WO2010073318A1 - 粒子線治療装置 - Google Patents

粒子線治療装置 Download PDF

Info

Publication number
WO2010073318A1
WO2010073318A1 PCT/JP2008/073407 JP2008073407W WO2010073318A1 WO 2010073318 A1 WO2010073318 A1 WO 2010073318A1 JP 2008073407 W JP2008073407 W JP 2008073407W WO 2010073318 A1 WO2010073318 A1 WO 2010073318A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
particle beam
mirror
source mirror
variable collimator
Prior art date
Application number
PCT/JP2008/073407
Other languages
English (en)
French (fr)
Inventor
越虎 蒲
利宏 大谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020117013088A priority Critical patent/KR101217374B1/ko
Priority to JP2010543659A priority patent/JP4728451B2/ja
Priority to PCT/JP2008/073407 priority patent/WO2010073318A1/ja
Priority to DE112008004206T priority patent/DE112008004206B4/de
Priority to US13/127,112 priority patent/US8350234B2/en
Priority to CN200880132314.XA priority patent/CN102245263B/zh
Priority to TW098104024A priority patent/TWI364304B/zh
Publication of WO2010073318A1 publication Critical patent/WO2010073318A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1056Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam by projecting a visible image of the treatment field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • the present invention relates to a particle beam therapy apparatus for irradiating a diseased part of a patient with a particle beam such as carbon or proton for the treatment of cancer or malignant tumor.
  • the shape of a variable collimator consisting of multiple leaves is set appropriately, and the irradiation dose in the horizontal direction (on the surface of the field) is applied so that a uniform dose is irradiated to the entire diseased part. It is important to make the distribution of irradiation dose in the vertical direction (depth direction) uniform. In particular, it is important to confirm the shape of the variable collimator in order to make the irradiation region of the particle beam coincide with the shape of the diseased part of the patient.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-76019 describes a light source that is activated while a radiation beam is stopped in a radiation system setup stage, and an irradiation area range in the radiation path of the radiation beam.
  • An optical element (mirror) extending to the outside is provided.
  • the light source is activated to send visible light to the optical element.
  • the visible light received by the optical element is reflected, passes through the collimator, and is irradiated on the patient's body surface. Positioning is performed so that the light irradiation field and the target zone region coincide with each other.
  • Patent Document 2 Japanese Utility Model Publication No. 62-186653
  • the light source consisting of a lamp and the radiation beam radiation path extend beyond the irradiation area range.
  • An existing mirror and a TV camera installed near the light source are provided.
  • the light source is activated to send light to the mirror.
  • the light received by the mirror is reflected, passes through a variable (movable) collimator, and is irradiated on the patient's body surface. The relationship between the light field and the patient is observed with a TV camera.
  • Patent Document 3 Japanese Patent Laid-Open No. 6-246015
  • Japanese Patent Laid-Open No. 6-246015 in order to confirm the irradiation range using the light irradiation field, it extends outside the irradiation area range in the radiation path of the light source and radiation.
  • a mirror A, a mirror B provided between the light source and the mirror A, and a television camera installed near the mirror B are provided.
  • the light source is activated to send light to the mirror A.
  • the light received by the mirror A is reflected, passes through a variable (movable) collimator, and is irradiated on the patient's body surface.
  • the relationship between the light irradiation field and the patient is copied from the mirror A to the mirror B, and the state copied to the mirror B is observed with a television camera.
  • the light transmitted from the light source is reflected by a mirror and passed through a variable (movable) collimator to irradiate the patient's body surface.
  • the shape of the diseased part such as cancer that is shaped for each patient of the variable collimator is not directly confirmed. Therefore, the patient's body surface is not horizontal but has a complex curved surface, and it is difficult to accurately check the setting shape of the variable collimator.
  • the mirror needs to monitor a wide area called the entire light field irradiated on the patient's body surface, and needs to extend outside the radiation irradiation area.
  • the length of the radiation in the irradiation axis direction is as large as several tens of centimeters, and the radiation irradiation part is enlarged.
  • variable collimator As a means for confirming the shape of the variable collimator, it is considered to take a picture with a camera from the upstream side of the variable collimator. However, since the upper part of the variable collimator is directly photographed in the image taken by the camera, the upper surface of the variable collimator is irregularly reflected by the light from the mirror, and the plane part, the collimator edge part and the end part of the variable collimator are It is an unclear state, and it is not easy to analyze the edge portion and extract the two-dimensional shape formed by the collimator leaf. In order to analyze the edge portion, complex image recognition software is indispensable, and the recognition work requires a lot of labor and labor. Moreover, it has been substantially difficult to confirm the shape with an accuracy of, for example, 1 mm or less, which is required for the particle beam therapy system.
  • the layered body irradiation method which is an advanced three-dimensional irradiation method
  • a device called a patient compensator is often inserted between a variable collimator and a patient.
  • the shape of the variable collimator is projected onto the patient's body surface. It was impossible to monitor the projected image.
  • the particle beam therapy system photographs a variable collimator that changes the shape of a particle beam irradiated to an irradiated body in accordance with the shape of a diseased portion of the irradiated body, and an irradiation field shape shaped by the variable collimator.
  • a light source mirror arranged on the particle beam trajectory upstream of the variable collimator, reflecting light from the light source and passing through the variable collimator, and arranged downstream of the variable collimator and variable
  • the particle beam therapy system reflects light from a light source by a light source mirror, passes through a variable collimator, projects an irradiation field shape shaped by the variable collimator by the light that has passed through the variable collimator, By photographing the projection part of the photographing screen with the photographing device and analyzing the video photographed with the photographing device with the image processing device, it is possible to accurately confirm the irradiation field shape shaped by the variable collimator. Have.
  • Embodiment 1 of this invention It is a schematic block diagram which shows the particle beam therapy apparatus in Embodiment 1 of this invention. It is a schematic block diagram which shows the principal part of the particle beam therapy apparatus in Embodiment 2 of this invention. It is a schematic block diagram which shows the principal part of the particle beam therapy apparatus in Embodiment 5 of this invention. It is an enlarged view which shows the light source mirror part of the particle beam therapy apparatus in Embodiment 5 of this invention. It is a schematic block diagram which shows the principal part of the particle beam therapy apparatus in Embodiment 6 of this invention. It is a schematic block diagram which shows the principal part of the particle beam therapy apparatus in Embodiment 8 of this invention. It is an enlarged view which shows the light source mirror part of the particle beam therapy apparatus in Embodiment 8 of this invention.
  • FIG. 1 A particle beam therapy system according to Embodiment 1 of the present invention will be described based on a schematic configuration diagram shown in FIG.
  • the variable collimator 12 is shown as a perspective view.
  • reference numeral 1 denotes a particle beam such as carbon or proton transported from an accelerator (not shown), which travels in the irradiation axis direction.
  • An electromagnet 2 is composed of a pair of electromagnets 2a and 2b, and scans the trajectory of the particle beam 1 transported from the accelerator.
  • 3 is a scatterer that diffuses the particle beam 1 that has passed through the electromagnet 2
  • 4 is a dose monitor that measures the irradiation dose of the particle beam 1 that has passed through the scatterer 3
  • 5 is a depth monitor depending on the thickness of the protrusion.
  • a ridge filter (or energy modulation means) that adjusts the energy spectrum (dose distribution) and gives the particle beam 1 an energy spectrum corresponding to the width in the depth direction of the affected area
  • 6 is a particle that has passed through the set thickness.
  • a range shifter that reduces the energy of the beam 1 by a predetermined amount
  • 7 is a flatness monitor that measures the flatness of the particle beam 1 that has passed through the range shifter 6
  • 8 is a light localizer, which is a patient placed on the treatment bed 9.
  • 11 is a fixed collimator that cuts the unnecessary particle beam 1
  • 12 is a variable for further shaping the particle beam 1 that has passed through the fixed collimator 11 so that the particle beam shape matches the shape of the diseased part of the irradiated object 10.
  • the collimator is configured to change the plurality of leaves 12a so as to match the shape of the diseased portion of the irradiated object 10 to form a desired irradiation field shape.
  • Reference numeral 13 denotes a patient compensator (commonly referred to as a patient bolus or a compensation filter) used to adjust the stop position of the particle beam irradiated to the affected area to the position of the affected area and the normal tissue interface.
  • a patient compensator commonly referred to as a patient bolus or a compensation filter
  • Numeral 14 is a light source for photographing the shape of the variable collimator 12, and the figure is provided at a position located on the upstream side of the variable collimator 12 as an example.
  • a light source mirror 15 is disposed on the trajectory of the particle beam 1 on the upstream side of the variable collimator 12 and reflects the light from the light source 14 to pass through the variable collimator 12.
  • the light from the light source 14 is transmitted from the horizontal direction. Since the light is transmitted, the light source mirror 15 is inclined at approximately 45 degrees to reflect the light from the light source 14 toward the variable collimator 12.
  • the light source mirror 15 is made of a material that transmits the particle beam 1.
  • the imaging screen 18 is made of a material through which the particle beam 1 is transmitted, for example, a plastic such as polyethylene or a thin plate.
  • Reference numeral 19 denotes a photographing device for photographing the projection unit 18a projected on the photographing screen 18, and is constituted by a small camera, for example.
  • Reference numeral 20 denotes an image processing apparatus that analyzes video captured by a small camera as the imaging apparatus 19.
  • Reference numeral 21 denotes a photographing mirror for photographing the projection unit 18a projected on the photographing screen 18.
  • Reference numeral 22 denotes a photographing device for photographing the projection unit 18a of the photographing screen 18 projected onto the photographing mirror 21, which is constituted by a small camera, for example. ing.
  • Reference numeral 23 denotes an image processing apparatus for analyzing video captured by a small camera as the imaging apparatus 22.
  • the operation of the particle beam therapy system according to Embodiment 1 described above will be described.
  • the particle beam 1 transported from the accelerator is trajectory scanned by the electromagnet 2 and passes through the scatterer 3 so that the particle beam 1 is diffused.
  • the energy beam (dose distribution) in the depth direction of the particle beam 1 that has passed through the scatterer 3 is adjusted by the ridge filter 5.
