WO2010071106A1 - 天然ゴム、その製造方法、ゴム組成物およびこれを用いた空気入りタイヤ、改質天然ゴムおよびその製造方法、並びに、トレッドまたはカーカスコード被覆用ゴム組成物およびこれらを用いた空気入りタイヤ - Google Patents

天然ゴム、その製造方法、ゴム組成物およびこれを用いた空気入りタイヤ、改質天然ゴムおよびその製造方法、並びに、トレッドまたはカーカスコード被覆用ゴム組成物およびこれらを用いた空気入りタイヤ Download PDF

Info

Publication number
WO2010071106A1
WO2010071106A1 PCT/JP2009/070824 JP2009070824W WO2010071106A1 WO 2010071106 A1 WO2010071106 A1 WO 2010071106A1 JP 2009070824 W JP2009070824 W JP 2009070824W WO 2010071106 A1 WO2010071106 A1 WO 2010071106A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural rubber
rubber
mass
less
content
Prior art date
Application number
PCT/JP2009/070824
Other languages
English (en)
French (fr)
Inventor
市川直哉
榊俊明
宮崎澄子
細川友宏
松浦亜衣
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008318710A external-priority patent/JP4598853B2/ja
Priority claimed from JP2008318711A external-priority patent/JP4810568B2/ja
Priority claimed from JP2009019711A external-priority patent/JP4603615B2/ja
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to KR1020117012913A priority Critical patent/KR101695039B1/ko
Priority to EP09833409.7A priority patent/EP2377892B1/en
Priority to RU2011120479/05A priority patent/RU2535681C2/ru
Priority to CN200980151606.2A priority patent/CN102245644B/zh
Priority to US13/139,536 priority patent/US8658728B2/en
Priority to BRPI0922386A priority patent/BRPI0922386A2/pt
Publication of WO2010071106A1 publication Critical patent/WO2010071106A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • C08C1/04Purifying; Deproteinising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • C08C19/06Epoxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F253/00Macromolecular compounds obtained by polymerising monomers on to natural rubbers or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the present invention relates to a natural rubber, a production method thereof, a rubber composition and a pneumatic tire using the same, a modified natural rubber and a production method thereof, and a rubber composition for covering a tread or a carcass cord and a pneumatic using the same. Regarding tires.
  • Natural rubber is used in many fields ranging from industrial products such as tires, belts and rolls to sports equipment such as tennis balls.
  • a rubber product is repeatedly compressed, recovered, and stretched during use to accumulate heat loss and generate heat. This heat promotes fatigue of the rubber and shortens the life of the rubber product.
  • the heat generation increases as the energy loss expressed by the loss tangent tan ⁇ increases.
  • the rolling resistance depends on the magnitude of tan ⁇ at 50 to 70 ° C.
  • tan ⁇ is large, not only the heat generation increases, but also the rolling resistance increases.
  • the fuel consumption of automobiles deteriorates. Therefore, in the case of a tread of a fuel-saving tire, it is desirable that tan ⁇ at 50 to 70 ° C. is small.
  • Patent Document 1 discloses a method of immersing solid natural rubber swollen with a solvent in an alkali hydroxide solution.
  • Patent Document 2 a method for removing magnesium phosphate by adding a phosphate to natural rubber latex
  • Patent Document 3 a method for adding a proteolytic enzyme and a surfactant to natural rubber latex and ripening is patented.
  • Document 4 discloses a method of adding a surfactant to natural rubber latex and washing it.
  • the modification of natural rubber is generally performed in a latex state stabilized with a surfactant because of cost and ease of handling, but in some cases, it is also performed in a solid rubber state or in a rubber solution.
  • a surfactant such as proteins
  • about 5% of non-rubber components such as proteins are present in ordinary natural rubber latex.
  • about 3% of non-rubber components are present in commercially available concentrated latex. Therefore, these non-rubber components, particularly proteins, inhibit the modification of natural rubber.
  • the graft ratio and graft efficiency are lowered, and a high modification effect and modification efficiency are obtained. There was a problem that it could not be obtained.
  • a deproteinized natural rubber is produced by a method of degrading a protein by adding a proteolytic enzyme to latex or a method of repeatedly washing with a surfactant, and epoxidizing the deproteinized natural rubber.
  • a method for producing a modified natural rubber is disclosed.
  • these methods can reduce the protein to some extent, the phospholipid, which is one of the causes for inhibiting the modification of natural rubber, has not been sufficiently removed, and there is room for improvement. is there.
  • the fuel consumption of a vehicle has been reduced by reducing the rolling resistance of the tire and suppressing heat generation.
  • there has been an increasing demand for reducing fuel consumption of vehicles by using tires and there is a particularly large demand for reducing fuel consumption by improving treads that have a high occupation ratio among tire members.
  • Known methods for satisfying the low heat build-up of the rubber composition include a method using a low reinforcing filler, a method for reducing the content of the reinforcing filler, and the like.
  • silica as a filler, rolling resistance is reduced to reduce fuel consumption.
  • a carcass cord such as a steel cord is generally used as a reinforcing material.
  • the rubber composition covering the carcass cord is required to have high rubber strength and strong adhesion to the carcass cord.
  • Patent Document 7 discloses a method for achieving both low fuel consumption performance and adhesion performance by using a solution-polymerized styrene butadiene rubber having a modifying group capable of interacting with silica.
  • a solution-polymerized styrene butadiene rubber having a modifying group capable of interacting with silica Of the components, only the styrene butadiene rubber component has been studied, and the natural rubber component has not been studied.
  • Natural rubber has a higher Mooney viscosity than other synthetic rubbers and has poor processability. Therefore, it is usually used after mastication by adding a chelating agent to lower the Mooney viscosity. Therefore, when natural rubber is used, such a process is required, so that productivity is lowered. Further, since the molecular chain of natural rubber is cut by mastication, there is a problem that the characteristics (for example, high wear performance, low fuel consumption performance, and rubber strength) of the high molecular weight polymer inherent to natural rubber are lost. It was.
  • Natural rubber latex is collected as sap of Hevea tree and contains water, proteins, lipids, inorganic salts and the like in addition to rubber components. There is a report that processability is improved by removing proteins contained in natural rubber.
  • Patent Document 1 discloses a method in which solid natural rubber swollen with a solvent is immersed in alkali hydroxide
  • Patent Document 2 discloses a method in which natural rubber latex is phosphated. Is added to the natural rubber latex, and a method of aging by adding a proteolytic enzyme and a surfactant to the natural rubber latex. A method of adding an agent and performing a cleaning treatment is disclosed.
  • Patent Documents 1 to 3, 8, and 9 can remove proteins to some extent, they are not at a sufficient level. In addition, there is a problem that phospholipids and the like can hardly be removed. Further, it has not been studied to apply the natural rubber obtained by these methods to a tire tread or a rubber for covering a carcass cord.
  • the present invention provides a natural rubber that solves the above-described problems, has excellent processability and is effective in reducing fuel consumption of a tire, a rubber composition using the natural rubber, and a tire that generates less heat and has low rolling resistance.
  • the purpose is to do.
  • Another object of the present invention is to solve the above-described problems and provide a modified natural rubber having an excellent modifying effect and a method for producing a modified natural rubber having high reforming efficiency.
  • the present invention solves the above-described problems and can achieve both high fuel efficiency (low rolling resistance) and high wear resistance while having excellent workability that does not require a mastication step. It aims at providing the rubber composition for tire treads.
  • a pneumatic tire having a tread produced using the rubber composition.
  • it improves the adhesion performance with the carcass cord and can achieve both high fuel efficiency (low rolling resistance) and high rubber strength.
  • An object of the present invention is to provide a rubber composition for covering a cord. Moreover, it aims at providing the pneumatic tire which has a carcass produced using this rubber composition.
  • the present invention relates to a natural rubber having a phosphorus content of 200 ppm or less.
  • the natural rubber preferably has a gel content measured as a toluene insoluble content of 20% by mass or less.
  • the natural rubber has substantially no phospholipid and no peak due to phospholipid at -3 ppm to 1 ppm in 31 P NMR measurement of the chloroform extract.
  • the natural rubber preferably has a nitrogen content of 0.3% by mass or less.
  • the natural rubber preferably has a nitrogen content of 0.15% by mass or less.
  • the present invention comprises a step of saponifying natural rubber latex with alkali, washing the saponified and agglomerated rubber, and then drying, and the step is completed within 15 days after collecting the natural rubber latex. It relates to a manufacturing method.
  • the phosphorus content with respect to the rubber content in the natural rubber latex is reduced to 200 ppm or less by washing and removing the phosphorus compound separated by saponification.
  • the gel content in the natural rubber measured as a toluene insoluble content is preferably 20% by mass or less.
  • the nitrogen content in the natural rubber is preferably 0.3% by mass or less.
  • the nitrogen content in the natural rubber is preferably 0.15% by mass or less.
  • the present invention also relates to a rubber composition containing the natural rubber and a vulcanizing agent.
  • the present invention also relates to a pneumatic tire using the rubber composition.
  • the present invention also relates to a modified natural rubber which is modified by subjecting a natural rubber having a phosphorus content of 200 ppm or less to a graft copolymerization treatment of an organic compound having an unsaturated bond.
  • the present invention also relates to a modified natural rubber obtained by modifying a natural rubber having a phosphorus content of 200 ppm or less by an addition reaction with an organic compound.
  • the present invention also relates to a modified natural rubber obtained by modifying a natural rubber having a phosphorus content of 200 ppm or less by epoxidation treatment.
  • the natural rubber having a phosphorus content of 200 ppm or less is preferably obtained by saponifying natural rubber latex.
  • the modified natural rubber preferably has substantially no phospholipid and no peak due to phospholipid at -3 ppm to 1 ppm in 31 P NMR measurement of the chloroform extract.
  • the present invention provides the modified rubber composition in which the phosphorus compound is removed until the phosphorus content relative to the rubber content in the natural rubber latex is 200 ppm or less, and then the obtained natural rubber is graft copolymerized with an organic compound having an unsaturated bond.
  • the present invention relates to a method for producing quality natural rubber.
  • the present invention also provides a method for producing the above modified natural rubber, in which the phosphorus compound is removed until the phosphorus content relative to the rubber content in the natural rubber latex is 200 ppm or less, and then the resulting natural rubber is subjected to an addition reaction with an organic compound. About.
  • the present invention also relates to a method for producing the above-mentioned modified natural rubber, in which the phosphorus compound is removed until the phosphorus content relative to the rubber content in the natural rubber latex is 200 ppm or less, and then the resulting natural rubber is epoxidized.
  • the phosphorus compound is preferably removed by saponifying natural rubber latex.
  • the present invention also relates to a rubber composition for a tire tread in which carbon black and / or a white filler is blended with a rubber component containing 5% by mass or more of a natural rubber having a phosphorus content of 200 ppm or less.
  • the nitrogen content of the natural rubber is preferably 0.3% by mass or less.
  • the nitrogen content of the natural rubber is preferably 0.15% by mass or less.
  • the gel content measured as a toluene insoluble content of the natural rubber is 20% by mass or less.
  • the natural rubber is preferably obtained by saponifying natural rubber latex.
  • the white filler is preferably silica.
  • this invention relates to the manufacturing method of the said rubber composition for tire treads which does not include the process of masticating natural rubber.
  • this invention relates to the pneumatic tire which has a tread produced using the said rubber composition for tire treads.
  • the present invention also relates to a rubber composition for covering a carcass cord in which carbon black and / or a white filler is blended with a rubber component containing 5% by mass or more of a natural rubber having a phosphorus content of 200 ppm or less.
  • the nitrogen content of the natural rubber is preferably 0.3% by mass or less.
  • the nitrogen content of the natural rubber is preferably 0.15% by mass or less.
  • the gel content measured as a toluene insoluble content of the natural rubber is 20% by mass or less.
  • the natural rubber is preferably obtained by saponifying natural rubber latex.
  • the white filler is preferably silica.
  • the content of the natural rubber in 100% by mass of the rubber component is preferably 60 to 100% by mass.
  • this invention relates to the manufacturing method of the said rubber composition for carcass cord
  • the present invention also relates to a pneumatic tire having a carcass produced using the rubber composition for covering a carcass cord.
  • natural rubber can be obtained by saponifying and washing natural rubber latex in a fresh state to remove as much as possible the phosphorus compound originally contained in natural rubber.
  • the rubber composition containing the natural rubber (hereinafter also referred to as the rubber composition of the present invention) has a small tan ⁇ at 50 to 70 ° C., and is excellent in terms of heat generation and reduction in rolling resistance, high strength, and tearing. It has improved resistance and good workability because it has a Mooney viscosity lower than that of kneaded, and it has excellent properties that are unprecedented in that it does not require kneading and is excellent in productivity. Further, when this material is used as a tire material, heat generation is low and rolling resistance is low, so that it is effective in reducing the fuel consumption of the tire and is excellent in wet grip.
  • the phosphorus compound (for example, phospholipid) originally contained in the natural rubber is removed as much as possible by a technique such as saponification treatment of natural rubber latex and washing treatment after saponification treatment.
  • a modified natural rubber having an excellent modification effect for example, In the case of graft copolymerization, it is possible to obtain a modified natural rubber having a high graft ratio, and also to reform natural rubber with a high modification efficiency (for example, high graft efficiency in the case of graft copolymerization). It can be performed.
  • natural rubber having a phosphorus content of 200 ppm or less is used, so that it has excellent processability and does not require a mastication step.
  • a rubber composition containing a natural rubber having a phosphorus content of 200 ppm or less and carbon black and / or a white filler as a tire tread (hereinafter also referred to as a tire tread rubber composition of the present invention). It is possible to achieve both high fuel efficiency (low rolling resistance) and high wear resistance.
  • the rubber composition as a carcass cord covering rubber (hereinafter also referred to as a carcass cord covering rubber composition of the present invention)
  • the adhesion performance with the carcass cord is improved, and further high fuel efficiency (low) (Rolling resistance) and high rubber strength can both be achieved.
  • the natural rubber of the present invention has a phosphorus content of 200 ppm or less.
  • the phosphorus content in the natural rubber of the present invention is 200 ppm or less, preferably 150 ppm or less, and more preferably 100 ppm or less. When it exceeds 200 ppm, the amount of gel increases during storage, and the tan ⁇ of the vulcanized rubber tends to increase.
  • the phosphorus content can be measured by a conventional method such as ICP emission analysis. Phosphorus is derived from phospholipids (phosphorus compounds).
  • the gel content in the natural rubber of the present invention is preferably 20% by mass or less, and more preferably 10% by mass or less. If it exceeds 20% by mass, the processability tends to decrease, for example, the Mooney viscosity increases.
  • the gel content means a value measured as an insoluble content with respect to toluene which is a nonpolar solvent, and may be simply referred to as “gel content” or “gel content” below.
  • the measuring method of the content rate of a gel part is as follows.
  • a natural rubber sample is soaked in dehydrated toluene, light-shielded in the dark and left for 1 week, and then the toluene solution is centrifuged at 1.3 ⁇ 10 5 rpm for 30 minutes to obtain an insoluble gel content and a toluene soluble content. Isolate. Methanol is added to the insoluble gel and solidified, and then dried, and the gel content is determined from the ratio between the mass of the gel and the original mass of the sample.
  • the natural rubber of the present invention is preferably substantially free of phospholipids.
  • “Substantially free of phospholipid” represents a state in which a natural rubber sample is extracted with chloroform and a peak due to phospholipid does not exist at ⁇ 3 ppm to 1 ppm in 31 P NMR measurement of the extract.
  • the phosphorus peak present at -3 ppm to 1 ppm is a peak derived from the phosphate structure of phosphorus in the phospholipid.
  • the nitrogen content is preferably 0.3% by mass or less, and more preferably 0.15% by mass or less.
  • the Mooney viscosity tends to increase during storage.
  • Nitrogen is derived from proteins.
  • the nitrogen content can be measured by a conventional method such as Kjeldahl method.
  • Examples of the method for producing the natural rubber of the present invention include a method of producing a natural rubber latex by saponifying with an alkali, washing the saponified and agglomerated rubber, and then drying.
  • the saponification treatment is performed by adding an alkali and, if necessary, a surfactant to natural rubber latex and allowing to stand at a predetermined temperature for a predetermined time. In addition, you may perform stirring etc. as needed.
  • the phosphorus compound separated by saponification is washed away, so that the phosphorus content of natural rubber can be suppressed.
  • the protein in natural rubber is decomposed by the saponification treatment, the nitrogen content of the natural rubber can be suppressed.
  • saponification is performed by adding alkali to natural rubber latex, but there is an effect that saponification treatment can be efficiently performed by adding it to natural rubber latex.
  • Natural rubber latex is collected as sap of heavy trees and contains rubber, water, proteins, lipids, inorganic salts, etc., and the gel content in rubber is thought to be based on the complex presence of various impurities. .
