WO2010070729A1 - 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料 - Google Patents

金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料 Download PDF

Info

Publication number
WO2010070729A1
WO2010070729A1 PCT/JP2008/072840 JP2008072840W WO2010070729A1 WO 2010070729 A1 WO2010070729 A1 WO 2010070729A1 JP 2008072840 W JP2008072840 W JP 2008072840W WO 2010070729 A1 WO2010070729 A1 WO 2010070729A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
metal
metal material
surface treatment
Prior art date
Application number
PCT/JP2008/072840
Other languages
English (en)
French (fr)
Inventor
世一 佐藤
淳一 内田
賢輔 水野
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to JP2010542765A priority Critical patent/JP5555178B2/ja
Priority to CN200880132375.6A priority patent/CN102257179B/zh
Priority to KR1020117013455A priority patent/KR101285420B1/ko
Priority to PCT/JP2008/072840 priority patent/WO2010070729A1/ja
Priority to TW098139694A priority patent/TWI487808B/zh
Publication of WO2010070729A1 publication Critical patent/WO2010070729A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention can impart excellent corrosion resistance (particularly bending portion corrosion resistance) and top coat adhesion to the surface of metal materials such as steel, zinc-based plated steel sheets, aluminum plates, and chemical resistance such as acid resistance and alkali resistance.
  • the present invention relates to a surface treatment agent for a metal material for forming a film having both, and a surface treatment method for a metal material using the same.
  • Metal materials typified by galvanized steel sheets are used in various fields such as automobiles, home appliances, and building materials, but have the disadvantage of forming corrosion products called white rust by corroding in the atmosphere. Yes. Therefore, in the prior art, for the purpose of improving corrosion resistance, a method called chromate treatment in which a coating layer containing hexavalent chromium and trivalent chromium is formed on the surface of a metal material using a treatment solution containing a chromic acid aqueous solution is generally used. Was done.
  • a treatment method using a surface treatment agent containing tannic acid is well known.
  • the protective film formed by the reaction between tannic acid and the metal material prevents invasion of corrosive substances, so that the corrosion resistance is considered to be improved.
  • this film it is difficult to cope with recent improvements in product quality (corrosion resistance, paint adhesion).
  • Patent Document 1 discloses a method for improving corrosion resistance and coating adhesion, in a diluted water glass solution or a sodium silicate solution, or a mixture thereof, with a specific amount of organosilane. A method of applying and drying a treatment liquid to which a coupling agent has been added to a steel material is disclosed.
  • Patent Document 2 discloses a method for treating a metal plate with an aqueous solution containing a low concentration of an organofunctional silane and a crosslinking agent in order to obtain a temporary anticorrosive effect. Yes.
  • a crosslinker crosslinks the organofunctional silane to form a dense siloxane film.
  • Patent Document 3 a surface treatment agent containing a compound having two or more alkoxysilanes and a compound selected from organic acids, phosphoric acids, and complex fluorides is used to provide corrosion resistance and paint adhesion to the metal surface. Discloses a method for forming an excellent film.
  • a silica sol binder (a) containing a silane coupling agent (a-1) and an alkoxysilane oligomer (a-2), phosphate ions (b), fluoride ions (c), and Metal surface treatment composition containing a metal compound (d) containing at least one metal selected from the group consisting of V, Ti, Zr, Zn, Mn, Mg, Al, Co, Ni, Mo, W and Ce Things are disclosed. Furthermore, using this composition, a film excellent in corrosion resistance (particularly corrosion resistance of the processed part), alkali resistance, heat resistance, abrasion resistance, and adhesion (adhesion with the top coat film and adhesion to the substrate) Is disclosed.
  • Patent Document 5 discloses that in one molecule, the formula —SiR 1 R 2 R 3 (wherein R 1 , R 2, and R 3 represent an alkyl group, an alkoxy group, or a hydroxyl group, and at least one alkoxy group Two or more functional groups (a) represented by a group), a hydroxyl group (separate from those that can be included in the functional group (a)), an amino group, a carboxyl group, a phosphate group, and a phosphonic acid.
  • aqueous metal surface treatment agent and a treatment method are disclosed. Furthermore, by using this treatment agent, not only excellent corrosion resistance and adhesion, but also heat resistance, weldability, continuous workability and conductivity of inorganic coatings, fingerprint resistance and coating properties of organic coatings, etc. It is disclosed that a film having both can be formed.
  • this technology compared with organic coatings that have a barrier layer of organic components in the coating and prevent chemical penetration into the plating, this technology has inferior chemical resistance such as acid resistance and alkali resistance. Further, although the flat portion and the processed portion have excellent corrosion resistance, there is a problem that the portion where the film is extremely deformed, such as a bent portion, lacks corrosion resistance.
  • Patent Document 6 discloses that an aqueous dispersion resin is 5 to 30% by mass in solid content concentration, 0.1 to 20% by mass of silica particles, and 0.01 to 20% of an organic titanate compound.
  • a one-component type water-based coating for steel materials is disclosed that is blended by mass%, has excellent bath stability, and is suitable for coating a steel material such as zinc-based coated steel or uncoated steel. Furthermore, it is disclosed that a film excellent in corrosion resistance, solvent resistance, alkali resistance, paint adhesion, and film adhesion can be obtained by using this coating agent.
  • Patent Document 7 discloses a specific resin compound (A), a cationic urethane resin (B) having at least one cationic functional group selected from primary to tertiary amino groups and quaternary ammonium bases; Contains one or more silane coupling agents (C) having a specific reactive functional group and a specific acid compound (E), and contains a cationic urethane resin (B) and a silane coupling agent (C) Disclosed is a non-chromium surface-treated steel sheet that is obtained by using a surface treating agent whose amount is within a predetermined range, has excellent corrosion resistance, and has excellent fingerprint resistance, blackening resistance and paint adhesion, and a method for producing the same. .
  • Patent Document 8 discloses (A) at least one titanium compound selected from the group consisting of hydrolyzable titanium compounds, low-condensates of hydrolyzable titanium compounds, titanium hydroxide and low-condensates of titanium hydroxide. 100 parts by weight of a solid content of a titanium-containing aqueous liquid obtained by mixing with hydrogen peroxide, (B) 1 to 400 parts by weight of an organic phosphoric acid compound, and (C) a water-soluble or water-dispersible organic resin as a solid part. 10 to 2,000 parts by weight, (D) 1 to 400 parts by weight of vanadate compound, (E) 1 to 400 parts by weight of zirconium fluoride compound, and (F) 1 to 400 parts by weight of zirconium carbonate compound.