  • the energy of the particle beam 1 that has passed through the ridge filter 5 is reduced by a predetermined amount by the range shifter 6.
  • the particle beam 1 that has passed through the range shifter 6 is cut off by the fixed collimator 11.
  • the particle beam 1 that has passed through the fixed collimator 11 is shaped by the variable collimator 12 to form a planned irradiation field shape.
  • the particle beam 1 that has passed through the variable collimator 12 passes through a patient compensator (bolus) 13 that is shaped corresponding to the shape in the depth direction of the diseased part of the irradiated object 10.
  • the particle beam 1 that has passed through the patient compensator 13 is irradiated onto the diseased part of the irradiated object 10, and a dose distribution that matches the three-dimensional shape of the affected part is formed.
  • the light source 14 is actuated to transmit light 14a in a substantially horizontal direction.
  • the light 14a is reflected by the light source mirror 15 tilted at approximately 45 degrees, transmits the light 14b to the variable collimator 12 side, and passes through the variable collimator 12.
  • the shape of the variable collimator 12 is projected onto the photographing screen by the light 14c that has passed through the variable collimator 12.
  • the shape of the variable collimator 12 can be easily confirmed by photographing the projection unit 18a projected on the photographing screen 18 with the photographing device 19 composed of a small camera and analyzing the image with the image processing device 20.
  • the projection unit 18a of the photographing screen 18 projected onto the photographing mirror 21 is photographed by a photographing device 22 composed of a small camera, and the image is analyzed by the image processing device 23.
  • the light source mirror 15, its support 16, and imaging screen 18 are formed of objects through which the particle beam 1 can easily pass, so that the particle beam 1 can reach the irradiated object 10 without any problem.
  • the light 14a from the light source 14 is reflected by the light source mirror 15 to transmit the light 14b to the variable collimator 12 side, and the shape of the variable collimator 12 is obtained by the light 14c that has passed through the variable collimator 12.
  • the projection unit 18a of the photographing screen 18 is photographed by the photographing devices 19 and 22, and the images photographed by the photographing devices 19 and 22 are analyzed by the image processing devices 20 and 23.
  • the shape of the diseased part of the irradiated object 10 shaped by the variable collimator 12 can be easily confirmed. Further, it is possible to compare the shape of the collimator specified by this analysis with a collimator shape setting image determined in advance based on the treatment plan.
  • the upper surface of the variable collimator is irregularly reflected by the light from the mirror, and the corresponding images of the upstream plane portion of the variable collimator and the collimator leaf tip portion (portion perpendicular to the plane portion) are displayed. It becomes difficult to distinguish, and the leaf edge part, which is the part where the flat part and the tip part intersect, is unclear, and it is not easy to extract and analyze the edge part.
  • the recognition work required a great deal of labor and effort.
  • the shape of the diseased part of the irradiated object 10 shaped by the variable collimator 12 by the light 14c that has passed through the variable collimator 12 is reflected on the projection unit 18a of the imaging screen 18 by the shadow of light. Due to the identification and the like, the flat part of the variable collimator 12 and the edge part of the diseased part shaped in the irradiated object 10 as the patient are in a very clear state, and the analysis of the edge part is complicated image recognition software. Therefore, the recognition work can be accurately analyzed without requiring a great deal of labor and labor. Moreover, it is possible to cope with the shape confirmation with an accuracy of, for example, 1 mm or less required for the particle beam therapy system.
  • the color of the photographing screen 18 is usually white
  • the photographing screen 18 has a color that can be further clearly distinguished from the light 14 c that has passed through the variable collimator 12, or the light transmitted from the light source 14.
  • the distinction between the light 14c passing through the variable collimator 12 and the projection screen 18 other than the projection unit 18a may be further clearly differentiated.
  • the edge of the variable collimator 12 may be differentiated. The part becomes clearer and can be identified with higher accuracy.
  • the above-described prior art mirror needs to capture a wide area, that is, the entire light irradiation field irradiated on the patient's body surface.
  • the length in the axial direction is as large as several tens of centimeters, and the radiation irradiation part is enlarged.
  • the light source mirror 15 in the first embodiment of the present invention only needs to reflect the light from the light source 14, the horizontal direction can be reduced and the length of the particle beam 1 in the irradiation axis direction can be several centimeters, for example, 3 to 4 cm is sufficient, and the irradiation unit of the particle beam therapy system can be downsized.
  • the shape of the variable collimator 12 can be accurately confirmed by the light 14c that has passed through the variable collimator 12 even during irradiation of the particle beam 1. it can.
  • the changed shape of the variable collimator 12 can be easily and accurately confirmed, so that the irradiation treatment of the particle beam 1 can be performed on the patient. It can be performed continuously without giving stress or anxiety.
  • so-called stacked three-dimensional irradiation in which a target site used in particle beam therapy needs to be divided into a plurality of layered regions in the depth direction and an optimum collimator shape is set for each layer to perform irradiation.
  • an imaging device 19 and an image processing device 20 each including a small camera, and an imaging device 22 and an image processing device 23 each including an imaging mirror 21 and a small camera are installed.
  • an imaging device 22 and an image processing device 23 each including an imaging mirror 21 and a small camera are installed.
  • Embodiment 2 The main part of the particle beam therapy system according to the second embodiment of the present invention will be described with reference to the schematic configuration diagram shown in FIG.
  • reference numerals 1, 12, 14, 14a, 14b, 14c, 18, and 18a are the same as those in the first embodiment.
  • a light source mirror 24 is disposed on the trajectory of the particle beam 1 on the upstream side of the variable collimator 12, reflects light from the light source 14 by the reflecting portion 24 a and passes through the variable collimator 12. Is transmitted from a substantially horizontal direction, the light source mirror 24 is inclined at approximately 45 degrees, and the light from the light source 14 is reflected by the reflecting portion 24a of the light source mirror 24 toward the variable collimator 12 side.
  • the light source mirror 24 is made of a material that transmits the particle beam 1.
  • Reference numeral 25 denotes a support for supporting the light source mirror 24 or a component of the light source mirror 24.
  • the light source mirror 24 and the support body 25 that supports the light source mirror 24 are configured as an integral structure.
  • a plate made of aluminum, for example is bent in a stepped manner so that the central portion is inclined at approximately 45 degrees, and the central portion is mirror-coated or mirror-finished to form the reflective portion 24a.
  • the light source mirror 24 is configured, and a portion connected to one end and the other end of the light source mirror 24 is configured as a support 25.
  • the thickness of aluminum as a base material of the light source mirror 24 and the support 25 is preferably about 1 mm or less than 1 mm, for example, 0.5 mm or 0.3 mm in order to suppress the beam energy loss due to the transmission of the particle beam 1 as low as possible. Is used.
  • a single aluminum plate is bent in a stepped manner so that the central portion is inclined at approximately 45 degrees, and mirror coating is applied to the central portion (or the central portion).
  • a light source mirror 24 is formed by forming a reflection portion 24a (by applying a mirror finish or the like so as to form a light reflection surface at least in part), and supports portions connected to one end and the other end of the light source mirror 24, respectively.
  • the body 25 By configuring as the body 25, the light source mirror 24 can be easily formed, and the support of the light source mirror 24 can be supported by the support body 25 made of an integral structure, so that a strong support structure is provided. Can do.
  • the light source mirror 24 may be made of plastic, acrylic, polyimide, or the like by forming a reflecting portion 24a by applying mirror coating or mirror surface processing or the like to at least a part of the light source mirror 24 formed at an inclination of approximately 45 degrees. Even if configured, the same effect can be obtained. Further, the light source mirror 24 and the support body 25 may be formed of different materials, and may be integrally formed by joining with means such as an adhesive so as to have a stepped shape as shown in FIG. There is an effect.
  • the particle beam therapy system according to the third embodiment of the present invention is characterized in that the light source mirror 24 is disposed in the irradiation region of the particle beam 1. Therefore, the length of the particle beam beam 1 extending outside the irradiation region range and occupying in the irradiation axis direction of the particle beam beam 1 does not need to be as large as several tens of cm as in the above-described conventional mirror. Since the light source mirror 24 only needs to reflect the light from the light source 14, it can be disposed in the irradiation region of the particle beam 1.
  • the light source mirror 24 can be made small, and the length, that is, the height of the particle beam 1 in the irradiation axis direction can be made small.
  • the height of the light source mirror 24 may be several centimeters, for example, 3 to 4 cm.
  • the height in the irradiation direction of the light source mirror 24 can be made smaller than the irradiation region of the particle beam 1 in the plane perpendicular to the irradiation direction of the particle beam 1 at the position of the light source mirror 24. This has the effect of reducing the size of the irradiation unit of the treatment apparatus.
  • Embodiment 4 FIG.
  • the particle beam therapy system according to Embodiment 4 of the present invention is characterized in that the light source mirror 24 in FIG. 2 described above is a convex mirror.
  • the angle at which the light from the light source 14 is reflected by the function of the convex mirror can be further widened, so that the length occupied in the horizontal direction and the irradiation axis direction of the particle beam 1 can be reduced. It can be made even smaller.
  • FIG. 3 is a schematic configuration diagram showing a main part of the particle beam therapy system
  • FIG. 4 is an enlarged view showing a light source mirror unit of the particle beam therapy system.
  • reference numerals 1, 12, 14, 14a, 14b, 14c, 18, 18a are the same as or equivalent to the configurations of the above-described embodiments.
  • a light source mirror 26 is disposed on the trajectory of the particle beam 1 on the upstream side of the variable collimator 12, reflects light from the light source 14 by the reflecting portion 26 a and passes through the variable collimator 12.
  • the light source mirror 26 is inclined at approximately 45 degrees, and the light from the light source 14 is reflected by the reflecting portion 26a of the light source mirror 26 toward the variable collimator 12 side.
  • the light source mirror 26 is made of a material that transmits the particle beam 1.
  • Reference numeral 27 denotes a support for supporting the light source mirror 26, and when it is made of the same material as the light source mirror 26, it is configured to be thicker than the plate thickness T 1 of the light source mirror 26.