  • raw latex produced by tapping a heavy tree or purified latex concentrated by centrifugation can be used.
  • high ammonia latex to which ammonia is added by a conventional method may be used in order to prevent the progress of decay due to bacteria present in the raw rubber latex and to avoid coagulation of the latex.
  • the rubber latex to be used for the production of raw rubber needs to be within 15 days after being collected as described above, and is preferably within 10 days after being collected.
  • alkali used for the saponification treatment examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, and an amine compound. From the viewpoint of the effect of the saponification treatment and the influence on the stability of the natural rubber latex, it is particularly hydroxylated. Sodium or potassium hydroxide is preferably used.
  • the amount of alkali added is not particularly limited, but the lower limit is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and the upper limit is 12 parts by mass or less with respect to 100 parts by mass of the solid content of natural rubber latex. Is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and particularly preferably 5 parts by mass or less. If the amount of alkali added is less than 0.1 parts by mass, saponification may take time. Conversely, if the amount of alkali added exceeds 12 parts by mass, the natural rubber latex may be destabilized.
  • an anionic surfactant examples include carboxylic acid-based, sulfonic acid-based, sulfate ester-based and phosphate ester-based anionic surfactants.
  • examples of nonionic surfactants include nonionic surfactants such as polyoxyalkylene ethers, polyoxyalkylene esters, polyhydric alcohol fatty acid esters, sugar fatty acid esters, and alkyl polyglycosides.
  • the amphoteric surfactant examples include amphoteric surfactants such as amino acid type, betaine type, and amine oxide type.
  • the addition amount of the surfactant is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and the upper limit is preferably 6 parts by mass or less with respect to 100 parts by mass of the solid content of the natural rubber latex. 5 mass parts or less are more preferable, 3.5 mass parts or less are more preferable, and 3 mass parts or less are especially preferable. If the addition amount of the surfactant is less than 0.01 parts by mass, the natural rubber latex may become unstable during the saponification treatment. On the other hand, if the amount of the surfactant added exceeds 6 parts by mass, the natural rubber latex is too stabilized and it may be difficult to coagulate.
  • the temperature of the saponification treatment can be set as appropriate as long as the saponification reaction with alkali can proceed at a sufficient reaction rate and the natural rubber latex does not cause alteration such as coagulation, but is usually 20 to 70 ° C. It is preferable that the temperature is 30 to 70 ° C. Further, the treatment time depends on the treatment temperature when the natural rubber latex is allowed to stand, but it takes 3 to 48 hours considering sufficient treatment and productivity improvement. It is preferable that it is 3 to 24 hours.
  • the agglomerated rubber is crushed and washed.
  • the aggregation method include a method of adjusting pH by adding an acid such as formic acid.
  • the washing treatment include a method of diluting the rubber with water and washing it, and then performing a centrifugal separation treatment to take out the rubber.
  • centrifuging first, the natural rubber latex is diluted with water so that the rubber content is 5 to 40% by mass, preferably 10 to 30% by mass. Then, it may be centrifuged at 5000 to 10000 rpm for 1 to 60 minutes. After completion of the washing treatment, a saponified natural rubber latex is obtained.
  • the natural rubber of the present invention is obtained by drying the saponified natural rubber latex.
  • the saponification, washing and drying steps are completed within 15 days after collecting the natural rubber latex.
  • the saponification, washing and drying steps are preferably completed within 10 days (more preferably within 5 days) after the latex is collected. This is because the gel content increases if the sample is left for more than 15 days without solidification after collection.
  • the rubber composition of the present invention contains a vulcanizing agent in addition to the natural rubber.
  • a vulcanizing agent include sulfur, organic peroxides, thiurams and the like.
  • the blending amount of the vulcanizing agent is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component, the lower limit is more preferably 0.5 parts by mass, and the upper limit is more preferably 3 parts by mass. If the addition amount is less than 0.1 parts by mass, a sufficient degree of crosslinking may not be obtained. On the other hand, if the addition amount exceeds 5 parts by mass, the degree of crosslinking becomes too high, and the physical properties may be deteriorated.
  • the rubber composition of the present invention includes a reinforcing agent such as silica and carbon black, a vulcanization accelerator, various oils, an anti-aging agent, a softening agent, a plasticizer, etc.
  • a reinforcing agent such as silica and carbon black
  • This invention relates to the pneumatic tire produced using the said rubber composition, This tire is manufactured by a normal method using the rubber composition of this invention. That is, if necessary, the rubber composition of the present invention blended with the above various chemicals is extruded in accordance with the shape of each member of the tire at an unvulcanized stage, and molded by a normal method on a tire molding machine. And an unvulcanized tire is formed. This unvulcanized tire is heated and pressurized in a vulcanizer to obtain a tire.
  • the pneumatic tire of the present invention thus obtained can achieve both on-ice performance and steering stability on a dry road surface.
  • the modified natural rubber of the present invention is obtained by modifying a natural rubber having a phosphorus content of 200 ppm or less (the natural rubber of the present invention).
  • the phosphorus content in the natural rubber is 200 ppm or less, preferably 100 ppm or less. If it exceeds 200 ppm, the modification effect and modification efficiency (for example, graft efficiency in the case of graft copolymerization) in producing modified natural rubber from natural rubber tend to be reduced.
  • the natural rubber of the present invention can be produced, for example, by saponifying natural rubber latex with alkali and washing the agglomerated rubber as described above.
  • the collected natural rubber latex is saponified in a fresh state. After saponification, it is washed thoroughly with water to remove phospholipids that are non-rubber components on the surface of natural rubber latex particles. It is inferred that reforming can be performed at
  • a modified natural rubber obtained by graft copolymerization with an organic compound having an unsaturated bond is added with an organic compound having an unsaturated bond to a saponified natural rubber latex, and an appropriate polymerization is started. It is obtained by adding an agent and reacting.
  • the organic compound having an unsaturated bond include methacrylic acid and acrylic acid such as methacrylic acid, acrylic acid, methyl methacrylate, methyl acrylate, and 2-hydroxyethyl methacrylate, or derivatives thereof, acrylonitrol, vinyl acetate, styrene, and acrylamide.
  • monomers capable of graft copolymerization such as vinyl pyrrolidone.
  • an emulsifier is added to the latex in advance, or the organic compound having an unsaturated bond is emulsified and then added to the latex.
  • the emulsifier is not particularly limited, but a nonionic surfactant is preferably used.
  • the amount of the organic compound having an unsaturated bond is usually 5 parts by mass or more, more preferably 10 parts by mass or more, and the upper limit is preferably 100 parts by mass or less, based on 100 parts by mass of natural rubber. Less than the mass part is more preferable. If the addition amount of the organic compound having an unsaturated bond is less than 5 parts by mass, the grafting amount of the organic compound having an unsaturated bond may be reduced, and the modification effect may be reduced. Conversely, when the amount of the organic compound having an unsaturated bond exceeds 100 parts by mass, the production of homopolymer increases and the graft efficiency may be lowered.
  • polymerization initiator examples include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, 2,2-azobisisobutyronitrile, and potassium persulfate.
  • a redox polymerization initiator in order to reduce the polymerization temperature.
  • examples of the reducing agent combined with the peroxide include tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid, and the like.
  • Examples of preferable combinations in the redox polymerization initiator include tert-butyl hydroperoxide and tetraethylenepentamine, hydrogen peroxide and Fe 2+ salt, K 2 SO 2 O 8 and NaHSO 3 and the like. In addition, these may be used independently and may use 2 or more types together.
  • the addition amount of the polymerization initiator is preferably 0.3 mol or more, more preferably 0.5 mol or more, and the upper limit is preferably 10 mol or less, relative to 100 mol of the organic compound having an unsaturated bond, 1 mol.
  • the following is more preferable.
  • These components are charged into a reaction vessel and reacted at 30 to 80 ° C. for 2 to 10 hours to obtain a graft copolymer.
  • the natural rubber having a phosphorus content of 200 ppm or less may be in a latex state, or may be a rubber solution or a solid rubber.
  • the graft copolymer (modified natural rubber) obtained as described above has a high graft ratio (ratio of the mass of the graft polymerized monomer with respect to the mass of the main chain polymer) and a high graft efficiency (the graft polymerized monomer with respect to the total polymerized mass of the monomer). Therefore, it is excellent in properties such as adhesiveness while maintaining strength, and can be suitably used for applications such as adhesives.
  • the addition reaction of the organic compound to the natural rubber having a phosphorus content of 200 ppm or less in the present invention is performed, for example, by adding an organic compound such as a thiol compound to a saponified natural rubber latex and adding the organic compound to the natural rubber.
  • an organic compound such as a thiol compound
  • the thiol compound include ethyl mercaptan, 1-propanethiol, n-butyl mercaptan, 1-hexanethiol, 1-dodecanethiol, 1-octanethiol, benzenethiol, 1,2-ethanedithiol, 1,3-propane.
  • an emulsifier may be added to the latex in advance, or the thiol compound may be added to the latex after being emulsified with the emulsifier.
  • an organic peroxide can also be added as needed.
  • the emulsifier is not particularly limited, but a nonionic surfactant is preferably used.
  • the addition amount of the thiol compound is usually preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and the upper limit is preferably 20 parts by mass or less, relative to 100 parts by mass of natural rubber. Part or less is more preferable. There exists a tendency for the effect by thiol compound addition to be small that the addition amount of a thiol compound is less than 0.1 mass part. Conversely, if the amount of thiol compound added exceeds 20 parts by mass, the processability of rubber may be deteriorated.
  • the addition reaction is preferably carried out with stirring.
  • the above components such as latex and thiol compound are charged in a reaction vessel and irradiated with 500 to 1000 W of microwave for 10 minutes to 1 hour, thereby allowing saponification natural rubber to be added.
  • a modified natural rubber in which a thiol compound is added to the molecule is obtained.
  • the above-described components such as latex and thiol compound are charged into a reaction vessel and allowed to react at 30 to 80 ° C. for 10 minutes to 24 hours, whereby a modified thiol compound is added to a saponified natural rubber molecule. Rubber is obtained.
  • the natural rubber having a phosphorus content of 200 ppm or less to be used may be in a latex state as in the grafting described above, and can be carried out with a rubber solution or a solid rubber.
  • the organic compound adduct of the saponified natural rubber thus obtained has a high addition reaction rate (mass of added organic compound / mass of main chain polymer), and thus exhibits high reinforcement and is suitable for applications such as tire treads. Can be used.
  • the epoxidation treatment for the natural rubber having a phosphorus content of 200 ppm or less in the present invention is performed, for example, by adding an organic peracid to a saponification natural rubber latex and epoxidizing the natural rubber.
  • the organic peracid include perbenzoic acid, peracetic acid, performic acid, perphthalic acid, perpropionic acid, trifluoroperacetic acid, perbutyric acid, and the like.
  • These organic peracids may be added directly to the latex, but it is preferable to add two components that form the organic peracid to the latex so that the organic peracid produced reacts with the natural rubber in the latex.
  • formic acid and hydrogen peroxide may be added sequentially.
  • glacial acetic acid and hydrogen peroxide may be added sequentially to cause the reaction.
  • the amount of the organic peracid added is usually preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and the upper limit is preferably 70 parts by mass or less, and 60 parts by mass or less with respect to 100 parts by mass of natural rubber. More preferred. Also when adding 2 components which produce
  • a nonionic emulsifier or the like Prior to adding these organic peracids or reaction components to the latex, a nonionic emulsifier or the like is added to the latex, and the latex is kept at a neutral pH of about 5 to 7 and stabilized. Is preferred.
  • the epoxidation reaction is usually performed by reacting at a temperature of 20 to 60 ° C. for 3 to 10 hours.
  • the natural rubber having a phosphorus content of 200 ppm or less to be used may be in a latex state as in the grafting described above, and can be carried out with a rubber solution or a solid rubber.
  • the epoxidized product of natural rubber obtained as above has a high epoxidation rate (change rate of unsaturated bond to epoxy group), so it has excellent properties such as oil resistance and gas permeation resistance while maintaining strength. It can be suitably used for applications such as tire inner liners.
  • a rubber composition applicable to the rubber industry such as tires can be produced by blending additives such as a vulcanization aid, a vulcanization accelerator, and an anti-aging agent.
  • the rubber composition for tire tread and the rubber composition for covering a carcass cord of the present invention contains carbon black and / or a white filler in a rubber component containing 5% by mass or more of natural rubber having a phosphorus content of 200 ppm or less. ing.
  • the phosphorus content in the natural rubber of the present invention (hereinafter also referred to as saponified natural rubber) is 200 ppm or less, but preferably 150 ppm or less. If it exceeds 200 ppm, the Mooney viscosity will increase during storage, resulting in poor processability, and excellent fuel efficiency tends to be not obtained.
  • the nitrogen content is preferably 0.3% by mass or less, and more preferably 0.15% by mass or less. If the nitrogen content exceeds 0.3% by mass, the Mooney viscosity may increase during storage and the processability may deteriorate, and excellent fuel efficiency may not be obtained.
  • the content of the natural rubber in 100% by mass of the rubber component is 5% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more. If it is less than 5% by mass, excellent fuel efficiency may not be obtained.
  • the content of the natural rubber is preferably 50% by mass or less, more preferably 40% by mass or less. If it exceeds 50% by mass, sufficient grip performance may not be obtained.
  • the content of the natural rubber in 100% by mass of the rubber component is 5% by mass or more, preferably 60% by mass or more, more preferably 65% by mass or more, Preferably it is 70 mass% or more. If it is less than 5% by mass, excellent fuel efficiency may not be obtained.
  • the content of the natural rubber may be 100% by mass, but is preferably 80% by mass or less, more preferably 70% by mass or less.
  • Examples of the rubber component used in the present invention include diene rubbers generally used in tire rubber compositions in addition to the natural rubber.
  • Specific examples of the diene rubber include natural rubber (NR) other than the above natural rubber (saponified natural rubber), styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), ethylene propylene diene rubber. (EPDM), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), butyl rubber (IIR), styrene isoprene butadiene rubber (SIBR), epoxidized natural rubber, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
  • SBR is preferable from the viewpoints of ensuring sufficient tire strength and exhibiting excellent wear resistance.
  • SBR is preferable from the viewpoint of ensuring sufficient adhesion to the carcass cord and exhibiting excellent heat resistance.
  • SBR include those obtained by a solution polymerization method and those obtained by an emulsion polymerization method, but are not particularly limited.
  • the amount of styrene in SBR is preferably 5% by mass or more, more preferably 10% by mass or more. If it is less than 5% by mass, sufficient grip performance and rubber strength may not be obtained.
  • the styrene content of SBR is preferably 50% by mass or less, more preferably 45% by mass or less. When it exceeds 50 mass%, there is a possibility that an excellent low fuel consumption performance cannot be obtained.
  • the amount of styrene in SBR is calculated by H 1 -NMR measurement.
  • the vinyl content of SBR is preferably 10% by mass or more, more preferably 15% by mass or more. If it is less than 10% by mass, sufficient grip performance and rubber strength may not be obtained.
  • the vinyl content of SBR is preferably 65% by mass or less, more preferably 60% by mass or less. When it exceeds 65 mass%, there is a possibility that excellent fuel efficiency performance cannot be obtained.
  • the vinyl content of SBR indicates the vinyl content of the butadiene part, and is calculated by H 1 -NMR measurement.
  • the content of SBR in 100% by mass of the rubber component is preferably 40% by mass or more, more preferably 50% by mass or more. If it is less than 40% by mass, sufficient grip performance may not be obtained.
  • the content of the SBR is preferably 90% by mass or less, more preferably 80% by mass or less. When it exceeds 90 mass%, there is a possibility that the excellent fuel efficiency performance by the natural rubber cannot be obtained.
  • the content of SBR in 100% by mass of the rubber component is preferably 10% by mass or more, more preferably 20% by mass or more. If it is less than 10% by mass, sufficient adhesion and rubber strength may not be obtained.
  • the content of SBR is preferably 50% by mass or less, more preferably 40% by mass or less. If it exceeds 50% by mass, excellent low heat generation performance and sufficient adhesion and rubber strength may not be obtained.
  • the carbon black for example, FEF, GPF, HAF, ISAF, SAF, S-SAF and the like can be used.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black used for the tire tread rubber composition and the carcass cord covering rubber composition is preferably 20 m 2 / g or more, and more preferably 30 m 2 / g or more. If it is less than 20 m ⁇ 2 > / g, there exists a possibility that sufficient abrasion resistance performance, adhesiveness, and rubber
  • the dibutyl phthalate oil absorption (DBP oil absorption) of carbon black used in the tire tread rubber composition and the carcass cord covering rubber composition is preferably 60 ml / 100 g or more, more preferably 80 ml / 100 g or more.