  • a metal surface treatment composition is disclosed.
  • the present invention solves the above-mentioned problems of the prior art, and has excellent corrosion resistance and acid resistance on the surface of the metal material, as well as excellent heat resistance and conductivity that inorganic coatings usually have, and organic coatings
  • a surface treatment agent for metal materials that is capable of forming an unprecedented new film having both fingerprint resistance and the like, and has excellent liquid stability, a surface treatment method using the same, and a surface-treated metal material It is intended to provide.
  • the present invention provides the following (1) to (10).
  • (1) -SiR 1 R 2 R 3 in one molecule (wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or a hydroxyl group; 1 , at least one of R 2 and R 3 represents an alkoxy group) and two or more functional groups (a) represented by a hydroxyl group (separate from those contained in the functional group (a)) ), At least one hydrophilic functional group (b) selected from amino group, carboxyl group, phosphoric acid group, phosphonic acid group, sulfone group, polyoxyethylene chain and amide group, and functional group (b) Compound (A) having a molecular weight per unit (average molecular weight / functional group number) in the range of 300 to 5,000, At least one metal alkoxide (B) having one element selected from the group consisting of Si, Ti, and Zr; At least one compound (C) selected from the group consist
  • M represents Si, Ti, or Zr.
  • a metal compound (E) containing at least one element selected from the group consisting of Ti, Zr, V, W, Ni, Co, Fe, Zn, Mg, Al, Mn, Ca and Li ( However, the fluorine-containing compound is not included), and the mass ratio (E / A) of the mass when the Si amount in the compound (A) is converted to SiO 2 and the mass of the metal compound (E) ) Is 0.01 to 3.0, the surface treatment agent for a metal material according to any one of (1) to (7).
  • the surface treatment agent for a metal material according to any one of (1) to (8) is applied on the surface of the metal material and dried to form a film having a film amount of 10 to 3000 mg / m 2 on the surface of the metal material.
  • a surface treatment method for a metal material is applied on the surface of the metal material and dried to form a film having a film amount of 10 to 3000 mg / m 2 on the surface of the metal material.
  • the surface treatment agent for metal materials which concerns on this invention, the surface treatment method using the treatment agent, Furthermore, the metal material which has a film
  • the surface treatment agent for metal material will be described.
  • the surface treatment agent for a metal material of the present invention contains —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, alkoxy A functional group (a) represented by a group or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents an alkoxy group) and a hydroxyl group (the functional group (a)). And at least one hydrophilic functional group (b) selected from an amino group, a carboxyl group, a phosphoric acid group, a phosphonic acid group, a sulfone group, a polyoxyethylene chain, and an amide group.
  • the organic compound (D) and water are contained.
  • ⁇ Compound (A)> In the surface treatment agent for a metal material of the present invention, -SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 4 carbon atoms, Two or more functional groups (a) represented by an alkoxy group or a hydroxyl group, and at least one of R 1 , R 2 and R 3 represents an alkoxy group) and a hydroxyl group (functional group (a) And at least one hydrophilic functional group (b) selected from amino group, carboxyl group, phosphoric acid group, phosphonic acid group, sulfone group, polyoxyethylene chain and amide group And a compound (A) having a molecular weight (average molecular weight / number of functional groups) per functional group (b) in the range of 300 to 5,000. By including the compound (A), the corrosion resistance of the film is imparted. Only one type of compound (A) may be used, or two or more types may be used in combination.
  • Compound (A) contains —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a hydroxyl group) And at least one of R 1 , R 2 and R 3 represents an alkoxy group.) And has two or more functional groups (a). Of these, 2 to 7 are preferred. In addition, when only one functional group (a) is contained in one molecule, adhesion to the metal material surface is lowered, which is not preferable. R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or a hydroxyl group. Of these, an alkoxy group is preferable.
  • R 1 , R 2 and R 3 represents an alkoxy group, and all are preferably alkoxy groups.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, and preferably an ethyl group It is.
  • Preferred examples of the alkoxy group include an alkoxy group having 1 to 3 carbon atoms.
  • Compound (A) is a hydroxyl group (separate from that contained in functional group (a)), amino group, carboxyl group, phosphoric acid group, phosphonic acid group, sulfone group, polyoxyethylene chain in one molecule. And at least one hydrophilic functional group (b) selected from amide groups. Of these, a hydroxyl group and an amino group are preferable. The number of hydrophilic functional groups is preferably 1 to 4.
  • the functional group (b) in the compound (A) may be synthesized by reacting a compound having the functional group (a) with a compound having the functional group (b).
  • Examples of the compound having a functional group (b) include hydroxylamine, polyhydric alcohol, amine thiolamine sulfonic acid, hydroxyphosphonic acid, and amine acid.
  • the compound (A) preferably has a molecular weight (average molecular weight / functional group number) per functional group (b) in the range of 300 to 5000, more preferably in the range of 400 to 3000, and particularly preferably 500. It is in the range of ⁇ 2000.
  • the molecular weight per functional group (b) is less than 300, the compound is difficult to synthesize and the properties of the resulting film are also poor.
  • it exceeds 5000 since the adhesiveness with respect to the metal material surface which is the characteristic of a functional group (b) falls, it is not preferable.
  • a measuring method of the said molecular weight it can measure using gel permeation chromatography (GPC) and NMR.
  • the skeleton of the compound (A) is not particularly limited, but preferably has a bond such as an ester bond, an ether bond, an acid amide bond, an amide bond, a urethane bond, a urea bond, or a vinyl bond.
  • the production method of the compound (A) is not particularly limited.
  • Examples include a method of reacting, and (4) a method of modifying a hydrophilic group in a polyfunctional silane coupling agent. Of these, (2) or (3) is preferable, and (3) is most preferable. Each manufacturing method will be described below.
  • One preferred embodiment of the compound (A) is a compound (reaction product) obtained by a reaction (polymerization) of a silane coupling agent having a vinyl group and a copolymerizable vinyl compound.
  • This method corresponds to the manufacturing method (2) above.
  • the silane coupling agent having a vinyl group is not particularly limited as long as it has a vinyl group.
  • the copolymerizable vinyl compound is not particularly limited, and examples thereof include acrylic acid, butyl acrylate, methyl acrylate, and 2-hydroxyethyl methacrylate.