  • the light source mirror 26 is approximately 45 degrees from the support 27 (or theta degrees) because it is inclined, the thickness T 2 for example 1.414T 1 of the support 27 (or T 1 / cos (theta )),
  • the beam energy loss amount of the particle beam transmitted through the light source mirror 26 in the particle beam 1 and the beam energy loss amount of the particle beam transmitted through the support 27 are substantially the same value. It is configured. That is, even if the particle beam 1 passes through the light source mirror 26 and the support 27 that is a support part thereof, the beam energy of the particle beam 1 decreases by almost the same value, but the energy distribution of the particle beam 1 is almost the same. It is possible to prevent changes. This is very important in a particle beam therapy apparatus that needs to control the stopping position of the particle beam 1 in the patient with an accuracy of about 1 mm or less.
  • the light source mirror 26 and the support body 27 that supports the light source mirror 26 are configured as an integral structure.
  • the light source mirror 26 is configured, and a portion connected to one end and the other end of the light source mirror 26 is configured as a support 27.
  • the beam energy loss amount of the particle beam transmitted through the light source mirror 26 and the beam energy loss amount of the particle beam transmitted through the support 27 are set to be approximately the same value. Therefore, the stop position of the particle beam 1 in the patient can be controlled with an accuracy of about 1 mm or less, and a stable and reliable particle beam therapy apparatus can be obtained. .
  • the substrate thickness of the light source mirror 26 and the support 27 is preferably about several mm or less in order to keep the beam energy loss due to the transmission of the particle beam 1 as low as possible. Or 0.3 mm is used.
  • the light source mirror 26 since the light source mirror 26 only needs to reflect the light from the light source 14, it can be disposed in the irradiation region of the particle beam 1. As a result, the light source mirror 26 can be made small, and the length, that is, the height of the particle beam 1 in the irradiation axis direction can be made small. The height of the light source mirror 26 may be several centimeters, for example, 3 to 4 cm.
  • the height in the irradiation direction of the light source mirror 26 can be made smaller than the irradiation region of the particle beam 1 on the plane perpendicular to the irradiation direction of the particle beam 1 at the position of the light source mirror 26. This has the effect of reducing the size of the irradiation unit of the treatment apparatus.
  • the present invention is not limited to this, and examples thereof include aluminum alloy, copper, copper foil, magnesium, plastic, acrylic, and polyimide.
  • the light source mirror 26 may be configured by forming the reflecting portion 26a by mirror coating or mirror finishing at the central portion formed with an inclination of approximately 45 degrees.
  • FIG. 5 is a schematic configuration diagram showing the main part of the particle beam therapy system.
  • reference numerals 1, 12, 14, 14a, and 14b are the same as those in the above-described embodiments.
  • a light source mirror 29 is disposed on the trajectory of the particle beam 1 on the upstream side of the variable collimator 12, reflects light from the light source 14 by the reflecting portion 29 a and passes through the variable collimator 12. Is transmitted from a substantially horizontal direction, the light source mirror 29 is inclined at approximately 45 degrees, and the light from the light source 14 is reflected by the reflecting portion 29a of the light source mirror 29 toward the variable collimator 12 side.
  • the light source mirror 29 is made of a material that transmits the particle beam 1.
  • a support 30 supports the light source mirror 29.
  • the light source mirror 29 and the support body 30 that supports the light source mirror 29 are configured as an integral structure.
  • the center part of a flat disk material made of aluminum, for example is cut and raised, for example, into a substantially circular shape and bent so as to be inclined at about 45 degrees, and the center part thus cut is mirror coated.
  • the light source mirror 29 is configured by forming the reflecting portion 29a by applying the above.
  • the thickness of the aluminum that is the base material of the light source mirror 29 and the support 30 is preferably about several mm or less in order to keep the beam energy loss due to the transmission of the particle beam 1 as low as possible, for example, 0.5 mm or 0.3 mm. used.
  • a disk material made of aluminum is cut and raised so that the central portion is inclined at approximately 45 degrees, and mirror coating or mirror finishing is applied to the cut and raised central portion.
  • the light source mirror 29 is configured by forming the reflection portion 29a and the other portion of the light source mirror 29 is configured as the support body 30, so that the central portion of the support body 30 only needs to be cut and bent.
  • the light source mirror 29 can be easily formed, and the support of the light source mirror 29 can be supported by the support 30 made of an integral structure, so that a strong support structure can be obtained. Further, since the light source mirror 29 only needs to reflect the light from the light source 14, it can be disposed in the irradiation region of the particle beam 1.
  • the light source mirror 29 can be made small, and the length, that is, the height of the particle beam 1 in the irradiation axis direction can be made small.
  • the height of the light source mirror 29 may be several centimeters, for example, 3 to 4 cm.
  • the height in the irradiation direction of the light source mirror 29 can be made smaller than the irradiation region of the particle beam 1 on the plane perpendicular to the irradiation direction of the particle beam 1 at the position of the light source mirror 29. This has the effect of reducing the size of the irradiation unit of the treatment apparatus.
  • the light source mirror 29 may be made of plastic, acrylic, polyimide, or the like by forming a reflecting portion 29a by applying mirror coating or mirror finishing to at least a part of the light source mirror 29 formed at an inclination of approximately 45 degrees. Even if configured, the same effect can be obtained.
  • variable collimator reflects the light from the light source 14.
  • the shape of the irradiation field shaped by the variable collimator 12 by the light passing through the variable collimator 12 and projected by the variable collimator 12 may be projected.
  • Embodiment 7 FIG.
  • the particle beam therapy system according to Embodiment 7 of the present invention is characterized in that the light source mirror 29 in FIG. 5 described above is a convex mirror.
  • the angle at which the light from the light source 14 is reflected by the function of the convex mirror can be further widened, so that the length occupied in the horizontal direction and the irradiation axis direction of the particle beam 1 can be reduced. It can be made even smaller.
  • Embodiment 8 A particle beam therapy system according to an eighth embodiment of the present invention will be described with reference to FIGS.
  • FIG. 6 is a schematic configuration diagram showing a main part of the particle beam therapy system
  • FIG. 7 is an enlarged view showing a light source mirror part of the particle beam therapy system.
  • reference numerals 1, 12, 14, 14a, and 14b are the same as those in the above-described embodiments.
  • 31 is a light source mirror that is disposed on the trajectory of the particle beam 1 upstream of the variable collimator 12, reflects light from the light source 14 by the reflecting portion 31 a and passes through the variable collimator 12.
  • the light source mirror 31 is inclined at approximately 45 degrees, and the light from the light source 14 is reflected to the variable collimator 12 side by the reflecting portion 31a of the light source mirror 31.
  • the light source mirror 31 is made of a material that transmits the particle beam 1.
  • Reference numeral 32 denotes a support that supports the light source mirror 31 and is configured to be thicker than the plate thickness T 1 of the light source mirror 31.
  • the particle beam transmitted through the light source mirror 31 in the particle beam 1 The beam energy loss amount of the beam and the beam energy loss amount of the particle beam transmitted through the support 32 are set to be approximately the same value. That is, even if the particle beam 1 passes through the light source mirror 31 and the support 32 that is a support part thereof, the beam energy of the particle beam 1 decreases by almost the same value, but the energy distribution of the particle beam 1 is almost unchanged. It is possible to prevent changes. This is very important in a particle beam therapy apparatus that needs to control the stopping position of the particle beam 1 in the patient with an accuracy of about 1 mm or less.
  • the light source mirror 31 and the support body 32 that supports the light source mirror 31 are configured as an integral structure.
  • the light source mirror 31 is configured by coating or mirror-finishing to form the reflection portion 31 a, and the other part of the light source mirror 31 is configured as a support body 32.
  • the beam energy loss amount of the particle beam transmitted through the light source mirror 31 and the beam energy loss amount of the particle beam transmitted through the support 32 are substantially the same value. Therefore, the stop position of the particle beam 1 in the patient can be controlled with an accuracy of about 1 mm or less, and a stable and reliable particle beam therapy apparatus can be obtained. .
  • the thickness of the aluminum that is the base material of the light source mirror 31 and the support 32 is preferably about several millimeters or less in order to keep the loss due to the transmission of the particle beam 1 as low as possible. 0.5 mm or 0.3 mm is used.
  • the light source mirror 31 since the light source mirror 31 only needs to reflect the light from the light source 14, it can be disposed in the irradiation region of the particle beam 1. As a result, the light source mirror 31 can be made small, and the length, that is, the height of the particle beam 1 in the irradiation axis direction can be made small. The height of the light source mirror 31 may be several centimeters, for example, 3 to 4 cm.
  • the height in the irradiation direction of the light source mirror 31 can be made smaller than the irradiation region of the particle beam 1 on the plane perpendicular to the irradiation direction of the particle beam 1 at the position of the light source mirror 31. This has the effect of reducing the size of the irradiation unit of the treatment apparatus.
  • the light source mirror 31 and the support 32 are made of aluminum.
  • the present invention is not limited to this, and aluminum alloy, copper, copper foil, magnesium, plastic, acrylic, polyimide, etc. may be used.
  • the same effect can be obtained even if the light source mirror 31 is configured by forming a reflecting portion 31a by applying mirror coating or mirror surface processing to at least a part of the light source mirror 31 formed with an inclination of approximately 45 degrees. Play.
  • the shape of the light source mirror 31 is substantially circular has been described, the shape is not limited to a circular shape, and may be a square shape or other shapes.
  • the variable collimator reflects light from the light source 14. The shape of the irradiation field shaped by the variable collimator 12 by the light passing through the variable collimator 12 and projected by the variable collimator 12 may be projected.
  • Embodiment 9 FIG.
  • the particle beam therapy system according to Embodiment 9 of the present invention is characterized in that the light source mirror 31 in FIG. 6 described above is a convex mirror.
  • the angle at which the light from the light source 14 is reflected by the function of the convex mirror can be further expanded, so that the length occupied in the horizontal direction and the irradiation axis direction of the particle beam 1 can be reduced. It can be made even smaller.
  • the present invention is suitable for the realization of a particle beam therapy apparatus for irradiating and treating particle beams of carbon, protons and the like in conformity with the shape of a diseased part of a patient for the treatment of cancer, malignant tumor and the like.