  • the DBP oil absorption is preferably 140 ml / 100 g or less, more preferably 120 ml / 100 g or less. If the DBP oil absorption exceeds 140 ml / 100 g, the workability may be deteriorated.
  • the DBP of carbon black is determined by the measuring method of JIS K6217-4.
  • the content of carbon black is preferably 5 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component. is there. If the amount is less than 5 parts by mass, sufficient wear resistance, adhesiveness, and rubber strength may not be obtained.
  • the carbon black content is preferably 80 parts by mass or less, more preferably 60 parts by mass or less, with respect to 100 parts by mass of the rubber component. When it exceeds 80 parts by mass, workability and mechanical strength tend to deteriorate.
  • silica is preferable because it can achieve both wear resistance and low fuel consumption when used in a tread, and can provide excellent adhesion, low fuel consumption, and rubber strength when used in a carcass cord-coated rubber.
  • the silica is not particularly limited, and for example, silica (anhydrous silicic acid) obtained by a dry method and / or silica (hydrous silicic acid) obtained by a wet method can be used. Especially, it is preferable to use the silica (hydrous silicic acid) obtained by a wet method from the reason that there are many silanol groups.
  • the nitrogen adsorption specific surface area by the BET method of silica is preferably 30 m 2 / g or more, and more preferably 100 m 2 / g or more. If it is less than 30 m 2 / g, the fracture strength after vulcanization tends to decrease. Further, BET of silica is 500m or less preferably 2 / g, more preferably at most 300m 2 / g. If it exceeds 500 m 2 / g, the processability tends to deteriorate.
  • the nitrogen adsorption specific surface area of silica by the BET method can be measured by a method based on ASTM-D-4820-93.
  • the content of silica is preferably 5 parts by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component. If the amount is less than 5 parts by mass, sufficient fuel efficiency may not be obtained.
  • the content of silica is preferably 100 parts by mass or less, more preferably 80 parts by mass or less. If it exceeds 100 parts by mass, the workability tends to decrease.
  • silane coupling agent in combination with silica.
  • the silane coupling agent is not particularly limited, and those conventionally used in combination with silica in the tire industry can be used.
  • silane coupling agent may be used independently and may be used in combination of 2 or more type.
  • the content of the silane coupling agent is preferably 2 parts by mass or more and more preferably 4 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 2 parts by mass, rubber strength and wear resistance tend to deteriorate. Moreover, 15 mass parts or less are preferable and, as for content of a silane coupling agent, 13 mass parts or less are more preferable. When the amount exceeds 15 parts by mass, the effect of improving the rubber strength and wear resistance due to the blending of the silane coupling agent is not observed, and the cost tends to increase.
  • the total content of carbon black and white filler is preferably 30 parts by mass or more, more preferably 35 parts by mass or more, further with respect to 100 parts by mass of the rubber component. Preferably it is 40 mass parts or more. If it is less than 30 parts by mass, sufficient wear resistance may not be obtained.
  • the total content of carbon black and white filler is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and still more preferably 100 parts by mass or less with respect to 100 parts by mass of the rubber component. If it exceeds 150 parts by mass, processability may be deteriorated or sufficient low exothermic property may not be obtained.
  • the total content of carbon black and white filler is preferably 30 parts by mass or more, more preferably 35 parts by mass or more with respect to 100 parts by mass of the rubber component. is there. If it is less than 30 parts by mass, sufficient rubber strength may not be obtained.
  • the total content of carbon black and white filler is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, with respect to 100 parts by mass of the rubber component. If it exceeds 100 parts by mass, the workability may be deteriorated or sufficient low heat build-up may not be obtained.
  • the rubber composition for tire tread and the rubber composition for covering a carcass cord of the present invention include compounding agents generally used in the production of rubber compositions such as zinc oxide, stearic acid, various anti-aging agents.
  • Agents, oils such as aroma oils, waxes, vulcanizing agents, vulcanization accelerators, and the like can be appropriately blended.
  • the rubber composition for covering a carcass cord it is preferable to contain zinc oxide.
  • the content of zinc oxide is preferably 4 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 4 mass parts, there exists a possibility that adhesive performance may deteriorate. Further, the content of zinc oxide is preferably 15 parts by mass or less, more preferably 10 parts by mass or less with respect to 100 parts by mass of the rubber component. If it exceeds 15 parts by mass, the rubber strength may be reduced.
  • N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N, N′-dicyclohexyl-2- Examples include benzothiazolylsulfenamide (DZ), mercaptobenzothiazole (MBT), dibenzothiazolyl disulfide (MBTS), and diphenylguanidine (DPG).
  • TBBS N-tert-butyl-2-benzothiazolylsulfenamide
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • DPG diphenylguanidine
  • sulfenamide-based vulcanization accelerators such as TBBS and CBS are superior because they have excellent vulcanization characteristics, excellent physical properties of rubber after vulcanization, excellent low heat build-up, and great effects of improving mechanical hardness.
  • TBBS and DPG it is preferable to use TBBS and DPG in combination.
  • the rubber composition for tire tread and the rubber composition for covering a carcass cord of the present invention are produced by a general method. That is, it can be produced by a method of kneading the above components with a Banbury mixer, a kneader, an open roll or the like and then vulcanizing.
  • a mastication step is usually performed before the kneading and vulcanization.
  • the phosphorus content and nitrogen content are reduced by a method of saponification with an alkaline aqueous solution. Since excellent processability can be obtained by using natural rubber with a low gel content, no special mastication step is required.
  • the kneading step can be performed by kneading components such as a rubber component such as natural rubber and a kneading accelerator (aromatic disulfide compound, aromatic mercaptan compound, etc.) using a kneading apparatus such as a Banbury mixer. .
  • kneading components such as a rubber component such as natural rubber and a kneading accelerator (aromatic disulfide compound, aromatic mercaptan compound, etc.) using a kneading apparatus such as a Banbury mixer.
  • the rubber composition for tire treads of the present invention is used as a tire tread.
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition for tire tread. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of the tread of the tire at an unvulcanized stage, molded by a normal method on a tire molding machine, etc.
  • the tire members are bonded together to form an unvulcanized tire. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce a tire.
  • the rubber composition for covering a carcass cord of the present invention is used as a rubber for covering a carcass cord.
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition for covering a carcass cord. That is, a rubber composition containing various additives as necessary is kneaded at an unvulcanized stage, and then the carcass cord is covered with the obtained kneaded product and is formed into a carcass shape on a tire molding machine. Molded and bonded together with other tire members to form an unvulcanized tire. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce a tire.
  • the pneumatic tire of the present invention is suitably used as a passenger car tire, bus tire, truck tire and the like.
  • Natural rubber latex Field latex obtained from Taitex Co., Ltd.
  • Surfactant Emal-E manufactured by Kao Corporation NaOH: NaOH manufactured by Wako Pure Chemical Industries, Ltd.
  • Carbon black N110 (Nitrogen adsorption specific surface area (N 2 SA): 143 m 2 / g, DBP oil absorption: 113 ml / 100 g) manufactured by Showa Cabot Corporation
  • Anti-aging agent NOCRACK 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • Stearic acid Zinc stearate manufactured by NOF Corporation: Zinc Hua No. 1 manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Sulfur Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd.
  • TBBS Ouchi Shinsei Chemical Industry ( Noxeller NS (Nt-butyl-2-benzothiazylsulfenamide)
  • Examples 1 to 8 and Comparative Examples 1 to 3 The preparation procedure of each sample is as follows. In Comparative Example 1, the saponification step was not performed, in Comparative Example 2, the washing step was not performed, and in Comparative Example 3, natural rubber latex stored for 20 days was used.
  • Examples 1 to 8 and Comparative Examples 1 to 3 and the TSR rubber were measured for phosphorus content, gel content, and the like by the methods described below.
  • -Measurement of phosphorus content The phosphorus content of raw rubber was determined using an ICP emission analyzer (ICPS-8100, manufactured by Shimadzu Corporation). ⁇ 31 P-NMR measurement NMR analyzer of phosphorus used (400MHz, AV400M, Bruker Japan Co., Ltd.), the measurement peak of 80% P atoms of the phosphoric acid aqueous solution as a reference point (0 ppm), and extracted from the raw rubber with chloroform purification of the ingredients were measured and dissolved in CDCl 3.
  • Examples 9 to 16 and Comparative Examples 4 to 7 50 parts by mass of carbon black, 3 parts by mass of stearic acid, 3 parts by mass of zinc oxide, anti-aging agent with respect to 100 parts by mass of natural rubber obtained in Examples 1 to 8 and Comparative Examples 1 to 3 Nocrack 6C1 parts by mass, sulfur 1.5 parts by mass, and vulcanization accelerator Noxeller NS 0.8 parts by mass were kneaded and compounded to obtain various test rubber compositions. These blends were press vulcanized at 170 ° C. for 20 minutes to obtain vulcanizates, which were tested for the characteristics shown in Table 2.
  • ⁇ Tensile test> In accordance with JIS K6251, a tensile test was performed using a No. 3 dumbbell-shaped test piece made of a vulcanized rubber composition, and the breaking strength Tb (MPa) and the elongation at break Eb (%) of the test piece were measured. .
  • the hardness (Hs) of the vulcanized rubber composition was measured using a JIS-A hardness meter at room temperature.
  • Examples 9 to 16 were found to have lower Mooney viscosity and better processability than Comparative Examples 4 to 7, and low tan ⁇ , which was effective in reducing fuel consumption of the tire.
  • Production Example 1 (Saponification process) After adjusting the field latex obtained from the farm to a solid content concentration (DRC) of 30% (w / v), 10 g of Emal-E and 10 g of NaOH were added to 1000 g of natural rubber latex, and saponification reaction was performed at 70 ° C. for 24 hours. Went. Water was added to the obtained latex to dilute to DRC 15% (w / v), and then formic acid was added with slow stirring to adjust the pH to 4.0 to 4.5 to cause aggregation. The agglomerated rubber was pulverized and washed repeatedly with 1000 ml of water to obtain a saponified natural rubber latex.
  • DRC solid content concentration
  • Production Example 2 (Saponification process) After adjusting the field latex obtained from the farm to a solid content concentration (DRC) of 30% (w / v), 10 g of Emal-E and 20 g of NaOH were added to 1000 g of natural rubber latex, and saponification reaction was performed at 70 ° C. for 48 hours. Went. Water was added to the obtained latex to dilute to DRC 15% (w / v), and then formic acid was added with slow stirring to adjust the pH to 4.0 to 4.5 to cause aggregation. The agglomerated rubber was pulverized and washed repeatedly with 1000 ml of water to obtain a saponified natural rubber latex.
  • DRC solid content concentration
  • Production Example 3 (Saponification process) After adjusting the field latex obtained from the farm to a solid content concentration (DRC) of 30% (w / v), 10 g of Emal-E and 10 g of NaOH are added to 1000 g of natural rubber latex, and the saponification reaction is carried out at room temperature for 24 hours. went. Water was added to the obtained latex to dilute to DRC 15% (w / v), and then formic acid was added with slow stirring to adjust the pH to 4.0 to 4.5 to cause aggregation. The agglomerated rubber was pulverized and washed repeatedly with 1000 ml of water to obtain a saponified natural rubber latex.
  • DRC solid content concentration
  • Example 17 (Production of graft copolymerized natural rubber) Into a four-necked flask equipped with a stir bar, dropping funnel, nitrogen inlet tube and condenser, 600 g of the saponified natural rubber latex (solid content 25%) obtained in Production Example 1 is added and slowly stirred under a nitrogen atmosphere. Then, 0.92 g of a nonionic emulsifier (“Emulgen 430” manufactured by Kao Corporation) dissolved in 250 ml of distilled water was added all at once. Next, 91.6 g of methyl methacrylate was added and stirred vigorously for several seconds to mix each chemical well.
  • a nonionic emulsifier (“Emulgen 430” manufactured by Kao Corporation) dissolved in 250 ml of distilled water was added all at once.
  • 91.6 g of methyl methacrylate was added and stirred vigorously for several seconds to mix each chemical well.
  • Comparative Example 8 (Production of graft copolymerized natural rubber) A graft copolymer was obtained in the same manner as in Example 17 except that HA type latex obtained from Guthrie (Malaysia) was used after being diluted to a solid content of 25%.
  • the obtained graft ratio and graft efficiency are shown in Table 3 together with the phosphorus content of each natural rubber used.
  • the phosphorus content of the natural rubber obtained from the saponified natural rubber latex obtained in Production Examples 1 to 3 was 200 ppm or less.
  • Examples 17 to 19 using a saponified natural rubber latex a higher graft ratio and graft efficiency were shown than in Comparative Examples 8 and 9 where no saponified natural rubber latex was used.
  • no peak due to phospholipid was detected at -3 ppm to 1 ppm.
  • Example 20 Manufacture of natural rubber added with organic compounds
  • 600 g of the saponified natural rubber latex (solid content 25%) obtained in Production Example 1 was charged into a three-necked flask equipped with a stirrer, a dropping funnel and a condenser.
  • 5.4 g of a nonionic emulsifier (“Emulgen 106” manufactured by Kao Corporation) dissolved in 300 ml of distilled water was added with slow stirring.
  • 20 g of aminoethanethiol was added and stirred, followed by irradiation with microwaves at 500 W for 1 hour to carry out an addition reaction.
  • Examples 21-22 Manufacture of natural rubber added with organic compounds
  • the aminoethanethiol was added.
  • Comparative Example 10 Manufacture of natural rubber added with organic compounds
  • Aminoethanethiol was added in the same manner as in Example 20 except that HA type latex obtained from Guthrie (Malaysia) was used after diluting to a solid content of 25%.
  • the addition reaction rate (added organic compound mass [g] / main chain polymer mass [g]) was measured.
  • the measured addition reaction rate is shown in Table 4 together with the amount of phosphorus contained in each natural rubber used.
  • Examples 20 to 22 using the saponified natural rubber latex showed a higher addition reaction rate than Comparative Examples 10 and 11 where no saponified natural rubber latex was used.
  • Example 23 Manufacture of epoxidized natural rubber 600 g of the saponified natural rubber latex (solid content 25%) obtained in Production Example 1 was charged into a three-necked flask equipped with a stirrer, a dropping funnel and a condenser. Subsequently, 5.4 g of a nonionic emulsifier (“Emulgen 106” manufactured by Kao Corporation) dissolved in 300 ml of distilled water was added with slow stirring. Next, acetic acid was added to adjust the pH to neutral, heated to 40 ° C., and 30.6 g of formic acid was added with stirring. Further, the mixture was heated to 50 ° C., 166.8 g of hydrogen peroxide (39% aqueous solution) was added in 20 minutes, and then reacted at room temperature for 5 hours to obtain an epoxidized rubber.
  • a nonionic emulsifier (“Emulgen 106” manufactured by Kao Corporation) dissolved in 300 ml of distilled water was added
  • Examples 24-25 Manufacture of epoxidized natural rubber Except for using the saponification-treated natural rubber latex (solid content 25%) obtained in Production Example 2 and the saponification-treated natural rubber latex (solid content 25%) obtained in Production Example 3, respectively, the same as Example 23 was used. Thus, an epoxidized rubber was obtained.
  • Epoxidized rubber was obtained in the same manner as in Example 23 except that HA type latex obtained from Guthrie (Malaysia) was used after diluting to a solid content of 25%.
  • Comparative Example 13 Manufacture of epoxidized natural rubber After diluting natural rubber latex (solid content 61%) obtained from Guthrie (Malaysia) to a solid content of 30%, the solid content is concentrated to 60% and diluted to a solid content of 25%. In the same manner as in Example 23, an epoxidized rubber was obtained.
  • the epoxidation rate of the epoxidized rubber obtained in each Example and Comparative Example was measured using FT-IR and 13 C-NMR. The measurement was carried out in Chemical Demonstration of the Randomness of Epoxidized Natural Rubber, Br. Polym. J. et al. 1984, 16, 134 (Davey et al.) And to compare the reaction rate, the epoxidation rate of the double bond after 3 hours was measured. Table 5 shows the measurement results of the epoxidation rate of the epoxidized rubber obtained in each Example and Comparative Example together with the phosphorus content of each natural rubber used.
  • Examples 23 to 25 using the saponified natural rubber latex showed a higher epoxidation rate than Comparative Examples 12 and 13 where no saponified natural rubber latex was used.
  • Natural rubber latex Field latex obtained from Taitex Co., Ltd.
  • Surfactant Emal-E manufactured by Kao Corporation NaOH: NaOH manufactured by Wako Pure Chemical Industries, Ltd.
  • Natural rubber TSR SBR (1): NS116 manufactured by JSR Corporation (vinyl content: 60% by mass, styrene content: 20% by mass)
  • Carbon black (1) N220 manufactured by Cabot Japan Co., Ltd.
  • Stearic acid Anti-aging agent manufactured by NOF Corporation: Antigen 6C (N- (1,3-dimethylbutyl) manufactured by Sumitomo Chemical Co., Ltd. -N'-phenyl-p-phenylenediamine)
  • Sulfur Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. (1): Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • the saponification natural rubbers A and B have a reduced nitrogen content, phosphorus content, and gel content as compared to untreated natural rubber and TSR.
  • the obtained unvulcanized rubber composition was formed into a tread shape on a tire molding machine, and bonded to another tire member to produce an unvulcanized tire.
  • a test tire was produced by vulcanizing an unvulcanized tire at 150 ° C. for 30 minutes.
  • the obtained unvulcanized rubber composition was press vulcanized for 15 minutes at 170 ° C. to obtain a vulcanized rubber composition.
  • a carcass cord was coated with the obtained unvulcanized rubber composition, formed into a carcass shape on a tire molding machine, and bonded to another tire member to produce an unvulcanized tire.
  • a test tire was produced by vulcanizing an unvulcanized tire at 150 ° C. for 30 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、リン含有量が200ppm以下である天然ゴムに関する。

