WO2010072675A2 - Method for producing thin, free-standing layers of solid state materials with structured surfaces - Google Patents
Method for producing thin, free-standing layers of solid state materials with structured surfaces Download PDFInfo
- Publication number
- WO2010072675A2 WO2010072675A2 PCT/EP2009/067539 EP2009067539W WO2010072675A2 WO 2010072675 A2 WO2010072675 A2 WO 2010072675A2 EP 2009067539 W EP2009067539 W EP 2009067539W WO 2010072675 A2 WO2010072675 A2 WO 2010072675A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- auxiliary layer
- layer
- solid state
- auxiliary
- state material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D1/00—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
- B28D1/22—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
- B28D1/221—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D1/00—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
- B28D1/22—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00634—Processes for shaping materials not provided for in groups B81C1/00444 - B81C1/00626
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/03—Processes for manufacturing substrate-free structures
- B81C2201/038—Processes for manufacturing substrate-free structures not provided for in B81C2201/034 - B81C2201/036
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/10—Methods
Definitions
- Fig.2 illustrates schematically the process sequence of the present method in four steps (from top to bottom), in perspective view;
- the patterning step (STEP 3) is performed using irradiation with a laser beam instead of cutting with a sharp knife.
- the laser preferably has a frequency that is strongly absorbed by PDMS (a CO 2 laser meets this criterion), and preferably the intensity and the motion of the beam over the PDMS layer 3a is controlled in an automated or manual fashion to cut a desired pattern.
- Commercially available laser cutters e.g., VERSA LASER VLS 6.60, with 60 Watt CO 2 laser are acceptable.
- UV light ultraviolet
- the PDMS layer 3a is then exposed to UV irradiation (e.g., 254 nm, 10-30 min) through an amplitude photomask showing the desired pattern 6.
- UV irradiation e.g., 254 nm, 10-30 min
- the exposed regions of the PDMS layer 3a become stiffer and less elastomeric, and have a CTE and elastic modulus that are different from those of the surrounding areas.
- the PDMS (or other polymer, or in general any material in the auxiliary layer) may also be chemically modified to facilitate a particular form of cure (or, in general, solidifying, possibly generating internal stress inside the layer during solidification already), for example, curing PDMS by UV irradiation may be facilitated, e.g., by immersing the PDMS in benzophenone (a photosensitizer that generates radicals under irradiation), or by, e.g., replacing the methyl groups in the PDMS with photoreactive substituents.
- benzophenone a photosensitizer that generates radicals under irradiation
- the three-layer composite (PDMS 3a - wafer 2 - PDMS 3b) is cooled down to room temperature. After that, any PDMS protruding along the circumference of the wafer 2 is removed with a sharp knife, such that the edge of the wafer 2 is essentially free of PDMS, and PDMS covers only the two faces 1 a and 1 b of the wafer 2. It is possible to avoid having any PDMS protrude over the circumference of the wafer (and thus touch the edge of the wafer) by applying the PDMS to the wafer face carefully and letting it equilibrate on a horizontal surface; in this way the surface tension of the PDMS will keep it from overflowing onto the wafer edges.
- the PDMS (or other polymer) in the auxiliary layer can be cured (i.e., its polymer chains cross-linked) by means other than heating it on a hotplate.
- it may be heated by blowing a hot gas over it, or irradiating it with, e.g., infrared light.
- curing may be accomplished using chemical additives, ultraviolet radiation, or electron beam.
- different formulations of the same material may be used in different parts of the auxiliary layer, for example, different polymer chain lengths are used depending on the position within the auxiliary layer.
- different degrees of cross-linking of polymer chains may be used, depending on the position within the auxiliary layer (a locally higher degree of cross-linking may be used to locally increase the glass transition temperature, i.e., to make the material stiffer at predefineable locations within the auxiliary layer).
- Predefineable patterns of areas with locally differing degree of cross-linking may e.g. be created through selective irradiation with a UV light source, e.g. through a mask or by directing a UV laser beam over the desired areas, in particular when using photocurable polymers.
- non-homogeneous physical conditions inside the auxiliary layer may include creating anisotropic material properties in pre-defined parts of the auxiliary layer. For example, preferentially aligning and/or orienting polymer chains in certain pre-defined parts of an auxiliary layer substantially comprising a polymer results in pre-definable parts of the auxiliary layer having substantially anisotropic elastic modulus. For example, this facilitates fracture (spalling) to start and/or progress more preferentially along certain directions in the work piece rather than along other directions.
- an auxiliary layer comprising one or more materials with anisotropic material properties is used for producing thin layers from a work piece that also has anisotropic material properties.
- An additional advantage of the invention is that the production of very thin sheets (less than approximately 100 micrometer thickness) is faster and less labor-intensive than with previous methods, such as e.g. grinding and polishing.
- the wafer 2 can be used straight out of wafer production, or it can be roughly pre-cleaned using conventional methods (e.g., with organic solvents and water, or by plasma oxidation cleaning).
- STEP 2 On each face 1a and 1 b of the wafer 2 a thin layer 3a and 3b of polydiorganolsiloxane (e.g., polydimethylsiloxane, or PDMS; the ensuing discussions refers to PDMS for convenience, but it should be understood that any suitable silicone polymer or copolymer may be employed) is applied and cured (or allowed to cure).