Abstract

 光源からの光を光源ミラーにより反射させて可変コリメータを通過させ、可変コリメータを通過した光により可変コリメータにより形成された照射野形状を撮影スクリーンに投影し、撮影スクリーンの投影部を撮影装置により撮影し、撮影装置により撮影した映像を画像処理装置で解析するようにした。

Description

粒子線治療装置
 この発明は、癌や悪性腫瘍等の治療のために、炭素、陽子等の粒子線を患者の疾患部分に照射して治療する粒子線治療装置に関するものである。
 患者の癌や悪性腫瘍等の治療のために、疾患部分に適切な線量の粒子線を照射して治療するには、粒子線の照射領域を患者の疾患部分の形状と一致させる必要がある。そのためには、複数のリーフからなる可変コリメータの形状が適切に設定されていることに加え、疾患部分全体に均一な線量が照射されるように、水平方向(照射野の面上)の照射線量、および垂直方向(深さ方向)の照射線量の分布をいずれも均一化することが重要である。特に粒子線の照射領域を患者の疾患部分の形状と一致させるために、可変コリメータの形状確認が重要となってくる。
 なお、例えば、下記の特許文献1(特開平10-76019号公報)には、放射線システムのセットアップ段階で放射線ビームが停止中に作動される光源と、放射線ビームの放射経路中にその照射領域範囲外まで延在する光学素子(ミラー)を設けている。その光源を作動して光学素子に可視光を送出する。光学素子に受光された可視光は反射してコリメータを通過して患者の体表面に照射される。その光照射野とターゲットゾーンの領域とが一致するように位置決めを行っている。
 また、下記の特許文献2(実開昭62-186753号公報)には、光照射野を利用したシミュレーションのため、ランプからなる光源と、放射線ビームの放射経路中にその照射領域範囲外まで延在するミラーと、光源の近くに設置されたTVカメラを設けている。その光源を作動してミラーに光を送出する。ミラーに受光された光は反射して可変(可動)コリメータを通過して患者の体表面に照射される。その光照射野と患者との関係をTVカメラで観察している。
 また、下記の特許文献3(特開平6-246015号公報)には、光照射野を利用した照射範囲の確認のため、光源と、放射線の放射経路中にその照射領域範囲外まで延在する鏡Aと、光源と鏡Aとの間に設けた鏡Bと、鏡Bの近くに設置されたテレビカメラを設けている。その光源を作動して鏡Aに光を送出する。鏡Aに受光された光は反射して可変(可動)コリメータを通過して患者の体表面に照射される。その光照射野と患者との関係は鏡Aから鏡Bに写され、鏡Bに写された状態をテレビカメラで観察している。
特開平10-76019号公報 実開昭62-186753号公報 特開平6-246015号公報 特公平6-96048号公報
 ところで、上記の各特許文献1~3に記載されるような従来装置では、光源から送出された光を鏡(ミラー)で反射させて可変(可動)コリメータを通過させ、患者の体表面に照射された光照射野を目視確認、あるいはテレビカメラにより確認するようにしているが、可変コリメータの患者毎に整形される癌などの疾患部分の形状を直接的に確認していない。したがって、患者の体表面が水平ではなく複雑な曲面を持った体表面であり、可変コリメータの設定形状を精度よく確認することは困難なものとなっている。また、鏡(ミラー)は患者の体表面に照射された光照射野全体と言う広範囲な領域を監視する必要があり、放射線の照射領域範囲外まで延在させる必要があり、水平方向の設置スペースを確保する必要があるとともに、放射線の照射軸方向に占める長さも数10cmと大きいものとなり、放射線の照射部が大型化している。
 さらに、可変コリメータの形状を確認する手段として、可変コリメータの上流側からカメラで撮影することが考えられている。しかし、カメラで撮影した映像では可変コリメータの上部を直接撮影しているため、可変コリメータの上面が鏡(ミラー)からの光で乱反射し、その可変コリメータの平面部とコリメータエッジ部と端部は不鮮明な状態であり、そのエッジ部を解析し、コリメータリーフで形成した2次元形状を抽出するのは容易ではない。そのエッジ部を解析するには複雑な画像認識ソフトが必需であるとともにその認識作業に多大の労力と手間を要している。しかも、粒子線治療装置で要求される例えば1mm以下の精度の形状確認は実質的に困難なものとなっていた。
 また、粒子線治療装置で、高度な3次元照射法である積層原体照射法などでは、1回の治療照射中に、2回以上にわたり、可変コリメータの形状を変更させる必要がある。粒子線治療装置では、可変コリメータと患者の間に患者コンペンセタと呼ばれる装置が挿入される場合が多く、その場合、上述した従来技術にあるように、可変コリメータの形状を患者体表面に投影して、その投影像を監視することは不可能であった。
 この発明は、照射中においても、可変コリメータの形状を精度よく確認することができるとともに小型化を図ることができる粒子線治療装置を提供することにある。
 この発明の粒子線治療装置は、被照射体に照射する粒子線ビームの形状を被照射体の疾患部分の形状に合わせて変化させる可変コリメータと、可変コリメータにより整形された照射野形状を撮影するための光源と、可変コリメータの上流側で粒子線ビームの軌道上に配設され、光源からの光を反射させて可変コリメータを通過させる光源ミラーと、可変コリメータの下流側に配設され、可変コリメータを通過した光により可変コリメータにより整形された照射野形状が投影される撮影スクリーンと、撮影スクリーンに投影された投影部を撮影する撮影装置と、撮影装置により撮影した映像を解析する画像処理装置とを備えたことを特徴とするものである。
 この発明に係る粒子線治療装置は、光源からの光を光源ミラーにより反射させて可変コリメータを通過させ、可変コリメータを通過した光により可変コリメータにより整形された照射野形状を撮影スクリーンに投影し、撮影スクリーンの投影部を撮影装置により撮影し、撮影装置により撮影した映像を画像処理装置で解析するようにしたことにより、可変コリメータにより整形された照射野形状を精度よく確認することができる効果を有する。
 この発明の上記以外の目的、特徴、観点および効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
この発明の実施の形態1における粒子線治療装置を示す概略構成図である。 この発明の実施の形態2における粒子線治療装置の要部を示す概略構成図である。 この発明の実施の形態5における粒子線治療装置の要部を示す概略構成図である。 この発明の実施の形態5における粒子線治療装置の光源ミラー部を示す拡大図である。 この発明の実施の形態6における粒子線治療装置の要部を示す概略構成図である。 この発明の実施の形態8における粒子線治療装置の要部を示す概略構成図である。 この発明の実施の形態8における粒子線治療装置の光源ミラー部を示す拡大図である。
実施の形態1.
 この発明の実施の形態1による粒子線治療装置を図1に示す概略構成図に基づいて説明する。なお、可変コリメータ12については斜視図として示している。図1において、1は図示しない加速器から輸送される炭素、陽子等の粒子線ビームであり、照射軸方向に進行される。2は電磁石であり、一対の電磁石2a,2bから構成され、加速器から輸送された粒子線ビーム1の軌道を走査する。3は電磁石2を通過した粒子線ビーム1を拡散する散乱体、4は散乱体3を通過した粒子線ビーム1の照射線量が計測される線量モニタ、5は突部分の厚みによって深さ方向のエネルギースペクトル(線量分布)が調整され、粒子線ビーム1に治療患部の深さ方向幅に応じたエネルギースペクトルを持たせるリッジフィルタ(又はエネルギー変調手段)、6は設定された厚み分だけ通過した粒子線ビーム1のエネルギーを所定量低減させるレンジシフタ、7はレンジシフタ6を通過した粒子線ビーム1の平坦度を計測する平坦度モニタ、8はライトローカライザーであり、治療ベツド9に載置された患者である被照射体10の疾患部分の位置決めを行うために使用される。11は不要な粒子線ビーム1をカットする固定コリメータ、12は固定コリメータ11を通過した粒子線ビーム1を更に整形させ、粒子線形状を被照射体10の疾患部分の形状と一致させるための可変コリメータであり、複数のリーフ12aを被照射体10の疾患部分の形状に合致するよう変化させて所望の照射野形状を形成するように構成されている。13は患部に照射された粒子線ビームの停止位置を患部と正常組織境界面位置に合わせるために用いる患者コンペンセタ(通称、患者ボーラスまたは補償フィルタ)である。
 14は可変コリメータ12の形状を撮影するための光源であり、図は一例として、可変コリメータ12より上流側に位置する箇所に設けられている。15は可変コリメータ12の上流側で粒子線ビーム1の軌道上に配設され、光源14からの光を反射させて可変コリメータ12を通過させる光源ミラーであり、光源14からの光は水平方向から送出されるので、光源ミラー15は略45度に傾斜されて光源14からの光を可変コリメータ12側に反射させている。なお、光源ミラー15は粒子線ビーム1が透過する材料で構成される。16は光源ミラー15を支持する支持体、17は支持体16を支持する支持台、18は可変コリメータ12の下流側に配設され、可変コリメータ12を通過した光により可変コリメータ12の照射野形状が投影される撮影スクリーンであり、18aが投影部である。なお、撮影スクリーン18は粒子線ビーム1が透過する材料、例えばポリエチレンなどのプラスチック又は薄い板等で構成される。19は撮影スクリーン18に投影された投影部18aを撮影する撮影装置であり、例えば小型カメラで構成されている。20は撮影装置19である小型カメラにより撮影した映像を解析する画像処理装置である。21は撮影スクリーン18に投影された投影部18aを撮影するための撮影ミラー、22は撮影ミラー21に写し出された撮影スクリーン18の投影部18aを撮影する撮影装置であり、例えば小型カメラで構成されている。23は撮影装置22である小型カメラにより撮影した映像を解析する画像処理装置である。
 上述した実施の形態1による粒子線治療装置の動作について説明する。加速器から輸送された粒子線ビーム1は電磁石2により軌道が走査されて散乱体3を通過することにより粒子線ビーム1が拡散される。散乱体3を通過した粒子線ビーム1はリッジフィルタ5により深さ方向のエネルギースペクトル(線量分布)が調整される。リッジフィルタ5を通過した粒子線ビーム1はレンジシフタ6によりその粒子線ビーム1のエネルギーが所定量低減される。レンジシフタ6を通過した粒子線ビーム1は固定コリメータ11により不要な粒子線ビーム1がカットされる。固定コリメータ11を通過した粒子線ビーム1は可変コリメータ12により整形され計画された照射野形状を形成するようになる。可変コリメータ12を通過した粒子線ビーム1は被照射体10の疾患部分の深さ方向の形状に対応して成形される患者コンペンセタ(ボーラス)13を通過する。患者コンペンセタ13を通過した粒子線ビーム1は被照射体10の疾患部分に照射されて、患部3次元形状に合わせた線量分布が形成される。