Description

天然ゴム、その製造方法、ゴム組成物およびこれを用いた空気入りタイヤ、改質天然ゴムおよびその製造方法、並びに、トレッドまたはカーカスコード被覆用ゴム組成物およびこれらを用いた空気入りタイヤ
本発明は、天然ゴム、その製造方法、ゴム組成物およびこれを用いた空気入りタイヤ、改質天然ゴムおよびその製造方法、並びに、トレッドまたはカーカスコード被覆用ゴム組成物およびこれらを用いた空気入りタイヤに関する。
天然ゴムはタイヤ、ベルト、ロール等の工業用品類からテニスボール等のスポーツ用品類にいたる多くの分野で使用されている。一般にゴム製品は使用中に圧縮-回復-伸長が繰り返され、損失エネルギーが蓄積して発熱が生じ、この熱がゴムの疲労を促進してゴム製品の寿命を短くする原因となる。上記発熱は、損失正接tanδで表されるエネルギー損失が大きいほど大きくなる。また、たとえばタイヤの場合、ころがり抵抗は50~70℃におけるtanδの大小に左右されることが経験的に知られており、tanδが大きいと発熱が大きくなるばかりでなく、ころがり抵抗も大きくなって、自動車の燃費が悪化するという問題もある。従って、省燃費タイヤのトレッドの場合は、50~70℃におけるtanδが小さいことが望ましい。 
ゴム組成物のtanδを低くするために、天然ゴム中に含まれるタンパク質やゲル分を低減する方法として、たとえば特許文献1では、溶剤で膨潤した固形天然ゴムを水酸化アルカリ溶液に浸漬する方法が、特許文献2では天然ゴムラテックスにリン酸塩を添加してリン酸マグネシウムを除去する方法が、特許文献3では、天然ゴムラテックスにタンパク質分解酵素と界面活性剤を加えて熟成する方法が、特許文献4では、天然ゴムラテックスに界面活性剤を添加して洗浄処理する方法が開示されている。
しかしながら、これらの方法では、タンパク質やゲル分をある程度低減することができるが、まだまだ充分なレベルではなく、通常脱タンパク質のための処理を行うと、タンパク質は低減できるが、特に天然ゴムに含有されているゲル分形成の原因の一つであると考えられるリン脂質については、充分に除去できないという問題があった。
また、天然ゴムの改質は、コスト、取扱いの容易さなどから、一般に界面活性剤で安定化したラテックス状態で行われるが、場合により固形ゴムの状態や、ゴム溶液中においても行われる。しかしながら、通常の天然ゴムラテックス中には、蛋白質などの非ゴム成分が5%程度存在する。また、市販の濃縮ラテックスにも約3%の非ゴム成分が存在する。そのため、これらの非ゴム成分、とくに蛋白質が天然ゴムの改質を阻害する原因となり、例えば、グラフト共重合の場合には、グラフト率およびグラフト効率が低下し、高い改質効果および改質効率が得られないという問題があった。
そのため、脱蛋白を行い、高い改質効率を得ることが検討されている。たとえば特許文献5、6では、ラテックスに蛋白質分解酵素を添加して蛋白質を分解する方法、または界面活性剤で繰り返し洗浄する方法により脱蛋白天然ゴムを製造し、該脱蛋白天然ゴムをエポキシ化することにより改質天然ゴムを製造する方法が開示されている。しかしながら、これらの方法では、蛋白質をある程度低減することが可能であるものの、天然ゴムの改質を阻害する原因の1つであるリン脂質については、充分に除去できておらず、改善の余地がある。
また、従来から、タイヤの転がり抵抗を低減して発熱を抑えることにより、車両を低燃費化することが行われている。近年、タイヤによる車両の低燃費化への要請は大きくなっており、タイヤ部材の中でもタイヤにおける占有比率の高いトレッドの改良による低燃費化への要請は特に大きい。ゴム組成物の低発熱性を満足させる方法として、低補強性の充填剤を用いる方法、補強用充填剤の含有量を低減させる方法等が知られている。また、充填剤としてシリカを用いることで転がり抵抗を低減させて低燃費化を図ることがなされている。
しかし、このような充填剤による低燃費化は、ゴム組成物の硬度が低下するためタイヤが軟化し、耐摩耗性が低下してしまうという問題があり、高い低燃費性(低い転がり抵抗)と高い耐摩耗性とを両立させることは困難であった。
一方、自動車用タイヤには大きな荷重がかかるため、一般に、補強材としてスチールコードなどのカーカスコードが用いられている。特に走行中にタイヤが発熱することによって、ゴムとカーカスコードとが剥離すると、致命的なタイヤ故障の原因となる。このため、カーカスコードを被覆するゴム組成物には、高いゴム強度と、カーカスコードとの強い接着性が要求される。
従来、カーカスコード被覆用ゴム組成物としては、天然ゴム(NR)および/またはイソプレンゴム(IR)ならびに乳化重合スチレンブタジエンゴム(E-SBR)をゴム成分として用い、カーボンブラックを補強用充填剤として用いるため、低燃費性に劣るという問題があった。また、一般に、低燃費性を向上させるために、補強用充填剤として、カーボンブラックの代わりにシリカを使用することが知られているが、この場合、カーカスコード被覆用ゴム組成物として必要なカーカスコードとの接着性が悪化してしまい、接着性と高い低燃費性(低い転がり抵抗)とを両立させることは困難であった。
そこで、特許文献7ではシリカと相互作用を持つような変性基を持った溶液重合スチレンブタジエンゴムを用いることで低燃費性能と接着性能を両立させるような方法が開示されているが、ジエン系ゴム成分のうちスチレンブタジエンゴム成分についてのみ検討されているだけであり、天然ゴム成分については検討されていなかった。
天然ゴムは他の合成ゴムに比べてムーニー粘度が高く加工性が悪いため、通常しゃっ解剤を添加して素練りを行い、ムーニー粘度を低下させてから使用する。そのため、天然ゴムを使用する場合、このようなプロセスが必要となるため生産性が低下してしまう。また素練りによって天然ゴムの分子鎖を切断してしまうため、天然ゴムが本来有する高分子量ポリマーの特性(例えば、高い摩耗性能、低燃費性能、及びゴム強度)が失われてしまうという問題があった。
天然ゴムラテックスはヘベア樹の樹液として採取され、ゴム成分の他に水、タンパク質、脂質、無機塩類などを含んでいる。天然ゴム中に含まれるタンパク質を除去することにより、加工性が改善されるとの報告がある。そして、天然ゴム中に含まれるタンパク質などを低減する方法として、例えば、特許文献1では溶剤で膨潤した固形天然ゴムを水酸化アルカリに浸漬する方法が、特許文献2では天然ゴムラテックスにリン酸塩を添加してリン酸マグネシウムを除去する方法が、特許文献3、8には天然ゴムラテックスにタンパク分解酵素と界面活性剤を加えて熟成する方法が、特許文献9には天然ゴムラテックスに界面活性剤を加えて洗浄処理する方法が開示されている。
しかしながら、特許文献1~3、8、9に開示された方法では、タンパク質等をある程度除去することは出来るものの、充分なレベルではなかった。また、リン脂質などに関してはほとんど除去出来ないという問題があった。また、これらの方法で得られる天然ゴムをタイヤのトレッドに適用することやカーカスコード被覆用ゴムに適用することは検討されていない。
特開平11-12306号公報 特開2004-250546号公報 特開2005-82622号公報 特開平6-329838号公報 特開2004-359773号公報 特開2005-41960号公報 特開2007-145898号公報 特開平08-12814号公報 特許3294901号公報
本発明は、前記課題を解決し、加工性に優れ、またタイヤの低燃費性に効果がある天然ゴム、該天然ゴムを用いたゴム組成物、及び、発熱が少なくころがり抵抗が低いタイヤを提供することを目的とする。
また、本発明は、上記課題を解決し、優れた改質効果を有する改質天然ゴム、および、改質効率の高い改質天然ゴムの製造方法を提供することを目的とする。
また、本発明は、前記課題を解決し、素練り工程を必要としないような優れた加工性を持ちながら、高い低燃費性(低い転がり抵抗)と高い耐摩耗性とを両立させることができるタイヤトレッド用ゴム組成物を提供することを目的とする。また、該ゴム組成物を用いて作製したトレッドを有する空気入りタイヤを提供することを目的とする。
また、素練り工程を必要としないような優れた加工性を持ちながら、カーカスコードとの接着性能を向上させ、さらに高い低燃費性(低い転がり抵抗)と高いゴム強度を両立させることができるカーカスコード被覆用ゴム組成物を提供することを目的とする。また、該ゴム組成物を用いて作製したカーカスを有する空気入りタイヤを提供することを目的とする。
本発明は、リン含有量が200ppm以下である天然ゴムに関する。
上記天然ゴムは、トルエン不溶分として測定されるゲル含有率が20質量%以下であることが好ましい。
上記天然ゴムは、クロロホルム抽出物の31P NMR測定において、-3ppm~1ppmにリン脂質によるピークが存在せず、実質的にリン脂質が存在しないことが好ましい。
上記天然ゴムは、窒素含有量が0.3質量%以下であることが好ましい。
上記天然ゴムは、窒素含有量が0.15質量%以下であることが好ましい。
また、本発明は、天然ゴムラテックスをアルカリによりケン化し、ケン化後凝集させたゴムを洗浄し、その後乾燥する工程よりなり、当該工程を天然ゴムラテックス採取後15日以内に終了する天然ゴムの製造方法に関する。
上記天然ゴムの製造方法では、ケン化により分離したリン化合物を洗浄除去することにより、天然ゴムラテックス中のゴム分に対するリン含有量を200ppm以下にすることが好ましい。
上記天然ゴムの製造方法では、トルエン不溶分として測定される天然ゴム中のゲル含有率が20質量%以下であることが好ましい。
上記天然ゴムの製造方法では、天然ゴム中の窒素含有量が0.3質量%以下であることが好ましい。
上記天然ゴムの製造方法では、天然ゴム中の窒素含有量が0.15質量%以下であることが好ましい。
また、本発明は、上記天然ゴム、および、加硫剤を含有するゴム組成物に関する。
また、本発明は、上記ゴム組成物を用いた空気入りタイヤに関する。
また、本発明は、リン含有量が200ppm以下の天然ゴムに、不飽和結合を有する有機化合物のグラフト共重合処理を施して改質した改質天然ゴムに関する。
また、本発明は、リン含有量が200ppm以下の天然ゴムに、有機化合物との付加反応を施して改質した改質天然ゴムに関する。
また、本発明は、リン含有量が200ppm以下の天然ゴムに、エポキシ化処理を施して改質した改質天然ゴムに関する。
上記リン含有量が200ppm以下の天然ゴムは、天然ゴムラテックスをケン化処理して得られたものであることが好ましい。
上記改質天然ゴムは、クロロホルム抽出物の31P NMR測定において、-3ppm~1ppmにリン脂質によるピークが存在せず、実質的にリン脂質が存在しないことが好ましい。
また、本発明は、天然ゴムラテックス中のゴム分に対するリン含有量が200ppm以下となるまでリン化合物を除去した後、得られた天然ゴムに不飽和結合を有する有機化合物をグラフト共重合させる上記改質天然ゴムの製造方法に関する。
また、本発明は、天然ゴムラテックス中のゴム分に対するリン含有量が200ppm以下となるまでリン化合物を除去した後、得られた天然ゴムに有機化合物を付加反応させる上記改質天然ゴムの製造方法に関する。
また、本発明は、天然ゴムラテックス中のゴム分に対するリン含有量が200ppm以下となるまでリン化合物を除去した後、得られた天然ゴムをエポキシ化する上記改質天然ゴムの製造方法に関する。
上記改質天然ゴムの製造方法では、上記リン化合物の除去が天然ゴムラテックスをケン化処理して行われることが好ましい。
また、本発明は、リン含有量が200ppm以下である天然ゴムを5質量%以上含むゴム成分に、カーボンブラックおよび/または白色充填剤を配合したタイヤトレッド用ゴム組成物に関する。
上記天然ゴムの窒素含有量が0.3質量%以下であることが好ましい。
上記天然ゴムの窒素含有量が0.15質量%以下であることが好ましい。
上記天然ゴムのトルエン不溶分として測定されるゲル含有率が20質量%以下であることが好ましい。
上記天然ゴムは、天然ゴムラテックスをケン化処理して得られたものであることが好ましい。
上記白色充填剤がシリカであることが好ましい。
また、本発明は、天然ゴムを素練りする工程を含まない上記タイヤトレッド用ゴム組成物の製造方法に関する。
また、本発明は、上記タイヤトレッド用ゴム組成物を用いて作製したトレッドを有する空気入りタイヤに関する。
また、本発明は、リン含有量が200ppm以下である天然ゴムを5質量%以上含むゴム成分に、カーボンブラックおよび/または白色充填剤を配合したカーカスコード被覆用ゴム組成物に関する。
上記天然ゴムの窒素含有量が0.3質量%以下であることが好ましい。
上記天然ゴムの窒素含有量が0.15質量%以下であることが好ましい。
上記天然ゴムのトルエン不溶分として測定されるゲル含有率が20質量%以下であることが好ましい。
上記天然ゴムは、天然ゴムラテックスをケン化処理して得られたものであることが好ましい。
上記白色充填剤がシリカであることが好ましい。
ゴム成分100質量%中の上記天然ゴムの含有量が60~100質量%であることが好ましい。
ゴム成分100質量部に対して、酸化亜鉛を4~15質量部含有することが好ましい。
また、本発明は、天然ゴムを素練りする工程を含まない上記カーカスコード被覆用ゴム組成物の製造方法に関する。
また、本発明は、上記カーカスコード被覆用ゴム組成物を用いて作製したカーカスを有する空気入りタイヤに関する。
本発明によれば、天然ゴムラテックスを新鮮な状態でケン化、洗浄することにより、天然ゴムが元来含有するリン化合物を極力除去した天然ゴムを得ることができる。このため、該天然ゴムを含むゴム組成物(以下、本発明のゴム組成物ともいう)は、50~70℃でのtanδが小さく、発熱やころがり抵抗の減少の点ですぐれ、高強度、引き裂き抵抗の向上、かつムーニー粘度が素練りしたものよりも低いため加工性がよく、素練りが不要で生産性にすぐれるという従来にない優れた特性を有している。さらにこの材料をタイヤ用材料として用いた場合、発熱が少なくころがり抵抗が低いため、タイヤの低燃費化に効果があるとともに、ウエットグリップ性にも優れている。
また、本発明によれば、天然ゴムラテックスをケン化処理し、ケン化処理後に洗浄処理を行うこと等の手法により、天然ゴムが元来含有するリン化合物(例えば、リン脂質)を極力除去した天然ゴムに対して、改質(不飽和結合を有する有機化合物のグラフト共重合処理、有機化合物との付加反応、エポキシ化処理)を行うため、優れた改質効果を有する改質天然ゴム(例えば、グラフト共重合の場合には、グラフト率が高い改質天然ゴム)を得ることができるとともに、高い改質効率(例えば、グラフト共重合の場合には、高グラフト効率)で天然ゴムの改質を行うことができる。
また、本発明によれば、リン含有量が200ppm以下の天然ゴムを用いるため、優れた加工性を有し、素練り工程を必要としない。また、リン含有量が200ppm以下の天然ゴムと、カーボンブラックおよび/または白色充填剤を含有するゴム組成物をタイヤのトレッドとして用いる(以下、本発明のタイヤトレッド用ゴム組成物ともいう)ことにより、高い低燃費性(低い転がり抵抗)と高い耐摩耗性とを両立させることができる。また、該ゴム組成物をカーカスコード被覆用ゴムとして用いる(以下、本発明のカーカスコード被覆用ゴム組成物ともいう)ことにより、カーカスコードとの接着性能を向上させ、さらに高い低燃費性(低い転がり抵抗)と高いゴム強度を両立させることができる。
(天然ゴム)
本発明の天然ゴムは、リン含有量が200ppm以下である。
本発明の天然ゴム中のリン含有量は、200ppm以下であるが、150ppm以下が好ましく、100ppm以下がより好ましい。200ppmを超えると、貯蔵中にゲル量が増加し、加硫ゴムのtanδが上昇する傾向がある。ここで、リン含有量は、たとえばICP発光分析等、従来の方法で測定することができる。リンは、リン脂質(リン化合物)に由来するものである。
本発明の天然ゴム中のゲル含有率は、20質量%以下が好ましく、10質量%以下がより好ましい。20質量%を超えると、ムーニー粘度が高くなるなど加工性が低下する傾向がある。ゲル含有率とは、非極性溶媒であるトルエンに対する不溶分として測定した値を意味し、以下においては単に「ゲル含有率」または「ゲル分」と称することがある。ゲル分の含有率の測定方法は次のとおりである。まず、天然ゴム試料を脱水トルエンに浸し、暗所に遮光して1週間放置後、トルエン溶液を1.3×10rpmで30分間遠心分離して、不溶のゲル分とトルエン可溶分とを分離する。不溶のゲル分にメタノールを加えて固形化した後、乾燥し、ゲル分の質量と試料の元の質量との比からゲル含有率が求められる。
本発明の天然ゴムは、実質的にリン脂質が存在しないことが好ましい。「実質的にリン脂質が存在しない」とは、天然ゴム試料をクロロホルムで抽出し、抽出物の31P NMR測定において、-3ppm~1ppmにリン脂質によるピークが存在しない状態を表す。-3ppm~1ppmに存在するリンのピークとは、リン脂質におけるリンのリン酸エステル構造に由来するピークである。
本発明の天然ゴムにおいて、窒素含有量は0.3質量%以下が好ましく、0.15質量%以下がより好ましい。窒素含有量が0.3質量%を超えると、貯蔵中にムーニー粘度が上昇する傾向がある。窒素はタンパク質に由来する。窒素含有量は、例えばケルダール法等、従来の方法で測定することができる。
本発明の天然ゴムの製造方法は、例えば、天然ゴムラテックスをアルカリによりケン化し、ケン化後凝集させたゴムを洗浄し、その後乾燥することにより製造する方法が挙げられる。ケン化処理は、天然ゴムラテックスに、アルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することにより行う。なお、必要に応じて撹拌等を行っても良い。本発明の方法によれば、ケン化により分離したリン化合物が洗浄除去されるので、天然ゴムのリン含有量を抑えることができる。また、ケン化処理により、天然ゴム中の蛋白質が分解されるので、天然ゴムの窒素含有量を抑えることができる。本発明では、天然ゴムラテックスにアルカリを添加してケン化するが、天然ゴムラテックスに添加することにより、効率的にケン化処理を行うことができるという効果がある。
天然ゴムラテックスはヘビア樹の樹液として採取され、ゴム分のほか水、蛋白質、脂質、無機塩類などを含み、ゴム中のゲル分は種々の不純物の複合的な存在に基づくものと考えられている。本発明では、ヘビア樹をタッピングして出てくる生ラテックス、あるいは遠心分離法によって濃縮した精製ラテックスを使用できる。さらに、生ゴムラテックス中に存在するバクテリアによる腐敗の進行を防止し、ラテックスの凝固を避けるために、常法によりアンモニアを添加したハイアンモニアラテックスであってもよい。本発明の製造方法において、生ゴムの製造に供するゴムラテックスは、前述のとおり採取してから15日以内であることを要し、採取してから10日以内であることが好ましい。
ケン化処理に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アミン化合物等が挙げられ、ケン化処理の効果や天然ゴムラテックスの安定性への影響の観点から、特に水酸化ナトリウム又は水酸化カリウムを用いることが好ましい。
アルカリの添加量は特に限定されないが、天然ゴムラテックスの固形分100質量部に対して、下限は0.1質量部以上が好ましく、0.3質量部以上がより好ましく、上限は12質量部以下が好ましく、10質量部以下がより好ましく、7質量部以下がさらに好ましく、5質量部以下が特に好ましい。アルカリの添加量が0.1質量部未満では、ケン化処理に時間がかかってしまうおそれがある。また逆にアルカリの添加量が12質量部を超えると天然ゴムラテックスが不安定化するおそれがある。
界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤および両性界面活性剤のうちの少なくとも1種が使用可能である。このうち陰イオン性界面活性剤としては、例えばカルボン酸系、スルホン酸系、硫酸エステル系、リン酸エステル系等の陰イオン性界面活性剤があげられる。非イオン性界面活性剤としては、例えばポリオキシアルキレンエーテル系、ポリオキシアルキレンエステル系、多価アルコール脂肪酸エステル系、糖脂肪酸エステル系、アルキルポリグリコシド系等の非イオン性界面活性剤があげられる。両性界面活性剤としては、例えばアミノ酸型、ベタイン型、アミンオキサイド型等の両性界面活性剤があげられる。
界面活性剤の添加量は、天然ゴムラテックスの固形分100質量部に対して、下限は0.01質量部以上が好ましく、0.1質量部以上がより好ましく、上限は6質量部以下が好ましく、5質量部以下がより好ましく、3.5質量部以下がさらに好ましく、3質量部以下が特に好ましい。界面活性剤の添加量が0.01質量部未満では、ケン化処理時に天然ゴムラテックスが不安定化するおそれがある。また逆に界面活性剤の添加量が6質量部を超えると天然ゴムラテックスが安定化しすぎて凝固が困難になるおそれがある。
ケン化処理の温度は、アルカリによるケン化反応が十分な反応速度で進行しうる範囲、および天然ゴムラテックスが凝固等の変質を起こさない範囲で適宜、設定できるが、通常は20~70℃であるのが好ましく、30~70℃であるのがより好ましい。また処理の時間は、天然ゴムラテックスを静置して処理を行う場合、処理の温度にもよるが、十分な処理を行うことと、生産性を向上することとを併せ考慮すると3~48時間であるのが好ましく、3~24時間であるのがより好ましい。
ケン化反応終了後、凝集させたゴムを破砕し、洗浄処理を行う。凝集方法としては、例えば、ギ酸等の酸を添加し、pHを調整する方法が挙げられる。また、洗浄処理としては、例えばゴム分を水で希釈して洗浄後、遠心分離処理を行い、ゴム分を取り出す方法が挙げられる。遠心分離する際は、まず天然ゴムラテックスのゴム分が5~40質量%、好ましくは10~30質量%となるように水で希釈する。次いで、5000~10000rpmで1~60分間遠心分離すればよい。洗浄処理終了後、ケン化処理天然ゴムラテックスが得られる。ケン化処理天然ゴムラテックスを乾燥することにより、本発明の天然ゴムが得られる。
本発明の製造方法では、天然ゴムラテックス採取後15日以内にケン化、洗浄及び乾燥の工程を終了する。ラテックス採取後、10日以内(より好ましくは5日以内)にケン化、洗浄及び乾燥の工程を終了することが好ましい。採取後固形化せずに15日を超えて放置しておくとゲル分が増大していくためである。
(ゴム組成物)
本発明のゴム組成物は、上記天然ゴムに加えて、加硫剤を含有する。加硫剤としては、硫黄、有機過酸化物、チウラム類などが挙げられる。
加硫剤の配合量は、ゴム成分100質量部に対して、0.1~5質量部であるのが好ましく、下限は0.5質量部が、上限は3質量部がより好ましい。添加量が0.1質量部未満では、十分な架橋度が得られないおそれがある。また逆に添加量が5質量部を超えると架橋度が高くなりすぎ、物性が低下するおそれがある。
本発明のゴム組成物には、加硫剤以外に、シリカ、カーボンブラックなどの補強剤、加硫促進剤、各種オイル、老化防止剤、軟化剤、可塑剤などのタイヤ用または一般のゴム組成物用に配合される各種配合剤および添加剤を配合することができる。また、これらの配合剤、添加剤の含有量も一般的な量とすることができる。
(空気入りタイヤ)
本発明は、上記ゴム組成物を用いて作製した空気入りタイヤに関し、該タイヤは、本発明のゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて前記各種薬品を配合した本発明のゴム組成物を未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧してタイヤを得る。このようにして得られた本発明の空気入りタイヤは、氷上性能とドライ路面での操縦安定性を両立させることができる。
(改質天然ゴム)
本発明の改質天然ゴムは、リン含有量が200ppm以下の天然ゴム(本発明の天然ゴム)に、改質を施したものである。上記天然ゴム中のリン含有量は、200ppm以下であるが、100ppm以下が好ましい。200ppmを超えると、天然ゴムから改質天然ゴムを製造する際の改質効果および改質効率(例えば、グラフト共重合の場合には、グラフト効率)が低下する傾向がある。
本発明の天然ゴムは、例えば、上述のように、天然ゴムラテックスをアルカリによりケン化処理し、凝集させたゴムを洗浄することにより製造できる。採取した天然ゴムラテックスを新鮮な状態でケン化処理し、ケン化処理後に水での洗浄を十分に行い、天然ゴムラテックス粒子表面の非ゴム成分であるリン脂質が除去されることにより、高効率での改質が可能となると推察される。
