close to the minimum value. That is, according to this aspect, in order to control the reflectance of the incident light to the minimum value or the value near the minimum value, members other than the above-described optical multilayer film constituting the organic EL element are not used. Good.
  • the film thickness of each layer of the above-described optical multilayer film constituting the organic EL element is controlled to set the reflectance of the incident light to the minimum value or a value near the minimum value, and thus the organic EL element is a finished product
  • the specific wavelength ⁇ is a wavelength within ⁇ 5% of the wavelength of g-line, a wavelength within ⁇ 5% of the wavelength of h-line, a wavelength within ⁇ 5% of the wavelength of i-line It may be any of the wavelengths.
  • the specific wavelength ⁇ is a wavelength within ⁇ 5% of the wavelength of g-line, a wavelength within ⁇ 5% of the wavelength of h-line, ⁇ 5% of the wavelength of i-line
  • is a wavelength within ⁇ 5% of the wavelength of g-line, a wavelength within ⁇ 5% of the wavelength of h-line, ⁇ 5% of the wavelength of i-line
  • the reflectance which is the ratio of reflected light toward the transparent resin layer, can be set to a value close to the minimum value. In the vicinity of the minimum value, the change in the intensity of the reflected light can be reduced, and as a result, the variation in the intensity of light reflected by the light reflection layer toward the photosensitive resin layer can be extremely reduced. it can.
  • the incident light having the specific wavelength ⁇ may be used to expose the photosensitive resin layer in the process of forming a bank that separates the light emitting functional layer from the photosensitive resin layer.
  • the incident light having the specific wavelength ⁇ is used for exposing the photosensitive resin layer in the process of forming a bank that separates the light emitting functional layer from the photosensitive resin layer.
  • the photosensitive resin layer may be exposed to the photosensitive resin layer using incident light having the specific wavelength ⁇ to form a bank for separating the light emitting functional layer. It may be a material that absorbs.
  • the photosensitive resin layer absorbs and cures the incident light of the specific wavelength ⁇ , or absorbs the incident light of the specific wavelength ⁇ and becomes soluble in a predetermined solvent. May be
  • the photosensitive resin layer is made of a material that absorbs the specific wavelength ⁇ at least in the process of forming the bank.
  • the photosensitive resin layer efficiently absorbs light used for exposure, which facilitates formation of the bank from the photosensitive resin, which is preferable.
  • One aspect of the organic EL display device according to the present invention is formed by arranging a plurality of the organic EL elements described above.
  • the shape of the bank is uniform, and the organic EL elements are arranged. For this reason, even if a plurality of organic EL light emitting elements are arranged to constitute an organic EL display device, the film thickness of the light emitting functional layer can be made constant. Accordingly, it is possible to provide an organic EL display device having uniform emission characteristics in the plane of the display device. This is particularly suitable for realizing a large-screen organic EL display device.
  • One aspect of the organic EL device according to the present invention is that it is isolated by a light reflection layer laminated on a substrate, a transparent electrode layer, a hole transport layer, a photosensitive resin layer, and the photosensitive resin layer.
  • a light emitting functional layer; and a second transparent electrode layer stacked above the light emitting functional layer, the incident light having a specific wavelength ⁇ directed to the light reflecting layer from the photosensitive resin layer side The light reflecting layer, the transparent electrode, and the transparent electrode so that the reflectance, which is the ratio of reflected light that is reflected by the light reflecting layer toward the photosensitive resin layer, becomes a minimum value or a value near the minimum value.
  • each layer of the optical multilayer film comprising the layer, the hole transport layer, and the photosensitive resin layer is set, the thickness of the transparent electrode layer is d1, and the thickness of the hole transport layer is d2
  • the insulating layer is omitted to provide a simple organic EL element. Therefore, this embodiment is a simple organic EL element, and the same effect as that of the above-described embodiment 1 can be obtained.
  • the specific wavelength ⁇ is a wavelength within ⁇ 5% of the wavelength of g-line, a wavelength within ⁇ 5% of the wavelength of h-line, a wavelength within ⁇ 5% of the wavelength of i-line It may be any of the wavelengths.
  • the specific wavelength ⁇ is a wavelength within the range of the wavelength ⁇ 5% of g-line, a wavelength within the range of the wavelength ⁇ 5% of h-line, and a wavelength within the range of the wavelength ⁇ 5% of i-line It will be one of them.
  • the reflectance which is the ratio of reflected light toward the transparent resin layer, can be set to a value close to the minimum value. In the vicinity of the minimum value, the change in the intensity of the reflected light can be reduced, and as a result, the variation in the intensity of light reflected by the light reflection layer toward the photosensitive resin layer can be extremely reduced. it can.
  • the incident light having the specific wavelength ⁇ may be used to expose the photosensitive resin layer in the process of forming a bank that separates the light emitting functional layer from the photosensitive resin layer.
  • the incident light having the specific wavelength ⁇ is used for exposing the photosensitive resin layer in the process of forming a bank that separates the light emitting functional layer from the photosensitive resin layer.
  • the photosensitive resin layer may be exposed to the photosensitive resin layer using incident light having the specific wavelength ⁇ to form a bank for separating the light emitting functional layer. It may be a material that absorbs.
  • the photosensitive resin layer absorbs and cures the incident light of the specific wavelength ⁇ , or absorbs the incident light of the specific wavelength ⁇ and becomes soluble in a predetermined solvent. May be
  • the photosensitive resin layer is made of a material that absorbs the specific wavelength ⁇ at least in the process of forming the bank.
  • the photosensitive resin layer efficiently absorbs light used for exposure, which facilitates formation of the bank from the photosensitive resin, which is preferable.
  • One aspect of the organic EL display device according to the present invention is formed by arranging a plurality of the organic EL elements described above.
  • the shape of the bank is uniform, and the organic EL elements are arranged. For this reason, even if a plurality of organic EL light emitting elements are arranged to constitute an organic EL display device, the film thickness of the light emitting functional layer can be made constant. Accordingly, it is possible to provide an organic EL display device having uniform emission characteristics in the plane of the display device. This is particularly suitable for realizing a large-screen organic EL display device.
  • the method of manufacturing an organic EL device comprises the steps of: laminating a light reflection layer, a transparent electrode layer, a hole transport layer, an insulating layer, and a photosensitive resin layer on a substrate; A step of removing a part of the photosensitive resin layer by irradiating the resin layer with light of wavelength ⁇ , a step of forming a light emitting functional layer in a recess formed by removing the photosensitive resin layer, and the light emission And laminating the second transparent electrode layer above the functional layer, and the incident light to the incident light having a specific wavelength ⁇ directed to the light reflection layer from the photosensitive resin layer side is the light reflection layer
  • the light reflecting layer, the transparent electrode layer, and the holes so that the reflectance, which is the ratio of the reflected light toward the photosensitive resin layer by being Optical multilayer film comprising a transport layer, the insulating layer, and the photosensitive resin layer
  • the thickness of the transparent electrode layer is d1
  • the thickness of the hole transport layer is d2
  • the film thickness of each layer of the optical multilayer film described above is controlled so that the reflectance of incident light having a specific wavelength ⁇ toward the light reflection layer becomes a minimum value or a value near the minimum value. , And organic EL elements. For this reason, even if the film thickness of each layer of the optical multilayer film fluctuates in the manufacturing process, the fluctuation of the reflectance can be suppressed.
  • optical multilayer film itself which constitutes an organic EL element that is used to control the reflectance of incident light to the minimum value or a value close to the minimum value. That is, according to this aspect, in order to control the reflectance of the incident light to the minimum value or the value near the minimum value, members other than the above-described optical multilayer film constituting the organic EL element are not used. Good.
  • the film thickness of each layer of the above-described optical multilayer film constituting the organic EL element is controlled to set the reflectance of the incident light to the minimum value or a value near the minimum value, so an additional process is required. It is possible to reduce the error in the finished shape of the photosensitive resin layer of the organic EL element without performing the process. That is, it is possible to provide an organic EL display device excellent in uniformity in the light emission characteristics with a simple configuration and manufacturing method.
  • the method of manufacturing an organic EL device comprises the steps of: laminating a light reflection layer, a transparent electrode layer, a hole transport layer, and a photosensitive resin layer on a substrate; A step of removing a part of the photosensitive resin layer by irradiating light of ⁇ , a step of forming a light emitting functional layer in a recess formed by removing the photosensitive resin layer, and the upper side of the light emitting functional layer And a step of laminating a second transparent electrode layer, and the incident light is reflected at the light reflecting layer with respect to incident light having a specific wavelength .lambda. Directed from the photosensitive resin layer side toward the light reflecting layer.
  • the thickness of the transparent electrode layer is d1
  • the thickness of the hole transport layer is d2
  • the thickness of the photosensitive resin layer is d4
  • the refractive index of the transparent electrode layer is n1
  • the refractive index of the hole transport layer is n2
  • This aspect is a method of manufacturing a simple organic EL element in which the insulating layer is omitted. Therefore, this embodiment can simplify the manufacturing method and obtain the same effect as the above-described embodiment.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the organic EL element 10 according to the embodiment of the present invention before forming a bank.
  • the organic EL element 10 before the formation of the bank is a transparent substrate 11, a light reflection layer 12 formed on the top of the substrate 11, and a transparent electrode formed on the top surface of the light reflection layer 12.
  • Layer 13 the insulating layer 14 formed on the upper surface of the transparent electrode layer 13, the hole transport layer 15 formed on the upper surface of the insulating layer 14, and the photosensitive resin layer formed on the upper surface of the hole transport layer 15 16 is provided.
  • the light reflecting layer 12 is formed separately for each organic EL element 10. Further, on the substrate 11, a drive circuit including a thin film transistor for supplying a light emission drive current to the organic EL element 10 via the light reflection layer 12 as a pixel electrode may be formed.
  • the photosensitive resin layer 16 is partially removed, and a hole for installing the light emitting functional layer is formed for each organic EL element 10.
  • the photosensitive resin layer 16 left without being removed becomes a bank.
  • a light source (not shown) irradiates the photosensitive resin layer 16 with light 17 for exposure to form a bank.
  • the exposure light 17 emitted to the photosensitive resin layer 16 passes through the hole transport layer 15, the insulating layer 14, and the transparent electrode layer 13 and is emitted toward the light reflection layer 12.
  • the light irradiated toward the light reflecting layer 12 is totally reflected toward the photosensitive resin layer 16 by the light reflecting layer 12 made of a total reflection metal film.
  • a part of the reflected light of the light 17 returned to the photosensitive resin layer 16 is transmitted through the photosensitive resin layer 16 and emitted to the outside, and a part is reflected again toward the light reflecting layer 12.
  • the optical multilayer film 18 having a four-layer structure including the light reflection layer 12, the transparent electrode layer 13, the insulating layer 14, the hole transport layer 15, and the photosensitive resin layer 16.
  • the optical multilayer film 18 having a four-layer structure including the light reflection layer 12, the transparent electrode layer 13, the insulating layer 14, the hole transport layer 15, and the photosensitive resin layer 16.
  • each layer between the light reflection layer 12 and the photosensitive resin layer 16 By adjusting the thickness of each layer between the light reflection layer 12 and the photosensitive resin layer 16 to an optically optimum distance according to the wavelength of the light 17 based on such an interference phenomenon, It is considered that the reflectance of the optical multilayer film 18 can be minimized with respect to light of a specific wavelength for exposing the transparent resin layer 16.
  • each layer of the optical multilayer film 18 is set to a thickness at which the reflectance exhibits a local minimum value for a specific wavelength ⁇ falling within ⁇ 5% of the wavelength of the light 17, and the light 17 is used for photosensitivity.
  • the uniformity in the plane of the light emission characteristic is improved, and the reduction of the luminance unevenness is expected.
  • the inventors searched for the thickness of each layer of the optical multilayer film 18 which can obtain such an effect by simulation.
  • the condition of the simulation is the optical distance of each layer between the light reflecting layer 12 and the photosensitive resin layer 16.
  • the geometric thickness of the transparent electrode layer 13 is d1
  • the geometric thickness of the hole transport layer 15 is d2
  • the geometric thickness of the insulating layer 14 is d3, and the geometry of the photosensitive resin layer 16
  • the dielectric thickness of the transparent electrode layer 13 is n1
  • the refractive index of the hole transport layer 15 is n2
  • the refractive index of the insulating layer 14 is n3
  • the refractive index of the photosensitive resin layer 16 is n4.
  • the first condition is set.
  • the refractive indices n1 to n4 values generally known for materials used for each layer were used.
  • the refractive index is a function of the wavelength ⁇
  • one wavelength used for the exposure of the photosensitive resin layer 16 was determined, and the refractive index corresponding to the wavelength was used. Specific values of the refractive index of each layer will be described in detail later.
  • the reflection of the optical multilayer film 18 is a combination of all the values when each of the coefficients c1 to c4 is changed from 1.0 to 8.0 in 0.2 steps.
  • the characteristics of the ratio with respect to the wavelength ⁇ were determined.
  • the range of the constant a was searched under the second condition, it was found that the desired minimum value appears in the reflectance when the constant a is one of 1, 2 and 3. Specific values of the thickness of each layer will be described in detail later.
  • the organic EL element 10 shown in FIG. 1 has a geometry which satisfies the above-mentioned second condition on the substrate 11 with the light reflection layer 12, the transparent electrode layer 13, the insulating layer 14 and the hole transport layer 15. It is formed by laminating the chemical thickness as the design value. Each of these layers is formed by a known process.
  • the insulating layer 14 is patterned to form an opening.
  • a commonly used method for patterning for example, dry etching, is used.
  • the hole transport layer 15 and the photosensitive resin layer 16 are formed on the entire surface of the patterned insulating layer 14.