- polydiorganolsiloxane e.g., polydimethylsiloxane, or PDMS; the ensuing discussions refers to PDMS for convenience, but it should be understood that any suitable silicone polymer or copolymer may be employed
- thin, free-standing layers of solid state materials are produced by inducing locally controllable stresses in the solid state material. Such stresses are induced by setting up locally controlled stresses in an auxiliary layer that adheres to the solid state material.
- the auxiliary layer may be joined to a work piece of solid state material through sufficiently strong adhesion. Under appropriate conditions, the mechanical stresses lead to the splitting-off of a thin layer from the work piece, in parallel to the interface between work piece and auxiliary layer, with the auxiliary layer still adhering to the split-off thin layer.
- the auxiliary layer is then patterned and used as a mask, i.e., the material of the auxiliary layer is selectively removed in certain areas (e.g. by photolithography) in order to form a pattern of mask openings.
- the auxiliary layer locally definable structures can be formed on the underlying surface of the thin layer of solid state material by a number of well-known techniques, e.g., by physical vapor deposition.
- One advantage of using such tunnels is that, in principle, in each tunnel a different structure formation process can be used, which allows simultaneous application of different structure formation processes on the thin layer, using only one single mask (e.g., simultaneous electrodeposition of different metals in different tunnels). In this way, for example, different locally definable surface structures consisting of different materials can be created simultaneously on the same thin layer of solid state material, using only one single mask.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Micromachines (AREA)
- Printing Methods (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Photovoltaic Devices (AREA)
- Laser Beam Processing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2011130872/28A RU2011130872A (ru) | 2008-12-23 | 2009-12-18 | Способ получения тонких отдельных слоев твердотельных материалов со структурированными поверхностями |
| AU2009331646A AU2009331646A1 (en) | 2008-12-23 | 2009-12-18 | Method for producing thin, free-standing layers of solid state materials with structured surfaces |
| BRPI0923536A BRPI0923536A2 (pt) | 2008-12-23 | 2009-12-18 | método para produção de camadas livres de assentamento, delgadas, de materiais de estado sólido com superfícies estruturadas |
| JP2011542787A JP5762973B2 (ja) | 2008-12-23 | 2009-12-18 | 構造化表面を備えた固体状材料の薄い独立層を生産する方法 |
| ES09807540T ES2418142T3 (es) | 2008-12-23 | 2009-12-18 | Procedimiento para producir capas independientes delgadas de materiales en estado sólido con superficies estructuradas |
| CA 2747840 CA2747840A1 (en) | 2008-12-23 | 2009-12-18 | Method for producing thin, free-standing layers of solid state materials with structured surfaces |
| MX2011006750A MX2011006750A (es) | 2008-12-23 | 2009-12-18 | Metodo para producir capas autoestables delgadas de materiales de estado solido con superficies estructuradas. |
| US13/141,821 US8877077B2 (en) | 2008-12-23 | 2009-12-18 | Method for producing thin, free-standing layers of solid state materials with structured surfaces |
| CN200980157357.8A CN102325717B (zh) | 2008-12-23 | 2009-12-18 | 生产具有结构化表面的薄的、独立式固态材料层的方法 |
| EP20090807540 EP2379440B1 (en) | 2008-12-23 | 2009-12-18 | Method for producing thin, free-standing layers of solid state materials with structured surfaces |
| KR1020117017441A KR101527627B1 (ko) | 2008-12-23 | 2009-12-18 | 구조화 표면을 갖는 고상 재료의 얇은 자립층을 제조하는 방법 |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14046608P | 2008-12-23 | 2008-12-23 | |
| US61/140,466 | 2008-12-23 | ||
| US17544709P | 2009-05-04 | 2009-05-04 | |
| US61/175,447 | 2009-05-04 | ||
| US17610509P | 2009-05-06 | 2009-05-06 | |
| US61/176,105 | 2009-05-06 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2010072675A2 true WO2010072675A2 (en) | 2010-07-01 |
| WO2010072675A3 WO2010072675A3 (en) | 2011-04-14 |
Family
ID=42288178
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2009/067539 Ceased WO2010072675A2 (en) | 2008-12-23 | 2009-12-18 | Method for producing thin, free-standing layers of solid state materials with structured surfaces |
Country Status (12)
| Country | Link |
|---|---|
| US (1) | US8877077B2 (enExample) |
| EP (3) | EP2379440B1 (enExample) |
| JP (1) | JP5762973B2 (enExample) |
| KR (1) | KR101527627B1 (enExample) |