リン含有量が200ppm以下の天然ゴム(本発明の天然ゴム)に対する改質は、例えば、上記ケン化処理天然ゴムラテックスに対して、天然ゴムラテックスの公知の改質方法と同様の方法を適用することにより行うことができる。
本発明の改質天然ゴムのうち、不飽和結合を有する有機化合物をグラフト共重合させた改質天然ゴムは、不飽和結合を有する有機化合物をケン化処理天然ゴムラテックスに加え、適当な重合開始剤を加えて反応させることにより得られる。不飽和結合を有する有機化合物としては、例えば、メタクリル酸、アクリル酸、メタクリル酸メチル、アクリル酸メチル、2-ヒドロキシエチルメタクリレート等のメタクリル酸やアクリル酸またはその誘導体、アクリロニトロル、酢酸ビニル、スチレン、アクリルアミド、ビニルピロリドン等のグラフト共重合可能なモノマーが挙げられる。不飽和結合を有する有機化合物のラテックスへの添加に際しては、あらかじめラテックス中に乳化剤を加えておくか、あるいは不飽和結合を有する有機化合物を乳化した後、ラテックスに加える。乳化剤としては、特に限定されないが、ノニオン系の界面活性剤が好適に使用される。
不飽和結合を有する有機化合物の添加量は、通常、天然ゴム100質量部に対して、下限は5質量部以上が好ましく、10質量部以上がより好ましく、上限は100質量部以下が好ましく、80質量部以下がより好ましい。不飽和結合を有する有機化合物の添加量が5質量部未満では、不飽和結合を有する有機化合物のグラフト量が少なくなり改質効果が小さくなるおそれがある。また逆に不飽和結合を有する有機化合物の添加量が100質量部を超えると、ホモポリマーの生成が増加してしまいグラフト効率が低下するおそれがある。
重合開始剤としては、例えば、過酸化ベンゾイル、過酸化水素、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、2,2-アゾビスイソブチロニトリル、過硫酸カリウム等の過酸化物が挙げられ、とくにレドックス系の重合開始剤を使用するのが重合温度を低減させる上で好ましい。かかるレドックス系の重合開始剤において、過酸化物と組み合わされる還元剤としては、例えば、テトラエチレンペンタミン、メルカプタン類、酸性亜硫酸ナトリウム、還元性金属イオン、アスコルビン酸等が挙げられる。レドックス系の重合開始剤における好ましい組み合わせ例としては、tert-ブチルハイドロパーオキサイドとテトラエチレンペンタミン、過酸化水素とFe2+塩、KSOとNaHSO等がある。なお、これらは、単独で用いてもよく、2種以上を併用してもよい。
重合開始剤の添加量は、不飽和結合を有する有機化合物100モルに対して、下限は0.3モル以上が好ましく、0.5モル以上がより好ましく、上限は10モル以下が好ましく、1モル以下がより好ましい。これらの成分を反応容器に仕込み、30~80℃で2~10時間反応を行わせることにより、グラフト共重合体が得られる。使用するリン含有量が200ppm以下の天然ゴムはラテックス状態のものでもよく、ゴム溶液や固形ゴムであってもよい。
上記により得られるグラフト共重合体(改質天然ゴム)は、高いグラフト率(主鎖ポリマーの質量に対するグラフト重合したモノマーの質量の割合)と高いグラフト効率(モノマーの全重合質量に対するグラフト重合したモノマーの質量の割合)を有するため、強度を維持したまま接着性などの特性に優れており、接着材などの用途に好適に使用できる。
本発明におけるリン含有量が200ppm以下の天然ゴムに対する有機化合物の付加反応は、例えば、ケン化処理天然ゴムラテックスにチオール化合物等の有機化合物を添加し、該有機化合物を天然ゴムに付加して行われる。チオール化合物としては、例えば、エチルメルカプタン、1-プロパンチオール、n-ブチルメルカプタン、1-ヘキサンチオール、1-ドデカンチオール、1-オクタンチオール、ベンゼンチオール、1,2-エタンジチオール、1,3-プロパンジチオール、1,4-ブタンチオール、1,2-ベンゼンチオール、1,4-ベンゼンチオール、2-アミノエタンチオール、2-アミノベンゼンチオール、4-アミノベンゼンチオール、メルカプト酢酸、o-メルカプト安息香酸等が挙げられる。
チオール化合物のラテックスへの添加に際しては、予めラテックス中に乳化剤を加えてもよいし、チオール化合物を乳化剤で乳化した後にラテックスに加えてもよい。また、必要に応じて、更に有機過酸化物を添加することもできる。乳化剤としては、特に限定されないが、ノニオン系の界面活性剤が好適に使用される。
チオール化合物の添加量は、通常、天然ゴム100質量部に対して、下限は0.1質量部以上が好ましく、0.5質量部以上がより好ましく、上限は20質量部以下が好ましく、10質量部以下がより好ましい。チオール化合物の添加量が0.1質量部未満であると、チオール化合物付加による効果が小さい傾向がある。また逆にチオール化合物の添加量が20質量部を超えると、ゴムの加工性が悪化するおそれがある。
付加反応は、攪拌しながら行うことが好ましく、例えば、ラテックスおよびチオール化合物等の上記成分を反応容器に仕込み、500~1000Wのマイクロ波を10分~1時間照射することにより、ケン化処理天然ゴム分子にチオール化合物が付加した改質天然ゴムが得られる。
また、例えば、ラテックスおよびチオール化合物等の上記成分を反応容器に仕込み、30~80℃で10分~24時間反応を行わせることにより、ケン化処理天然ゴム分子にチオール化合物が付加した改質天然ゴムが得られる。
使用するリン含有量が200ppm以下の天然ゴムは、上述したグラフト化と同様に、ラテックス状態のものでもよく、ゴム溶液や固形ゴムで行うこともできる。かくして得られるケン化処理天然ゴムの有機化合物付加体は、高い付加反応率(付加した有機化合物質量/主鎖ポリマー質量)を有するため、高補強性を示し、タイヤのトレッド等の用途に好適に使用できる。
本発明におけるリン含有量が200ppm以下の天然ゴムに対するエポキシ化処理は、例えば、ケン化処理天然ゴムラテックスに有機過酸を添加し、天然ゴムをエポキシ化して行われる。有機過酸としては、例えば、過安息香酸、過酢酸、過蟻酸、過フタル酸、過プロピオン酸、トリフルオロ過酢酸、過酪酸等が挙げられる。これらの有機過酸はラテックスに直接添加してもよいが、有機過酸を形成する2成分をラテックスに加え、生成した有機過酸がラテックス中の天然ゴムと反応させるようにするのが好ましい。例えば、過蟻酸を生成させる場合は蟻酸および過酸化水素を順次加えればよい。また、過酢酸の場合には、氷酢酸および過酸化水素を順次加えて反応させればよい。
有機過酸の添加量は、通常、天然ゴム100質量部に対して、下限は5質量部以上が好ましく、10質量部以上がより好ましく、上限は70質量部以下が好ましく、60質量部以下がより好ましい。有機過酸を生成する2成分を加える場合も、生成する有機過酸がこの範囲内にあるように添加量を調整する。有機過酸の添加量が5質量部未満では、改質効果が小さくなるおそれがある。また逆に有機過酸の添加量が70質量部を超えると副反応などにより物性の低下が大きくなるおそれがある。
ラテックスにこれらの有機過酸またはその反応成分を加えるに先立って、ラテックスには、ノニオン系などの乳化剤を加え、かつラテックスのpHを中性付近である約5~7に保って安定化しておくのが好ましい。エポキシ化反応は、通常、温度20~60℃で3~10時間反応させることによって行われる。
使用するリン含有量が200ppm以下の天然ゴムは、上述したグラフト化と同様に、ラテックス状態のものでもよく、ゴム溶液や固形ゴムで行うこともできる。上記により得られる天然ゴムのエポキシ化物は、高いエポキシ化率(不飽和結合のエポキシ基への変化率)を有するため、強度を維持したまま耐油性、耐ガス透過性などの特性にすぐれ、ホース、タイヤのインナーライナーなどの用途に好適に使用できる。
本発明により得られた改質天然ゴムに、更に必要に応じて他のジエン系ゴム等のゴム成分、カーボンブラック、シリカ等の充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、加硫剤、加硫助剤、加硫促進剤、老化防止剤などの添加剤を配合することにより、タイヤ等のゴム工業に適用できるゴム組成物を製造することができる。
(タイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物)
本発明のタイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物は、リン含有量が200ppm以下である天然ゴムを5質量%以上含むゴム成分に、カーボンブラックおよび/または白色充填剤を配合している。
本発明の天然ゴム(以下、ケン化処理天然ゴムともいう)中のリン含有量は、200ppm以下であるが、150ppm以下が好ましい。200ppmを超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなったり、優れた低燃費性能が得られない傾向がある。
本発明の天然ゴムにおいて、窒素含有量は0.3質量%以下が好ましく、0.15質量%以下がより好ましい。窒素含有量が0.3質量%を超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなったり、優れた低燃費性能が得られないおそれがある。
本発明のタイヤトレッド用ゴム組成物において、ゴム成分100質量%中の上記天然ゴムの含有量は、5質量%以上であり、好ましくは10質量%以上、より好ましくは20質量%以上である。5質量%未満であると、優れた低燃費性能が得られないおそれがある。上記天然ゴムの含有量は、好ましくは50質量%以下、より好ましくは40質量%以下である。50質量%を超えると、充分なグリップ性能が得られないおそれがある。
本発明のカーカスコード被覆用ゴム組成物において、ゴム成分100質量%中の上記天然ゴムの含有量は、5質量%以上であり、好ましくは60質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上である。5質量%未満であると、優れた低燃費性能が得られないおそれがある。上記天然ゴムの含有量は、100質量%でもよいが、好ましくは80質量%以下、より好ましくは70質量%以下である。
本発明に使用されるゴム成分としては、上記天然ゴム以外に、一般にタイヤ用ゴム組成物に使用されるジエン系ゴム等が挙げられる。ジエン系ゴムの具体例としては、上記天然ゴム(ケン化処理天然ゴム)以外の天然ゴム(NR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)、スチレンイソプレンブタジエンゴム(SIBR)、エポキシ化天然ゴムなどが挙げられるが、これらに限定されるものではない。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、タイヤトレッド用ゴム組成物の場合、タイヤの強度を充分なものとし、かつ優れた耐磨耗性を発現させる観点からSBRが好ましい。また、カーカスコード被覆用ゴム組成物の場合、カーカスコードとの接着性を充分なものとし、かつ優れた耐熱性を発現させる観点からSBRが好ましい。SBRとしては、溶液重合法で得られたもの、乳化重合法で得られたものが挙げられるが、特に制限はない。
本発明のタイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物において、SBRを使用する場合、SBRのスチレン量は、好ましくは5質量%以上、より好ましくは10質量%以上である。5質量%未満では、充分なグリップ性能やゴム強度が得られないおそれがある。また、SBRのスチレン量は、好ましくは50質量%以下、より好ましくは45質量%以下である。50質量%を超えると、優れた低燃費性能が得られないおそれがある。
なお、本明細書において、SBRのスチレン量は、H-NMR測定により算出される。
本発明のタイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物において、SBRを使用する場合、SBRのビニル量は、好ましくは10質量%以上、より好ましくは15質量%以上である。10質量%未満では、充分なグリップ性能やゴム強度が得られないおそれがある。また、SBRのビニル量は、好ましくは65質量%以下、より好ましくは60質量%以下である。65質量%を超えると、優れた低燃費性能が得られないおそれがある。
なお、本明細書において、SBRのビニル量とは、ブタジエン部のビニル量のことを示し、H-NMR測定により算出される。
本発明のタイヤトレッド用ゴム組成物において、SBRを使用する場合、ゴム成分100質量%中のSBRの含有量は、好ましくは40質量%以上、より好ましくは50質量%以上である。40質量%未満であると、充分なグリップ性能が得られないおそれがある。上記SBRの含有量は、好ましくは90質量%以下、より好ましくは80質量%以下である。90質量%を超えると、上記天然ゴムによる優れた低燃費性能が得られないおそれがある。
本発明のカーカスコード被覆用ゴム組成物において、SBRを使用する場合、ゴム成分100質量%中のSBRの含有量は、好ましくは10質量%以上、より好ましくは20質量%以上である。10質量%未満であると、充分な接着性とゴム強度が得られないおそれがある。SBRの含有量は、好ましくは50質量%以下、より好ましくは40質量%以下である。50質量%を超えると、優れた低発熱性能や充分な接着性とゴム強度が得られないおそれがある。
カーボンブラックとしては、例えば、FEF、GPF、HAF、ISAF、SAF、S-SAFなどを用いることができる。上記天然ゴムとカーボンブラックをトレッドに使用することにより、ゴムの強度を高めて優れた耐摩耗性を得られる。また、カーカスコード被覆ゴムに使用することにより、高い接着性とゴム強度を得られる。
タイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物に使用するカーボンブラックのチッ素吸着比表面積(NSA)は、20m/g以上が好ましく、30m/g以上がより好ましい。20m/g未満では、充分な耐摩耗性能、接着性、ゴム強度が得られないおそれがある。また、カーボンブラックのNSAは150m/g以下が好ましく、120m/g以下がより好ましい。150m/gを超えると、加工性が悪化したり、低発熱性が低下する傾向がある。
本明細書において、カーボンブラックのチッ素吸着比表面積は、JIS K6217のA法によって求められる。
タイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物に使用するカーボンブラックのジブチルフタレート吸油量(DBP吸油量)は、好ましくは60ml/100g以上、より好ましくは80ml/100g以上である。DBP吸油量が60ml/100g未満では、良好な操縦安定性を得ることができない傾向がある。また、DBP吸油量は、好ましくは140ml/100g以下、より好ましくは120ml/100g以下である。DBP吸油量が140ml/100gを超えると、加工性が悪化するおそれがある。
なお、本明細書において、カーボンブラックのDBPは、JIS K6217-4の測定方法によって求められる。
本発明のタイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物において、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上である。5質量部未満では、充分な耐摩耗性、接着性、ゴム強度が得られないおそれがある。また、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは80質量部以下、より好ましくは60質量部以下である。80質量部を超えると、加工性、機械強度が悪化する傾向がある。
白色充填剤としては、ゴム工業で一般的に使用されているもの、たとえば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタンなどを使用することができる。なかでも、トレッドに用いた場合に耐摩耗性と低燃費性を両立できる点、カーカスコード被覆ゴムに用いた場合に優れた接着性、低燃費性及びゴム強度が得られる点から、シリカが好ましい。シリカとしては特に限定されず、例えば、乾式法により得られるシリカ(無水ケイ酸)および/または湿式法により得られるシリカ(含水ケイ酸)等を用いることができる。なかでも、シラノール基が多いという理由から、湿式法により得られるシリカ(含水ケイ酸)を用いることが好ましい。
シリカのBET法による窒素吸着比表面積は、30m/g以上が好ましく、100m/g以上がより好ましい。30m/g未満では、加硫後の破壊強度が低下する傾向がある。また、シリカのBETは500m/g以下が好ましく、300m/g以下がより好ましい。500m/gを超えると、加工性が悪化する傾向にある。なお、シリカのBET法による窒素吸着比表面積は、ASTM-D-4820-93に準拠した方法により測定することができる。
シリカの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上である。5質量部未満では、充分な低燃費性能が得られないおそれがある。また、シリカの含有量は、好ましくは100質量部以下、より好ましくは80質量部以下である。100質量部を超えると、加工性が低下する傾向がある。
本発明では、シリカとともにシランカップリング剤を併用することが好ましい。シランカップリング剤としては特に制限はなく、従来、タイヤ工業においてシリカと併用されているものが使用でき、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド等のスルフィド系、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン等のメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等のアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン等のグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン等のクロロ系が挙げられる。なお、上記のシランカップリング剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
シランカップリング剤を含有する場合、シランカップリング剤の含有量は、シリカ100質量部に対して2質量部以上が好ましく、4質量部以上がより好ましい。2質量部未満では、ゴム強度及び耐摩耗性が悪化する傾向がある。また、シランカップリング剤の含有量は、15質量部以下が好ましく、13質量部以下がより好ましい。15質量部を超えると、シランカップリング剤の配合によるゴム強度及び耐摩耗性の改善効果がみられず、コストが増大してしまう傾向がある。
本発明のタイヤトレッド用ゴム組成物において、カーボンブラックおよび白色充填剤の合計含有量は、ゴム成分100質量部に対して、好ましくは30質量部以上であり、より好ましくは35質量部以上、更に好ましくは40質量部以上である。30質量部未満では、充分な耐摩耗性が得られないおそれがある。また、カーボンブラックおよび白色充填剤の合計含有量は、ゴム成分100質量部に対して、好ましくは150質量部以下であり、より好ましくは120質量部以下、更に好ましくは100質量部以下である。150質量部を超えると、加工性が悪化したり、充分な低発熱性が得られないおそれがある。
本発明のカーカスコード被覆用ゴム組成物において、カーボンブラックおよび白色充填剤の合計含有量は、ゴム成分100質量部に対して、好ましくは30質量部以上であり、より好ましくは35質量部以上である。30質量部未満では、充分なゴム強度が得られないおそれがある。また、カーボンブラックおよび白色充填剤の合計含有量は、ゴム成分100質量部に対して、好ましくは100質量部以下であり、より好ましくは80質量部以下である。100質量部を超えると、加工性が悪化したり、充分な低発熱性が得られないおそれがある。
本発明のタイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、酸化亜鉛、ステアリン酸、各種老化防止剤、アロマオイル等のオイル、ワックス、加硫剤、加硫促進剤などを適宜配合することができる。
カーカスコード被覆用ゴム組成物の場合、酸化亜鉛を含有することが好ましい。
本発明のカーカスコード被覆用ゴム組成物において、酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは4質量部以上、より好ましくは5質量部以上である。4質量部未満では、接着性能が悪化するおそれがある。また、酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは15質量部以下、より好ましくは10質量部以下である。15質量部を超えると、ゴム強度が低下するおそれがある。
加硫促進剤としては、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N,N’-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(DZ)、メルカプトベンゾチアゾール(MBT)、ジベンゾチアゾリルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)などが挙げられる。これらの加硫促進剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、加硫特性に優れ、加硫後のゴムの物性において、低発熱性に優れ、機械的硬度向上の効果も大きいという理由から、TBBS、CBSなどのスルフェンアミド系加硫促進剤が好ましい。特に、TBBS及びDPGを併用することが好ましい。
本発明のタイヤトレッド用ゴム組成物およびカーカスコード被覆用ゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法等により製造できる。なお、天然ゴムを使用する場合、上記混練及び加硫前に、通常素練り工程が行われるが、本発明では、アルカリ水溶液でケン化処理する方法などでリン含有量及び窒素含有量を低減させ、ゲル含有率を低く抑えた天然ゴムを使用することで優れた加工性が得られるため、特段素練り工程を行わなくてもよい。素練り工程は、バンバリーミキサー等の混練装置を用い、天然ゴム等のゴム成分、素練り促進剤(芳香族ジスルフィド系化合物、芳香族メルカプタン化合物等)等の成分を混練することで行うことができる。
(空気入りタイヤ)
本発明のタイヤトレッド用ゴム組成物は、タイヤのトレッドとして用いられる。本発明の空気入りタイヤは、上記タイヤトレッド用ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのトレッドの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧してタイヤを製造できる。
本発明のカーカスコード被覆用ゴム組成物は、カーカスコード被覆用ゴムとして用いられる。本発明の空気入りタイヤは、上記カーカスコード被覆用ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階で混練りしたのち、得られた混練物でカーカスコードを被覆し、タイヤ成型機上にて、カーカス形状に成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧してタイヤを製造できる。
本発明の空気入りタイヤは、乗用車用タイヤ、バス用タイヤ、トラック用タイヤ等として好適に用いられる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
まず、実施例1~16および比較例1~7で使用した各種薬品について説明する。
天然ゴムラテックス:タイテックス社から入手したフィールドラテックスを使用
界面活性剤:花王(株)製のEmal-E
NaOH:和光純薬工業(株)製のNaOH
カーボンブラック:昭和キャボット(株)製のN110(チッ素吸着比表面積(NSA):143m/g、DBP吸油量:113ml/100g)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