  • a portion of the photosensitive resin layer 16 is removed by exposing the photosensitive resin layer 16 to light of a wavelength ⁇ (for example, g-line, h-line, i-line) that satisfies the second condition described above.
  • a wavelength ⁇ for example, g-line, h-line, i-line
  • FIG. 2A and FIG. 2B are a cross-sectional view and a top view showing an example of the configuration after bank formation of the organic EL display device 1 in which a plurality of organic EL elements 10 are arranged.
  • the cross-sectional view of FIG. 2 (A) corresponds to the A-A ′ cross section of FIG. 2 (B).
  • the top view of FIG. 2 (B) shows the planar arrangement of the main components.
  • the bank 16 and the photosensitive resin layer 16 are referred to by the same reference numerals.
  • the banks 16 in the organic EL display device 1 are formed in a line along the boundary of the organic EL element 10 in the longitudinal direction of the drawing.
  • the insulating layer 14 is provided in the gap between the light reflection layers 12 of the adjacent organic EL elements 10 and in the area covering the contact holes 22 and regulates the light emission of the organic EL elements 10 in the area where the light emission tends to be unstable.
  • the photosensitive resin layer 16 left without being removed is the bank 16. Exposure and removal of the photosensitive resin layer 16 are performed by a known process.
  • the transparent electrode layer 13, the insulating layer 14, the hole transport layer 15, and the photosensitive resin layer 16 are laminated with a thickness satisfying the above-described second condition, the optical multilayer film is obtained.
  • the reflectance of 18 is minimized with respect to the wavelength of light for exposure.
  • the variation of the intensity of the reflected light due to the variation of the thickness of each layer of the optical multilayer film 18 is suppressed, the error of the finished shape of the bank 16 is reduced, and the bank 16 having high uniformity of shape and reproducibility is produced.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of the organic EL display device 1 after the formation of the light emitting functional layer, and the light emitting functional layer 19 is formed in the recess formed by removing the photosensitive resin layer 16.
  • stacked on the light emission functional layer 19 is shown.
  • Each of these layers is formed by a known process.
  • installation of the electron carrying layer 20 is arbitrary.
  • the light emission function layer 19 emits light, and to the transparent electrode layer 21 side. Light is emitted.
  • the organic EL device 10 of the present invention is characterized by the thicknesses of the transparent electrode layer 13, the insulating layer 14, the hole transport layer 15, and the photosensitive resin layer 16, and the materials constituting the organic EL device 10 are limited. Although it is not, by way of example, the following materials can be used.
  • the substrate 11 is a glass plate of soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin, etc. Plastic plates and films, metal plates such as alumina, metal foils, etc. are used.
  • the light reflecting layer 12 is made of a metal such as silver (Ag) or aluminum (Al), and serves to totally reflect light of a specific wavelength.
  • alloys such as ACA (Ag-Copper-Au) or APC (Ag-Paradium-Copper) may be used.
  • the transparent electrode layer 13 and the transparent electrode layer 21 are made of a conductive material having sufficient transparency.
  • a material which comprises the transparent electrode layer 13 and the transparent electrode layer 21 indium tin oxide (Indium Tin Oxide: ITO), an indium zinc oxide (Indium Zinc Oxide: IZO), etc. are preferable. This is because good conductivity can be obtained even when film formation is performed at room temperature.
  • the hole transport layer 15 may be made of, for example, an inorganic material such as WO 3 or may be made of an organic material.
  • an organic material for example, a polyphilin compound, an aromatic tertiary amine compound and a styrylamine compound described in JP-A-5-163488 (Patent Document 2) can be used.
  • the hole injection layer described in JP-A-5-163488 (Patent Document 2) corresponds to the hole transport layer of the present invention.
  • the insulating layer 14 is made of, for example, SiO 2 , SiN x or the like.
  • the light emitting functional layer 19 is made of, for example, various organic compounds including an oxinoid compound described in JP-A-5-163488 (Patent Document 2).
  • the light emitting functional layer 19 can be formed by a vapor deposition method, a spin coating method, a casting method or the like.
  • the electron transport layer 20 is made of, for example, various organic compounds including a nitro-substituted fluorenone derivative described in JP-A-5-163488 (Patent Document 2).
  • Each layer of the organic EL element 10 may be formed using a material whose suitability is known in addition to these materials.
  • Example 2 Next, the thickness of each layer is obtained by simulation, and the obtained thickness of each layer is used as a design value to actually manufacture an optical multilayer film 18 having a four-layer structure shown in FIG. An embodiment in which the bank 16 shown in FIGS. 2A and 2B is produced will be described. The banks 16 were made in different embodiments corresponding to the light 17 of each of the g-line, h-line and i-line.
  • Example 1 it was assumed that the photosensitive resin layer 16 was exposed using h-rays having a wavelength of 405 nm.
  • the film thickness of APC as the light reflection layer 12 is 200 nm
  • the film thickness of ITO as the transparent electrode layer 13 is 199.5 nm by performing the above-mentioned simulation using the refractive index of each layer corresponding to the h line of wavelength 405 nm.
  • the refractive index is 2.03, the film thickness of WO 3 as hole transport layer 15 is 43.8 nm, the refractive index is 2.31, the film thickness of SiO 2 as insulating layer 14 is 475.7 nm, and the refractive index is 1.
  • the suitable value which makes the film thickness of 49 and the photosensitive resin layer 16 316.4 nm, and makes a refractive index 1.60 was found.
  • an optical multilayer film 18 is produced using ZPN 1168 which is a negative photosensitive material manufactured by Nippon Zeon as the photosensitive resin layer 16, and a bank 16 is produced from the optical multilayer film 18 did.
  • the size of one organic EL element 10 is designed to be 300 ⁇ m in the long side direction and 100 ⁇ m in the short side direction.
  • the illuminance in i-line conversion at the time of exposure at all wavelengths was 8.6 mW / cm 2 .
  • Exposure was performed centered on the h-line using a cut filter with an average transmittance of 90% at 400 nm to 425 nm.
  • the exposure dose at this time is equal to 25.8 mJ / cm 2 for 3 seconds irradiation without using a cut filter, that is, the exposure dose in i-line conversion at full wavelength exposure.
  • Example 2 it was assumed that the photosensitive resin layer 16 was exposed to light using a g-line having a wavelength of 436 nm.
  • the film thickness of APC as the light reflection layer 12 is 200 nm
  • the film thickness of ITO as the transparent electrode layer 13 is 227.1 nm by performing the above-mentioned simulation using the refractive index of each layer corresponding to the g-line of wavelength 436 nm.
  • the refractive index is 1.92
  • the film thickness of WO 3 as hole transport layer 15 is 50.2 nm
  • the refractive index is 2.17
  • the film thickness of SiO 2 as insulating layer 14 is 522.6 nm
  • the refractive index is 1. 46, the suitable value which makes the film thickness of the photosensitive resin layer 340.6 nm, and makes a refractive index 1.60 was found.
  • an optical multilayer film 18 is produced using ZPN 1168 which is a negative photosensitive material manufactured by Nippon Zeon as the photosensitive resin layer 16, and a bank 16 is produced from the optical multilayer film 18 did.
  • the size of one organic EL element 10 is designed to be 300 ⁇ m in the long side direction and 100 ⁇ m in the short side direction.
  • the illuminance in i-line conversion at the time of exposure at all wavelengths was 8.6 mW / cm 2 .
  • Exposure was performed centered on the g-line using a cut filter with an average transmittance of 90% at 430 nm or later.
  • the exposure dose at this time is equal to 51.6 mJ / cm 2 for 6 seconds irradiation without using a cut filter, that is, at i-line conversion at full wavelength exposure.
  • Example 3 it was assumed that the photosensitive resin layer 16 was exposed using i-line having a wavelength of 365 nm.
  • the film thickness of APC as the light reflection layer 12 is 200 nm
  • the film thickness of ITO as the transparent electrode layer 13 is 178.9 nm by performing the above-mentioned simulation using the refractive index of each layer corresponding to the i-line of wavelength 365 nm.
  • the refractive index is 2.04, the film thickness of WO 3 as hole transport layer 15 is 38.7 nm, the refractive index is 2.36, the film thickness of SiO 2 as insulating layer 14 is 434.5 nm, and the refractive index is 1.
  • the suitable value which makes the film thickness of 47 and the photosensitive resin layer 228.1 nm and makes a refractive index 1.60 was found.
  • the size of one organic EL element 10 is designed to be 300 ⁇ m in the long side direction and 100 ⁇ m in the short side direction.
  • the illuminance in i-line conversion at the time of exposure at all wavelengths was 8.6 mW / cm 2 .
  • Exposure was performed centered on the i-line, using a cut filter with an average transmittance of 90% at 360 nm or later.
  • the exposure dose at this time is equal to 8.6 mJ / cm 2 in one-second irradiation when the cut filter is not used, that is, the i-line equivalent exposure at the full wavelength exposure.
  • the photosensitive polyimide of Nippon Zeon was used in each above-mentioned Example, it can implement similarly by satisfy
  • FIG. 7 is a view showing an example of the finished shape of the bank 16 according to the reflectance of the optical multilayer film 18.
  • the graph shown in the upper part of FIG. 7 shows the reflectance of the optical multilayer film 18 with respect to the film thickness of each of the transparent electrode layer 13, the insulating layer 14, the hole transport layer 15, and the photosensitive resin layer 16.
  • the film thickness of each of the transparent electrode layer 13, the insulating layer 14, the hole transport layer 15, and the photosensitive resin layer 16 is optimized to minimize the reflectance of the optical multilayer film 18, the transparent electrode layer 13, Even if the film thickness of any of the insulating layer 14, the hole transport layer 15, and the photosensitive resin layer 16 deviates from the optimum film thickness, a desirable interference state for reducing the reflectance of the optical multilayer film 18 can not be obtained. Therefore, the reflectance of the optical multilayer film 18 is increased, and the intensity of the reflected light received by the photosensitive resin layer 16 is increased.
  • FIGS. 8A and 8B illustrate the influence of the upper structure on the finished shape of the bank 16.
  • the second transparent electrode layer 21 and the hole transport layer 15 are provided above and below the overhang, and the light emitting function is provided at a position narrowed by the overhang.
  • the layer 19 it is possible to configure an organic EL element having a preferable structure in which the second transparent electrode layer 21 and the hole transport layer 15 do not easily short circuit.
  • the light emitting functional layer 19 may become very thin in a portion (indicated by X) on the hole transport layer 15, The second transparent electrode layer 21 and the hole transport layer 15 easily become short circuited.
  • the desired shape shown in FIG. 8A is merely an example for the purpose of explanation.
  • the desired shape may not only improve the characteristics of the upper structure, but may be a shape determined from various requirements, or may be a shape suitable when using a positive photosensitive material.
  • the optimum film thickness of each layer of the optical multilayer film 18 is designed by designing the finished shape of the bank 16 in the optimum film thickness (that is, the minimum point of reflectance) of each layer of the optical multilayer film 18 as a desired shape. Since the change of the reflectance with respect to the film thickness is small in the vicinity of the point, it is possible to suppress the error from the desired shape of the finished shape of the bank 16 to a small value.
  • FIG. 9A and FIG. 9B are a cross-sectional view and a top view showing an example of the configuration after bank formation of the organic EL display device 2 in which a plurality of organic EL elements 23 are arranged.
  • the insulating layer 14 is omitted, and the region in which the bank 16 is disposed is different.
  • the cross-sectional view of FIG. 9A corresponds to the B-B ′ cross section of FIG. 9B.
  • the top view of FIG. 9 (B) shows the planar arrangement of the main components.
  • symbol is attached
  • the bank 16 in the organic EL display device 2 is provided in the area covering the gap between the light reflection layer 12 of the adjacent organic EL element 23 and the contact hole 22 and emits light from the organic EL element 23 in the area where light emission tends to be unstable. Regulate.
  • the bank 16 in the organic EL display device 2 is formed by patterning the photosensitive resin layer 16 in the optical multilayer film of the three-layer structure consisting of the transparent electrode layer 13, the hole transport layer 15 and the photosensitive resin layer 16. Be done.
  • the photosensitive resin layer 16 left without being removed is the bank 16. Exposure and removal of the photosensitive resin layer 16 are performed by a known process.
  • the inventors confirmed by simulation that the reflectance of the photosensitive resin layer 16 can be minimized with respect to the wavelength ⁇ of the light to be exposed also in such an optical multilayer film having a three-layer structure.
  • the geometrical thickness of the transparent electrode layer 13 is d1
  • the geometrical thickness of the hole transport layer 15 is d2
  • the geometrical thickness of the photosensitive resin layer 16 is d4.
  • the refractive index of the transparent electrode layer 13 is n1
  • the refractive index of the hole transport layer 15 is n2
  • the refractive index of the photosensitive resin layer 16 is n4
  • the coefficients are c1, c2 and c4
  • Third condition is set.
  • refractive indices n1, n2 and n4 values generally known for materials used for each layer were used.
  • the refractive index is a function of the wavelength ⁇
  • one wavelength used for the exposure of the photosensitive resin layer 16 was determined, and the refractive index corresponding to the wavelength was used. Specific values of the refractive index of each layer will be described in detail later.
  • the film of APC as the light reflection layer 12 is performed by performing the above-mentioned simulation using the refractive index of each layer corresponding to the i-line. 200 nm thickness, 80.5 nm ITO thickness as transparent electrode layer 13, 2.04 refractive index, 35.8 nm WO 3 thickness as hole transport layer 15, refractive index 2.36, photosensitivity The suitable value which makes the film thickness of a resin layer 11.4 nm and makes a refractive index 1.60 was found.
  • the light reflection layer 12 is obtained by performing the above-described simulation using the refractive index of each layer corresponding to the h-line.
  • the film thickness of APC is 200 nm
  • the film thickness of ITO as transparent electrode layer 13 is 89.8 nm
  • the refractive index is 2.03
  • the film thickness of WO 3 as hole transport layer 15 is 35.1 nm
  • the refractive index is 2.31
  • the suitable value which makes the film thickness of the photosensitive resin layer 16 12.7 nm, and makes a refractive index 1.60 was found.
  • the above-described simulation is performed using the refractive index of each layer corresponding to the g-line to obtain APC as the light reflecting layer 12 Film thickness of 200 nm, ITO film thickness as transparent electrode layer 13 100 nm, refractive index 1.92 and hole transport layer 15 film thickness of WO 3 40.2 nm, refractive index 2.17, photosensitivity
  • APC the refractive index of each layer corresponding to the g-line
  • the organic EL display device takes such a suitable value as a design value. By producing 2, it is possible to obtain the same effect as described above.
  • organic EL element is described in the present embodiment, even an organic EL display in which these organic EL elements are integrated as a pixel on a substrate can be implemented by appropriately setting the film thickness of each layer.
  • the present invention is applicable to organic EL displays used for flat light sources and flat displays.