  • the reaction form using the above-mentioned compound is not particularly limited, and examples thereof include anionic polymerization, cationic polymerization, and radical polymerization. Of these, radical polymerization is preferred.
  • a well-known polymerization initiator etc. suitably.
  • a solvent may be appropriately used, and examples thereof include water, ethanol, isopropyl alcohol and the like.
  • a compound having a silane coupling agent having a reactive functional group (c1) and a functional group (c2) capable of reacting with the reactive functional group (c1) And a compound (reaction product) obtained by the reaction is not particularly limited as long as it is a group that reacts with another functional group to form a bond, and examples thereof include a hydroxyl group, an epoxy group, a primary amino group, a secondary amino group, and a mercapto.
  • a functional group selected from the group consisting of a group, an isocyanate group, a carboxyl group, and a vinyl group is preferred. Of these, an epoxy group, a primary amino group, and a secondary amino group are preferable.
  • silane coupling agent having a reactive functional group (c1) a compound represented by the general formula (I) can be mentioned.
  • X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group, and an isocyanate group.
  • L represents a divalent linking group or a simple bond.
  • Y represents an alkoxy group each independently.
  • X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, a vinyl group, and an isocyanate group. Of these, an epoxy group and an amino group are preferable.
  • L represents a divalent linking group or a simple bond.
  • the linking group represented by L include an alkylene group (preferably having 1 to 20 carbon atoms), —O—, —S—, an arylene group, —CO—, —NH—, —SO 2 —, —COO. -, -CONH-, or a combination thereof. Of these, an alkylene group is preferable.
  • a simple bond it means that X in the general formula (I) is directly connected to Si (silicon atom).
  • each Y independently represents an alkoxy group. Of these, an alkoxy group having 1 to 3 carbon atoms is preferable.
  • silane coupling agent having a reactive functional group (c1) examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • Epoxysilanes such as trimethoxysilane, aminosilanes such as N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (aminoethyl) 3-aminopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane;
  • Mercaptosilanes such as 3-mercaptopropyltrimethoxysilane, isocyanate silanes such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, vinyltriethoxysilane, p-styryltrimethoxy Vinyl group-containing silane such as silane.
  • the functional group (c2) in the compound having the functional group (c2) is not particularly limited as long as it can react with the reactive functional group (c1).
  • the functional group (c1) is the reactive functional group (c1).
  • Preferred examples include the listed functional groups.
  • Preferred examples of the compound having a functional group (c2) include a silane coupling agent having a reactive functional group (c1). That is, the compound (A) is preferably a reaction product of silane coupling agents having a reactive functional group (c1).
  • Examples of the compound having the functional group (c2) include the silane coupling agents exemplified as the silane coupling agent having the reactive functional group (c1), amine compounds such as ethylenediamine and aminopropanethiol, and trimethylolpropane polyglycidyl. And ether compounds such as ether and pentaerythritol polyglycidyl ether.
  • the reaction conditions optimum conditions are appropriately selected depending on the compounds used. Moreover, you may use a solvent (for example, alcohol etc.) etc. in the case of reaction.
  • the content of the compound (A) in the surface treatment agent for a metal material of the present invention is not particularly limited, but from the viewpoint that the properties of the resulting film are more excellent, it is 40 to 90% by mass is preferable, and 60 to 80% by mass is more preferable.
  • the total solid content means a solid component constituting a film described later, and does not include a solvent.
  • the surface treatment agent for a metal material of the present invention has at least one metal alkoxide (B) having one element selected from the group consisting of Si, Ti, and Zr.
  • metal alkoxide (B) and the compound (A) in the treatment agent it is presumed that a strong cross-linking reaction between functional groups occurs, and a film having a dense network structure can be formed.
  • the bond of the compound (A) formed by containing the metal alkoxide (B) is excellent in heat resistance, weldability, continuous workability and conductivity that the inorganic coating usually has, and also has chemical resistance.
  • the metal alkoxide (B) has one element selected from the group consisting of Si, Ti, and Zr, and is not particularly limited as long as it has an alkoxy group. it can.
  • the metal alkoxide may be a hydroxyl group in which an alkoxy group directly bonded to a metal is hydrolyzed.
  • general formula Me (OR) 4 (wherein, R independently represents an alkyl group or a hydrogen atom, and at least one of R represents an alkyl group. Me represents Si, Ti, or Zr). Is preferred.)
  • the alkyl group preferably has 1 to 3 carbon atoms, and more preferably has 1 to 2 carbon atoms.
  • metal alkoxide (B) examples include titanium tetraisopropoxide, titanium tetraethoxide, titanium butoxide dimer, titanium tetra-2-ethylhexoside, zirconium ethoxide, zirconium tetraethoxide, zirconium tetrapropoxide, tetramethoxysilane, Tetraethoxysilane, tetranormal propoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, methyldimethoxysilane, methyldiethoxysilane, dimethylethoxysilane, cyclohexylmethyldimethoxysilane , N-hexyltrimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phen
  • a preferred embodiment of the metal alkoxide (B) is preferably tetraalkoxysilane.
  • the tetraalkoxysilane include tetraethoxysilane, tetramethoxysilane, tetranormalpropoxysilane, and the like. Use of the above compound is preferable in terms of corrosion resistance and acid resistance of the bent portion.
  • the metal alkoxide (B) is preferably used in combination of two or more (preferably 2 to 4), and particularly preferably 2 types. By using two or more kinds in combination, it is preferable in terms of the corrosion resistance of the processed part and the bent part. Tetraalkoxysilane is preferably used as one type of metal alkoxide (B) when two or more types are used in combination. Moreover, as a preferable combination when using 2 types together, the combination of tetraalkoxysilane and zirconium alkoxide (for example, zirconium tetrapropoxide) is mentioned.
  • the total content of the metal alkoxide (B) in the surface treatment agent for a metal material of the present invention is not particularly limited, but from the viewpoint of more excellent properties of the obtained film, the total solid content in the treatment agent is 5 to 80% by mass is preferable, and 10 to 50% by mass is more preferable.
  • the surface treating agent for a metal material of the present invention contains at least one compound (C) selected from the group consisting of a fluorine-containing compound and a phosphoric acid compound.
  • the fluorine-containing compound is not particularly limited as long as it is a fluoride, a complex fluoride, or another compound containing fluorine.