ステアリン酸:日油(株)製のステアリン酸
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤TBBS:大内新興化学工業(株)製のノクセラーNS(N-t-ブチル-2-ベンゾチアジルスルフェンアミド)
実施例1~8および比較例1~3
各試料の作成手順は次のとおりである。比較例1ではケン化工程を行わず、比較例2では洗浄工程を行わず、比較例3では20日間貯蔵した天然ゴムラテックスを用いた。
(1)ケン化工程
天然ゴムラテックスを異なる日数保管し、その後固形分濃度(DRC)30%(w/v)に調整した後、天然ゴムラテックス1000gに対し、Emal-E10gとNaOH10g又は20gを加え70℃にて3~24時間ケン化反応を行い、ケン化ラテックスを得た。
(2)洗浄工程
(1)で得られたラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり撹拌しながらギ酸を添加してpHを4.0~4.5に調整し、凝集した。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、その後、110℃で120分間乾燥して固形ゴムを得た。
実施例1~8、比較例1~3の各試料及びTSRゴムについて以下に示す方法により、リン含有量、ゲル含有率などを測定した。
・リン含有量の測定
ICP発光分析装置(ICPS-8100、島津製作所社製)を使用して生ゴムのリン含有量を求めた。
・リンの31P-NMR測定
NMR分析装置(400MHz、AV400M、日本ブルカー社製)を使用し、80%リン酸水溶液のP原子の測定ピークを基準点(0ppm)として、クロロホルムにより生ゴムより抽出した成分を精製し、CDClに溶解して測定した。
・ゲル含有率の測定
1mm×1mmに切断した生ゴムのサンプル70.00mgを計り取り、これに35mLのトルエンを加え1週間冷暗所に静置した。次いで、遠心分離に付してトルエンに不溶のゲル分を沈殿させ上澄みの可溶分を除去し、ゲル分のみをメタノールで固めた後、乾燥し質量を測定した。次の式によりゲル含有率(%)を求めた。
ゲル含有率(質量%)=[乾燥後の質量mg/最初のサンプル質量mg]×100
・窒素含有量の測定
窒素含有量は、CHN CORDER MT-5(ヤナコ分析工業社製)を用いて、ケルダール法に従って測定した。測定には、まずアンチピリンを標準物質として、窒素含有量を求めるための検量線を作製した。次いで、各実施例および比較例で得られた天然ゴム約10mgを秤量し、3回の測定結果から平均値を求めて、試料の窒素含有量とした。
・ムーニー粘度の測定
JIS K6300に定められたムーニー粘度の測定法にしたがい、初期ムーニー粘度及び6ヵ月後のムーニー粘度を100℃で測定した。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、実施例1~8において、リンの含有量が200ppm以下であった。これらの試料はムーニー粘度が低く、6ヵ月後もムーニー粘度が低いままであることがわかった。一方、比較例1~3の試料ではムーニー粘度が高く、また6ヵ月後にはムーニー粘度が増大していることが分かった。
実施例9~16および比較例4~7
実施例1~8および比較例1~3で得られた天然ゴム、ならびに、TSRゴム100質量部に対して、カーボンブラック50質量部、ステアリン酸3質量部、酸化亜鉛3質量部、老化防止剤ノクラック6C1質量部、硫黄1.5質量部、及び、加硫促進剤ノクセラーNS0.8質量部を混練り配合し、各種供試ゴム組成物を得た。これらの配合物を170℃で20分間プレス加硫して加硫物を得、これらについて表2に示す各特性の試験を行った。
<引張応力(M300)>
300%伸張時の引張応力(M300)をJIS K6251-1993に準拠して測定した。
<引張り試験>
JIS K6251に準じ、加硫ゴム組成物からなる3号ダンベル型試験片を用いて引張り試験を実施し、試験片の破断強度Tb(MPa)、及び、破断時伸びEb(%)をそれぞれ測定した。
<ゴム硬度>
室温の条件下にて、JIS-A硬度計を用いて加硫ゴム組成物の硬度(Hs)を測定した。
<転がり抵抗指数>
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み2%の条件下で各配合のtanδを測定した。
Figure JPOXMLDOC01-appb-T000002
表2に示すように、実施例9~16は、比較例4~7に比べてムーニー粘度が低く加工性に優れ、またtanδが低くタイヤの低燃費性に効果があることがわかった。
次に、製造例1~3、実施例17~25および比較例8~13で使用した各種薬品について説明する。
界面活性剤:花王(株)製のEmal-E
NaOH:和光純薬製のNaOH
ノニオン系乳化剤:花王(株)製のエマルゲン106、エマルゲン430
製造例1
(ケン化工程)
農園より入手したフィールドラテックスを固形分濃度(DRC)30%(w/v)に調整した後、天然ゴムラテックス1000gに対し、Emal-E 10gとNaOH10gを加え、70℃にて24時間ケン化反応を行った。得られたラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり撹拌しながらギ酸を添加してpHを4.0~4.5に調整し、凝集させた。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、ケン化処理天然ゴムラテックスを得た。
製造例2
(ケン化工程)
農園より入手したフィールドラテックスを固形分濃度(DRC)30%(w/v)に調整した後、天然ゴムラテックス1000gに対し、Emal-E 10gとNaOH20gを加え、70℃にて48時間ケン化反応を行った。得られたラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり撹拌しながらギ酸を添加してpHを4.0~4.5に調整し、凝集させた。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、ケン化処理天然ゴムラテックスを得た。
製造例3
(ケン化工程)
農園より入手したフィールドラテックスを固形分濃度(DRC)30%(w/v)に調整した後、天然ゴムラテックス1000gに対し、Emal-E 10gとNaOH10gを加え、室温にて24時間ケン化反応を行った。得られたラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり撹拌しながらギ酸を添加してpHを4.0~4.5に調整し、凝集させた。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、ケン化処理天然ゴムラテックスを得た。
製造例1~3の各ケン化処理天然ゴムラテックスから得られた天然ゴムについて、リン含有量の測定、リンの31P-NMR測定を上記方法と同様の方法により行った。
実施例17
(グラフト共重合した天然ゴムの製造)
攪拌棒、滴下漏斗、窒素導入管およびコンデンサーを備えた4つ口フラスコに製造例1で得たケン化処理天然ゴムラテックス(固形分25%)600gを投入し、窒素雰囲気下でゆっくりと撹拌しながら、蒸留水250mlに溶解したノニオン系乳化剤(花王株式会社製の「エマルゲン430」)0.92gを一度に加えた。次に、メタクリル酸メチル91.6gを加え、数秒間激しく攪拌してそれぞれの薬品をよく混合させた。ついで、蒸留水50mlに溶かした重合開始剤tert-ブチルハイドロパーオキサイド1.43gとテトラエチレンペンタミン15.0gとを加え、30℃で3時間反応させた。反応後のラテックスは凝固していたので、石油エーテルで抽出を行った後、アセトンとメタノールの2:1混合溶媒で抽出することにより、未反応天然ゴム、ホモポリマーおよびグラフト共重合体を分離した。これらはFT-IR、NMR分析装置でそれぞれ単独であることを確認した。
実施例18~19
(グラフト共重合した天然ゴムの製造)
製造例2で得たケン化処理天然ゴムラテックス(固形分25%)および製造例3で得たケン化処理天然ゴムラテックス(固形分25%)をそれぞれ使用したほかは、実施例17と同様にしてグラフト共重合体を得た。
比較例8
(グラフト共重合した天然ゴムの製造)
ガスリー社(マレーシア)から入手したHAタイプのラテックスを固形分25%になるように希釈した後に使用したほかは、実施例17と同様にしてグラフト共重合体を得た。
比較例9
(グラフト共重合した天然ゴムの製造)
ガスリー社(マレーシア)から入手した天然ゴムのラテックス(固形分61%)を固形分30%になるように希釈した後、固形分60%まで濃縮し、固形分25%に再度希釈して使用したほかは、実施例17と同様にしてグラフト共重合体を得た。
各実施例および比較例で得たグラフト共重合体について、重合度を評価するグラフト率およびグラフト効率を次式で求めた。
グラフト率=(グラフト重合したモノマーの質量(g))/(主鎖ポリマーの質量(g))×100
グラフト効率=(グラフト重合したモノマーの質量(g))/(モノマーの全重合質量(g))×100
得られたグラフト率およびグラフト効率を、使用した各天然ゴムの含有リン量と共に表3に示す。
Figure JPOXMLDOC01-appb-T000003
表3に示すように、製造例1~3において得られたケン化処理天然ゴムラテックスから得られた天然ゴムのリン含有量は、200ppm以下であった。ケン化処理天然ゴムラテックスを用いた実施例17~19では、ケン化処理天然ゴムラテックスを用いなかった比較例8、9に比べて、高いグラフト率およびグラフト効率を示した。
また、製造例1~3において得られたケン化処理天然ゴムラテックスから抽出した抽出物の31P NMR測定において、-3ppm~1ppmにリン脂質によるピークを検出しなかった。
実施例20
(有機化合物を付加した天然ゴムの製造)
攪拌棒、滴下漏斗およびコンデンサーを備えた3つ口フラスコに製造例1で得たケン化処理天然ゴムラテックス(固形分25%)600gを投入した。ついで、蒸留水300mlに溶解したノニオン系乳化剤(花王株式会社製の「エマルゲン106」)5.4gをゆっくりと攪拌しながら加えた。次に、アミノエタンチオールを20g加えて攪拌後、500Wでマイクロ波を1時間照射し、付加反応を行った。
実施例21~22
(有機化合物を付加した天然ゴムの製造)
製造例2で得たケン化処理天然ゴムラテックス(固形分25%)および製造例3で得たケン化処理天然ゴムラテックス(固形分25%)をそれぞれ使用したほかは、実施例20と同様にしてアミノエタンチオールの付加を行った。
比較例10
(有機化合物を付加した天然ゴムの製造)
ガスリー社(マレーシア)から入手したHAタイプのラテックスを固形分25%になるように希釈した後に使用したほかは、実施例20と同様にしてアミノエタンチオールの付加を行った。
比較例11
(有機化合物を付加した天然ゴムの製造)
ガスリー社(マレーシア)から入手した天然ゴムのラテックス(固形分61%)を固形分30%になるように希釈した後、固形分60%まで濃縮し、固形分25%に再度希釈して使用したほかは、実施例20と同様にしてアミノエタンチオールの付加を行った。
付加反応率(付加した有機化合物質量[g]/主鎖ポリマー質量[g])を測定した。
測定した付加反応率を、使用した各天然ゴムの含有リン量と共に表4に示す。
Figure JPOXMLDOC01-appb-T000004
表4に示すように、ケン化処理天然ゴムラテックスを用いた実施例20~22では、ケン化処理天然ゴムラテックスを用いなかった比較例10、11に比べて、高い付加反応率を示した。
実施例23
(エポキシ化された天然ゴムの製造)
攪拌棒、滴下漏斗およびコンデンサーを備えた3つ口フラスコに製造例1で得たケン化処理天然ゴムラテックス(固形分25%)600gを投入した。ついで、蒸留水300mlに溶解したノニオン系乳化剤(花王株式会社製の「エマルゲン106」)5.4gをゆっくりと攪拌しながら加えた。次に、酢酸を加えて、pHを中性に調整し、40℃に加熱し、攪拌しながら30.6gの蟻酸を加えた。さらに、50℃に加熱し、20分で166.8gの過酸化水素(39%水溶液)を加え、その後室温で5時間反応させてエポキシ化ゴムを得た。
実施例24~25
(エポキシ化された天然ゴムの製造)
製造例2で得たケン化処理天然ゴムラテックス(固形分25%)および製造例3で得たケン化処理天然ゴムラテックス(固形分25%)をそれぞれ使用したほかは、実施例23と同様にしてエポキシ化ゴムを得た。
比較例12
(エポキシ化された天然ゴムの製造)
ガスリー社(マレーシア)から入手したHAタイプのラテックスを固形分25%になるように希釈した後に使用したほかは、実施例23と同様にしてエポキシ化ゴムを得た。
比較例13
(エポキシ化された天然ゴムの製造)
ガスリー社(マレーシア)から入手した天然ゴムのラテックス(固形分61%)を固形分30%になるように希釈した後、固形分を60%まで濃縮し、固形分25%に再度希釈して使用したほかは、実施例23と同様にしてエポキシ化ゴムを得た。
各実施例および比較例で得られたエポキシ化ゴムのエポキシ化率は、FT-IR、13C-NMRを用いて測定した。測定はChemical Demonstration of the Randomness of Epoxidized Natural Rubber, Br.Polym.J.1984,16,134(Davey et al.)に従って行い、かつ反応速度を比較するために、3時間後の二重結合のエポキシ化率を測定した。
各実施例および比較例で得られたエポキシ化ゴムのエポキシ化率の測定結果を、使用した各天然ゴムの含有リン量と共に表5に示す。
Figure JPOXMLDOC01-appb-T000005
表5に示すように、ケン化処理天然ゴムラテックスを用いた実施例23~25では、ケン化処理天然ゴムラテックスを用いなかった比較例12、13に比べて、高いエポキシ化率を示した。
次に、製造例4~6、実施例26~37および比較例14~21で使用した各種薬品について説明する。
天然ゴムラテックス:タイテックス社から入手したフィールドラテックスを使用
界面活性剤:花王(株)製のEmal-E
NaOH:和光純薬工業(株)製のNaOH
天然ゴム:TSR
SBR(1):JSR(株)製のNS116(ビニル量:60質量%、スチレン量:20質量%)
SBR(2):日本ゼオン(株)製のNipol1502(乳化重合スチレンブタジエンゴム(E-SBR)、スチレン量:23.5質量%)
カーボンブラック(1):キャボットジャパン(株)製のN220(NSA:120m/g、DBP:114ml/100g)
カーボンブラック(2):三菱化学(株)製のダイアブラックH(N330、NSA:79m/g、DBP:100ml/100g)
シリカ:Rhodia社製のZEOSIL 115GR(BET:115m/g)
シランカップリング剤:デグッサ社製のSi266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
オイル:(株)ジャパンエナジー製のプロセスX-140
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製の椿
老化防止剤:住友化学(株)製のアンチゲン6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラーNS(N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD(N,N’-ジフェニルグアニジン)
素練促進剤:大内新興化学工業(株)製のノクタイザーSD
(アルカリによるケン化処理天然ゴムの作製)
製造例4
天然ゴムラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、天然ゴムラテックス1000gに対し、Emal-E10gとNaOH20gを加え、室温で48時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。このラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり攪拌しながらギ酸を添加しpHを4.0~4.5に調整し、凝集させた。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、その後110℃で2時間乾燥して固形ゴム(ケン化天然ゴムA)を得た。
製造例5
天然ゴムラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、天然ゴムラテックス1000gに対し、Emal-E10gとNaOH15gを加え、室温で48時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。このラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり攪拌しながらギ酸を添加しpHを4.0~4.5に調整し、凝集させた。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、その後110℃で2時間乾燥して固形ゴム(ケン化天然ゴムB)を得た。
製造例6
天然ゴムラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、ゆっくり攪拌しながらギ酸を添加しpHを4.0~4.5に調整し、凝集させた。凝集したゴムを粉砕し、110℃で2時間乾燥して固形ゴム(未処理天然ゴム)を得た。
製造例4~6により得られた固形ゴム及びTSRについて、窒素含有量、リン含有量、ゲル含有率を上記方法と同様の方法により測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
表6に示すように、ケン化処理天然ゴムA、Bは、未処理の天然ゴムやTSRに比べて、窒素含有量、リン含有量、ゲル含有率が低減している。
(ゴム試験片およびタイヤの作製1)
実施例26~31、比較例14~17
表7、8に示す配合処方にしたがい、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。なお、TSRを使用した比較例14、16では、TSRのゴム成分100質量部に対して素練促進剤を0.4質量部添加して、1.7Lバンバリーミキサーを用いてあらかじめ素練りを行った。一方、実施例26~31、比較例15、17では、天然ゴムの素練りを行わなかった。
次に、得られた未加硫ゴム組成物をタイヤ成型機上でトレッド形状に成形し、他のタイヤ部材と貼り合わせて未加硫タイヤを作製した。未加硫タイヤを150℃で30分間加硫することにより試験用タイヤを製造した。
(ゴム試験片およびタイヤの作製2)
実施例32~37、比較例18~21
表9、10に示す配合処方にしたがい、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。なお、TSRを使用した比較例18、20では、TSRのゴム成分100質量部に対して素練促進剤を0.4質量部添加して、1.7Lバンバリーミキサーを用いてあらかじめ素練りを行った。一方、実施例32~37、比較例19、21では、天然ゴムの素練りを行わなかった。
また、得られた未加硫ゴム組成物を170℃の条件下で15分間プレス加硫し加硫ゴム組成物を得た。
次に、得られた未加硫ゴム組成物でカーカスコードを被覆し、タイヤ成型機上にて、カーカス形状に成形し、他のタイヤ部材と貼り合わせて未加硫タイヤを作製した。未加硫タイヤを150℃で30分間加硫することにより試験用タイヤを製造した。
得られた未加硫ゴム組成物、加硫ゴム組成物および試験用タイヤを下記により評価した。結果を表7~10に示す。
(ムーニー粘度の測定)
得られた未加硫ゴム組成物について、JIS K6300に準拠したムーニー粘度の測定方法に従い、130℃で測定した。比較例14、比較例16、比較例18または比較例20のムーニー粘度(ML1+4)を100とし、下記計算式により指数表示した(ムーニー粘度指数)。指数が大きいほどムーニー粘度が低く、加工性に優れる。
(ムーニー粘度指数)=(比較例14、比較例16、比較例18または比較例20のML1+4)/(各配合のML1+4)×100 
(転がり抵抗)
転がり抵抗試験機を用いて、試験用タイヤをリム(15×6JJ)に装着し、タイヤ内圧230kPa、荷重3.43kN、速度80km/hの条件下で走行させたときの転がり抵抗を測定し、比較例14、比較例16、比較例18または比較例20の転がり抵抗指数を100とし、下記計算式により、各配合の転がり抵抗を指数表示した。なお、転がり抵抗指数が大きいほど、転がり抵抗が低減され、燃費性能に優れることを示す。
(転がり抵抗指数)=(比較例14、比較例16、比較例18または比較例20の転がり抵抗)/(各配合の転がり抵抗)×100
(摩耗試験)
実施例26~31及び比較例14~17について、試験用タイヤを車に装着し、市街地を8000km走行した後の溝深さの減少量を測定した。さらに、比較例14または比較例16の溝深さの減少量を100とし、下記計算式により、各配合の溝深さの減少量を指数表示した。なお、耐摩耗性指数が大きいほど、耐摩耗性に優れることを示す。
(耐摩耗性指数)=(比較例14または比較例16の溝深さの減少量)/(各配合の溝深さの減少量)×100
(ゴム強度)
実施例32~37及び比較例18~21について、得られた加硫ゴムシートを用いて、3号ダンベル型ゴム試験片を作製し、JIS K 6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に準じて引張試験をおこない、破断強度(TB)および破断時伸び(EB)を測定し、その積(TB×EB)を算出し、比較例18または比較例20のTB×EBを100とし、下記計算式により、各配合のゴム強度(TB×EB)を指数表示した。なお、ゴム強度指数が大きいほど、ゴム強度に優れることを示す。
(ゴム強度指数)=(各配合のTB×EB)/(比較例18または比較例20のTB×EB)×100
(接着性試験)
実施例32~37及び比較例18~21について、得られた未加硫ゴム組成物とカーカスコードとを貼り合わせ、180℃の条件下で40分間加硫し、引張試験機(インストロン社製)を用いて、ゴムとカーカスコードとの間の接着性を目視で評価した。
○:ゴムシートとカーカスコードとの接着性が良好
×:ゴムシートとカーカスコードとの接着性が悪い
Figure JPOXMLDOC01-appb-T000007
表7から、タイヤトレッド用ゴム組成物にケン化処理天然ゴムを用いると(実施例26~28)、素練りしたTSRを用いた比較例14よりも優れた加工性を示した。一方、素練りを行わなかった比較例15の未処理の天然ゴムでは加工性が悪かった。このように、ケン化処理天然ゴムを用いると、素練りを行わなくても、優れた加工性を示した。また、実施例では比較例と比べると燃費性能、摩耗性能ともに良好であった。
Figure JPOXMLDOC01-appb-T000008
表8から、シリカおよびカーボンブラックの両方を含むトレッド用配合でも、ケン化処理天然ゴムを用いると(実施例29~31)、素練りしたTSRを用いた比較例16よりも優れた加工性を示した。一方、素練りを行わなかった比較例17の未処理の天然ゴムでは加工性が悪かった。また、実施例では比較例と比べると燃費性能、摩耗性能ともに良好であった。
Figure JPOXMLDOC01-appb-T000009
表9から、カーカスコード被覆用ゴム組成物にケン化処理天然ゴムを用いると(実施例32~34)、素練りしたTSRを用いた比較例18や、素練りを行わず、未処理の天然ゴムを用いた比較例19よりも優れた加工性と高いゴム強度を示した。また、実施例では、比較例19よりも優れた接着性能を示し、燃費性能も比較例18、19に比べて良好であった。
Figure JPOXMLDOC01-appb-T000010
表10から、シリカおよびカーボンブラックの両方を含むカーカスコード被覆用配合でも、ケン化処理天然ゴムを用いると(実施例35~37)、素練りしたTSRを用いた比較例20や、素練りを行わず、未処理の天然ゴムを用いた比較例21よりも優れた加工性と高いゴム強度を示した。また、比較例で接着性能が悪いが、ケン化処理天然ゴムを用いると接着性能は改善された。更に、燃費性能についても、比較例に比べて実施例は良好であった。