Abstract

 有機EL素子(10)は、基板(11)上に積層された光反射層(12)と、透明電極層(13)と、絶縁層(14)と、感光性樹脂層(16)と、感光性樹脂層(16)によって隔離された発光機能層(19)とを備え、透明電極層(13)の厚さがd1、正孔輸送層(15)の厚さがd2、絶縁層(14)の厚さがd3、感光性樹脂層(16)の厚さがd4であり、透明電極層(13)の屈折率がn1、正孔輸送層(15)の屈折率がn2、絶縁層(14)の屈折率がn3、感光性樹脂層(16)の屈折率がn4であり、所定の定数をaとするとき、特定の波長λについて d1=1/n1×4.0a×λ/4 d2=1/n2×1.0a×λ/4 d3=1/n3×7.0a×λ/4 d4=1/n4×5.0a×λ/4 を満たす。

Description

有機EL素子、有機EL表示装置および有機EL素子の製造方法
 本発明は、有機EL(Electro-Luminescence)素子、それを用いた、有機EL表示装置および有機EL素子の製造方法に関するものである。
 有機EL素子を用いた発光デバイスは、薄型軽量で実現できる自発光型の発光デバイスとして、CRT(Cathode Ray Tube)、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)に代わる次世代ディスプレイとしての応用が期待されている。
 有機EL素子は、その製造プロセスにより、塗布型と蒸着型に分類できる。塗布型の有機EL素子を作製する際には、インクジェットプロセスが現在主流となっている。このインクジェットプロセスにより発光材料を塗布する際には、発光材料を画素の特定部位のみ印刷する必要があるが、インクジェットプロセスでの吐出精度のみでは必要とされる塗り分け精度での塗布は困難である。
 このため、現状ではバンクと呼ばれる土手状の形状を画素電極上に形成し、このバンクの中央に存在する穴部に発光材料の吐出及び塗布を行っている(特許文献1)。
 バンクの作製方法としては、感光性樹脂を用いる場合がほとんどである。すなわち、ポジ型の感光性樹脂かもしくはネガ型の感光性樹脂が塗布された基板上に、i線もしくはg線もしくは、h線もしくはこれら全てを含む光源からの光を所定のパターンが描画されているマスクを介して露光し、現像その他の処理を経ることにより、バンクは作製されることが多い。このように短波長の光源を使用してバンクを作製する方法が主流である。
特開2004-127551号公報
 バンクとなる感光性樹脂を実基板に成膜する際には、基板上に既に透明電極や反射電極もしくは正孔輸送層(Hole Transport Layer、以下HTL)などが積層された構造となっている場合が多い。ここでは比較的反射率の高い金属を反射電極に用いた所謂トップエミッション型の有機エレクトロルミンネセンス素子(以下有機EL素子)に生じる課題について述べる。
 トップエミッション型有機EL素子では、例えば、反射電極として厚さ100nmのモリブデンクロム電極(以下、MoCr電極)を形成し、さらに厚さ40nmのインジウム錫酸化物電極(以下、ITO電極)を積層させた基板上にバンクを形成する場合がある。
 この場合、MoCr電極とITO電極及びバンク層でのいわゆるキャビティ効果により、反射率の波長依存性が生じる。反射率の波長依存性は、各々の層間での光路長とある波長の整数倍とが等しい場合、その波長の光のMoCr電極での反射光が強く出射されるいわゆる光学共振効果に基づくものである。
 例えばITO電極の厚さが変化すると、その変化量に応じて光路長が変化するので反射光の強度が大きく変化する。とりわけ、露光に用いられる紫外線領域などの波長の短い光の反射強度は、厚さの変化に対して敏感に変化する。
 バンクに用いられる感光性樹脂は露光時に下地からの反射光の影響を受ける。例えば、ポジ型の感光性樹脂では、下地からの反射光の強度が変化すると、露光による酸の発生状況が変化し、現像後のバンクの形状が変化する。また、ネガ型の感光性樹脂でも、下地からの反射光の強度が変化すると、重合度や架橋度が変化し、その結果、現像後のバンクの形状が変化する。
 特に、複数の有機EL素子を面内に配置してなる有機EL表示装置では、ITO電極の厚さの面内でのばらつきによって、下地からの反射光強度が面内で不同となる。これにより、バンクの出来上がり形状(厚さやテーパー角)の面内での均一性が損なわれ、その結果、インクジェット塗布される発光材料層の形状の面内での均一性が損なわれる。
 このように、バンクの出来上がり形状がITO電極の厚さに影響されることにより、狙い通りのバンク形状を持った有機EL素子の作製が困難になるのみならず、有機EL表示装置において発光特性の面内での不均一(所謂輝度むら)といった好ましくない問題が生じる。
 本発明の目的は、かかる従来の問題点に鑑みてなされたもので、バンクの出来上がり形状の誤差を低減できる有機EL素子、およびそのような有機EL素子を用いた面内での発光特性の均一性に優れた有機EL表示装置を提供することを目的とする。
 前記課題を解決するために、本発明にかかる有機EL素子の1つの態様は、基板上に積層された光反射層と、透明電極層と、正孔輸送層と、絶縁層と、感光性樹脂層と、前記感光性樹脂層によって隔離された発光機能層とを備え、前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように、前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記絶縁層と、前記感光性樹脂層とからなる光学多層膜の各層の厚さが設定され、前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記絶縁層の厚さがd3、前記感光性樹脂層の厚さがd4であり、前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記絶縁層の屈折率がn3、前記感光性樹脂層の屈折率がn4であり、所定の定数をaとするとき、前記特定の波長λについて
  d1=1/n1×4.0a×λ/4
  d2=1/n2×1.0a×λ/4
  d3=1/n3×7.0a×λ/4
  d4=1/n4×5.0a×λ/4
を満たすことを特徴とする。
 本態様は、前述した光学多層膜の各層の膜厚を制御して、前記光反射層に向う特定の波長λである入射光の反射率が極小値乃至前記極小値の近傍値になるように制御する。前記反射率が極小値乃至前記極小値の近傍値では前記光学多層膜の各層の膜厚が変動しても、前記反射率の変動を抑制できる。
 このことにより、感光性樹脂層へ露光機から直接照射される光と、光反射層から反射されて感光性樹脂層に照射される光の合計の光量とはほぼ一定とすることができるようになる。
 その結果、感光性樹脂層から形成される有機EL素子のバンクの出来上がり形状の誤差を低減できるため、バンクによって隔離された領域に、インクジェット法などのインク塗布方法で形成された発光機能層の膜厚を一定とすることが可能となる。従って、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 また、入射光の反射率を極小値乃至前記極小値の近傍値に制御するために用いるのは、有機EL素子を構成する前述した光学多層膜そのものである。すなわち、本態様によれば、前記入射光の反射率を極小値乃至前記極小値の近傍値に制御するために、有機EL素子を構成する前述した光学多層膜以外の部材は使用しなくてもよい。
 そのため、有機EL素子を構成する前述した光学多層膜の各層の膜厚を制御して、前記入射光の反射率を極小値乃至前記極小値の近傍値にするので、完成物である有機EL素子にとって不要な部材を付加すること、およびその不要な部材を形成するための付加的なプロセスを必要とすることなく、有機EL素子のバンクの出来上がり形状の誤差を低減できる。すなわち、簡便な構成と製造方法で、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 本発明における有機EL素子によれば、光学的な干渉現象に基づいて、前述した光学多層膜の各層の厚さが変動した場合の反射率の変動を、特定の波長(g線、h線あるいはi線)の光について抑制するので、完成物である有機EL素子にとって不要な部材を付加することも、その不要な部材を形成するための付加的なプロセスを必要とすることもなく、有機EL素子のバンクの出来上がり形状の誤差が低減される結果、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
図1は、本発明の実施の形態に係る有機EL素子のバンク形成前における構成の一例を示す断面図である。 図2(A)、(B)は、本発明の実施の形態に係る有機EL素子のバンク形成後における構成の一例を示す断面図および上面図である。 図3は、本発明の実施の形態に係る有機EL素子の発光機能層形成後における構成の一例を示す断面図である。 図4は、本発明の実施例1に係る光反射率のシミュレーション結果を示す図である。 図5は、本発明の実施例2に係る光反射率のシミュレーション結果を示す図である。 図6は、本発明の実施例3に係る光反射率のシミュレーション結果を示す図である。 図7は、光学多層膜の反射率に応じたバンクの出来上がり形状の一例を示す図である。 図8(A)、(B)は、バンクの形状の違いによって上部構造が受ける影響を説明する図である。 図9(A)、(B)は、本発明の実施の形態に係る有機EL素子のバンク形成後の構成の他の一例を示す断面図および上面図である。 図10は、本発明に係る光反射率のシミュレーション結果を示す図である。 図11は、本発明に係る光反射率のシミュレーション結果を示す図である。 図12は、本発明に係る光反射率のシミュレーション結果を示す図である。
 本発明の1つの態様における有機EL素子は、基板上に積層された光反射層と、透明電極層と、正孔輸送層と、絶縁層と、感光性樹脂層と、前記感光性樹脂層によって隔離された発光機能層と、前記発光機能層の上方に積層された第2の透明電極層とを備え、前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように、前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記絶縁層と、前記感光性樹脂層とからなる光学多層膜の各層の厚さが設定され、前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記絶縁層の厚さがd3、前記感光性樹脂層の厚さがd4であり、前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記絶縁層の屈折率がn3、前記感光性樹脂層の屈折率がn4であり、所定の定数をaとするとき、前記特定の波長λについて
  d1=1/n1×4.0a×λ/4
  d2=1/n2×1.0a×λ/4
  d3=1/n3×7.0a×λ/4
  d4=1/n4×5.0a×λ/4
を満たすことを特徴とする。
 本態様は、前述した光学多層膜の各層の膜厚を制御して、前記光反射層に向う特定の波長λである入射光の反射率が極小値乃至前記極小値の近傍値になるように制御する。前記反射率が極小値乃至前記極小値の近傍値では前記光学多層膜の各層の膜厚が変動しても、前記反射率の変動を抑制できる。
 このことにより、感光性樹脂層へ露光機から直接照射される光と、光反射層から反射されて感光性樹脂層に照射される光の合計の光量とはほぼ一定とすることができるようになる。
 その結果、感光性樹脂層から形成される有機EL素子の感光性樹脂層の出来上がり形状の誤差を低減できるため、感光性樹脂層によって隔離された領域に、インクジェット法などのインク塗布方法で形成された発光機能層の膜厚を一定とすることが可能となる。従って、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 また、入射光の反射率を極小値乃至前記極小値の近傍値に制御するために用いるのは、有機EL素子を構成する前述した光学多層膜そのものである。すなわち、本態様によれば、前記入射光の反射率を極小値乃至前記極小値の近傍値に制御するために、有機EL素子を構成する前述した光学多層膜以外の部材は使用しなくてもよい。