 ところで、可変コリメータ12の形状が設定通りに設定されているかを確認するには、光源14を作動させて略水平方向の光14aを送出する。この光14aは略45度に傾けた光源ミラー15により反射されて可変コリメータ12側へ光14bを送出するとともに可変コリメータ12を通過する。可変コリメータ12を通過した光14cにより可変コリメータ12の形状が撮影スクリーンに投影される。撮影スクリーン18に投影された投影部18aを小型カメラからなる撮影装置19により撮影しその映像を画像処理装置20により解析することにより、可変コリメータ12の形状を容易に確認することができる。また、図は一例として、さらに撮影ミラー21に写し出された撮影スクリーン18の投影部18aを小型カメラからなる撮影装置22により撮影しその映像を画像処理装置23により解析するようにしている。尚、上記光源ミラー15と、その支持体16、および撮影スクリーン18は粒子線ビーム1が通過し易い物体で形成されているので、粒子線ビーム1が被照射体10に問題なく到達できる。
 この発明の実施の形態1によれば、光源14からの光14aを光源ミラー15により反射させて可変コリメータ12側へ光14bを送出するとともに可変コリメータ12を通過した光14cにより可変コリメータ12の形状を撮影スクリーン18に投影し、撮影スクリーン18の投影部18aを撮影装置19、22により撮影し、撮影装置19、22により撮影した映像を画像処理装置20、23で解析するようにしたことにより、可変コリメータ12により整形された被照射体10の疾患部分の形状を容易に確認することができる。また、この解析によって特定したコリメータの形状を予め治療計画に基づいて決めたコリメータ形状の設定画像と比較することが可能である。上述した従来技術では可変コリメータの上面が鏡(ミラー)からの光で乱反射し、その可変コリメータの上流側平面部とコリメータリーフ先端部(上記平面部と垂直している部分)の対応する画像が区別付き難くなり、上記平面部と先端部の交差する部分であるリーフエッジ部は不鮮明な状態であり、そのエッジ部を画像解析して抽出するのは容易ではなく、そのエッジ部を解析するには複雑な画像認識ソフトが必需であるとともにその認識作業に多大の労力と手間を要していた。しかるに、この発明の実施の形態1においては、可変コリメータ12を通過した光14cにより可変コリメータ12により整形された被照射体10の疾患部分の形状が撮影スクリーン18の投影部18aに光の陰陽の識別などにより、可変コリメータ12の平面部と患者である被照射体10に整形された疾患部分の水平方向形状のエッジ部は極めて鮮明な状態であり、そのエッジ部の解析を複雑な画像認識ソフトを必需とすることなく、かつその認識作業に多大の労力と手間を要することなく精度よく解析できる効果を有するものである。しかも、粒子線治療装置で要求される例えば1mm以下の精度の形状確認にも対応できるものである。
 また、撮影スクリーン18の色は通常、白色であるが、可変コリメータ12を通過した光14cとの区別がさらにくっきり差別化できる色からなる撮影スクリーン18とするか、或いは光源14から送出される光を色付きの光とすることにより、可変コリメータ12を通過した光14cと撮影スクリーン18の投影部18a以外との区別がさらにくっきり差別化するようにしてもよく、これらの場合は可変コリメータ12のエッジ部はさらに鮮明な状態となり、より一層精度よく特定することができる。
 また、上述した従来技術の鏡(ミラー)は患者の体表面に照射された光照射野全体と言う広範囲な領域を写す必要があり、放射線の照射領域範囲外まで延在させるとともに、放射線の照射軸方向に占める長さも数10cmと大きいものとなり、放射線の照射部が大型化している。しかるに、この発明の実施の形態1における光源ミラー15は光源14からの光を反射させるだけでよいので、水平方向を小さくできるとともに、粒子線ビーム1の照射軸方向に占める長さも数cm、例えば3~4cmでよく、粒子線治療装置の照射部の小型化を図ることができる効果を有するものである。
 また、光源ミラー15、撮影スクリーン18は粒子線ビーム1が透過するので、粒子線ビーム1の照射中においても、可変コリメータ12を通過した光14cにより可変コリメータ12の形状を精度よく確認することができる。また、この実施例では、光源ミラー15およびその支持体16と、撮影スクリーン18の厚みをなるべく薄くすることで、粒子線ビーム1に与える影響を抑えることが望ましい。
 さらに、患者である被照射体10の治療段階で可変コリメータ12の形状を変化させた場合も、その変更された形状を精度よく容易に確認できるので、粒子線ビーム1の照射治療を患者へのストレス、不安感などを与えることなく連続して行うことができる。一例としては、粒子線治療で用いられる標的部位を深さ方向において複数の層状領域に分割してそれぞれの層に対して最適なコリメータ形状を設定して照射を行う必要のある所謂積層3次元照射法(特許文献4参照)を実施する際に、照射中に変化する可変コリメータ12の設定形状を精度よく確認できる効果がある。
 ところで、撮影スクリーン18の投影部18aを撮影する手段として、小型カメラからなる撮影装置19と画像処理装置20、そして撮影ミラー21と小型カメラからなる撮影装置22と画像処理装置23を設置しているが、いずれか一方の撮影手段を選択すれば所望の目的を達成することができる。
実施の形態2.
 この発明の実施の形態2による粒子線治療装置の要部を図2に示す概略構成図に基づいて説明する。図2において、1、12、14、14a、14b、14c、18、18aは上述した実施の形態1の構成と同様である。24は可変コリメータ12の上流側で粒子線ビーム1の軌道上に配設され、光源14からの光を反射部24aで反射させて可変コリメータ12を通過させる光源ミラーであり、光源14からの光は略水平方向から送出されるので、光源ミラー24は略45度に傾斜されて光源14からの光を光源ミラー24の反射部24aで可変コリメータ12側に反射させている。なお、光源ミラー24は粒子線ビーム1が透過する材料で構成される。25は光源ミラー24を支持する支持体又は光源ミラー24の一構成部である。
 この発明の実施の形態2による粒子線治療装置は図2から明らかなように、光源ミラー24とその光源ミラー24を支持する支持体25は一体構造体で構成されている。図は一例として、例えば1枚のアルミニウムからなる板材を中央部が略45度に傾斜するよう段違い状に折曲し、その中央部にミラーコーティングまたは鏡面加工を施して反射部24aを形成することにより光源ミラー24を構成し、その光源ミラー24の一方端および他方端にそれぞれつながる部分を支持体25として構成している。ところで、光源ミラー24、支持体25の基材であるアルミニウムの板厚は粒子線ビーム1の透過によるビームエネルギーロスを極力低く抑えるため1mm程度または1mm以下が望ましく、例えば0.5mmまたは0.3mmのものが使用される。
 この発明の実施の形態2によれば、1枚のアルミニウムからなる板材を中央部が略45度に傾斜するよう段違い状に折曲し、その中央部にミラーコーティングを施して(又は中央部の少なくとも一部に光反射面を形成するように鏡面加工などを施して)反射部24aを形成することにより光源ミラー24を構成し、その光源ミラー24の一方端および他方端にそれぞれつながる部分を支持体25として構成したことにより、容易に光源ミラー24を形成することができるとともに、その光源ミラー24の支持を一体構造体からなる支持体25で支持することができるので強固な支持構造とすることができる。
 ところで、この発明の実施の形態2による光源ミラー24、支持体25を構成する材料としてアルミニウムからなる場合について述べたが、これに限定されるものではなく、アルミニウム合金、銅、銅箔、マグネシウム、プラスチック、アクリル、ポリミイドなどであってもよく、略45度に傾斜して形成した光源ミラー24の少なくとも一部にミラーコーティングまたは鏡面加工などを施して反射部24aを形成することにより光源ミラー24を構成しても同様の効果を奏する。また、光源ミラー24とその支持体25を別々の材料で構成し、図2に示すような段違い形状を有するように接着剤などの手段で結合して一体的に構成してもよく、同様の効果を奏する。
実施の形態3.
 この発明の実施の形態3による粒子線治療装置を図2から明らかなように、光源ミラー24は粒子線ビーム1の照射領域内に配置したことを特徴としている。したがって、上述した従来技術の鏡(ミラー)のように粒子線ビーム1の照射領域範囲外まで延在かつ粒子線ビーム1の照射軸方向に占める長さも数10cmと大きいものとする必要がなく、光源ミラー24は光源14からの光を反射させるだけでよいので、粒子線ビーム1の照射領域内に配置することができる。その結果として、光源ミラー24を小さくできるとともに、粒子線ビーム1の照射軸方向に占める長さ、すなわち、高さも小さくできる。光源ミラー24の高さは数cmでよく、例えば3~4cmとすることができる。このように、光源ミラー24の位置において、粒子線ビーム1の照射方向と垂直する平面において、粒子線ビーム1の照射領域よりも、光源ミラー24の照射方向における高さを小さくできることが、粒子線治療装置の照射部の小型化を図ることができる効果を有するものである。
実施の形態4.
 この発明の実施の形態4による粒子線治療装置は上述した図2における光源ミラー24を凸面鏡としたことを特徴としている。このように光源ミラー24を凸面鏡としたことにより、光源14からの光を凸面鏡の機能により反射させる角度をさらに広げることができるので、水平方向および粒子線ビーム1の照射軸方向に占める長さをより一層小さくすることができる。
実施の形態5.
 この発明の実施の形態5による粒子線治療装置を図3および図4に基づいて説明する。図3は粒子線治療装置の要部を示す概略構成図であり、図4は粒子線治療装置の光源ミラー部を示す拡大図である。これら各図において、1、12、14、14a、14b、14c、18、18aは上述した各実施の形態の構成と同様または同等である。26は可変コリメータ12の上流側で粒子線ビーム1の軌道上に配設され、光源14からの光を反射部26aで反射させて可変コリメータ12を通過させる光源ミラーであり、光源14からの光は略水平方向から送出されるので、光源ミラー26は略45度に傾斜されて光源14からの光を光源ミラー26の反射部26aで可変コリメータ12側に反射させている。なお、光源ミラー26は粒子線ビーム1が透過する材料で構成される。27は光源ミラー26を支持する支持体であり、光源ミラー26と同じ材料で構成した場合、光源ミラー26の板厚T1より厚く構成されている。
 すなわち、図4に示すように、光源ミラー26は支持体27より約45度(又はθ度)傾いているため、支持体27の厚みT2を例えば1.414T1(又はT1/cos(θ))とすることにより、粒子線ビーム1のうち光源ミラー26を透過する粒子線ビームのビームエネルギーロス量と支持体27を透過する粒子線ビームのビームエネルギーロス量とほぼ同じ値になるように構成されている。すなわち、粒子線ビーム1が光源ミラー26およびその支持部である支持体27を通過しても、粒子線ビーム1のビームエネルギーはほぼ同じ値だけ減少するが、粒子線ビーム1のエネルギー分布に殆ど変化が生じないようにすることができる。このことが粒子線ビーム1の患者体内における停止位置を約1mm以下の精度で制御する必要がある粒子線治療装置では、非常に重要な意味を持つものである。
 この発明の実施の形態5による粒子線治療装置は図3および図4から明らかなように、光源ミラー26とその光源ミラー26を支持する支持体27は一体構造体で構成されている。図は一例として、例えば1枚のアルミニウムからなる板材を中央部が略45度に傾斜するよう段違い状に折曲した後、その中央部の厚みT1を中央部の両側の厚みT2より薄く、すなわち、T2=1.414T1(又はT1/cos(θ))となるように研磨等で削設し、その後、その中央部にミラーコーティングまたは鏡面加工を施して反射部26aを形成することにより光源ミラー26を構成し、その光源ミラー26の一方端および他方端にそれぞれつながる部分を支持体27として構成している。