  • hydrofluoric acid its ammonium salt, its alkali metal salt
  • metals such as tin fluoride, manganese fluoride, ferrous fluoride, ferric fluoride, aluminum fluoride, zinc fluoride, vanadium fluoride Fluorides; oxyfluorides such as fluorine oxide, acetyl fluoride, and benzoyl fluoride are listed.
  • fluorine-containing compound a compound having at least one element selected from the group consisting of Ti, Zr, Hf, Si, Al and B is preferably used.
  • Examples include complexes in which 1 to 3 hydrogen atoms are added to anions, ammonium salts of these anions, metal salts of these anions, and the like. Since the complex fluoride has a chelating action by the metal used in the complex fluoride in addition to the etching effect by fluorine, the corrosion resistance of the film is improved.
  • a fluorine-containing compound is used individually or in combination of 2 or more types.
  • the corrosion resistance is improved because a zinc phosphate-based chemical conversion film is formed.
  • the phosphoric acid compound that can be used include phosphoric acid, metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, tetraphosphoric acid, and ammonium salts, aluminum salts, and magnesium salts thereof.
  • Acids other than those described above, for example, strong acids such as nitric acid, sulfuric acid, and hydrochloric acid may have poor corrosion resistance because the etching force on the surface of the metal material is too strong. In addition, these strong acids are not desirable because they form a passivated film on the surface of the metal material, which may lower the conductivity.
  • the content of the compound (C) in the surface treatment agent for a metal material of the present invention is not particularly limited. However, from the viewpoint of more excellent properties of the obtained film, the content of the compound (C) is 0. 1 to 50% by mass is preferable, and 0.5 to 30% by mass is more preferable.
  • the surface treatment agent for a metal material of the present invention includes an organic compound (D) having at least one hydrophilic functional group selected from the group consisting of a carboxylic acid group, a phosphonic acid group, and a sulfonic acid group.
  • organic compound (D) having at least one hydrophilic functional group selected from the group consisting of a carboxylic acid group, a phosphonic acid group, and a sulfonic acid group.
  • Examples of the organic compound (D) include formic acid, acetic acid, butyric acid, oxalic acid, succinic acid, lactic acid, L-ascorbic acid, tartaric acid, citric acid, DL-malic acid, malonic acid, maleic acid, phthalic acid, and nitrilotris.
  • Methylenephosphonic acid nitrilotrispropylenephosphonic acid, nitrilodiethylmethylenephosphonic acid, nitrilopropylbismethylenephosphonic acid methane, methane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, Examples include propane-1-hydroxy-1,1-diphosphonic acid, sulfonic acid, and benzenesulfonic acid.
  • the content of the organic compound (D) in the surface treatment agent for a metal material of the present invention is not particularly limited, but is 0.1 to 20 with respect to the total amount of the treatment agent from the viewpoint of better properties of the resulting film. % By mass is preferable, and 0.5 to 10% by mass is more preferable.
  • the surface treatment agent for a metal material of the present invention contains water as a solvent.
  • the content of water in the surface treatment agent for a metal material of the present invention is not particularly limited, but is preferably 30 to 99% by mass based on the total amount of the treatment agent from the viewpoint of easier handling of the treatment agent, and 40 to 95 mass% is more preferable.
  • the mass when the Si amount (silicon component) in the compound (A) in the treating agent is converted to SiO 2 , the Si amount (silicon component), the Ti amount (titanium component) in the metal alkoxide (B), And the mass ratio (B / A) with respect to the total mass when the amount of Zr (zirconium component) is converted to MO 2 (M represents Si, Ti, or Zr) is 0.01 to 5.0 It is preferably 0.5 to 3.0. If it is in the said range, it is preferable at the point of acid resistance.
  • the mass ratio (C / A) between the mass of the compound (A) in the treating agent converted to SiO 2 and the mass of the compound (C) is 0.01 to 4.0. It is preferably 0.05 to 2.0. If it is less than 0.01, the effect of removing the oxide film is small, and if it exceeds 4.0, the etching force is too strong and the corrosion resistance of the film may be lowered.
  • the mass ratio (B / C) to the mass is preferably 0.1 to 30, and more preferably 5 to 20. If it is in the said range, it is preferable at an electroconductive point.
  • Mass ratio (B / D) with respect to the mass is preferably 0.1 to 5.0, more preferably 0.5 to 3.0. If it is in the said range, it is preferable at the point of stability and electroconductivity.
  • the surface treatment agent for metal materials of the present invention may contain other additives as long as the effects of the present invention are not impaired. Below, each component is demonstrated.
  • the surface treatment agent for a metal material of the present invention contains at least one element selected from the group consisting of Ti, Zr, V, W, Ni, Co, Fe, Zn, Mg, Al, Mn, Ca and Li.
  • the metal compound (E) (however, a fluorine-containing compound is not included) may be contained. By containing the metal compound (E), the corrosion resistance of the coating is further improved.
  • the metal compound (E) include carbonates, oxides, hydroxides, nitrates, organic acid salts, and organic compounds of the above metals.
  • it is desirable that the metal compound (E) is stabilized in water with the organic compound (D) having a hydrophilic functional group.
  • Examples of the metal compound (E) include ammonium metatungstate, ammonium zirconium carbonate, ammonium molybdate, vanadium pentoxide, ammonium vanadate, sodium vanadate, vanadyl acetylacetonate, vanadium oxalate, vanadium oxysulfate, and titanium acetylacetate.
  • the content of the metal compound (E) in the surface treatment agent for a metal material of the present invention is not particularly limited, but 1% relative to the total solid content in the treatment agent from the viewpoint of more excellent properties of the obtained film. -40% by mass is preferable, and 5-40% by mass is more preferable.
  • the mass ratio (E / A) of the mass when the amount of Si in the compound (A) in the treating agent is converted to SiO 2 and the mass of the metal compound (E) is 0.01 to 3.0. It is preferable that it is 0.5 to 2.0. When it is 0.01 or more, a sufficient corrosion resistance improving effect is obtained. It is preferable in terms of stability that it is 3.0 or less.
  • the surface treatment agent for metal materials of the present invention further includes a surfactant called a wettability improver for forming a uniform film on the coated surface, a thickener, a conductivity improver, and an improvement in design.
  • a surfactant called a wettability improver for forming a uniform film on the coated surface
  • a thickener for forming a uniform film on the coated surface
  • a conductivity improver for forming a uniform film on the coated surface
  • an improvement in design for example, a coloring pigment for forming a film, a film forming aid for improving the film forming property, and the like may be included.