 そのため、有機EL素子を構成する前述した光学多層膜の各層の膜厚を制御して、前記入射光の反射率を極小値乃至前記極小値の近傍値にするので、完成物である有機EL素子にとって不要な部材を付加すること、およびその不要な部材を形成するための付加的なプロセスを必要とすることなく、有機EL素子のバンクの出来上がり形状の誤差を低減できる。すなわち、簡便な構成と製造方法で、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 また、前記特定の波長λが、g線の波長の±5%の範囲内の波長、h線の波長の±5%の範囲内の波長、i線の波長の±5%の範囲内の波長のうちのいずれかの波長であってもよい。
 本態様は、前記特定の波長λを、g線の波長の±5%の範囲内の波長、h線の波長の±5%の範囲内の波長、i線の波長の±5%の範囲内の波長のうちのいずれかとする。
 このように、前記特定の波長λを、露光プロセスで用いる光の波長に対して、±5%の波長範囲内に設けることによって、露光プロセスで用いる光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率を、極小値の近傍値とすることができる。前記極小値近傍では、前記反射光の強度の変化を小さくすることができるので、その結果、前記光反射層において反射して前記感光性樹脂層に向う光の強度の変動を極めて少なくすることができる。
 従って、有機EL素子のバンクの出来上がり形状の誤差を低減し、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 また、前記特定の波長λである入射光は、前記感光性樹脂層から前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記感光性樹脂層の露光に用いられるものであってもよい。
 本態様によれば、前記特定の波長λである入射光は、前記感光性樹脂層から前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記感光性樹脂層の露光に用いられるものである。
 また、前記感光性樹脂層は、前記特定の波長λである入射光を用いて前記感光性樹脂層を露光して前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記特定の波長λを吸収する材質であってもよい。ここで、前記感光性樹脂層は、前記特定の波長λの入射光を吸収して硬化するか、または、前記特定の波長λの入射光を吸収して所定の溶媒に対して溶解性となってもよい。
 本態様によれば、前記感光性樹脂層は、少なくとも前記バンクを形成するプロセスにおいて、前記特定の波長λを吸収する材質で構成される。前記感光性樹脂層は露光に用いられる光を効率的に吸収するため、前記感光性樹脂からの前記バンクの形成が容易となり好適である。
 本発明にかかる有機EL表示装置の1つの態様は、前述した有機EL素子を複数個配置してなるものである。
 本態様の有機EL表示装置は、バンクの形状が均一であり、有機EL素子を配置している。このため、有機EL発光素子を複数配置して有機EL表示装置を構成しても、発光機能層の膜厚を一定とすることが可能となる。従って、発光特性が表示装置の面内で均一性な有機EL表示装置を提供することができる。このことは、特に大画面の有機EL表示装置を実現する上で好適である。
 本発明にかかる有機EL素子の1つの態様は、基板上に積層された光反射層と、透明電極層と、正孔輸送層と、感光性樹脂層と、前記感光性樹脂層によって隔離された発光機能層と、前記発光機能層の上方に積層された第2の透明電極層とを備え、前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように、前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記感光性樹脂層とからなる光学多層膜の各層の厚さが設定され、前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記感光性樹脂層の厚さがd4であり、前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記感光性樹脂層の屈折率がn4であり、所定の定数をaとするとき、前記特定の波長λについて
  d1=1/n1×1.8a×λ/4
  d2=1/n2×0.8a×λ/4
  d4=1/n4×0.2a×λ/4
を満たすことを特徴とする。
 本態様によれば、絶縁層を省略して簡素な有機EL素子とした構造である。従って、本態様では簡素な有機EL素子であり、かつ、前述1の態様と同様な効果が得られることとなる。
 また、前記特定の波長λは、g線の波長の±5%の範囲内の波長、h線の波長の±5%の範囲内の波長、i線の波長の±5%の範囲内の波長のうちのいずれかの波長であってもよい。
 本態様は、前記特定の波長λを、g線の波長±5%の範囲内の波長、h線の波長±5%の範囲内の波長、i線の波長±5%の範囲内の波長のうちのいずれかとする。
 このように、前記特定の波長λを、露光プロセスで用いる光の波長に対して、±5%の波長範囲内に設けることによって、露光プロセスで用いる光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率を、極小値の近傍値とすることができる。前記極小値近傍では、前記反射光の強度の変化を小さくすることができるので、その結果、前記光反射層において反射して前記感光性樹脂層に向う光の強度の変動を極めて少なくすることができる。
 従って、有機EL素子の感光性樹脂層の出来上がり形状の誤差を低減し、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 また、前記特定の波長λである入射光は、前記感光性樹脂層から前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記感光性樹脂層の露光に用いられるものであってもよい。
 本態様によれば、前記特定の波長λである入射光は、前記感光性樹脂層から前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記感光性樹脂層の露光に用いられるものである。
 また、前記感光性樹脂層は、前記特定の波長λである入射光を用いて前記感光性樹脂層を露光して前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記特定の波長λを吸収する材質であってもよい。ここで、前記感光性樹脂層は、前記特定の波長λの入射光を吸収して硬化するか、または、前記特定の波長λの入射光を吸収して所定の溶媒に対して溶解性となってもよい。
 本態様によれば、前記感光性樹脂層は、少なくとも前記バンクを形成するプロセスにおいて、前記特定の波長λを吸収する材質で構成される。前記感光性樹脂層は露光に用いられる光を効率的に吸収するため、前記感光性樹脂からの前記バンクの形成が容易となり好適である。
 本発明にかかる有機EL表示装置の1つの態様は、前述した有機EL素子を複数個配置してなるものである。
 本態様の有機EL表示装置は、バンクの形状が均一であり、有機EL素子を配置している。このため、有機EL発光素子を複数配置して有機EL表示装置を構成しても、発光機能層の膜厚を一定とすることが可能となる。従って、発光特性が表示装置の面内で均一性な有機EL表示装置を提供することができる。このことは、特に大画面の有機EL表示装置を実現する上で好適である。
 本発明にかかる有機EL素子の製造方法は、基板上に、光反射層と、透明電極層と、正孔輸送層と、絶縁層と、感光性樹脂層とを積層する工程と、前記感光性樹脂層に波長λの光を照射することによって前記感光性樹脂層の一部を除去する工程と、前記感光性樹脂層が除去されてできたくぼみに発光機能層を形成する工程と、前記発光機能層の上方に第2の透明電極層を積層する工程とを含み、前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように、前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記絶縁層と、前記感光性樹脂層とからなる光学多層膜において、前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記絶縁層の厚さがd3、前記感光性樹脂層の厚さがd4であり、前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記絶縁層の屈折率がn3、前記感光性樹脂層の屈折率がn4であり、所定の定数をaとするとき、前記特定の波長λについて
  d1=1/n1×4.0a×λ/4
  d2=1/n2×1.0a×λ/4
  d3=1/n3×7.0a×λ/4
  d4=1/n4×5.0a×λ/4
を満たすことを特徴とする。
 本態様は、前記光反射層に向う特定の波長λである入射光の反射率が極小値乃至前記極小値の近傍値になるように、前述した光学多層膜の各層の膜厚を制御して、有機EL素子を製造するものである。このため、前記光学多層膜の各層の膜厚が製造プロセスにおいて変動しても、前記反射率の変動を抑制できる。
 その結果、有機EL素子の感光性樹脂層の出来上がり形状の誤差を低減できるため、感光性樹脂層によって隔離された領域に、インクジェット法などのインク塗布方法で形成された発光機能層の膜厚を一定とすることが可能となる。従って、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 また、入射光の反射率を極小値乃至前記極小値の近傍値に制御するために用いるのは、有機EL素子を構成する前述した光学多層膜そのものである。すなわち、本態様によれば、前記入射光の反射率を極小値乃至前記極小値の近傍値に制御するために、有機EL素子を構成する前述した光学多層膜以外の部材は使用しなくてもよい。
 そのため、有機EL素子を構成する前述した光学多層膜の各層の膜厚を制御して、前記入射光の反射率を極小値乃至前記極小値の近傍値にするので、付加的なプロセスを必要とすることなく、有機EL素子の感光性樹脂層の出来上がり形状の誤差を低減できる。すなわち、簡便な構成と製造方法で、発光特性の面内での均一性に優れた有機EL表示装置を提供することができる。
 本発明にかかる有機EL素子の製造方法は、基板上に、光反射層と、透明電極層と、正孔輸送層と、感光性樹脂層とを積層する工程と、前記感光性樹脂層に波長λの光を照射することによって前記感光性樹脂層の一部を除去する工程と、前記感光性樹脂層が除去されてできたくぼみに発光機能層を形成する工程と、前記発光機能層の上方に第2の透明電極層を積層する工程とを含み、前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記感光性樹脂層とからなる光学多層膜において、前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記感光性樹脂層の厚さがd4であり、前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記感光性樹脂層の屈折率がn4であり、所定の定数をaとするとき、前記特定の波長λについて
  d1=1/n1×1.8a×λ/4
  d2=1/n2×0.8a×λ/4
  d4=1/n4×0.2a×λ/4
を満たすことを特徴とする。
 本態様は、絶縁層を省略した簡素な有機EL素子の製造方法である。従って、本態様は、製造方法をより簡素化でき、かつ前述の態様と同様な効果が得られることになる。
 以下、本発明の実施の形態に係る有機EL素子および有機EL表示装置について、図面を参照して詳細に説明する。図面上の各構成要素の幅及び厚さは、説明のために誇張して示されている点に留意しなければならない。
 (有機EL素子の構成の一例)
 図1は、本発明の実施の形態に係る有機EL素子10のバンク形成前における構成の一例を示す断面図である。
 図1に示されるように、バンク形成前の有機EL素子10は、透明な基板11と、基板11の上部に形成される光反射層12と、光反射層12の上面に形成される透明電極層13と、透明電極層13の上面に形成される絶縁層14と、絶縁層14の上面に形成される正孔輸送層15と、正孔輸送層15の上面に形成される感光性樹脂層16を備える。
 ここで、光反射層12は、画素電極として用いられる場合、有機EL素子10ごとに分離して形成される。また、基板11には、画素電極としての光反射層12を介して有機EL素子10に発光駆動電流を供給するための薄膜トランジスタを含む駆動回路が形成されていてもよい。