| CN (1) | CN102325717B (enExample) |
| AU (1) | AU2009331646A1 (enExample) |
| BR (1) | BRPI0923536A2 (enExample) |
| CA (1) | CA2747840A1 (enExample) |
| ES (1) | ES2418142T3 (enExample) |
| MX (1) | MX2011006750A (enExample) |
| RU (1) | RU2011130872A (enExample) |
| WO (1) | WO2010072675A2 (enExample) |
Cited By (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011104096A1 (en) * | 2010-02-26 | 2011-09-01 | International Business Machines Corporation | Multijunction photovoltaic cell fabrication |
| CN102856232A (zh) * | 2011-06-29 | 2013-01-02 | 国际商业机器公司 | 用于改进基板可重用性的边缘排除剥离方法 |
| US8440129B2 (en) | 2007-11-02 | 2013-05-14 | President And Fellows Of Harvard College | Production of free-standing solid state layers by thermal processing of substrates with a polymer |
| DE102012001620A1 (de) | 2012-01-30 | 2013-08-01 | Siltectra Gmbh | Verfahren zur Herstellung von dünnen Platten aus Werkstoffen geringer Duktilität mittels temperaturinduzierter mechanischer Spannung unter Verwendung von vorgefertigten Polymer-Folien |
| DE102012013539A1 (de) | 2012-07-06 | 2014-01-09 | Siltectra Gmbh | Wafer und Verfahren zur Herstellung von Wafern mit Oberflächenstrukturen |
| US8633097B2 (en) | 2009-06-09 | 2014-01-21 | International Business Machines Corporation | Single-junction photovoltaic cell |
| US8802477B2 (en) | 2009-06-09 | 2014-08-12 | International Business Machines Corporation | Heterojunction III-V photovoltaic cell fabrication |
| DE102013007671A1 (de) | 2013-05-03 | 2014-11-06 | Siltectra Gmbh | Verfahren zur Herstellung eines Wafers mit Trägereinheit |
| DE102013007672A1 (de) | 2013-05-03 | 2014-11-06 | Siltectra Gmbh | Verfahren und Vorrichtung zur Waferherstellung mit vordefinierter Bruchauslösestelle |
| DE102013007673A1 (de) | 2013-05-03 | 2014-11-06 | Siltectra Gmbh | Verfahren zur Herstellung von Wafern mittels einer vordefinierten Spannungsverteilung |
| DE102013017272A1 (de) | 2013-06-06 | 2014-12-11 | Siltectra Gmbh | Vorrichtung und Verfahren zum Erzeugen von Schichtanordnungen mittels fluidischer Fließbarriere |
| DE102013014615A1 (de) | 2013-09-02 | 2015-03-05 | Siltectra Gmbh | Vorrichtung und Verfahren zur Herstellung eines Wafers mit einer Rissverlaufsbeeinflussung |
| DE102013014623A1 (de) | 2013-09-02 | 2015-03-05 | Siltectra Gmbh | Vorrichtung und Verfahren zur Herstellung eines Wafers mit einer selektiven Positionierung im Trägersystem |
| DE102014013107A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Neuartiges Waferherstellungsverfahren |
| DE102013016682A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Erzeugung einer Rissauslösestelle oder einer Rissführung zum verbesserten Abspalten einer Festkörperschicht von einem Festkörper |
| DE102013016669A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Kombiniertes Herstellungsverfahren zum Abtrennen mehrerer dünner Festkörperschichten von einem dicken Festkörper |
| DE102014014486A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Neuartiges Waferherstellungsverfahren |
| DE102013016693A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Herstellungsverfahren für Festkörperelemente mittels Laserbehandlung und temperaturinduzierten Spannungen |
| DE102013016665A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Kombiniertes Waferherstellungsverfahren mit lonenimplantation und temperaturinduzierten Spannungen |
| DE102014004574A1 (de) | 2014-03-28 | 2015-10-01 | Siltectra Gmbh | Verfahren zur Herstellung von Festkörperschichten mittels lokaler Modifikation von Leit-Stütz-Struktur-Eigenschaften einer mehrschichtigen Anordnung |
| WO2015165552A1 (de) * | 2014-04-30 | 2015-11-05 | Siltectra Gmbh | Kombiniertes festkörperherstellungsverfahren mit laserbehandlung und temperaturinduzierten spannungen zur erzeugung dreidimensionaler festkörper |
| DE102014014422A1 (de) | 2014-09-29 | 2016-03-31 | Siltectra Gmbh | Kombiniertes Waferherstellungsverfahren mit einer Löcher aufweisenden Aufnahmeschicht |
| DE102015103118A1 (de) | 2014-10-06 | 2016-04-07 | Siltectra Gmbh | Splitting-Verfahren und Verwendung eines Materials in einem Splitting-Verfahren |
| DE102015000450A1 (de) | 2015-01-15 | 2016-07-21 | Siltectra Gmbh | Abtrennvorrichtung zum spanfreien Abtrennen von Wafern von Spendersubstraten |
| DE102015003369A1 (de) | 2015-03-16 | 2016-09-22 | Siltectra Gmbh | Transparenter und hochstabiler Displayschutz |
| DE102015004347A1 (de) | 2015-04-02 | 2016-10-06 | Siltectra Gmbh | Erzeugung von physischen Modifikationen mittels LASER im Inneren eines Festkörpers |