  • C ⁇ O group, C ⁇ C group, C ⁇ C group, C ⁇ N group, C ⁇ N group in one molecule called an organic inhibitor
  • at least one unsaturated group selected from the group consisting of N N groups, or a compound having at least one functional group selected from the group consisting of NN groups or functional groups having an S element. It may be.
  • aldehydes such as formaldeh
  • N N group-containing compounds such as azo dyes, sulphonic acid, sulphonate, Surufoamido, S element-containing compounds such as thiourea and cyclic thiourea, and the like.
  • the surface treatment agent for a metal material of the present invention may contain a water-based resin (using a water-soluble resin or a water-dispersible or emulsion-type resin) for further improvement of corrosion resistance.
  • the type of resin is not particularly limited as long as it is a bake-curing type.
  • epoxy resin, phenol resin, acrylic resin, urethane resin, olefin-carboxylic acid resin, nylon resin, Preferred examples include a resin having a polyoxyalkylene chain, polyvinyl alcohol, polyglycerin, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose and the like.
  • the surface treatment agent for a metal material of the present invention may contain a solvent other than water (for example, alcohol) as necessary.
  • the method for preparing the surface treatment agent for a metal material of the present invention is not particularly limited.
  • the compound (A), the metal alkoxide (B), the compound (C), the organic compound (D), other additives, and water are produced by sufficiently mixing them using a stirrer such as a mixing mixer. Can do.
  • the surface treatment method using the surface treatment agent for a metal material of the present invention is not particularly limited, but the above-mentioned surface treatment agent for a metal material is applied on the surface of the metal material and dried, and the coating amount is 10 to 3000 mg / m 2.
  • a surface treatment method of forming a film on the surface of the metal material is preferable. The surface treatment method will be described below.
  • the metal material Before applying the treatment agent, if necessary, the metal material may be pretreated for the purpose of removing oil and dirt on the surface of the metal material.
  • Metallic materials are often coated with rustproof oil for rustproofing purposes. Moreover, even when not coated with rust preventive oil, there are oil and dirt adhered during the work.
  • the pretreatment step is not particularly necessary.
  • the pretreatment method is not particularly limited, and examples thereof include hot water washing, solvent washing, and alkaline degreasing washing.
  • the metal material to be applied is not particularly limited, but a zinc-containing metal plated steel plate, an aluminum plate, and a stainless steel plate are preferable. These metal material surfaces may be subjected to pretreatment such as phosphate treatment and chromate treatment in advance.
  • the treatment (application) temperature and the treatment (application) time are not particularly limited, but in general, the treatment (application) temperature is preferably 10 to 40 ° C., and the treatment (application) time is 0.1 to 10 seconds. Preferably there is.
  • the solvent that is, water or alcohol volatilizes, and a desired film is formed. It does not specifically limit as a drying method, What is necessary is just to heat and dry with a hot air, an induction heater, infrared rays, near infrared rays, etc.
  • the drying temperature is preferably 30 to 300 ° C. as the ultimate plate temperature, more preferably 40 to 250 ° C., and particularly preferably 60 to 200 ° C.
  • the drying time is not particularly limited as long as the ultimate plate temperature satisfies the above conditions.
  • the coating amount of the coating formed on the metal material surface is in the range of 10 to 3000 mg / m 2 , and more preferably 100 to 1000 mg / m 2 . If it is in the said range, it is preferable at the point of corrosion resistance and electroconductivity. In addition, in the case of plate-shaped objects, such as a steel plate, these film amounts refer to the film amount per one side.
  • an organic polymer film is formed so that the film thickness after drying becomes 0.1 to 3.0 ⁇ m, and further higher corrosion resistance, fingerprint resistance and lubricity Can be granted.
  • a known resin emulsion such as acrylic, urethane, epoxy, and the like, to which silica, a rust preventive agent, a lubricant, an ultraviolet absorber, a pigment and the like are added can be used.
  • the metal material treated by the surface treatment method described above can be applied to various uses.
  • steel sheets for home appliances steel sheets for building materials, steel sheets for automobiles, and the like can be given.
  • the reason is presumed as follows, but the present invention is not limited to such presumption.
  • the film formed using the surface treating agent for metal material of the present invention is mainly composed of the compound (A) and the metal alkoxide (B).
  • the metal alkoxide (B) serves as a catalyst to form a continuous film, and 1 part hydrolyzed —OR group is formed on the metal surface. And Si—OM bond (M: metal element on the surface of the object to be coated) is formed, so that a remarkable barrier effect is exhibited and corrosion resistance is estimated to be improved.
  • the film using the surface treatment agent for a metal material of the present invention is mainly formed mainly of silicon.
  • the silicon-containing portion and the organic portion, that is, the inorganic portion are regularly and densely arranged in a very small area in the film. It is considered that organic substances are arranged. Therefore, it is presumed that it becomes possible to form a new film having both the heat resistance, weldability, continuous processability and conductivity usually possessed by inorganic coatings, and the fingerprint resistance and paintability usually possessed by organic coatings.
  • the analysis confirmed that about 80% of silicon formed siloxane bonds in the silicon-containing part of the film.
  • test plate (2) Preparation of test plate
  • the test material is sprayed for 2 minutes under the conditions of a concentration of 20 g / L and a temperature of 60 ° C. using a silicate alkaline degreasing agent Fine Cleaner 4336 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.).
  • the test plate was treated, washed with pure water for 30 seconds and then dried.
  • Compound A1 A product was obtained by reacting 2 moles of trimethoxychlorosilane and 1 mole of trimethylolpropane in ethanol. Then, it mixed with the pure water and adjusted so that solid content might be 10 mass%. The obtained product had a hydroxyl group, the number of functional groups (a) in one molecule was 2, and the molecular weight (average molecular weight / functional group number) per functional group (b) was about 530. It was.
  • Compound A3 A product was obtained by reacting 2 mol of 3-glycidoxypropyltrimethoxysilane and 1 mol of 3-aminopropyltriethoxysilane in ethanol. Then, it mixed with the pure water and adjusted so that solid content might be 10 mass%. The obtained product has an amino group and a hydroxyl group, the number of functional groups (a) in one molecule is 3, and the molecular weight (average molecular weight / number of functional groups) per functional group (b) is about 700.