 図1に示される状態から、感光性樹脂層16を部分的に除去し、有機EL素子10ごとに発光機能層を設置するための穴部を形成する。除去されずに残った感光性樹脂層16がバンクとなる。
 図外の光源は、バンクを形成するために、露光用の光17を感光性樹脂層16に照射する。感光性樹脂層16に照射された露光用の光17は、正孔輸送層15、絶縁層14、透明電極層13を通過して光反射層12に向けて照射される。そして、光反射層12に向けて照射された光は、全反射金属膜からなる光反射層12によって感光性樹脂層16に向けて全反射される。感光性樹脂層16に戻った光17の反射光のうち一部は感光性樹脂層16を透過して外部へ出射し、一部は光反射層12に向けて再び反射する。
 すなわち、光反射層12と、透明電極層13と、絶縁層14と、正孔輸送層15と、感光性樹脂層16とからなる4層構造の光学多層膜18において光が透過及び反射を繰り返して干渉を起こす。
 このような干渉現象に基づいて、光17の波長に応じて、光反射層12と感光性樹脂層16との間にある各層の厚さを光学的に最適な距離に調節することにより、感光性樹脂層16を露光するための特定の波長の光に対して光学多層膜18の反射率を極小化できると考えられる。
 光学多層膜18の各層の厚さの変動に対して、反射率が極小となる波長近傍の光の反射率の変動量は、他の波長の光の反射率の変動量に比べて小さい。そのため、光学多層膜18の各層を、光17の波長の±5%の範囲内に入る特定の波長λに対して反射率が極小値を示す厚さに設定し、光17を用いて感光性樹脂層16を露光することで、光学多層膜18の各層の厚さのばらつきによる反射光の強度の変動が抑制され、バンクの出来上がり形状の誤差が軽減できると期待される。
 特に、複数の有機EL素子10を面内に配置してなる有機EL表示装置では、発光特性の面内での均一性が向上し、輝度むらの軽減が期待される。
 発明者らは、このような効果が得られる光学多層膜18の各層の厚さを、シミュレーションにより探索した。
 シミュレーションの条件は、光反射層12と感光性樹脂層16との間の各層の光学的距離である。
 具体的に、透明電極層13の幾何学的厚さをd1、正孔輸送層15の幾何学的厚さをd2、絶縁層14の幾何学的厚さをd3、感光性樹脂層16の幾何学的厚さをd4とし、透明電極層13の屈折率をn1、正孔輸送層15の屈折率をn2、絶縁層14の屈折率をn3、感光性樹脂層16の屈折率をn4とし、係数をc1、c2、c3、c4とし、波長をλとして
  d1=1/n1×c1×λ/4
  d2=1/n2×c2×λ/4
  d3=1/n3×c3×λ/4
  d4=1/n4×c4×λ/4
なる第1の条件を設定した。ここで、屈折率n1~n4には、各層に用いられる材料について一般的に知られている値を用いた。屈折率が波長λの関数であることを考慮して、感光性樹脂層16の露光に用いる波長を1つ定め、その波長に対応する屈折率を用いた。各層の屈折率の具体的な値については、後ほど詳しく述べる。
 このように設定した第1の条件下で、係数c1~c4のそれぞれを1.0から8.0まで0.2刻みに変化された場合の全ての値の組み合わせについて、光学多層膜18の反射率の波長λに対する特性を求めた。
 そして、g線、h線、i線の波長近傍において反射率に極小値が現われる係数c1~c4の値として、c1=4.0、c2=1.0、c3=7.0、c4=5.0なる係数値を特定した。
 さらに、各層に共通の定数aを導入し
  d1=1/n1×4.0a×λ/4
  d2=1/n2×1.0a×λ/4
  d3=1/n3×7.0a×λ/4
  d4=1/n4×5.0a×λ/4
なる第2の条件下で定数aの範囲を探索したところ、定数aが、1、2、3のいずれかである場合に反射率に望ましい極小値が現われることがわかった。各層の厚さの具体的な値については、後ほど詳しく述べる。
 有機EL素子10の構成について、さらに説明を続ける。
 図1に示される有機EL素子10は、基板11上に、光反射層12と、透明電極層13と、絶縁層14と、正孔輸送層15とを、前述の第2の条件を満たす幾何学的厚さを設計値として積層することにより形成される。これらの各層は、周知のプロセスで形成される。
 絶縁層14は、パターニングされることにより、開口が形成される。パターニングには通常使われる方法、例えば、ドライエッチングが用いられる。
 パターニングされた絶縁層14の上に、全面に正孔輸送層15および感光性樹脂層16が形成される。
 感光性樹脂層16を、前述の第2の条件を満たす波長λの光(例えば、g線、h線、i線)で露光することによって、感光性樹脂層16の一部を除去することによりバンクを形成する。
 図2(A)、図2(B)は、それぞれ有機EL素子10を複数配置してなる有機EL表示装置1のバンク形成後の構成の一例を示す断面図および上面図である。図2(A)の断面図は、図2(B)のA-A’断面に対応する。図2(B)の上面図には、主要な構成要素の平面的な配置が示されている。なお、便宜上、バンク16と感光性樹脂層16とを同じ符号で参照する。
 有機EL表示装置1におけるバンク16は、有機EL素子10の境界に沿って図面の縦方向にライン状に形成される。絶縁層14は、隣接する有機EL素子10の光反射層12の間隙およびコンタクトホール22を覆う領域に設けられ、発光が不安定になり易い領域における有機EL素子10の発光を規制している。
 図2(A)、図2(B)において、除去されずに残った感光性樹脂層16がバンク16となっている。感光性樹脂層16の露光および除去は周知のプロセスで行われる。
 このとき、透明電極層13と、絶縁層14と、正孔輸送層15と、感光性樹脂層16とが、前述の第2の条件を満たす厚さで積層されているために、光学多層膜18の反射率が露光用の光の波長に対して極小となる。その結果、光学多層膜18の各層の厚さのばらつきによる反射光の強度の変動が抑制され、バンク16の出来上がり形状の誤差が軽減され、形状の均一性、再現性の高いバンク16が作製される。
 図3は、有機EL表示装置1の、発光機能層形成後における構成の一例を示す断面図であり、感光性樹脂層16が除去されてできたくぼみに発光機能層19が形成され、さらに、発光機能層19上に、電子輸送層20と、第2の透明電極層21とが積層された状態を示している。これらの各層は、周知のプロセスで形成される。なお、電子輸送層20の設置は任意である。
 図3に示される有機EL素子10の光反射層12から発光機能層19を介して第2の透明電極層21へ電流を流すことで発光機能層19が発光し、透明電極層21の側へ光が放出される。
 (有機EL素子の各層の材料の一例)
 本発明の有機EL素子10は、透明電極層13、絶縁層14、正孔輸送層15、および感光性樹脂層16の厚さに特徴があり、有機EL素子10を構成する材料を限定するものではないが、一例を挙げれば、次のような材料が使用可能である。
 基板11は、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラスなどのガラス板、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂などのプラスチック板およびプラスチックフィルム、アルミナなどの金属板および金属ホイルなどが用いられる。
 光反射層12は、銀(Ag)、アルミニウム(Al)などの金属が用いられ、特定の波長の光を全反射させる役割をする。耐久性のためにはACA(Ag-Copper-Au)またはAPC(Ag-Paradium-Copper)のような合金を使用しても良い。
 透明電極層13および透明電極層21は、十分な透光性を有する導電性材料により構成されている。透明電極層13および透明電極層21を構成する材料としては、酸化インジウムスズ(Indium Tin Oxide:ITO)や酸化インジウム亜鉛(Indium Zinc Oxide:IZO)などが好ましい。室温で成膜しても良好な導電性を得ることができるからである。
 正孔輸送層15は、例えば、WO3などの無機材料により構成されてもよく、また、有機材料を用いて構成することもできる。有機材料としては、例えば、特開平5-163488号公報(特許文献2)に記載の、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物などが用いられる。なお、特開平5-163488号公報(特許文献2)に記載の正孔注入層が、本発明の正孔輸送層に対応する。
 絶縁層14は、例えば、SiO2、SiNxなどにより構成される。
 発光機能層19は、例えば、特開平5-163488号公報(特許文献2)に記載の、オキシノイド化合物をはじめとする各種の有機化合物により構成される。発光機能層19は、蒸着法、スピンコート法、キャスト法などにより形成できる。
 電子輸送層20は、例えば、特開平5-163488号公報(特許文献2)に記載の、ニトロ置換フルオレノン誘導体をはじめとする各種の有機化合物により構成される。
 なお、上述した材料は、説明のために一例として挙げたものである。有機EL素子10の各層を、これらの材料の他に適性が知られている材料を用いて構成しても構わない。
 (実施例)
 次に、シミュレーションで各層の厚さを求め、求めた各層の厚さを設計値として、実際に図1に示される4層構造の光学多層膜18を基板11上に作製し、その光学多層膜18から図2(A)、図2(B)に示されるバンク16を作製した実施例について説明する。g線、h線、i線のそれぞれの光17に対応した異なる実施例においてバンク16を作製した。
 実施例1では、波長405nmのh線を用いて感光性樹脂層16を露光することを想定した。
 まず、波長405nmのh線に対応する各層の屈折率を用いて前述したシミュレーションを行うことにより、光反射層12としてAPCの膜厚を200nm、透明電極層13としてITOの膜厚を199.5nm、屈折率を2.03、正孔輸送層15としてWO3の膜厚を43.8nm、屈折率を2.31、絶縁層14としてSiO2の膜厚を475.7nm、屈折率を1.49、感光性樹脂層16の膜厚を316.4nm、屈折率を1.60とする好適値を見出した。
 このシミュレーションで求めた好適値による光学多層膜の反射率の波長に対する特性を図4に示す。図4より、波長λ=405nm(h線)近傍において、光反射率が極小値をとることがわかる。
 次に、上記の好適値を設計値として、日本ゼオン製ネガ型感光性材料であるZPN1168を感光性樹脂層16に用いて光学多層膜18を作製し、その光学多層膜18からバンク16を作製した。この際、1つの有機EL素子10のサイズは長辺方向が300μm、短辺方向が100μmとなるような設計とした。
 全波長での露光時のi線換算での照度は8.6mW/cm2であった。400nmから425nmでの平均透過率が90%のカットフィルターを用いて、h線を中心とした露光を行った。この際の露光量は、カットフィルターを用いない場合での3秒間照射すなわち全波長露光時でのi線換算での露光量が25.8mJ/cm2に等しい。
 露光後110℃のホットプレート上で130秒間加熱を行い、しかる後に、2.38%TMAH現像液を用いて180秒間パドル現像を行った。パドル後、純水を用いて充分にリンスを行った。リンス後、クリーンオーブンで200℃で1時間焼成を行った。
 このような条件下で300×300mm基板上に複数の有機EL素子10を作製し、バンク16の形状の面内均一性を評価したところ、バンク膜厚で±5%以内に収まっていた。また、10枚の基板に同一条件でバンク16を作製したところ、基板間でのバンク16の膜厚ばらつきは±5%以内に収まっていた。
 実施例2では、波長436nmのg線を用いて感光性樹脂層16を露光することを想定した。
 まず、波長436nmのg線に対応する各層の屈折率を用いて前述したシミュレーションを行うことにより、光反射層12としてAPCの膜厚を200nm、透明電極層13としてITOの膜厚を227.1nm、屈折率を1.92、正孔輸送層15としてWO3の膜厚を50.2nm、屈折率を2.17、絶縁層14としてSiO2の膜厚を522.6nm、屈折率を1.46、感光性樹脂層の膜厚を340.6nm、屈折率を1.60とする好適値を見出した。
 このシミュレーションで求めた好適値による光学多層膜の反射率の波長に対する特性を図5に示す。図5より、波長λ=436nm(g線)近傍において、光反射率が極小値をとることがわかる。