| DE102015006971A1 (de) | 2015-04-09 | 2016-10-13 | Siltectra Gmbh | Verfahren zum verlustarmen Herstellen von Mehrkomponentenwafern |
| DE102015004603A1 (de) | 2015-04-09 | 2016-10-13 | Siltectra Gmbh | Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen |
| DE102012209706B4 (de) * | 2011-06-14 | 2016-11-10 | Globalfoundries Inc. | Verfahren zur Herstellung von zwei Bauelement-Wafern aus einem einzelnen Basissubstrat durch Anwendung eines gesteuerten Abspaltprozesses |
| DE102015008037A1 (de) | 2015-06-23 | 2016-12-29 | Siltectra Gmbh | Verfahren zum Führen eines Risses im Randbereich eines Spendersubstrats |
| DE102015008034A1 (de) | 2015-06-23 | 2016-12-29 | Siltectra Gmbh | Verfahren zum Führen eines Risses im Randbereich eines Spendersubstrats |
| DE102016000051A1 (de) | 2016-01-05 | 2017-07-06 | Siltectra Gmbh | Verfahren und Vorrichtung zum planaren Erzeugen von Modifikationen in Festkörpern |
| WO2017162800A1 (de) | 2016-03-24 | 2017-09-28 | Siltectra Gmbh | Polymer-hybrid-material zur verwendung in einem splitting-verfahren |
| DE102016105616A1 (de) | 2016-03-24 | 2017-09-28 | Siltectra Gmbh | Polymer-Hybrid-Material, dessen Verwendung in einem Splitting-Verfahren und Verfahren zur Herstellung des Polymer-Hybrid-Materials |
| DE102016014821A1 (de) | 2016-12-12 | 2018-06-14 | Siltectra Gmbh | Verfahren zum Dünnen von mit Bauteilen versehenen Festkörperschichten |
| WO2018108938A1 (de) | 2016-12-12 | 2018-06-21 | Siltectra Gmbh | Verfahren zum dünnen von mit bauteilen versehenen festkörperschichten |
| US20180233347A1 (en) * | 2014-09-29 | 2018-08-16 | Siltectra Gmbh | Combined wafer production method with a multi-component receiving layer |
| WO2018192691A1 (de) | 2017-04-20 | 2018-10-25 | Siltectra Gmbh | Verfahren zum dünnen von mit bauteilen versehenen festkörperschichten |
| DE102017010284A1 (de) | 2017-11-07 | 2019-05-09 | Siltectra Gmbh | Verfahren zum Dünnen von mit Bauteilen versehenen Festkörperschichten |
| DE102018001605A1 (de) | 2018-03-01 | 2019-09-05 | Siltectra Gmbh | Verfahren zum Kompensieren von Verformungen eines mittels Laserstrahl behandelten und/oder beschichteten Festkörpers |
| DE102018111450A1 (de) * | 2018-05-14 | 2019-11-14 | Infineon Technologies Ag | Verfahren zum Verarbeiten eines Breiter-Bandabstand-Halbleiterwafers, Verfahren zum Bilden einer Mehrzahl von dünnen Breiter-Bandabstand-Halbleiterwafern und Breiter-Bandabstand-Halbleiterwafer |
| US11130200B2 (en) | 2016-03-22 | 2021-09-28 | Siltectra Gmbh | Combined laser treatment of a solid body to be split |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101781461B (zh) * | 2009-01-16 | 2012-01-25 | 清华大学 | 电致伸缩复合材料及其制备方法 |
| US8852994B2 (en) | 2010-05-24 | 2014-10-07 | Masimo Semiconductor, Inc. | Method of fabricating bifacial tandem solar cells |
| US8455290B2 (en) * | 2010-09-04 | 2013-06-04 | Masimo Semiconductor, Inc. | Method of fabricating epitaxial structures |
| KR101332306B1 (ko) * | 2012-03-30 | 2013-11-22 | 한국기계연구원 | 프리스탠딩 나노 박막 제조방법 |
| US20130316538A1 (en) * | 2012-05-23 | 2013-11-28 | International Business Machines Corporation | Surface morphology generation and transfer by spalling |
| BR102012016393A2 (pt) * | 2012-07-02 | 2015-04-07 | Rexam Beverage Can South America S A | Dispositivo de impressão em latas, processo de impressão em latas, lata impressa e blanqueta |
| US9245955B2 (en) | 2013-06-28 | 2016-01-26 | Stmicroelectronics, Inc. | Embedded shape SiGe for strained channel transistors |
| KR20150006121A (ko) * | 2013-07-08 | 2015-01-16 | 서울대학교산학협력단 | 폴리아세틸렌 나노파이버 온도센서 |
| US20150201504A1 (en) * | 2014-01-15 | 2015-07-16 | Applied Nanotech, Inc. | Copper particle composition |
| DE102015000449A1 (de) * | 2015-01-15 | 2016-07-21 | Siltectra Gmbh | Festkörperteilung mittels Stoffumwandlung |
| EP4122633B1 (de) * | 2014-11-27 | 2025-03-19 | Siltectra GmbH | Festkörperteilung mittels stoffumwandlung |
| EP3223994B1 (de) | 2014-11-27 | 2023-04-26 | Siltectra GmbH | Laserbasiertes trennverfahren |
| DE102015104147B4 (de) | 2015-03-19 | 2019-09-12 | Osram Opto Semiconductors Gmbh | Verfahren zur Ablösung eines Aufwachssubstrats von einer Schichtenfolge |
| US10515981B2 (en) | 2015-09-21 | 2019-12-24 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with memory |
| EP3427044B1 (en) * | 2016-03-08 | 2025-07-16 | Arizona Board of Regents on behalf of Arizona State University | Sound-assisted crack propagation for semiconductor wafering |
| GB201616955D0 (en) * | 2016-10-06 | 2016-11-23 | University Of Newcastle Upon Tyne | Micro-milling |
| CN110713167B (zh) * | 2018-07-13 | 2024-01-16 | 浙江清华柔性电子技术研究院 | 微流体器件、微流体系统 |