 このように、光源ミラー26の板厚T1とその両端側の支持体27の板厚T2との関係をT2=1.414T1(又はT1/cos(θ))とすることにより、粒子線ビーム1のうち光源ミラー26を透過する粒子線ビームのビームエネルギーロス量と支持体27を透過する粒子線ビームのビームエネルギーロス量とほぼ同じ値になるように構成され、粒子線ビーム1のエネルギー分布に殆ど変化が生じないので、粒子線ビーム1の患者体内における停止位置を約1mm以下の精度で制御することが可能となり、安定した信頼性の高い粒子線治療装置を得ることができる。
 なお、この発明の実施の形態5においても、光源ミラー26、支持体27の基材板厚は粒子線ビーム1の透過によるビームエネルギーロスを極力低く抑えるため数mm程度以下が望ましく、例えば0.5mmまたは0.3mmのものが使用される。また、光源ミラー26は光源14からの光を反射させるだけでよいので、粒子線ビーム1の照射領域内に配置することができる。その結果として、光源ミラー26を小さくできるとともに、粒子線ビーム1の照射軸方向に占める長さ、すなわち、高さも小さくできる。光源ミラー26の高さは数cmでよく、例えば3~4cmとすることができる。このように、光源ミラー26の位置において、粒子線ビーム1の照射方向と垂直する平面において、粒子線ビーム1の照射領域よりも、光源ミラー26の照射方向における高さを小さくできることが、粒子線治療装置の照射部の小型化を図ることができる効果を有するものである。
 さらに、光源ミラー26、支持体27を構成する材料としてアルミニウムからなる場合について述べたが、これに限定されるものではなく、アルミニウム合金、銅、銅箔、マグネシウム、プラスチック、アクリル、ポリミイドなどであってもよく、略45度に傾斜して形成した中央部にミラーコーティングまたは鏡面加工して反射部26aを形成することにより光源ミラー26を構成すればよい。
実施の形態6.
 この発明の実施の形態6による粒子線治療装置を図5に基づいて説明する。図5は粒子線治療装置の要部を示す概略構成図である。図5において、1、12、14、14a、14bは上述した各実施の形態の構成と同様である。29は可変コリメータ12の上流側で粒子線ビーム1の軌道上に配設され、光源14からの光を反射部29aで反射させて可変コリメータ12を通過させる光源ミラーであり、光源14からの光は略水平方向から送出されるので、光源ミラー29は略45度に傾斜されて光源14からの光を光源ミラー29の反射部29aで可変コリメータ12側に反射させている。なお、光源ミラー29は粒子線ビーム1が透過する材料で構成される。30は光源ミラー29を支持する支持体である。
 この発明の実施の形態6による粒子線治療装置は図5から明らかなように、光源ミラー29とその光源ミラー29を支持する支持体30は一体構造体で構成されている。図は一例として、例えば1枚のアルミニウムからなる平面状の円板材の中央部を例えば略円状に切り起こして略45度に傾斜するように折曲し、その切り起こした中央部にミラーコーティングを施して反射部29aを形成することにより光源ミラー29を構成している。ところで、光源ミラー29、支持体30の基材であるアルミニウムの板厚は粒子線ビーム1の透過によるビームエネルギーロスを極力低く抑えるため数mm程度以下が望ましく、例えば0.5mmまたは0.3mmのものが使用される。
 この発明の実施の形態6によれば、1枚のアルミニウムからなる円板材を中央部が略45度に傾斜するよう切り起こして折曲し、その切り起こした中央部にミラーコーティングまたは鏡面加工を施して反射部29aを形成して光源ミラー29を構成し、その光源ミラー29の他の部分を支持体30として構成したことにより、支持体30の中央部を切り起こして折曲するだけでよく、容易に光源ミラー29を形成することができるとともに、その光源ミラー29の支持を一体構造体からなる支持体30で支持することができるので強固な支持構造とすることができる。また、光源ミラー29は光源14からの光を反射させるだけでよいので、粒子線ビーム1の照射領域内に配置することができる。その結果として、光源ミラー29を小さくできるとともに、粒子線ビーム1の照射軸方向に占める長さ、すなわち、高さも小さくできる。光源ミラー29の高さは数cmでよく、例えば3~4cmとすることができる。このように、光源ミラー29の位置において、粒子線ビーム1の照射方向と垂直する平面において、粒子線ビーム1の照射領域よりも、光源ミラー29の照射方向における高さを小さくできることが、粒子線治療装置の照射部の小型化を図ることができる効果を有するものである。
 ところで、この発明の実施の形態6による光源ミラー29、支持体30を構成する材料としてアルミニウムからなる場合について述べたが、これに限定されるものではなく、アルミニウム合金、銅、銅箔、マグネシウム、プラスチック、アクリル、ポリミイドなどであってもよく、略45度に傾斜して形成した光源ミラー29の少なくとも一部にミラーコーティングまたは鏡面加工などを施して反射部29aを形成することにより光源ミラー29を構成しても同様の効果を奏する。
 なお、光源ミラー29の形状が略円状の場合について述べたが、円状に限定されるものではなく、四角形状や他の形状でもよく、要するに、光源14からの光を反射させて可変コリメータ12を通過させ、可変コリメータ12を通過した光により可変コリメータ12により整形された照射野形状が撮影スクリーン18に投影できる形状であればよい。
実施の形態7.
 この発明の実施の形態7による粒子線治療装置は上述した図5における光源ミラー29を凸面鏡としたことを特徴としている。このように光源ミラー29を凸面鏡としたことにより、光源14からの光を凸面鏡の機能により反射させる角度をさらに広げることができるので、水平方向および粒子線ビーム1の照射軸方向に占める長さをより一層小さくすることができる。
実施の形態8.
 この発明の実施の形態8による粒子線治療装置を図6および図7に基づいて説明する。図6は粒子線治療装置の要部を示す概略構成図であり、図7は粒子線治療装置の光源ミラー部を示す拡大図である。これら各図において、1、12、14、14a、14bは上述した各実施の形態の構成と同様である。31は可変コリメータ12の上流側で粒子線ビーム1の軌道上に配設され、光源14からの光を反射部31aで反射させて可変コリメータ12を通過させる光源ミラーであり、光源14からの光は略水平方向から送出されるので、光源ミラー31は略45度に傾斜されて光源14からの光を光源ミラー31の反射部31aで可変コリメータ12側に反射させている。なお、光源ミラー31は粒子線ビーム1が透過する材料で構成される。32は光源ミラー31を支持する支持体であり、光源ミラー31の板厚T1より厚く構成されている。
 すなわち、図7に示すように、支持体32の厚みT2を例えば1.414T1(又はT1/cos(θ))とすることにより、粒子線ビーム1のうち光源ミラー31を透過する粒子線ビームのビームエネルギーロス量と支持体32を透過する粒子線ビームのビームエネルギーロス量とほぼ同じ値になるように構成されている。すなわち、粒子線ビーム1が光源ミラー31およびその支持部である支持体32を通過しても、粒子線ビーム1のビームエネルギーはほぼ同じ値だけ減少するが、粒子線ビーム1のエネルギー分布に殆ど変化が生じないようにすることができる。このことが粒子線ビーム1の患者体内における停止位置を約1mm以下の精度で制御する必要がある粒子線治療装置では、非常に重要な意味を持つものである。
 この発明の実施の形態8による粒子線治療装置は図6および図7から明らかなように、光源ミラー31とその光源ミラー31を支持する支持体32は一体構造体で構成されている。図は一例として、例えば1枚のアルミニウムからなる平面状の円板材の中央部を例えば略円状に切り起こして略45度に傾斜するように折曲し、その切り起こした中央部の厚みT1を中央部の周囲側の厚みT2より薄く、すなわち、T2=1.414T1(又はT1/cos(θ))となるように研磨等で削設し、その後、その中央部にミラーコーティングまたは鏡面加工を施して反射部31aを形成することにより光源ミラー31を構成し、その光源ミラー31の他の部分を支持体32として構成している。
 このように、光源ミラー31の板厚T1とその周囲側の支持体32の板厚T2との関係をT2=1.414T1(又はT1/cos(θ))とすることにより、粒子線ビーム1のうち光源ミラー31を透過する粒子線ビームのビームエネルギーロス量と支持体32を透過する粒子線ビームのビームエネルギーロス量とほぼ同じ値になるように構成され、粒子線ビーム1のエネルギー分布に殆ど変化が生じないので、粒子線ビーム1の患者体内における停止位置を約1mm以下の精度で制御することが可能となり、安定した信頼性の高い粒子線治療装置を得ることができる。
 なお、この発明の実施の形態8においても、光源ミラー31、支持体32の基材であるアルミニウムの板厚は粒子線ビーム1の透過によるロスを極力低く抑えるため数mm程度以下が望ましく、例えば0.5mmまたは0.3mmのものが使用される。また、光源ミラー31は光源14からの光を反射させるだけでよいので、粒子線ビーム1の照射領域内に配置することができる。その結果として、光源ミラー31を小さくできるとともに、粒子線ビーム1の照射軸方向に占める長さ、すなわち、高さも小さくできる。光源ミラー31の高さは数cmでよく、例えば3~4cmとすることができる。このように、光源ミラー31の位置において、粒子線ビーム1の照射方向と垂直する平面において、粒子線ビーム1の照射領域よりも、光源ミラー31の照射方向における高さを小さくできることが、粒子線治療装置の照射部の小型化を図ることができる効果を有するものである。
 さらに、光源ミラー31、支持体32を構成する材料としてアルミニウムからなる場合について述べたが、これに限定されるものではなく、アルミニウム合金、銅、銅箔、マグネシウム、プラスチック、アクリル、ポリミイドなどであってもよく、略45度に傾斜して形成した光源ミラー31の少なくとも一部にミラーコーティングまたは鏡面加工などを施して反射部31aを形成することにより光源ミラー31を構成しても同様の効果を奏する。また、光源ミラー31の形状が略円状の場合について述べたが、円状に限定されるものではなく、四角形状や他の形状でもよく、要するに、光源14からの光を反射させて可変コリメータ12を通過させ、可変コリメータ12を通過した光により可変コリメータ12により整形された照射野形状が撮影スクリーン18に投影できる形状であればよい。
実施の形態9.
 この発明の実施の形態9による粒子線治療装置は上述した図6における光源ミラー31を凸面鏡としたことを特徴としている。このように光源ミラー31を凸面鏡としたことにより、光源14からの光を凸面鏡の機能により反射させる角度をさらに広げることができるので、水平方向および粒子線ビーム1の照射軸方向に占める長さをより一層小さくすることができる。
 この発明の各種の変形または変更は、関連する熟練技術者が、この発明の範囲と精神を逸脱しない中で実現可能であり、この明細書に記載された各実施の形態には制限されないことと理解されるべきである。
 この発明は、癌や悪性腫瘍等の治療のために、炭素、陽子等の粒子線を患者の疾患部分の形状に一致させて照射して治療する粒子線治療装置の実現に好適である。