 次に、上記の好適値を設計値として、日本ゼオン製ネガ型感光性材料であるZPN1168を感光性樹脂層16に用いて光学多層膜18を作製し、その光学多層膜18からバンク16を作製した。この際、1つの有機EL素子10のサイズは長辺方向が300μm、短辺方向が100μmとなるような設計とした。
 全波長での露光時のi線換算での照度は8.6mW/cm2であった。430nm以降での平均透過率が90%のカットフィルターを用いて、g線を中心とした露光を行った。この際の露光量は、カットフィルターを用いない場合での6秒間照射すなわち全波長露光時でのi線換算での露光量が51.6mJ/cm2に等しい。
 露光後110℃のホットプレート上で130秒間加熱を行い、しかる後に、2.38%TMAH現像液を用いて180秒間パドル現像を行った。パドル後、純水を用いて充分にリンスを行った。リンス後、クリーンオーブンで200℃で1時間焼成を行った。
 このような条件下で300×300mm基板上に複数の有機EL素子10を作製し、バンク16の形状の面内均一性を評価したところ、バンク膜厚で±5%以内に収まっていた。また、10枚の基板に同一条件でバンク16を作製したところ、基板間でのバンク16の膜厚ばらつきは±5%以内に収まっていた。
 実施例3では、波長365nmのi線を用いて感光性樹脂層16を露光することを想定した。
 まず、波長365nmのi線に対応する各層の屈折率を用いて前述したシミュレーションを行うことにより、光反射層12としてAPCの膜厚を200nm、透明電極層13としてITOの膜厚を178.9nm、屈折率を2.04、正孔輸送層15としてWO3の膜厚を38.7nm、屈折率を2.36、絶縁層14としてSiO2の膜厚を434.5nm、屈折率を1.47、感光性樹脂層の膜厚を228.1nm、屈折率を1.60とする好適値を見出した。
 このシミュレーションで求めた好適値による光学多層膜の反射率の波長に対する特性を図6に示す。図6より、波長λ=365nm(i線)近傍において、光反射率が極小値をとることがわかる。
 次に、上記条件に従って上記の好適値を設計値として、日本ゼオン製ネガ型感光性材料であるZPN1168を感光性樹脂層16に用いて4層構造の光学多層膜を作製し、その光学多層膜18からバンク16を作製した。この際、1つの有機EL素子10のサイズは長辺方向が300μm、短辺方向が100μmとなるような設計とした。
 全波長での露光時のi線換算での照度は8.6mW/cm2であった。360nm以降での平均透過率が90%のカットフィルターを用いて、i線を中心とした露光を行った。この際の露光量は、カットフィルターを用いない場合での1秒間照射すなわち全波長露光時でのi線換算での露光量が8.6mJ/cm2に等しい。
 露光後110℃のホットプレート上で130秒間加熱を行い、しかる後に、2.38%TMAH現像液を用いて180秒間パドル現像を行った。パドル後、純水を用いて充分にリンスを行った。リンス後、クリーンオーブンで200℃で1時間焼成を行った。
 このような条件下で300×300mm基板上に複数の有機EL素子10を作製し、バンク16の形状の面内均一性を評価したところ、バンク膜厚で±5%以内に収まっていた。また、10枚の基板に同一条件でバンク16を作製したところ、基板間でのバンク16の膜厚ばらつきは±5%以内に収まっていた。
 なお、上述の各実施例では日本ゼオンの感光性ポリイミドを用いたが、他の感光性材料でもシミュレーションに基づく条件を満たすことによって同様に実施可能である。
 光学多層膜18の反射率を露光用の特定の波長の光に対して極小化させた場合に得られる効果について、バンク16の出来上がり形状の具体例を挙げて、さらに説明を続ける。
 図7は、光学多層膜18の反射率に応じたバンク16の出来上がり形状の一例を示す図である。
 図7の上段に示されたグラフは、透明電極層13、絶縁層14、正孔輸送層15、および感光性樹脂層16のそれぞれの膜厚に対する光学多層膜18の反射率を示している。
 光学多層膜18の反射率を極小化する、透明電極層13、絶縁層14、正孔輸送層15、および感光性樹脂層16の各層の膜厚を最適膜厚とすると、透明電極層13、絶縁層14、正孔輸送層15、および感光性樹脂層16のいずれの層の膜厚が最適膜厚からずれた場合も、光学多層膜18の反射率を小さくする望ましい干渉状態が得られなくなるため、光学多層膜18の反射率は上昇して、感光性樹脂層16が受ける反射光の強度が上昇する。
 各層の最適膜厚の近傍には、光学多層膜18の反射率があまり変化せず極小値の近傍に保たれるような膜厚の好適範囲が比較的広く存在するが、いずれかの層の膜厚が好適範囲を超えて厚すぎるか薄すぎると反射率は急峻に上昇する。
 感光性樹脂層16にネガ型感光性材料を用いる場合を考える。反射光が弱いと、感光性樹脂層16の底部付近での硬化が進みにくいため、例えば図7下段右側の断面写真に示すような、オーバーハングを有する所望の形状のバンク16が出来上がる。反射光が強いと、感光性樹脂層16は全体によく硬化し、例えば図7下段左側の断面写真に示すような、なだらかな斜面を有する非所望の形状のバンク16が出来上がる。
 図8(A)および図8(B)は、バンク16の出来上がり形状に応じて上部構造が受ける影響を説明する図である。
 図8(A)に示されるような所望の形状のバンク16では、オーバーハングの上下に第2の透明電極層21と正孔輸送層15とを設け、オーバーハングによって狭窄される位置に発光機能層19を設けることによって、第2の透明電極層21と正孔輸送層15とが短絡しにくい好ましい構造の有機EL素子を構成することができる。
 他方、図8(B)に示されるような非所望の形状のバンク16では、正孔輸送層15上の部分(Xで示す)において発光機能層19が非常に薄くなる可能性があり、第2の透明電極層21と正孔輸送層15とが短絡しやすくなる。
 なお、図8(A)に示した所望の形状は、説明のための一例に過ぎないことに注意する。所望の形状は、上部構造の特性を改善するのみならず、種々の要請から定められる形状であってもよく、またポジ型感光性材料を用いる場合に適した形状であってもよい。
 上記説明したように、光学多層膜18の各層の最適膜厚(つまり反射率の極小点)におけるバンク16の出来上がり形状を所望の形状として設計することにより、光学多層膜18の各層の最適膜厚の近傍では膜厚に対して反射率の変化が小さいことから、バンク16の出来上がり形状の、所望の形状からの誤差を小さく抑えることが可能となる。
 (有機EL素子の構成の他の一例)
 次に、本発明の実施の形態に係る有機EL素子の他の例について説明する。
 図9(A)、図9(B)は、それぞれ有機EL素子23を複数配置してなる有機EL表示装置2のバンク形成後の構成の一例を示す断面図および上面図である。
 有機EL表示装置2は、有機EL表示装置1と比べて、絶縁層14が省略され、バンク16が配置される領域が異なっている。図9(A)の断面図は、図9(B)のB-B’断面に対応する。図9(B)の上面図には、主要な構成要素の平面的な配置が示されている。以下では、有機EL表示装置1の構成要素と同一の構成要素には同一の符号を付して適宜説明を省略する。
 有機EL表示装置2におけるバンク16は、隣接する有機EL素子23の光反射層12の間隙およびコンタクトホール22を覆う領域に設けられ、発光が不安定になり易い領域における有機EL素子23の発光を規制している。
 有機EL表示装置2におけるバンク16は、透明電極層13と、正孔輸送層15と、感光性樹脂層16とからなる3層構造の光学多層膜における感光性樹脂層16をパターニングすることで形成される。
 図9(A)、図9(B)において、除去されずに残った感光性樹脂層16がバンク16となっている。感光性樹脂層16の露光および除去は周知のプロセスで行われる。
 発明者らは、このような3層構造の光学多層膜においても、感光性樹脂層16の反射率を露光する光の波長λに対して極小化できることを、シミュレーションにより確認した。
 このシミュレーションでは、具体的に、透明電極層13の幾何学的厚さをd1、正孔輸送層15の幾何学的厚さをd2、感光性樹脂層16の幾何学的厚さをd4とし、透明電極層13の屈折率をn1、正孔輸送層15の屈折率をn2、感光性樹脂層16の屈折率をn4とし、係数をc1、c2、c4とし、波長をλとして
  d1=1/n1×c1×λ/4
  d2=1/n2×c2×λ/4
  d4=1/n4×c4×λ/4
なる第3の条件を設定した。ここで、屈折率n1、n2、n4には、各層に用いられる材料について一般的に知られている値を用いた。屈折率が波長λの関数であることを考慮して、感光性樹脂層16の露光に用いる波長を1つ定め、その波長に対応する屈折率を用いた。各層の屈折率の具体的な値については、後ほど詳しく述べる。
 このように設定した第3の条件下で、係数c1、c2、c4のそれぞれを1.0から8.0まで0.2刻みに変化された場合の全ての値の組み合わせについて、光学多層膜の反射率の波長λに対する特性を求めた。
 そして、g線、h線、i線の波長近傍において反射率に極小値が現われる係数c1~c4の値として、c1=1.8、c2=0.8、c4=0.2なる係数値を特定した。
 さらに、各層に共通の定数aを導入し
  d1=1/n1×1.8a×λ/4
  d2=1/n2×0.8a×λ/4
  d4=1/n4×0.2a×λ/4
なる第4の条件下で定数aの範囲を探索したところ、定数aが、1、2、3のいずれかである場合に反射率に望ましい極小値が現われることがわかった。各層の厚さの具体的な値については、後ほど詳しく述べる。
 次に、3層構造の光学多層膜について行ったシミュレーションの内容を詳細に説明する。
 波長365nmのi線を用いて感光性樹脂層16を露光することを想定して、i線に対応する各層の屈折率を用いて前述したシミュレーションを行うことにより、光反射層12としてAPCの膜厚を200nm、透明電極層13としてITOの膜厚を80.5nm、屈折率を2.04、正孔輸送層15としてWO3の膜厚を35.8nm、屈折率を2.36、感光性樹脂層の膜厚を11.4nm、屈折率を1.60とする好適値を見出した。
 このシミュレーションで求めた好適値による光学多層膜の反射率の波長に対する特性を図10に示す。図10より、波長λ=365nm(i線)近傍において、光反射率が極小値をとることがわかる。
 次に、波長405nmのh線を用いて感光性樹脂層16を露光することを想定して、h線に対応する各層の屈折率を用いて前述したシミュレーションを行うことにより、光反射層12としてAPCの膜厚を200nm、透明電極層13としてITOの膜厚を89.8nm、屈折率を2.03、正孔輸送層15としてWO3の膜厚を35.1nm、屈折率を2.31、感光性樹脂層16の膜厚を12.7nm、屈折率を1.60とする好適値を見出した。
 このシミュレーションで求めた好適値による光学多層膜の反射率の波長に対する特性を図11に示す。図11より、波長λ=405nm(h線)近傍において、光反射率が極小値をとることがわかる。
 さらに、波長436nmのg線を用いて感光性樹脂層16を露光することを想定して、g線に対応する各層の屈折率を用いて前述したシミュレーションを行うことにより、光反射層12としてAPCの膜厚を200nm、透明電極層13としてITOの膜厚を100nm、屈折率を1.92、正孔輸送層15としてWO3の膜厚を40.2nm、屈折率を2.17、感光性樹脂層の膜厚を13.6nm、屈折率を1.60とする好適値を見出した。
 このシミュレーションで求めた好適値による光学多層膜の反射率の波長に対する特性を図12に示す。図12より、波長λ=436nm(g線)近傍において、光反射率が極小値をとることがわかる。
 このように、3層構造の光学多層膜においても、光学多層膜の反射率を極小化する各層の膜厚の好適値が存在することから、そのような好適値を設計値として有機EL表示装置2を作製することにより、前述と同様の効果を得ることができる。
 本実施例では、有機EL素子について述べたが、これらの有機EL素子が画素として基板上に集積された有機ELディスプレイであっても各層の膜厚を適切に設定することにより実施可能である。
 本発明は、平面光源及びフラットディスプレイなどに用いられる有機ELディスプレイに利用可能である。
 1、2 有機EL表示装置
 10、23 有機EL素子
 11 基板
 12 光反射層
 13 透明電極層
 14 絶縁層
 15 正孔輸送層
 16 感光性樹脂層(バンク)
 17 光
 18 光学多層膜
 19 発光機能層
 20 電子輸送層
 21 透明電極層
 22 コンタクトホール