| CN109345959A (zh) * | 2018-10-12 | 2019-02-15 | 京东方科技集团股份有限公司 | 一种柔性衬底、柔性显示面板、柔性显示装置和制作方法 |
| CN109665486B (zh) * | 2018-12-24 | 2020-08-28 | 中山大学 | 微杯及其转印制备方法和应用 |
| US11787690B1 (en) | 2020-04-03 | 2023-10-17 | Knowles Electronics, Llc. | MEMS assembly substrates including a bond layer |
| CN112276176A (zh) * | 2020-10-20 | 2021-01-29 | 哈尔滨工业大学 | 一种应用于折叠波导慢波结构的微铣削毛刺抑制方法 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4582559A (en) * | 1984-04-27 | 1986-04-15 | Gould Inc. | Method of making thin free standing single crystal films |
| US6943448B2 (en) * | 2003-01-23 | 2005-09-13 | Akustica, Inc. | Multi-metal layer MEMS structure and process for making the same |
| CN1227153C (zh) * | 2003-12-25 | 2005-11-16 | 中国电子科技集团公司第十三研究所 | 全干法硅-铝-硅结构微机械加工方法 |
| US9390999B2 (en) * | 2005-03-23 | 2016-07-12 | Noriaki Kawamura | Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure |
| EP1863100A1 (en) * | 2006-05-30 | 2007-12-05 | INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) | Method for the production of thin substrates |
| CN101274738A (zh) * | 2007-03-28 | 2008-10-01 | 中国科学院微电子研究所 | 基于多晶硅特性制作热剪切应力传感器的方法 |
-
2009
- 2009-12-18 CN CN200980157357.8A patent/CN102325717B/zh active Active
- 2009-12-18 EP EP20090807540 patent/EP2379440B1/en active Active
- 2009-12-18 ES ES09807540T patent/ES2418142T3/es active Active
- 2009-12-18 EP EP13163979.1A patent/EP2620409B1/en not_active Not-in-force
- 2009-12-18 US US13/141,821 patent/US8877077B2/en active Active
- 2009-12-18 WO PCT/EP2009/067539 patent/WO2010072675A2/en not_active Ceased
- 2009-12-18 CA CA 2747840 patent/CA2747840A1/en not_active Abandoned
- 2009-12-18 JP JP2011542787A patent/JP5762973B2/ja active Active
- 2009-12-18 KR KR1020117017441A patent/KR101527627B1/ko active Active
- 2009-12-18 AU AU2009331646A patent/AU2009331646A1/en not_active Abandoned
- 2009-12-18 EP EP13163963.5A patent/EP2620408B1/en active Active
- 2009-12-18 RU RU2011130872/28A patent/RU2011130872A/ru not_active Application Discontinuation
- 2009-12-18 BR BRPI0923536A patent/BRPI0923536A2/pt not_active IP Right Cessation
- 2009-12-18 MX MX2011006750A patent/MX2011006750A/es not_active Application Discontinuation
Non-Patent Citations (1)
| Title |
|---|
| "Stress-induced large-area lift-off of crystalline Si films", APPLIED PHYSISCS A, MATERIAL SCIENCE & PROCESSING, vol. 89, no. 1 |
Cited By (82)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8440129B2 (en) | 2007-11-02 | 2013-05-14 | President And Fellows Of Harvard College | Production of free-standing solid state layers by thermal processing of substrates with a polymer |
| US8633097B2 (en) | 2009-06-09 | 2014-01-21 | International Business Machines Corporation | Single-junction photovoltaic cell |
| US8703521B2 (en) | 2009-06-09 | 2014-04-22 | International Business Machines Corporation | Multijunction photovoltaic cell fabrication |
| US8802477B2 (en) | 2009-06-09 | 2014-08-12 | International Business Machines Corporation | Heterojunction III-V photovoltaic cell fabrication |
| US8823127B2 (en) | 2009-06-09 | 2014-09-02 | International Business Machines Corporation | Multijunction photovoltaic cell fabrication |
| US8659110B2 (en) | 2010-02-26 | 2014-02-25 | International Business Machines Corporation | Single-junction photovoltaic cell |
| WO2011104096A1 (en) * | 2010-02-26 | 2011-09-01 | International Business Machines Corporation | Multijunction photovoltaic cell fabrication |
| DE102012209706B4 (de) * | 2011-06-14 | 2016-11-10 | Globalfoundries Inc. | Verfahren zur Herstellung von zwei Bauelement-Wafern aus einem einzelnen Basissubstrat durch Anwendung eines gesteuerten Abspaltprozesses |
| CN102856232A (zh) * | 2011-06-29 | 2013-01-02 | 国际商业机器公司 | 用于改进基板可重用性的边缘排除剥离方法 |
| DE102012001620A1 (de) | 2012-01-30 | 2013-08-01 | Siltectra Gmbh | Verfahren zur Herstellung von dünnen Platten aus Werkstoffen geringer Duktilität mittels temperaturinduzierter mechanischer Spannung unter Verwendung von vorgefertigten Polymer-Folien |
| DE102012001620B4 (de) | 2012-01-30 | 2025-02-13 | Siltectra Gmbh | Verfahren zur Herstellung von dünnen Platten aus Werkstoffen geringer Duktilität |
| DE102012013539A1 (de) | 2012-07-06 | 2014-01-09 | Siltectra Gmbh | Wafer und Verfahren zur Herstellung von Wafern mit Oberflächenstrukturen |
| DE102013007671A1 (de) | 2013-05-03 | 2014-11-06 | Siltectra Gmbh | Verfahren zur Herstellung eines Wafers mit Trägereinheit |
| US10269643B2 (en) | 2013-05-03 | 2019-04-23 | Siltectra, GmbH | Method and device for the production of wafers with a pre-defined break initiation point |