Claims (9)

  1.  被照射体に照射する粒子線ビームの形状を上記被照射体の疾患部分の形状に合わせて変化させる可変コリメータと、
     上記可変コリメータにより整形された照射野形状を撮影するための光源と、
     上記可変コリメータの上流側で上記粒子線ビームの軌道上に配設され、上記光源からの光を反射させて上記可変コリメータを通過させる光源ミラーと、
     上記可変コリメータの下流側に配設され、上記可変コリメータを通過した光により上記可変コリメータにより整形された照射野形状が投影される撮影スクリーンと、
     上記撮影スクリーンに投影された投影部を撮影する撮影装置と、
     上記撮影装置により撮影した映像を解析する画像処理装置とを、
    備えたことを特徴とする粒子線治療装置。
  2.  上記光源ミラーは上記光源からの光を反射させ上記可変コリメータを通過するように傾斜され、上記光源ミラーの一方端および他方端にそれぞれ配置され上記光源ミラーと一体的に成形された支持体を設け、段違い状態に構成されたことを特徴とする請求項1記載の粒子線治療装置。
  3.  上記光源ミラーは上記粒子線ビームの照射領域内に配置されることを特徴とする請求項2記載の粒子線治療装置。
  4.  上記光源ミラーの厚さは上記支持体の厚さより薄くし、上記光源ミラーと上記支持体を透過する上記粒子線ビームのエネルギーロス量を均一化させるようにしたことを特徴とする請求項2記載の粒子線治療装置。
  5.  上記支持体を平面状としその中央部を切り起こして上記光源からの光を反射させ上記可変コリメータを通過するように傾斜させて光源ミラーを構成したことを特徴とする請求項1記載の粒子線治療装置。
  6.  上記支持体の中央部を切り起こして構成した上記光源ミラーの厚さを上記支持体の厚さより薄くし、上記光源ミラーと上記支持体を透過する上記粒子線ビームのエネルギーロス量を均一化させるようにしたことを特徴とする請求項5記載の粒子線治療装置。
  7.  上記光源ミラーは凸面鏡としたことを特徴とする請求項2、5、及び6のいずれか1項に記載の粒子線治療装置。
  8.  上記光源ミラーはアルミニウムで構成されたことを特徴とする請求項1~7のいずれか1項に記載の粒子線治療装置。
  9.  上記光源ミラーはプラスチックの表面をミラーコーティングして構成されたことを特徴とする請求項1~7のいずれか1項に記載の粒子線治療装置。
PCT/JP2008/073407 2008-12-24 2008-12-24 粒子線治療装置 WO2010073318A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020117013088A KR101217374B1 (ko) 2008-12-24 2008-12-24 입자선 치료장치
JP2010543659A JP4728451B2 (ja) 2008-12-24 2008-12-24 粒子線治療装置
PCT/JP2008/073407 WO2010073318A1 (ja) 2008-12-24 2008-12-24 粒子線治療装置
DE112008004206T DE112008004206B4 (de) 2008-12-24 2008-12-24 Teilchenstrahl-Therapiesystem mit Bestätigung der Formgebung eines variablen Kollimators auch während eines Bestrahlungsvorganges
US13/127,112 US8350234B2 (en) 2008-12-24 2008-12-24 Particle beam therapy system
CN200880132314.XA CN102245263B (zh) 2008-12-24 2008-12-24 粒子射线治疗装置
TW098104024A TWI364304B (en) 2008-12-24 2009-02-09 Particle radiation therapeutic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073407 WO2010073318A1 (ja) 2008-12-24 2008-12-24 粒子線治療装置