  • Compound A4 A product was obtained by reacting 2 mol of N- (aminoethyl) 3-aminopropyltrimethoxysilane with 1 mol of 3-isocyanatopropyltrimethoxysilane in ethanol. Then, it mixed with the pure water and adjusted so that solid content might be 10 mass%. The obtained product has an amino group, the number of functional groups (a) in one molecule is 2, and the molecular weight (average molecular weight / functional group number) per functional group (b) is about 800. there were.
  • Compound A6 A product was obtained by reacting 4 mol of 3-glycidoxypropyltrimethoxysilane and 1 mol of ethylenediamine in ethanol. Then, it mixed with the pure water and adjusted so that solid content might be 10 mass%. The obtained product has an amino group and a hydroxyl group, the number of functional groups (a) in one molecule is 4, and the molecular weight (average molecular weight / number of functional groups) per functional group (b) is about 500.
  • Compound A7 A product was obtained by reacting 3 mol of 3-aminopropyltriethoxysilane and 1 mol of trimethylolpropane polyglycidyl ether in ethanol. Then, it mixed with the pure water and adjusted so that solid content might be 10 mass%. The obtained product has an amino group and a hydroxyl group, the number of functional groups (a) in one molecule is 3, and the molecular weight (average molecular weight / number of functional groups) per functional group (b) is 300. Met.
  • [Compound A9] A silane coupling agent obtained by mixing 175.1 parts by mass of 3-glycidoxypropyltrimethoxysilane and 58.5 parts by mass of 3-aminopropyltrimethoxysilane was mixed with pure water to obtain a solid content of 10% by mass. It adjusted so that it might become.
  • the number of functional groups (a) in one molecule of the obtained product is 1, and the molecular weight (average molecular weight / functional group number) per functional group (a) is about 230, and the range of the compound (A) It was outside.
  • E1 Ammonium metatungstate
  • E2 Ammonium zirconium carbonate
  • E3 Vanadyl acetylacetonate
  • E4 Titanium acetylacetonate
  • E5 Ammonium vanadate
  • E6 Aluminum biphosphate
  • E7 Magnesium biphosphate
  • E8 Manganese dihydrogen phosphate
  • E9 Nitric acid Nickel
  • E10 Aluminum nitrate
  • the above-mentioned compound (A), metal alkoxide (B), compound (C), organic compound (D), water, and metal compound (E) are blended in water in predetermined amounts shown in Table 1, and the surface for metal material A treating agent was prepared.
  • the blending amounts of components (A) to (E) in Table 1 represent the amount (g) blended in 1 kg of the treatment liquid.
  • components other than components (A) to (E) contained in each treatment agent are mainly water.
  • compounds in Table 1 the amount of (A) refers to the mass when the amount of Si in the compound (A) to (silicon component) in terms of SiO 2.
  • the ratio in the case of using together 2 types of compounds in Table 1 means mass ratio (g).
  • the prepared treating agent was bar-coated on the surface of the test plate shown in Table 1 so as to have a predetermined coating amount, and dried so that the ultimate plate temperature was 90 ° C. to form a coating.
  • the white rust generation area ratio is a percentage of the area of the white rust generation site with respect to the area (6 cm ⁇ 6 cm) of the observation site.