| US10304738B2 (en) | 2013-05-03 | 2019-05-28 | Siltectra | Method and device for the production of wafers with a pre-defined break initiation point |
| DE102013007673A1 (de) | 2013-05-03 | 2014-11-06 | Siltectra Gmbh | Verfahren zur Herstellung von Wafern mittels einer vordefinierten Spannungsverteilung |
| US10580699B1 (en) | 2013-05-03 | 2020-03-03 | Siltectra Gmbh | Method and device for the production of wafers with a pre-defined break initiation point |
| DE102013007672A1 (de) | 2013-05-03 | 2014-11-06 | Siltectra Gmbh | Verfahren und Vorrichtung zur Waferherstellung mit vordefinierter Bruchauslösestelle |
| US10825732B2 (en) | 2013-05-03 | 2020-11-03 | Siltectra Gmbh | Method of producing stresses in a semiconductor wafer |
| DE102013017272A1 (de) | 2013-06-06 | 2014-12-11 | Siltectra Gmbh | Vorrichtung und Verfahren zum Erzeugen von Schichtanordnungen mittels fluidischer Fließbarriere |
| DE102013014615A1 (de) | 2013-09-02 | 2015-03-05 | Siltectra Gmbh | Vorrichtung und Verfahren zur Herstellung eines Wafers mit einer Rissverlaufsbeeinflussung |
| DE102013014623A1 (de) | 2013-09-02 | 2015-03-05 | Siltectra Gmbh | Vorrichtung und Verfahren zur Herstellung eines Wafers mit einer selektiven Positionierung im Trägersystem |
| DE102013016669A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Kombiniertes Herstellungsverfahren zum Abtrennen mehrerer dünner Festkörperschichten von einem dicken Festkörper |
| US10593590B2 (en) | 2013-10-08 | 2020-03-17 | Siltectra Gmbh | Combined wafer production method with laser treatment and temperature-induced stresses |
| DE102014013107A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Neuartiges Waferherstellungsverfahren |
| DE102013016682A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Erzeugung einer Rissauslösestelle oder einer Rissführung zum verbesserten Abspalten einer Festkörperschicht von einem Festkörper |
| US11699616B2 (en) | 2013-10-08 | 2023-07-11 | Siltectra Gmbh | Method for producing a layer of solid material |
| US11201081B2 (en) | 2013-10-08 | 2021-12-14 | Siltectra Gmbh | Method for separating thin layers of solid material from a solid body |
| US11004723B2 (en) | 2013-10-08 | 2021-05-11 | Siltectra Gmbh | Wafer production method |
| DE102013016665A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Kombiniertes Waferherstellungsverfahren mit lonenimplantation und temperaturinduzierten Spannungen |
| DE102013016693A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Herstellungsverfahren für Festkörperelemente mittels Laserbehandlung und temperaturinduzierten Spannungen |
| US10312135B2 (en) | 2013-10-08 | 2019-06-04 | Siltectra, GmbH | Combined wafer production method with laser treatment and temperature-induced stresses |
| DE102014014486A1 (de) | 2013-10-08 | 2015-04-09 | Siltectra Gmbh | Neuartiges Waferherstellungsverfahren |
| DE102014004574A1 (de) | 2014-03-28 | 2015-10-01 | Siltectra Gmbh | Verfahren zur Herstellung von Festkörperschichten mittels lokaler Modifikation von Leit-Stütz-Struktur-Eigenschaften einer mehrschichtigen Anordnung |
| US10079171B2 (en) | 2014-04-30 | 2018-09-18 | Siltectra, GmbH | Combined method for producing solids, involving laser treatment and temperature-induced stresses to generate three-dimensional solids |
| WO2015165552A1 (de) * | 2014-04-30 | 2015-11-05 | Siltectra Gmbh | Kombiniertes festkörperherstellungsverfahren mit laserbehandlung und temperaturinduzierten spannungen zur erzeugung dreidimensionaler festkörper |
| CN106460230B (zh) * | 2014-04-30 | 2019-05-21 | 西尔特克特拉有限责任公司 | 利用激光处理和温度诱导应力用于产生三维固体的组合式固体制造方法 |
| CN106460230A (zh) * | 2014-04-30 | 2017-02-22 | 西尔特克特拉有限责任公司 | 利用激光处理和温度诱导应力用于产生三维固体的组合式固体制造方法 |
| DE102014006328A1 (de) | 2014-04-30 | 2015-11-05 | Siltectra Gmbh | Kombiniertes Festkörperherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen zur Erzeugung dreidimensionaler Festkörper |
| US10707068B2 (en) | 2014-09-29 | 2020-07-07 | Siltectra Gmbh | Combined wafer production method with a multi-component receiving layer |
| US20180233347A1 (en) * | 2014-09-29 | 2018-08-16 | Siltectra Gmbh | Combined wafer production method with a multi-component receiving layer |
| DE102014014422A1 (de) | 2014-09-29 | 2016-03-31 | Siltectra Gmbh | Kombiniertes Waferherstellungsverfahren mit einer Löcher aufweisenden Aufnahmeschicht |
| US10960574B2 (en) | 2014-09-29 | 2021-03-30 | Siltectra Gmbh | Combined wafer production method with a receiving layer having holes |
| WO2016055443A1 (de) * | 2014-10-06 | 2016-04-14 | Siltectra Gmbh | Splitting-verfahren und verwendung eines materials in einem splitting-verfahren |