Publications (1)

Publication Number Publication Date
WO2010073318A1 true WO2010073318A1 (ja) 2010-07-01

Family

ID=42286987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073407 WO2010073318A1 (ja) 2008-12-24 2008-12-24 粒子線治療装置

Country Status (7)

Country Link
US (1) US8350234B2 (ja)
JP (1) JP4728451B2 (ja)
KR (1) KR101217374B1 (ja)
CN (1) CN102245263B (ja)
DE (1) DE112008004206B4 (ja)
TW (1) TWI364304B (ja)
WO (1) WO2010073318A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114465A1 (ja) 2011-02-23 2012-08-30 三菱電機株式会社 粒子線治療装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010273298B2 (en) 2009-07-15 2014-10-23 Viewray Technologies, Inc. Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
US8586948B2 (en) 2010-07-15 2013-11-19 Mitsubishi Electric Corporation Particle beam irradiation apparatus and particle beam therapy system
WO2012023205A1 (ja) * 2010-08-20 2012-02-23 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
US8948346B2 (en) * 2011-01-17 2015-02-03 Samsung Electronics Co., Ltd. Collimator and control method thereof
JP5701671B2 (ja) * 2011-04-27 2015-04-15 住友重機械工業株式会社 荷電粒子線照射装置
KR101560064B1 (ko) * 2012-12-11 2015-10-15 성균관대학교산학협력단 방사선 국소조사를 위한 차폐기
US9446263B2 (en) 2013-03-15 2016-09-20 Viewray Technologies, Inc. Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) * 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US10617891B2 (en) * 2015-04-23 2020-04-14 Sun Nuclear Corporation Radiation detector calibration
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3423153B1 (en) 2016-03-02 2021-05-19 ViewRay Technologies, Inc. Particle therapy with magnetic resonance imaging
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
WO2018160763A1 (en) 2017-02-28 2018-09-07 Sun Nuclear Corporation Radiation therapy treatment verification with electronic portal imaging device transit images
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN116036499A (zh) 2017-12-06 2023-05-02 优瑞技术公司 多模态放射疗法的优化
US11278744B2 (en) 2018-09-28 2022-03-22 Sun Nuclear Corporation Systems and methods to account for tilt of a radiation measurement system
US11600004B2 (en) 2019-07-10 2023-03-07 Sun Nuclear Corporation Image-based radiation therapy quality assurance
US11378700B2 (en) 2019-07-10 2022-07-05 Sun Nuclear Corporation Scintillator-based radiation therapy quality assurance
KR200490657Y1 (ko) * 2019-09-16 2019-12-12 고려대학교 산학협력단 Kilovoltage X-ray를 이용한 반려동물 방사선 치료 장치
WO2022211550A1 (ko) * 2021-04-01 2022-10-06 주식회사 뷰웍스 입자 빔 조사 장치 및 방법
US20240054646A1 (en) * 2022-08-09 2024-02-15 Varian Medical Systems International Ag Methods, systems and computer readable mediums for light field verification on a patient surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186753U (ja) * 1986-05-19 1987-11-27
JPH06246015A (ja) * 1993-02-24 1994-09-06 Etsuo Kunieda 照射位置監視装置を組み込んだ医療用放射線照射装置
JPH0696048B2 (ja) * 1987-11-17 1994-11-30 三菱電機株式会社 荷電粒子線がん治療装置
JPH1076019A (ja) * 1996-08-12 1998-03-24 Siemens Medical Syst Inc 光照射野サイズと放射線照射野サイズとを一致させる方法および装置
JP2008022896A (ja) * 2006-07-18 2008-02-07 Mitsubishi Electric Corp 位置決め装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3844716C2 (de) * 1987-08-24 2001-02-22 Mitsubishi Electric Corp Partikelstrahlmonitorvorrichtung
DE3900884C2 (de) * 1989-01-13 1994-03-03 Schaefter & Kirchhoff Vorrichtung zum Bestrahlen von operativ freigelegten Tumoren und/oder Tumorgebieten
JP4173756B2 (ja) * 2003-03-25 2008-10-29 富士フイルム株式会社 放射線照射装置の品質管理装置
JP4294064B2 (ja) * 2007-06-01 2009-07-08 三菱電機株式会社 粒子線治療装置
DE102011082257B4 (de) * 2011-09-07 2016-08-25 Siemens Healthcare Gmbh Verifikation eines Bestrahlungsfeldes unter Verwendung eines virtuellen Isozentrums

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186753U (ja) * 1986-05-19 1987-11-27
JPH0696048B2 (ja) * 1987-11-17 1994-11-30 三菱電機株式会社 荷電粒子線がん治療装置
JPH06246015A (ja) * 1993-02-24 1994-09-06 Etsuo Kunieda 照射位置監視装置を組み込んだ医療用放射線照射装置
JPH1076019A (ja) * 1996-08-12 1998-03-24 Siemens Medical Syst Inc 光照射野サイズと放射線照射野サイズとを一致させる方法および装置
JP2008022896A (ja) * 2006-07-18 2008-02-07 Mitsubishi Electric Corp 位置決め装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114465A1 (ja) 2011-02-23 2012-08-30 三菱電機株式会社 粒子線治療装置
US8536548B2 (en) 2011-02-23 2013-09-17 Mitsubishi Electric Corporation Particle beam therapy system
JP5484629B2 (ja) * 2011-02-23 2014-05-07 三菱電機株式会社 粒子線治療装置

Also Published As

Publication number Publication date
CN102245263B (zh) 2014-04-16
KR20110086139A (ko) 2011-07-27
US20110204262A1 (en) 2011-08-25
DE112008004206B4 (de) 2013-06-20
JP4728451B2 (ja) 2011-07-20
US8350234B2 (en) 2013-01-08
CN102245263A (zh) 2011-11-16
TW201023933A (en) 2010-07-01
JPWO2010073318A1 (ja) 2012-05-31
DE112008004206T5 (de) 2012-05-16
TWI364304B (en) 2012-05-21
KR101217374B1 (ko) 2012-12-31

Similar Documents

Publication Publication Date Title
JP4728451B2 (ja) 粒子線治療装置
KR101551369B1 (ko) 정맥 인증장치, 정맥 인증용 촬상장치 및 정맥 조사방법
JP4294064B2 (ja) 粒子線治療装置
US5657368A (en) Apparatus for positioning and marking a patient at a diagnostic apparatus
JP4282198B2 (ja) 粒子線照射装置
EP2653192B1 (en) Particle beam therapy device
JP2004321408A (ja) 放射線照射装置および放射線照射方法
KR101950362B1 (ko) 3차원 스캐닝 기술 및 피드백을 이용한 광 감응성 피부질환 자외선 표적 광선 치료 장치 및 방법
CN103492027A (zh) 带电粒子束照射装置
JP4173756B2 (ja) 放射線照射装置の品質管理装置
JP5401391B2 (ja) 粒子線治療計画装置及び治療計画方法
JP5075260B2 (ja) 粒子線治療装置
US8681936B2 (en) Radiotherapeutic apparatus
JPH1128252A (ja) 照射野の形成方法及び形成装置
KR101901181B1 (ko) 입체 인식을 통한 균일 조사가 가능한 저출력 광 치료 시스템
US10507135B2 (en) Ophthalmic treatment apparatus and treatment beam radiating method for said apparatus
JP5059723B2 (ja) 粒子線治療装置
KR20140112002A (ko) 더블 헤드 방식의 광 치료장치
US20100049282A1 (en) Phototherapy Apparatus for Hair Loss Treatment
JP2001276238A (ja) 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射方法及び装置
CN109481852A (zh) 多叶准直装置和放射线控制方法
JPH11197258A (ja) 放射線治療装置
JP2004305498A (ja) 放射線調整手段およびこれを用いた放射線治療装置
KR20170110474A (ko) 3차원 스캐닝 기술을 이용한 피사체 자외선 표적 광선 치료 방법 및 시스템
KR20200048810A (ko) 확산 광학 단층촬영용 광조사 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132314.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543659

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13127112

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117013088

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120080042063

Country of ref document: DE

Ref document number: 112008004206

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879114

Country of ref document: EP

Kind code of ref document: A1