  • Examples 1 to 40 in Table 1 show the same corrosion resistance as the chromate film, show the same conductivity and heat resistance as the inorganic type, possess the same fingerprint resistance as the organic type, and have the bent portion corrosion resistance and resistance. It was found to be a highly stable surface treatment agent for metal materials with chemical properties. Moreover, it turned out that corrosion resistance further improves by using 2 types of metal alkoxide together from the comparison with Example 10 and Example 11. FIG. Furthermore, from comparison with Example 33 and Example 34, it was found that when tetraethoxysilane (tetraalkoxysilane) was used as the metal alkoxide, various characteristics such as corrosion resistance and conductivity were improved. On the other hand, in the comparative example, “x” was included in any item, and there was a problem from a practical viewpoint. In Comparative Example 4, since the coating amount was out of the predetermined range, only the bending portion corrosion resistance was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明は、金属材料表面に耐熱性、溶接性、連続加工性、導電性、耐指紋性や塗装性などを併せ持つこれまでにない新規皮膜を形成することができ、液安定性に優れた金属材料用表面処理剤を提供することを目的とする。本発明の金属材料用表面処理剤は、1分子中に-SiRで表される官能基(a)を2個以上と、親水性官能基(b)とを含有し、官能基(b)1個あたりの分子量(平均分子量/官能基数)が300~5000の範囲にある化合物(A)と、Si、Ti、およびZrからなる群から選ばれる1つの元素を有する、少なくとも1種の金属アルコキシド(B)と、フッ素含有化合物およびリン酸化合物からなる群から選ばれる少なくとも1種の化合物(C)と、カルボン酸基、ホスホン酸基、およびスルホン酸基からなる群から選ばれる少なくとも1種の親水性官能基を有する有機化合物(D)と、水と、を含有する。

Description

金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料
 本発明は、鋼、亜鉛系めっき鋼板、アルミニウム板、等の金属材料の表面に優れた耐食性(特に、折り曲げ部耐食性)および上塗り塗装密着性を付与でき、耐酸性や耐アルカリ性などの耐薬品性も併せ持つ皮膜を形成するための金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法に関するものである。
 亜鉛系めっき鋼板に代表される金属材料は、自動車、家電、建材など様々な分野で使用されているが、大気中で腐食して白錆と呼ばれる腐食生成物を形成するという欠点を有している。そこで、従来技術では耐食性を改善する目的で、金属材料の表面にクロム酸水溶液を含む処理液を用いて、6価クロムと3価クロムを含む皮膜層を形成させるクロメート処理と言われる方法が一般的に行われていた。
 しかしながら、このクロメート処理に用いる水溶液は、人体に有害な6価クロムを有しているため、排水処理において水質汚濁防止法に規定されている特別な処理を施す必要がある。このため、近年、地球的環境保全への意識の高揚に伴い、出来る限り人体に有害な化合物の使用を控えるという動きが強くなってきている。
 一方、クロメート処理以外の表面処理方法としては、タンニン酸を含む表面処理剤による処理方法が良く知られている。タンニン酸を含む水溶液を用いて処理すると、タンニン酸と金属材料との反応によって形成される保護皮膜が腐食物質の侵入を防ぐため、耐食性が向上すると考えられる。しかしながら、この皮膜では、近年の製品の高品質化(耐食性、塗装密着性)に対しての対応は難しい。
 一方で、主として無機成分を用いる技術としては、特許文献1に、耐食性、塗装密着性を改善する方法として、希薄水ガラス溶液もしくはケイ酸ソーダ溶液、またはそれらの混合液に、特定量の有機シランカップリング剤を添加した処理液を鋼材に塗布乾燥する方法が開示されている。
 また、主としてシランカップリング剤を使用する技術として、特許文献2では、一時的な防食効果を得るため、低濃度の有機官能シランおよび架橋剤を含有する水溶液による金属板の処理方法が開示されている。この方法では、架橋剤が有機官能シランを架橋することによって、稠密なシロキサン・フィルムが形成される。
 また、特許文献3では、アルコキシシランを2個以上有する化合物と、有機酸、りん酸および錯弗化物から選ばれる化合物とを含有する表面処理剤を用いて、金属の表面に耐食性と塗装密着性が優れた皮膜を形成する方法が開示されている。
 また、特許文献4では、シランカップリング剤(a-1)とアルコキシシランオリゴマー(a-2)とを含むシリカゾルバインダー(a)、リン酸イオン(b)、フッ化物イオン(c)、並びに、V、Ti、Zr、Zn、Mn、Mg、Al、Co、Ni、Mo、WおよびCeからなる群より選択される少なくとも1種の金属を含む金属化合物(d)を含有する金属表面処理用組成物が開示されている。さらに、この組成物を用いて、耐食性(特に加工部の耐食性)、耐アルカリ性、耐熱性、耐アブレージョン性、密着性(上塗り塗膜との密着性、基材との密着性)に優れた皮膜が得られることが開示されている。
 しかしながら、これらの技術は導電性、および耐指紋性などの性能が著しく欠如していること、耐食性、および塗装密着性が製品の高品質化に対して、目標性能達成が困難であることなどの問題があった。また、仮に耐食性と塗装密着性が優れた皮膜を形成することが可能でも、溶剤系であることで環境面および安全面に問題を残すこと、水系で安定的に供給することが困難であることなどの問題を抱えており、実用化に至って依然として大きな問題を抱えていた。
 一方、特許文献5には、1分子内に、式-SiR(式中、R、RおよびRは、アルキル基、アルコキシ基または水酸基を表し、少なくとも1つはアルコキシ基を表す)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれ得るものとは別のもの)、アミノ基、カルボキシル基、リン酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖及びアミド基から選ばれる親水性官能基(b)を1個以上含有し、官能基(b)1個当たりの分子量が300~10000である有機ケイ素化合物を配合してなる水系金属表面処理剤、および処理方法が開示されている。さらに、この処理剤を使用することにより、優れた耐食性、密着性はもとより、無機系皮膜が有する耐熱性、溶接性、連続加工性および導電性、有機系皮膜が有する耐指紋性や塗装性等を併せ持つ皮膜を形成し得ることが開示されている。
 しかしながら、皮膜中に有機成分によるバリアー層を持ち、めっきに対する薬品の侵入を阻止する有機系皮膜と比較して、この技術では耐酸性や耐アルカリ性などの皮膜の耐薬品性が劣っていた。さらに平面部、および加工部耐食性は優れる性能を有するが、折り曲げ部などの極度に皮膜が変形させられる部位の耐食性を欠くという問題を抱えていた。
 一方、有機樹脂皮膜を用いる技術として、特許文献6では、水性分散樹脂を固形分濃度で5~30質量%、シリカ粒子を0.1~20質量%、および有機チタネート化合物を0.01~20質量%配合し、浴安定性に優れ、亜鉛系被覆鋼または無被覆鋼等の鋼材を被覆するに好適な1液タイプの鋼材用水性被覆剤が開示されている。さらに、この被覆剤を用いることにより、耐食性、耐溶剤性、耐アルカリ性、塗装密着性、皮膜密着性に優れた皮膜が得られることが開示されている。
 また、特許文献7には、特定の樹脂化合物(A)と、第1~3アミノ基および第4アンモニウム塩基から選ばれる少なくとも1種のカチオン性官能基を有するカチオン性ウレタン樹脂(B)と、特定の反応性官能基を有する1種以上のシランカップリング剤(C)と、特定の酸化合物(E)とを含有し、カチオン性ウレタン樹脂(B)およびシランカップリング剤(C)の含有量が所定の範囲内である表面処理剤を用いて得られる、耐食性に優れ、さらに耐指紋性、耐黒変性および塗装密着性に優れたノンクロム系表面処理鋼板およびその製造方法が開示されている。
 また、特許文献8には、(A)加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタンおよび水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を、過酸化水素水と混合して得られるチタン含有水性液の固形分100重量部、(B)有機リン酸化合物1~400重量部、(C)水溶性または水分散性有機樹脂を固形分で10~2,000重量部、(D)バナジン酸化合物1~400重量部、(E)弗化ジルコニウム化合物1~400重量部、および(F)炭酸ジルコニウム化合物1~400重量部を含有してなることを特徴とする金属表面処理組成物が開示されている。