| EP3361495A1 (de) * | 2014-10-06 | 2018-08-15 | Siltectra GmbH | Polymer-hybrid-material, verfahren zu dessen herstellung sowie dessen verwendung und splitting-verfahren |
| US10229835B2 (en) | 2014-10-06 | 2019-03-12 | Siltectra Gmbh | Splitting method and use of a material in a splitting method |
| DE102015103118A1 (de) | 2014-10-06 | 2016-04-07 | Siltectra Gmbh | Splitting-Verfahren und Verwendung eines Materials in einem Splitting-Verfahren |
| DE102015000450A1 (de) | 2015-01-15 | 2016-07-21 | Siltectra Gmbh | Abtrennvorrichtung zum spanfreien Abtrennen von Wafern von Spendersubstraten |
| DE102015003369A1 (de) | 2015-03-16 | 2016-09-22 | Siltectra Gmbh | Transparenter und hochstabiler Displayschutz |
| DE102015004347A1 (de) | 2015-04-02 | 2016-10-06 | Siltectra Gmbh | Erzeugung von physischen Modifikationen mittels LASER im Inneren eines Festkörpers |
| US11518066B2 (en) | 2015-04-09 | 2022-12-06 | Siltectra Gmbh | Method of treating a solid layer bonded to a carrier substrate |
| DE102015004603A1 (de) | 2015-04-09 | 2016-10-13 | Siltectra Gmbh | Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen |
| US10843380B2 (en) | 2015-04-09 | 2020-11-24 | Siltectra Gmbh | Method for the material-saving production of wafers and processing of wafers |
| DE102015006971A1 (de) | 2015-04-09 | 2016-10-13 | Siltectra Gmbh | Verfahren zum verlustarmen Herstellen von Mehrkomponentenwafern |
| US10676386B2 (en) | 2015-06-23 | 2020-06-09 | Siltectra Gmbh | Method for guiding a crack in the peripheral region of a donor substrate |
| US10280107B2 (en) | 2015-06-23 | 2019-05-07 | Siltectra, GmbH | Method for guiding a crack in the peripheral region of a donor substrate |
| US12097641B2 (en) | 2015-06-23 | 2024-09-24 | Siltectra Gmbh | Method for forming a crack in an edge region of a donor substrate |
| US10994442B2 (en) | 2015-06-23 | 2021-05-04 | Siltectra Gmbh | Method for forming a crack in the edge region of a donor substrate, using an inclined laser beam |
| DE102015008034A1 (de) | 2015-06-23 | 2016-12-29 | Siltectra Gmbh | Verfahren zum Führen eines Risses im Randbereich eines Spendersubstrats |
| WO2016207277A1 (de) | 2015-06-23 | 2016-12-29 | Siltectra Gmbh | Verfahren zum führen eines risses im randbereich eines spendersubstrats mit einem geneigten laserstrahl |
| DE102015008037A1 (de) | 2015-06-23 | 2016-12-29 | Siltectra Gmbh | Verfahren zum Führen eines Risses im Randbereich eines Spendersubstrats |
| DE102016000051A1 (de) | 2016-01-05 | 2017-07-06 | Siltectra Gmbh | Verfahren und Vorrichtung zum planaren Erzeugen von Modifikationen in Festkörpern |
| WO2017118533A1 (de) | 2016-01-05 | 2017-07-13 | Siltectra Gmbh | Verfahren und vorrichtung zum planaren erzeugen von modifikationen in festkörpern |
| US11130200B2 (en) | 2016-03-22 | 2021-09-28 | Siltectra Gmbh | Combined laser treatment of a solid body to be split |
| US10858495B2 (en) | 2016-03-24 | 2020-12-08 | Siltectra Gmbh | Polymer hybrid material for use in a splitting method |
| WO2017162800A1 (de) | 2016-03-24 | 2017-09-28 | Siltectra Gmbh | Polymer-hybrid-material zur verwendung in einem splitting-verfahren |
| DE102016105616A1 (de) | 2016-03-24 | 2017-09-28 | Siltectra Gmbh | Polymer-Hybrid-Material, dessen Verwendung in einem Splitting-Verfahren und Verfahren zur Herstellung des Polymer-Hybrid-Materials |
| US10978311B2 (en) | 2016-12-12 | 2021-04-13 | Siltectra Gmbh | Method for thinning solid body layers provided with components |
| US12211702B2 (en) | 2016-12-12 | 2025-01-28 | Siltectra Gmbh | Solid body and multi-component arrangement |
| DE102016014821A1 (de) | 2016-12-12 | 2018-06-14 | Siltectra Gmbh | Verfahren zum Dünnen von mit Bauteilen versehenen Festkörperschichten |
| WO2018108938A1 (de) | 2016-12-12 | 2018-06-21 | Siltectra Gmbh | Verfahren zum dünnen von mit bauteilen versehenen festkörperschichten |
| WO2018192691A1 (de) | 2017-04-20 | 2018-10-25 | Siltectra Gmbh | Verfahren zum dünnen von mit bauteilen versehenen festkörperschichten |
| US12159805B2 (en) | 2017-04-20 | 2024-12-03 | Siltectra Gmbh | Method for producing wafers with modification lines of defined orientation |
| US11869810B2 (en) | 2017-04-20 | 2024-01-09 | Siltectra Gmbh | Method for reducing the thickness of solid-state layers provided with components |
| WO2019091634A1 (de) | 2017-11-07 | 2019-05-16 | Siltectra Gmbh | Verfahren zum dünnen von mit bauteilen versehenen festkörperschichten |
| US11664277B2 (en) | 2017-11-07 | 2023-05-30 | Siltectra Gmbh | Method for thinning solid-body layers provided with components |