Claims (14)

  1.  基板上に積層された光反射層と、透明電極層と、正孔輸送層と、絶縁層と、感光性樹脂層と、
     前記感光性樹脂層によって隔離された発光機能層と、
     前記発光機能層の上方に積層された第2の透明電極層と
     を備え、
     前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように、前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記絶縁層と、前記感光性樹脂層とからなる光学多層膜の各層の厚さが設定され、
     前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記絶縁層の厚さがd3、前記感光性樹脂層の厚さがd4であり、
     前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記絶縁層の屈折率がn3、前記感光性樹脂層の屈折率がn4であり、
     所定の定数をaとするとき、
     前記特定の波長λについて
      d1=1/n1×4.0a×λ/4
      d2=1/n2×1.0a×λ/4
      d3=1/n3×7.0a×λ/4
      d4=1/n4×5.0a×λ/4
     を満たすことを特徴とする有機EL素子。
  2.  前記特定の波長λが、g線の波長の±5%の範囲内の波長、h線の波長の±5%の範囲内の波長、i線の波長の±5%の範囲内の波長のうちのいずれかの波長である
     ことを特徴とする請求項1に記載の有機EL素子。
  3.  前記特定の波長λである入射光は、前記感光性樹脂層から前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記感光性樹脂層の露光に用いられる、
     ことを特徴とする請求項1~2のいずれか1項に記載の有機EL素子。
  4.  前記感光性樹脂層は、前記特定の波長λである入射光を用いて前記感光性樹脂層を露光して前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記特定の波長λを吸収する材質である
     ことを特徴とする請求項1~3のいずれか1項に記載の有機EL素子。
  5.  前記感光性樹脂層は、前記特定の波長λの入射光を吸収して硬化するか、または、前記特定の波長λの入射光を吸収して所定の溶媒に対して溶解性となる
     ことを特徴とする請求項4に記載の有機EL素子。
  6.  請求項1~5のいずれか1項に記載の有機EL素子を複数個配置してなることを特徴とする有機EL表示装置。
  7.  基板上に積層された光反射層と、透明電極層と、正孔輸送層と、感光性樹脂層と、
     前記感光性樹脂層によって隔離された発光機能層と、
     前記発光機能層の上方に積層された第2の透明電極層と
     を備え、
     前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように、前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記感光性樹脂層とからなる光学多層膜の各層の厚さが設定され、
     前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記感光性樹脂層の厚さがd4であり、
     前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記感光性樹脂層の屈折率がn4であり、
     所定の定数をaとするとき、
     前記特定の波長λについて
      d1=1/n1×1.8a×λ/4
      d2=1/n2×0.8a×λ/4
      d4=1/n4×0.2a×λ/4
     を満たすことを特徴とする有機EL素子。
  8.  前記特定の波長λは、g線の波長の±5%の範囲内の波長、h線の波長の±5%の範囲内の波長、i線の波長の±5%の範囲内の波長のうちのいずれかの波長である
     ことを特徴とする請求項7に記載の有機EL素子。
  9.  前記特定の波長λである入射光は、前記感光性樹脂層から前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記感光性樹脂層の露光に用いられる、
     ことを特徴とする請求項7~8のいずれか1項に記載の有機EL素子。
  10.  前記感光性樹脂層は、前記特定の波長λである入射光を用いて前記感光性樹脂層を露光して前記発光機能層を隔離するバンクを形成するプロセスにおいて、前記特定の波長λを吸収する材質である
     ことを特徴とする請求項7~9のいずれか1項に記載の有機EL素子。
  11.  前記感光性樹脂層は、前記特定の波長λの入射光を吸収して硬化するか、または、前記特定の波長λの入射光を吸収して所定の溶媒に対して溶解性となる
     ことを特徴とする請求項10に記載の有機EL素子。
  12.  請求項7から11のいずれか1項に記載の有機EL素子を複数個配置してなることを特徴とする有機EL表示装置。
  13.  基板上に、光反射層と、透明電極層と、正孔輸送層と、絶縁層と、感光性樹脂層とを積層する工程と、
     前記感光性樹脂層に波長λの光を照射することによって前記感光性樹脂層の一部を除去する工程と、
     前記感光性樹脂層が除去されてできたくぼみに発光機能層を形成する工程と、
     前記発光機能層の上方に第2の透明電極層を積層する工程と
     を含み、
     前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように、前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記絶縁層と、前記感光性樹脂層とからなる光学多層膜において、
     前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記絶縁層の厚さがd3、前記感光性樹脂層の厚さがd4であり、
     前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記絶縁層の屈折率がn3、前記感光性樹脂層の屈折率がn4であり、
     所定の定数をaとするとき、
     前記特定の波長λについて
      d1=1/n1×4.0a×λ/4
      d2=1/n2×1.0a×λ/4
      d3=1/n3×7.0a×λ/4
      d4=1/n4×5.0a×λ/4
     を満たすことを特徴とする有機EL素子の製造方法。
  14.  基板上に、光反射層と、透明電極層と、正孔輸送層と、感光性樹脂層とを積層する工程と、
     前記感光性樹脂層に波長λの光を照射することによって前記感光性樹脂層の一部を除去する工程と、
     前記感光性樹脂層が除去されてできたくぼみに発光機能層を形成する工程と、
     前記発光機能層の上方に第2の透明電極層を積層する工程と
     を含み、
     前記感光性樹脂層側から前記光反射層に向う特定の波長λである入射光に対する、前記入射光が前記光反射層において反射して前記感光性樹脂層に向う反射光の比率である反射率が、極小値乃至前記極小値の近傍値となるように
     前記光反射層と、前記透明電極層と、前記正孔輸送層と、前記感光性樹脂層とからなる光学多層膜において、
     前記透明電極層の厚さがd1、前記正孔輸送層の厚さがd2、前記感光性樹脂層の厚さがd4であり、
     前記透明電極層の屈折率がn1、前記正孔輸送層の屈折率がn2、前記感光性樹脂層の屈折率がn4であり、
     所定の定数をaとするとき、
     前記特定の波長λについて
      d1=1/n1×1.8a×λ/4
      d2=1/n2×0.8a×λ/4
      d4=1/n4×0.2a×λ/4
     を満たすことを特徴とする有機EL素子の製造方法。
PCT/JP2009/006813 2008-12-26 2009-12-11 有機el素子、有機el表示装置および有機el素子の製造方法 WO2010073524A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010543802A JP5468018B2 (ja) 2008-12-26 2009-12-11 有機el素子、有機el表示装置および有機el素子の製造方法
CN200980133957.0A CN102217421B (zh) 2008-12-26 2009-12-11 有机el元件、有机el显示装置以及有机el元件的制造方法
US13/052,540 US8390015B2 (en) 2008-12-26 2011-03-21 Organic EL element, organic EL display apparatus, and manufacturing method of organic EL element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008334204 2008-12-26
JP2008-334204 2008-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/052,540 Continuation US8390015B2 (en) 2008-12-26 2011-03-21 Organic EL element, organic EL display apparatus, and manufacturing method of organic EL element