Claims (39)

  1. リン含有量が200ppm以下である天然ゴム。
  2. トルエン不溶分として測定されるゲル含有率が20質量%以下である請求項1記載の天然ゴム。
  3. クロロホルム抽出物の31P NMR測定において、-3ppm~1ppmにリン脂質によるピークが存在せず、実質的にリン脂質が存在しない請求項1または2に記載の天然ゴム。
  4. 窒素含有量が0.3質量%以下である請求項1~3のいずれかに記載の天然ゴム。
  5. 窒素含有量が0.15質量%以下である請求項1~3のいずれかに記載の天然ゴム。
  6. 天然ゴムラテックスをアルカリによりケン化し、ケン化後凝集させたゴムを洗浄し、その後乾燥する工程よりなり、当該工程を天然ゴムラテックス採取後15日以内に終了する天然ゴムの製造方法。
  7. ケン化により分離したリン化合物を洗浄除去することにより、天然ゴムラテックス中のゴム分に対するリン含有量を200ppm以下にする請求項6に記載の天然ゴムの製造方法。
  8. トルエン不溶分として測定される天然ゴム中のゲル含有率が20質量%以下である請求項6または7に記載の天然ゴムの製造方法。
  9. 天然ゴム中の窒素含有量が0.3質量%以下である請求項6~8のいずれかに記載の天然ゴムの製造方法。
  10. 天然ゴム中の窒素含有量が0.15質量%以下である請求項6~8のいずれかに記載の天然ゴムの製造方法。
  11. 請求項1~5のいずれかに記載の天然ゴム、および、加硫剤を含有するゴム組成物。
  12. 請求項11に記載のゴム組成物を用いた空気入りタイヤ。
  13. リン含有量が200ppm以下の天然ゴムに、不飽和結合を有する有機化合物のグラフト共重合処理を施して改質した改質天然ゴム。
  14. リン含有量が200ppm以下の天然ゴムに、有機化合物との付加反応を施して改質した改質天然ゴム。
  15. リン含有量が200ppm以下の天然ゴムに、エポキシ化処理を施して改質した改質天然ゴム。
  16. 前記リン含有量が200ppm以下の天然ゴムは、天然ゴムラテックスをケン化処理して得られたものである請求項13~15のいずれかに記載の改質天然ゴム。
  17. クロロホルム抽出物の31P NMR測定において、-3ppm~1ppmにリン脂質によるピークが存在せず、実質的にリン脂質が存在しない請求項13~16のいずれかに記載の改質天然ゴム。
  18. 天然ゴムラテックス中のゴム分に対するリン含有量が200ppm以下となるまでリン化合物を除去した後、得られた天然ゴムに不飽和結合を有する有機化合物をグラフト共重合させる請求項13記載の改質天然ゴムの製造方法。
  19. 天然ゴムラテックス中のゴム分に対するリン含有量が200ppm以下となるまでリン化合物を除去した後、得られた天然ゴムに有機化合物を付加反応させる請求項14記載の改質天然ゴムの製造方法。
  20. 天然ゴムラテックス中のゴム分に対するリン含有量が200ppm以下となるまでリン化合物を除去した後、得られた天然ゴムをエポキシ化する請求項15記載の改質天然ゴムの製造方法。
  21. 前記リン化合物の除去が天然ゴムラテックスをケン化処理して行われる請求項18~20のいずれかに記載の改質天然ゴムの製造方法。
  22. リン含有量が200ppm以下である天然ゴムを5質量%以上含むゴム成分に、カーボンブラックおよび/または白色充填剤を配合したタイヤトレッド用ゴム組成物。
  23. 前記天然ゴムの窒素含有量が0.3質量%以下である請求項22記載のタイヤトレッド用ゴム組成物。
  24. 前記天然ゴムの窒素含有量が0.15質量%以下である請求項22記載のタイヤトレッド用ゴム組成物。
  25. 前記天然ゴムのトルエン不溶分として測定されるゲル含有率が20質量%以下である請求項22~24のいずれかに記載のタイヤトレッド用ゴム組成物。
  26. 前記天然ゴムは、天然ゴムラテックスをケン化処理して得られたものである請求項22~25のいずれかに記載のタイヤトレッド用ゴム組成物。
  27. 前記白色充填剤がシリカである請求項22~26のいずれかに記載のタイヤトレッド用ゴム組成物。
  28. 天然ゴムを素練りする工程を含まない請求項22~27のいずれかに記載のタイヤトレッド用ゴム組成物の製造方法。
  29. 請求項22~27のいずれかに記載のタイヤトレッド用ゴム組成物を用いて作製したトレッドを有する空気入りタイヤ。
  30. リン含有量が200ppm以下である天然ゴムを5質量%以上含むゴム成分に、カーボンブラックおよび/または白色充填剤を配合したカーカスコード被覆用ゴム組成物。
  31. 前記天然ゴムの窒素含有量が0.3質量%以下である請求項30記載のカーカスコード被覆用ゴム組成物。
  32. 前記天然ゴムの窒素含有量が0.15質量%以下である請求項30記載のカーカスコード被覆用ゴム組成物。
  33. 前記天然ゴムのトルエン不溶分として測定されるゲル含有率が20質量%以下である請求項30~32のいずれかに記載のカーカスコード被覆用ゴム組成物。
  34. 前記天然ゴムは、天然ゴムラテックスをケン化処理して得られたものである請求項30~33のいずれかに記載のカーカスコード被覆用ゴム組成物。
  35. 前記白色充填剤がシリカである請求項30~34のいずれかに記載のカーカスコード被覆用ゴム組成物。
  36. ゴム成分100質量%中の前記天然ゴムの含有量が60~100質量%である請求項30~35のいずれかに記載のカーカスコード被覆用ゴム組成物。
  37. ゴム成分100質量部に対して、酸化亜鉛を4~15質量部含有する請求項30~36のいずれかに記載のカーカスコード被覆用ゴム組成物。
  38. 天然ゴムを素練りする工程を含まない請求項30~37のいずれかに記載のカーカスコード被覆用ゴム組成物の製造方法。
  39. 請求項30~37のいずれかに記載のカーカスコード被覆用ゴム組成物を用いて作製したカーカスを有する空気入りタイヤ。
PCT/JP2009/070824 2008-12-15 2009-12-14 天然ゴム、その製造方法、ゴム組成物およびこれを用いた空気入りタイヤ、改質天然ゴムおよびその製造方法、並びに、トレッドまたはカーカスコード被覆用ゴム組成物およびこれらを用いた空気入りタイヤ WO2010071106A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117012913A KR101695039B1 (ko) 2008-12-15 2009-12-14 천연 고무, 그 제조 방법, 고무 조성물 및 이것을 이용한 공기 타이어, 개질 천연 고무 및 그 제조 방법, 및 트레드 또는 카카스 코드 피복용 고무 조성물 및 이들을 이용한 공기 타이어
EP09833409.7A EP2377892B1 (en) 2008-12-15 2009-12-14 Natural rubber and manufacturing method thereof, rubber composition and pneumatic tire utilizing the same, modified natural rubber and manufacturing method thereof, and rubber composite for covering threads or carcass cords and pneumatic tire utilizing the same
RU2011120479/05A RU2535681C2 (ru) 2008-12-15 2009-12-14 Натуральный каучук и способ его получения, резиновая смесь и пневматическая шина, выполненная с использованием этой смеси, модифицированный и натуральный каучук и способ его получения и резиновая смесь для протектора или покрытия корда каркаса, и пневматическая шина, выполненная с использованием этого материала
CN200980151606.2A CN102245644B (zh) 2008-12-15 2009-12-14 天然橡胶、其制造方法、橡胶组合物及使用它的充气轮胎、改性天然橡胶及其制造方法、以及胎面或包覆胎体帘线用橡胶组合物及使用它们的充气轮胎
US13/139,536 US8658728B2 (en) 2008-12-15 2009-12-14 Natural rubber and method for producing the same, rubber composition and pneumatic tire using the same, modified natural rubber and method for producing the same, and rubber composition for tread or for covering carcass cord and pneumatic tire using the same
BRPI0922386A BRPI0922386A2 (pt) 2008-12-15 2009-12-14 "borracha natural e método para produzir a mesma, composição e pneu pneumático utilizando a mesma, borracha natural modificada e método para produção da mesma, e composição de borracha para banda de rodagem ou para cobrir lonas de carcaça e pneu pneumático utilizando a mesma