| DE102017010284A1 (de) | 2017-11-07 | 2019-05-09 | Siltectra Gmbh | Verfahren zum Dünnen von mit Bauteilen versehenen Festkörperschichten |
| DE102018001605A1 (de) | 2018-03-01 | 2019-09-05 | Siltectra Gmbh | Verfahren zum Kompensieren von Verformungen eines mittels Laserstrahl behandelten und/oder beschichteten Festkörpers |
| US11887894B2 (en) | 2018-05-14 | 2024-01-30 | Infineon Technologies Ag | Methods for processing a wide band gap semiconductor wafer using a support layer and methods for forming a plurality of thin wide band gap semiconductor wafers using support layers |
| DE102018111450B4 (de) | 2018-05-14 | 2024-06-20 | Infineon Technologies Ag | Verfahren zum Verarbeiten eines Breiter-Bandabstand-Halbleiterwafers, Verfahren zum Bilden einer Mehrzahl von dünnen Breiter-Bandabstand-Halbleiterwafern und Breiter-Bandabstand-Halbleiterwafer |
| US11107732B2 (en) | 2018-05-14 | 2021-08-31 | Infineon Technologies Ag | Methods for processing a wide band gap semiconductor wafer, methods for forming a plurality of thin wide band gap semiconductor wafers, and wide band gap semiconductor wafers |
| DE102018111450A1 (de) * | 2018-05-14 | 2019-11-14 | Infineon Technologies Ag | Verfahren zum Verarbeiten eines Breiter-Bandabstand-Halbleiterwafers, Verfahren zum Bilden einer Mehrzahl von dünnen Breiter-Bandabstand-Halbleiterwafern und Breiter-Bandabstand-Halbleiterwafer |
Also Published As
| Publication number | Publication date |
|---|---|
| BRPI0923536A2 (pt) | 2016-01-26 |
| ES2418142T3 (es) | 2013-08-12 |
| CA2747840A1 (en) | 2010-07-01 |
| US8877077B2 (en) | 2014-11-04 |
| JP2012513312A (ja) | 2012-06-14 |
| AU2009331646A2 (en) | 2011-09-15 |
| WO2010072675A3 (en) | 2011-04-14 |
| EP2620409A1 (en) | 2013-07-31 |
| US20110259936A1 (en) | 2011-10-27 |
| CN102325717A (zh) | 2012-01-18 |
| EP2379440B1 (en) | 2013-04-17 |
| MX2011006750A (es) | 2011-09-06 |
| AU2009331646A1 (en) | 2011-07-28 |
| EP2620408B1 (en) | 2016-03-09 |
| EP2620409B1 (en) | 2017-03-01 |
| JP5762973B2 (ja) | 2015-08-12 |
| CN102325717B (zh) | 2015-11-25 |
| EP2379440A2 (en) | 2011-10-26 |
| EP2620408A1 (en) | 2013-07-31 |
| KR20110110781A (ko) | 2011-10-07 |
| AU2009331646A8 (en) | 2011-08-04 |
| KR101527627B1 (ko) | 2015-06-10 |
| RU2011130872A (ru) | 2013-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2379440B1 (en) | Method for producing thin, free-standing layers of solid state materials with structured surfaces | |
| TWI426546B (zh) | 利用具聚合物基板之熱製程的自立式固態層的生產方法 | |
| KR100395077B1 (ko) | 복합부재의 분리방법 및 박막제작방법 | |
| US8501589B2 (en) | Method in the microelectronics fields of forming a monocrystalline layer | |
| CA2406214A1 (en) | Deposited thin films and their use in separation and sarcrificial layer applications | |
| US11664277B2 (en) | Method for thinning solid-body layers provided with components | |
| CN102137959B (zh) | 晶体制造装置、使用该晶体制造装置制造的半导体设备以及使用该晶体制造装置制造半导体设备的方法 | |
| JP2012169363A (ja) | 基板加工方法 | |
| CN1872657A (zh) | 微结构及其制造方法 | |
| Serrano et al. | Micron-scale buckling of SiO 2 on Si | |
| CN113363148B (zh) | 一种基于蓝宝石衬底的石墨烯薄膜切割方法 | |
| TWI496189B (zh) | 製造具結構表面之固態材料之薄獨立層的方法 | |
| US7655578B2 (en) | Method for nanostructuring of the surface of a substrate | |
| JP2003229588A (ja) | 薄膜半導体の製造方法及び太陽電池の製造方法 | |
| JP2007007845A (ja) | 微小構造体、およびその作製方法 | |
| JP2009111146A (ja) | 半導体チップ及びその製造方法 | |
| GB2489397A (en) | A method of cleaving thin semiconductor substrates using a surface trench and side etching | |
| CA2714546A1 (en) | Production of free-standing solid state layers by thermal processing of substrates with a polymer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980157357.8 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09807540 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2747840 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2011542787 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/006750 Country of ref document: MX |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009331646 Country of ref document: AU Ref document number: 13141821 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 3002/KOLNP/2011 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009807540 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20117017441 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011130872 Country of ref document: RU |
|
| ENP | Entry into the national phase |
Ref document number: 2009331646 Country of ref document: AU Date of ref document: 20091218 Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI0923536 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: PI0923536 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110622 |