Publications (1)

Publication Number Publication Date
WO2010073524A1 true WO2010073524A1 (ja) 2010-07-01

Family

ID=42287182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006813 WO2010073524A1 (ja) 2008-12-26 2009-12-11 有機el素子、有機el表示装置および有機el素子の製造方法

Country Status (5)

Country Link
US (1) US8390015B2 (ja)
JP (1) JP5468018B2 (ja)
KR (1) KR101567119B1 (ja)
CN (1) CN102217421B (ja)
WO (1) WO2010073524A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386828B1 (ko) 2009-09-29 2014-04-17 파나소닉 주식회사 발광 소자 및 그것을 이용한 표시 장치
CN102474939B (zh) 2009-11-04 2015-03-04 松下电器产业株式会社 显示面板装置及其制造方法
WO2011143127A2 (en) * 2010-05-13 2011-11-17 Sri International Cavity electroluminescent devices with integrated microlenses
EP2587892A4 (en) 2010-06-28 2014-06-25 Panasonic Corp ORGANIC LIGHT-EMITTING ELEMENT, METHOD FOR ITS MANUFACTURE, ORGANIC DISPLAY TABLE AND ORGANIC DISPLAY DEVICE
JP5462257B2 (ja) 2010-08-06 2014-04-02 パナソニック株式会社 有機el表示パネル、表示装置、及び有機el表示パネルの製造方法
CN103779501B (zh) * 2013-12-31 2018-05-15 昆山工研院新型平板显示技术中心有限公司 一种改善视角特性的顶发射oled器件
KR20200072090A (ko) 2018-12-12 2020-06-22 한국과학기술원 이차원 상 전이 소재를 이용한 디스플레이 소자 및 이의 제조 방법
CN113777819B (zh) * 2020-06-09 2023-06-06 京东方科技集团股份有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528421A (ja) * 1999-06-02 2003-09-24 セイコーエプソン株式会社 複数波長発光素子、電子機器および干渉ミラー
JP2003302917A (ja) * 2002-04-09 2003-10-24 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP2006173089A (ja) * 2004-11-22 2006-06-29 Seiko Epson Corp El装置および電子機器
JP2006216466A (ja) * 2005-02-04 2006-08-17 Fuji Electric Holdings Co Ltd 有機elディスプレイパネルおよびその製造方法
JP2007273243A (ja) * 2006-03-31 2007-10-18 Kyocera Corp 有機el装置の製造方法
WO2008149499A1 (ja) * 2007-05-30 2008-12-11 Panasonic Corporation 有機elディスプレイパネルおよびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677111A (en) * 1991-12-20 1997-10-14 Sony Corporation Process for production of micropattern utilizing antireflection film
US5472829A (en) 1991-12-30 1995-12-05 Sony Corporation Method of forming a resist pattern by using an anti-reflective layer
US5472827A (en) 1991-12-30 1995-12-05 Sony Corporation Method of forming a resist pattern using an anti-reflective layer
JP2897569B2 (ja) 1991-12-30 1999-05-31 ソニー株式会社 レジストパターン形成時に用いる反射防止膜の条件決定方法と、レジストパターン形成方法
US5670297A (en) * 1991-12-30 1997-09-23 Sony Corporation Process for the formation of a metal pattern
JPH09171952A (ja) 1995-12-21 1997-06-30 Toshiba Corp レジストパターン形成方法及びそのレジストパターン形成方法を用いた半導体装置の製造方法
JPH11288786A (ja) * 1998-02-04 1999-10-19 Toyota Central Res & Dev Lab Inc 光共振型有機エレクトロルミネッセンス素子
JP2004127551A (ja) 2002-09-30 2004-04-22 Seiko Epson Corp 有機el装置とその製造方法、および電子機器
JP4466096B2 (ja) * 2004-02-02 2010-05-26 パナソニック株式会社 プラズマディスプレイパネルの製造方法
JP2008059791A (ja) * 2006-08-29 2008-03-13 Canon Inc 有機el素子アレイ
JP2008293798A (ja) * 2007-05-24 2008-12-04 Toyota Industries Corp 有機el素子の製造方法
KR101148458B1 (ko) * 2008-09-19 2012-05-24 파나소닉 주식회사 유기 일렉트로 루미네슨스 소자 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528421A (ja) * 1999-06-02 2003-09-24 セイコーエプソン株式会社 複数波長発光素子、電子機器および干渉ミラー
JP2003302917A (ja) * 2002-04-09 2003-10-24 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP2006173089A (ja) * 2004-11-22 2006-06-29 Seiko Epson Corp El装置および電子機器
JP2006216466A (ja) * 2005-02-04 2006-08-17 Fuji Electric Holdings Co Ltd 有機elディスプレイパネルおよびその製造方法
JP2007273243A (ja) * 2006-03-31 2007-10-18 Kyocera Corp 有機el装置の製造方法
WO2008149499A1 (ja) * 2007-05-30 2008-12-11 Panasonic Corporation 有機elディスプレイパネルおよびその製造方法

Also Published As

Publication number Publication date
KR101567119B1 (ko) 2015-11-06
US20110165517A1 (en) 2011-07-07
US8390015B2 (en) 2013-03-05
KR20110106267A (ko) 2011-09-28
CN102217421B (zh) 2015-10-21
JPWO2010073524A1 (ja) 2012-06-07
JP5468018B2 (ja) 2014-04-09
CN102217421A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2010073524A1 (ja) 有機el素子、有機el表示装置および有機el素子の製造方法
EP3404720B1 (en) Manufacturing method of an oled array substrate
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
US8921841B2 (en) Porous glass substrate for displays and method of manufacturing the same
US9000665B2 (en) Organic light emitting diode display device and method of manufacturing the same
JP4717200B2 (ja) 有機発光素子
KR20070030124A (ko) 면 발광 장치
US20140159012A1 (en) Array substrate and method for manufacturing the same, display device
US8367278B2 (en) Halftone mask and manufacturing method thereof and method for forming film using the same
CN109585523B (zh) 像素界定层及显示面板的制作方法、显示面板
JP4752814B2 (ja) 有機デバイスおよびその製造方法
CN110993646B (zh) Oled背板的制备方法及oled背板
JP2007273243A (ja) 有機el装置の製造方法
EP2555595B1 (en) Organic el panel and method for manufacturing same
JP2006216466A (ja) 有機elディスプレイパネルおよびその製造方法
KR20150029997A (ko) 하프톤 마스크 및 이를 이용한 표시장치의 제조방법
US9575405B2 (en) Photo mask and method of manufacturing the same
KR100584263B1 (ko) 유기 el 소자의 제조 방법
US11187851B2 (en) Display devices
US20230393482A1 (en) Exposure mask and method of manufacturing display device using the same
TW202218151A (zh) 用於oled顯示像素之分級斜面反射結構
CN116963546A (zh) 显示面板、显示装置和显示面板的制作方法
JP2021018968A5 (ja)
KR20050081361A (ko) 광 산란 필름과, 이의 제조 방법 및 표시장치
US20160049616A1 (en) Light emitting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133957.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002047

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010543802

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834339

Country of ref document: EP

Kind code of ref document: A1