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-318710 2008-12-15
JP2008318710A JP4598853B2 (ja) 2008-12-15 2008-12-15 天然ゴム、その製造方法、ゴム組成物およびそれを用いた空気入りタイヤ
JP2008318711A JP4810568B2 (ja) 2008-12-15 2008-12-15 改質天然ゴムおよびその製造方法
JP2008-318711 2008-12-15
JP2009-019711 2009-01-30
JP2009019711A JP4603615B2 (ja) 2009-01-30 2009-01-30 トレッド又はカーカスコード被覆用ゴム組成物及びタイヤ

Publications (1)

Publication Number Publication Date
WO2010071106A1 true WO2010071106A1 (ja) 2010-06-24

Family

ID=42268776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070824 WO2010071106A1 (ja) 2008-12-15 2009-12-14 天然ゴム、その製造方法、ゴム組成物およびこれを用いた空気入りタイヤ、改質天然ゴムおよびその製造方法、並びに、トレッドまたはカーカスコード被覆用ゴム組成物およびこれらを用いた空気入りタイヤ

Country Status (8)

Country Link
US (1) US8658728B2 (ja)
EP (2) EP2666815B1 (ja)
KR (1) KR101695039B1 (ja)
CN (1) CN102245644B (ja)
BR (1) BRPI0922386A2 (ja)
MY (1) MY159145A (ja)
RU (1) RU2535681C2 (ja)
WO (1) WO2010071106A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341099A1 (en) * 2010-01-04 2011-07-06 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and studless tire
EP2476708A1 (en) * 2011-01-17 2012-07-18 Sumitomo Rubber Industries, Ltd. Modified natural rubber, production method thereof, tire rubber composition, and pneumatic tire
JP2013043929A (ja) * 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2013043899A (ja) * 2011-08-22 2013-03-04 Sumitomo Rubber Ind Ltd ベーストレッド用ゴム組成物及び重荷重用タイヤ
US20130066021A1 (en) * 2010-06-10 2013-03-14 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
JP2013064072A (ja) * 2011-09-16 2013-04-11 Sumitomo Rubber Ind Ltd 複合体の製造方法、複合体、ゴム組成物及び空気入りタイヤ
JP2013116994A (ja) * 2011-12-05 2013-06-13 Sumitomo Rubber Ind Ltd ウイング用ゴム組成物、その製造方法及び空気入りタイヤ
JP2013147555A (ja) * 2012-01-18 2013-08-01 Bridgestone Corp 変性天然ゴムの製造方法、変性天然ゴム、ゴム組成物、及び、タイヤ
JP2013245339A (ja) * 2012-05-29 2013-12-09 Sumitomo Rubber Ind Ltd ケーストッピング用ゴム組成物及び空気入りタイヤ
US8875765B2 (en) 2011-10-25 2014-11-04 Sumitomo Rubber Industries, Ltd. Rubber composition for clinch apex and pneumatic tire
US8952091B2 (en) 2010-01-18 2015-02-10 Sumitomo Rubber Industries, Ltd. Rubber composition for inner liner and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
US20150274945A1 (en) * 2012-06-28 2015-10-01 The Goodyear Tire & Rubber Company Rubber composition having a crosslink distribution, its preparation and article with component
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
JP2018035250A (ja) * 2016-08-31 2018-03-08 住友ゴム工業株式会社 天然ゴム−白色充填剤複合体の製造方法およびタイヤ
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216029B2 (ja) * 2010-01-27 2013-06-19 住友ゴム工業株式会社 サイドウォール、インスレーション又はブレーカークッション用ゴム組成物、これらの製造方法及び空気入りタイヤ
JP5086457B2 (ja) 2010-05-28 2012-11-28 住友ゴム工業株式会社 ブレーカー用ゴム組成物及び空気入りタイヤ
JP5411214B2 (ja) 2011-07-28 2014-02-12 住友ゴム工業株式会社 トレッド用ゴム組成物、その製造方法及び重荷重用タイヤ
JP5706863B2 (ja) * 2012-01-16 2015-04-22 住友ゴム工業株式会社 マスターバッチ、ゴム組成物及び空気入りタイヤ
EP2808347B1 (en) * 2012-01-23 2017-05-17 Sumitomo Rubber Industries, Ltd. Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire
EP2628767A1 (de) * 2012-02-20 2013-08-21 Continental Reifen Deutschland GmbH Schwefelvernetzbare Gummierungsmischung
JP5603363B2 (ja) 2012-03-08 2014-10-08 住友ゴム工業株式会社 エポキシ化天然ゴムの製造方法、タイヤ用ゴム組成物及び空気入りタイヤ
JP6122844B2 (ja) 2012-05-01 2017-04-26 株式会社ブリヂストン 変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP5639121B2 (ja) * 2012-06-27 2014-12-10 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5687671B2 (ja) 2012-09-03 2015-03-18 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP5667327B1 (ja) * 2013-02-15 2015-02-12 住友ゴム工業株式会社 改質天然ゴム、その製造方法、タイヤ用ゴム組成物及び空気入りタイヤ
EP2993205B1 (en) * 2013-05-23 2022-11-02 Sumitomo Rubber Industries, Ltd. Pneumatic tire, studless tire, method for manufacturing pneumatic tire, and method for manufacturing studless tire
JP6199733B2 (ja) * 2013-12-26 2017-09-20 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP6199734B2 (ja) * 2013-12-26 2017-09-20 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
ES2554054B1 (es) 2014-06-12 2016-12-30 Sic Lazaro, S.L. Contrapeso para tensar el cable de una catenaria en una línea ferroviaria
EP3640852B1 (en) 2014-09-09 2022-04-06 Kabushiki Kaisha Toshiba Ic card, ic module, portable terminal, portable electronic apparatus, and terminal
JPWO2016084569A1 (ja) * 2014-11-28 2017-09-07 住友ゴム工業株式会社 タイヤ外層用ゴム組成物及び空気入りタイヤ
JP6440520B2 (ja) * 2015-02-17 2018-12-19 住友ゴム工業株式会社 ラテックスの採取方法、キク科に属する植物の栽培方法、空気入りタイヤの製造方法及びゴム製品の製造方法
JPWO2017195604A1 (ja) * 2016-05-11 2019-03-14 住友ゴム工業株式会社 天然ゴム、ゴム組成物及び空気入りタイヤ
JP7428463B2 (ja) * 2017-05-09 2024-02-06 住友ゴム工業株式会社 タイヤトレッドおよびタイヤ

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329702A (ja) * 1993-05-24 1994-11-29 Kao Corp 改質天然ゴムおよびその製造方法
JPH06329838A (ja) 1993-05-20 1994-11-29 Kao Corp ゴム組成物
JPH07149955A (ja) * 1993-09-17 1995-06-13 Goodyear Tire & Rubber Co:The エポキシ化天然ゴム及びシリカ充填剤を含む硫黄硬化されたゴム組成物
JPH0812814A (ja) 1994-07-01 1996-01-16 Sumitomo Rubber Ind Ltd ゴム組成物およびこれを用いるゴム製品の製造方法
JPH11102306A (ja) 1997-09-29 1999-04-13 Hitachi Ltd エミュレータ
JP2004182905A (ja) * 2002-12-04 2004-07-02 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2004250546A (ja) 2003-02-19 2004-09-09 Sumitomo Rubber Ind Ltd 生ゴムおよびその製造方法
JP2004359773A (ja) 2003-06-03 2004-12-24 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物およびそれを用いた空気入りタイヤ
WO2005012365A1 (ja) * 2003-08-04 2005-02-10 Thai Rubber Latex Corporation (Thailand) Public Company Limited タンパク質を除去した天然ゴム、その組成物および用途
JP2005041960A (ja) 2003-07-25 2005-02-17 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2005082622A (ja) 2003-09-04 2005-03-31 Sumitomo Rubber Ind Ltd ゲル分含有量の少ない生ゴムの製造方法
JP2006152045A (ja) * 2004-11-26 2006-06-15 Bridgestone Corp 変性天然ゴムラテックス及びその製造方法、変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP2006152171A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP2006307018A (ja) * 2005-04-28 2006-11-09 Yasuyuki Tanaka タンパク分解天然ゴムおよびそれを含む組成物
JP2007145898A (ja) 2005-11-24 2007-06-14 Sumitomo Rubber Ind Ltd カーカスコード被覆用ゴム組成物およびそれを用いたカーカスを有するタイヤ
JP2008106099A (ja) * 2006-10-24 2008-05-08 Yasuyuki Tanaka タンパク分解天然ゴム、その製造法およびそれを含む組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU874730A1 (ru) * 1979-09-14 1981-10-23 Научно-исследовательский институт резиновых и латексных изделий Композици на основе латекса натурального каучука
JPH03294901A (ja) 1990-04-13 1991-12-26 Toshiba Corp 計算機構成制御バックアップ装置
JP3350593B2 (ja) * 1994-02-25 2002-11-25 花王株式会社 脱蛋白天然ゴムラテックス及びその製造方法
JP3742196B2 (ja) 1997-06-24 2006-02-01 住友ゴム工業株式会社 精製固形天然ゴムの製造方法
CN100482731C (zh) * 2002-09-04 2009-04-29 米其林技术公司 用于轮胎胎面的橡胶组合物
DE60313721T2 (de) 2002-12-04 2008-01-17 Sumitomo Rubber Industries Ltd., Kobe Kautschukzusammensetzung für Reifenlaufflächen, sowie damit hergestellte Luftreifen
WO2004052935A1 (ja) 2002-12-06 2004-06-24 Bridgestone Corporation 天然ゴムラテックス、天然ゴム、それを用いたゴム組成物及びタイヤ
DE602004001807T2 (de) * 2003-06-03 2007-08-02 Sumitomo Rubber Industries Ltd., Kobe Gummizusammensetzung für Reifenlaufflächen und peneumatischer Reifen auf der Basis derselben
JP5140272B2 (ja) * 2004-03-24 2013-02-06 住友ゴム工業株式会社 タンパク質を除去した天然ゴムラテックス、その製造法及びその用途
KR100563142B1 (ko) * 2004-12-01 2006-03-21 한국타이어 주식회사 공기입 타이어
JP4970755B2 (ja) * 2005-08-17 2012-07-11 住友ゴム工業株式会社 ゴムの製造方法およびそれにより得られるゴム
JP2007224067A (ja) * 2006-02-21 2007-09-06 Bridgestone Corp ゴム組成物及びそれを使用した空気入りタイヤ
JP2008184572A (ja) * 2007-01-31 2008-08-14 Bridgestone Corp 変性水添天然ゴムの製造方法、変性水添天然ゴム、ゴム組成物及びそれを用いた空気入りタイヤ
JP5060899B2 (ja) 2007-10-01 2012-10-31 東洋ゴム工業株式会社 ゴム−充填剤複合体の製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329838A (ja) 1993-05-20 1994-11-29 Kao Corp ゴム組成物
JP3294901B2 (ja) 1993-05-20 2002-06-24 花王株式会社 ゴム組成物
JPH06329702A (ja) * 1993-05-24 1994-11-29 Kao Corp 改質天然ゴムおよびその製造方法
JPH07149955A (ja) * 1993-09-17 1995-06-13 Goodyear Tire & Rubber Co:The エポキシ化天然ゴム及びシリカ充填剤を含む硫黄硬化されたゴム組成物
JPH0812814A (ja) 1994-07-01 1996-01-16 Sumitomo Rubber Ind Ltd ゴム組成物およびこれを用いるゴム製品の製造方法
JPH11102306A (ja) 1997-09-29 1999-04-13 Hitachi Ltd エミュレータ
JP2004182905A (ja) * 2002-12-04 2004-07-02 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2004250546A (ja) 2003-02-19 2004-09-09 Sumitomo Rubber Ind Ltd 生ゴムおよびその製造方法
JP2004359773A (ja) 2003-06-03 2004-12-24 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2005041960A (ja) 2003-07-25 2005-02-17 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
WO2005012365A1 (ja) * 2003-08-04 2005-02-10 Thai Rubber Latex Corporation (Thailand) Public Company Limited タンパク質を除去した天然ゴム、その組成物および用途
JP2005082622A (ja) 2003-09-04 2005-03-31 Sumitomo Rubber Ind Ltd ゲル分含有量の少ない生ゴムの製造方法
JP2006152045A (ja) * 2004-11-26 2006-06-15 Bridgestone Corp 変性天然ゴムラテックス及びその製造方法、変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP2006152171A (ja) * 2004-11-30 2006-06-15 Bridgestone Corp 変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP2006307018A (ja) * 2005-04-28 2006-11-09 Yasuyuki Tanaka タンパク分解天然ゴムおよびそれを含む組成物
JP2007145898A (ja) 2005-11-24 2007-06-14 Sumitomo Rubber Ind Ltd カーカスコード被覆用ゴム組成物およびそれを用いたカーカスを有するタイヤ
JP2008106099A (ja) * 2006-10-24 2008-05-08 Yasuyuki Tanaka タンパク分解天然ゴム、その製造法およびそれを含む組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2377892A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341099A1 (en) * 2010-01-04 2011-07-06 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and studless tire
US8952091B2 (en) 2010-01-18 2015-02-10 Sumitomo Rubber Industries, Ltd. Rubber composition for inner liner and pneumatic tire
EP2581390A4 (en) * 2010-06-10 2013-10-30 Sumitomo Rubber Ind MODIFIED NATURAL RUBBER, METHOD FOR PRODUCING THE SAME, RUBBER COMPOSITION, AND PNEUMATIC
US20130066021A1 (en) * 2010-06-10 2013-03-14 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
EP2581390A1 (en) * 2010-06-10 2013-04-17 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US9181355B2 (en) * 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
EP2476708A1 (en) * 2011-01-17 2012-07-18 Sumitomo Rubber Industries, Ltd. Modified natural rubber, production method thereof, tire rubber composition, and pneumatic tire
JP2013043899A (ja) * 2011-08-22 2013-03-04 Sumitomo Rubber Ind Ltd ベーストレッド用ゴム組成物及び重荷重用タイヤ
JP2013043929A (ja) * 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2013064072A (ja) * 2011-09-16 2013-04-11 Sumitomo Rubber Ind Ltd 複合体の製造方法、複合体、ゴム組成物及び空気入りタイヤ
US8875765B2 (en) 2011-10-25 2014-11-04 Sumitomo Rubber Industries, Ltd. Rubber composition for clinch apex and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
JP2013116994A (ja) * 2011-12-05 2013-06-13 Sumitomo Rubber Ind Ltd ウイング用ゴム組成物、その製造方法及び空気入りタイヤ
JP2013147555A (ja) * 2012-01-18 2013-08-01 Bridgestone Corp 変性天然ゴムの製造方法、変性天然ゴム、ゴム組成物、及び、タイヤ
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
JP2013245339A (ja) * 2012-05-29 2013-12-09 Sumitomo Rubber Ind Ltd ケーストッピング用ゴム組成物及び空気入りタイヤ
US20150274945A1 (en) * 2012-06-28 2015-10-01 The Goodyear Tire & Rubber Company Rubber composition having a crosslink distribution, its preparation and article with component
US9701821B2 (en) * 2012-06-28 2017-07-11 The Goodyear Tire & Rubber Company Rubber composition having a crosslink distribution, its preparation and article with component
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
JP2018035250A (ja) * 2016-08-31 2018-03-08 住友ゴム工業株式会社 天然ゴム−白色充填剤複合体の製造方法およびタイヤ

Also Published As

Publication number Publication date
RU2011120479A (ru) 2013-01-20
US8658728B2 (en) 2014-02-25
RU2535681C2 (ru) 2014-12-20
CN102245644A (zh) 2011-11-16
CN102245644B (zh) 2015-01-07
EP2666815B1 (en) 2016-03-09
KR101695039B1 (ko) 2017-01-10
EP2666815A1 (en) 2013-11-27
EP2377892B1 (en) 2014-05-14
MY159145A (en) 2016-12-15
BRPI0922386A2 (pt) 2016-01-26
EP2377892A1 (en) 2011-10-19
US20110253285A1 (en) 2011-10-20
EP2377892A4 (en) 2012-05-23
KR20110103946A (ko) 2011-09-21

Similar Documents

Publication Publication Date Title
KR101695039B1 (ko) 천연 고무, 그 제조 방법, 고무 조성물 및 이것을 이용한 공기 타이어, 개질 천연 고무 및 그 제조 방법, 및 트레드 또는 카카스 코드 피복용 고무 조성물 및 이들을 이용한 공기 타이어
JP4603615B2 (ja) トレッド又はカーカスコード被覆用ゴム組成物及びタイヤ
US8669321B2 (en) Tire rubber composition and pneumatic tire
EP3401121B1 (en) Tire tread and tire
EP1426409B1 (en) Rubber composition for tire tread and pneumatic tire using the same
EP3075775B1 (en) Rubber composition for tires and pneumatic tire
JP2014105296A (ja) ベーストレッド用ゴム組成物、その製造方法及び空気入りタイヤ
WO2014188901A1 (ja) 空気入りタイヤ及びスタッドレスタイヤ、並びに該空気入りタイヤの製造方法及び該スタッドレスタイヤの製造方法
JP7091716B2 (ja) タイヤ用ゴム組成物
JP2013224393A (ja) サイドウォール用ゴム組成物及び空気入りタイヤ
JP4246245B1 (ja) クリンチ用ゴム組成物およびそれを用いたクリンチを有するタイヤ
CN110551328A (zh) 充气轮胎
JP2011079978A (ja) 変性ジエン系ゴムおよびゴム組成物
JP5650802B2 (ja) インナーライナー用ゴム組成物及び空気入りタイヤ
JP4663207B2 (ja) タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2009019078A (ja) タイヤのトレッド用ゴム組成物およびタイヤ
JP5912934B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5937443B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2009029840A (ja) 有機ケーストッピング用ゴム組成物およびそれを用いたケースを有するタイヤ
JP5147312B2 (ja) タイヤスチールケース用ゴム組成物およびそれを用いたタイヤスチールケースを有するタイヤ
JP5373551B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP2013071976A (ja) タイヤ用ゴム組成物、その製造方法、及び空気入りタイヤ
JP2014227493A (ja) クリンチエイペックス用ゴム組成物及び空気入りタイヤ
JP2008303266A (ja) サイドウォール用ゴム組成物およびタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151606.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1840/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117012913

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13139536

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011120479

Country of ref document: RU

Ref document number: 2009833409

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0922386

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110615