 しかしながら、これらの技術は有機樹脂で金属材料表面を被覆することで耐食性や耐指紋性を発現するため、導電性やスポット溶接性などの性能に劣るという問題があった。また主成分が有機高分子であるため、高温における熱分解、着色、粘性の増加などが生じるため耐熱用途には使用できないのが現状であった。
 この様に、何れの方法でもクロメート皮膜の代替として使用できるような、耐食性(特に、折り曲げ部の耐食性)、耐薬品性、耐熱性、耐指紋性、導電性などの諸特性を総合的に満足する皮膜は得られていない。
特開昭58-15541号公報 米国特許第5,292,549号明細書 特開2001-49453号公報 特開2007-177314号公報 国際公開第2006-082951号パンフレット 特開2001-353750号公報 特開2003-105562号公報 特開2006-009121号公報
 本発明は、従来技術の有する上記課題点を解決して、金属材料表面に優れた耐食性、および耐酸性は、もとより、無機系皮膜が通常有する耐熱性、および導電性に優れ、有機系皮膜が通常有する耐指紋性などを併せ持つこれまでにない新規皮膜を形成することができ、液安定性に優れた金属材料用表面処理剤、それを用いた表面処理方法、および表面処理された金属材料を提供することを目的とするものである。
 本発明者らは、これらの従来技術の抱える問題点を解決すべく鋭意検討を重ねてきた結果、1分子中に-SiR(式中、R、RおよびRは、それぞれ独立に、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれるものとは別個のもの)、アミノ基、カルボキシル基、リン酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基から選ばれる少なくとも1種の親水性官能基(b)とを含有し、官能基(b)1個あたりの分子量(平均分子量/官能基数)が300~5000の範囲にある化合物(A)と、Si、Ti、およびZrからなる群から選ばれる1つの元素を有する、少なくとも1種の金属アルコキシド(B)と、フッ素含有化合物およびリン酸化合物からなる群から選ばれる少なくとも1種の化合物(C)と、カルボン酸基、ホスホン酸基、およびスルホン酸基からなる群から選ばれる少なくとも1種の親水性官能基を有する有機化合物(D)と、水とを含有した、極めて安定な金属材料用表面処理剤を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明は、以下の(1)~(10)を提供する。
(1) 1分子中に-SiR(式中、R、RおよびRは、それぞれ独立に、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれるものとは別個のもの)、アミノ基、カルボキシル基、リン酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基から選ばれる少なくとも1種の親水性官能基(b)とを含有し、官能基(b)1個あたりの分子量(平均分子量/官能基数)が300~5000の範囲にある化合物(A)と、
 Si、Ti、およびZrからなる群から選ばれる1つの元素を有する、少なくとも1種の金属アルコキシド(B)と、
 フッ素含有化合物およびリン酸化合物からなる群から選ばれる少なくとも1種の化合物(C)と、
 カルボン酸基、ホスホン酸基、およびスルホン酸基からなる群から選ばれる少なくとも1種の親水性官能基を有する有機化合物(D)と、
 水と、を含有する金属材料用表面処理剤。
(2) 前記化合物(A)中のSi量をSiOに換算したときの質量と、前記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量との質量比(B/A)が0.01~5.0であり、前記化合物(A)中のSi量をSiOに換算したときの質量と化合物(C)の質量との質量比(C/A)が0.01~4.0である(1)に記載の金属材料用表面処理剤。
(3) 前記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量と前記化合物(C)の質量との質量比(B/C)が、0.10~30.0である、(1)または(2)に記載の金属材料用表面処理剤。
(4) 前記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量と前記有機化合物(D)との質量比(B/D)が、0.10~5.0である、(1)~(3)のいずれかに記載の金属材料用表面処理剤。
(5) 前記金属アルコキシド(B)として、少なくとも1種のテトラアルコキシシランが含有される(1)~(4)のいずれかに記載の金属材料用表面処理剤。
(6) 2種の金属アルコキシド(B)を使用する、(1)~(5)のいずれかに記載の金属材料用表面処理剤。
(7) 前記化合物(C)が、Ti、Zr、Hf、Si、AlおよびBからなる群から選ばれる少なくとも1種の元素を有する、(1)~(6)のいずれかに記載の金属材料用表面処理剤。
(8) さらに、Ti、Zr、V、W、Ni、Co、Fe、Zn、Mg、Al、Mn、CaおよびLiからなる群から選ばれる少なくとも1種の元素を含有する金属化合物(E)(ただし、前記フッ素含有化合物は含まれない)を含有し、前記化合物(A)中のSi量をSiOに換算したときの質量と前記金属化合物(E)の質量との質量比(E/A)が0.01~3.0である、(1)~(7)のいずれかに記載の金属材料用表面処理剤。
(9) (1)~(8)のいずれかに記載の金属材料用表面処理剤を金属材料表面上に塗布、乾燥させ、皮膜量が10~3000mg/mの皮膜を前記金属材料表面上に形成する、金属材料の表面処理方法。
(10) (9)に記載の金属材料の表面処理方法により得られる、表面処理された金属材料。
 本発明によれば、金属材料表面に優れた耐食性、および耐酸性は、もとより、無機系皮膜が通常有する耐熱性、および導電性に優れ、有機系皮膜が通常有する耐指紋性などを併せ持つこれまでにない新規皮膜を形成することができ、液安定性に優れた金属材料用表面処理剤、それを用いた表面処理方法、および表面処理された金属材料を提供することができる。
 以下に、本発明に係る金属材料用表面処理剤、およびその処理剤を使用した表面処理方法、さらにはその表面処理方法により得られる皮膜を有する金属材料について説明する。
 まず、金属材料用表面処理剤について説明する。
 本発明の金属材料用表面処理剤は、1分子中に-SiR(式中、R、RおよびRは、それぞれ独立に、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれるものとは別個のもの)、アミノ基、カルボキシル基、リン酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基から選ばれる少なくとも1種の親水性官能基(b)とを含有し、官能基(b)1個あたりの分子量(平均分子量/官能基数)が300~5000の範囲にある化合物(A)と、Si、Ti、およびZrからなる群から選ばれる1つの元素を有する、少なくとも1種の金属アルコキシド(B)と、フッ素含有化合物およびリン酸化合物からなる群から選ばれる少なくとも1種の化合物(C)と、ルボン酸基、ホスホン酸基、およびスルホン酸基からなる群から選ばれる少なくとも1種の有機化合物(D)と、水と、を含有する。
 以下に、これらの各構成成分についてそれぞれ説明する。
<化合物(A)>
 本発明の金属材料用表面処理剤には、1分子中に-SiR(式中、R、RおよびRは、それぞれ独立に、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれるものとは別個のもの)、アミノ基、カルボキシル基、リン酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基から選ばれる少なくとも1種の親水性官能基(b)とを含有し、官能基(b)1個あたりの分子量(平均分子量/官能基数)が300~5000の範囲にある化合物(A)が含まれる。化合物(A)が含まれることによって、皮膜の耐食性が付与される。化合物(A)は、1種のみであってもよいし、2種以上を併用してもよい。
 化合物(A)は、1分子中に-SiR(式中、R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上有する。なかでも、2~7個が好ましい。なお、一分子中に官能基(a)を1個しか含まない場合は、金属材料表面に対する密着性が低下するため好ましくない。
 R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。なかでも、アルコキシ基が好ましい。
 なお、R、RおよびRのうち少なくとも1つはアルコキシ基を表し、すべてアルコキシ基であることが好ましい。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基などが挙げられ、好ましくはエチル基である。
 アルコキシ基としては、例えば、炭素数1~3のアルコキシ基が好ましく挙げられる。
 化合物(A)は、1分子内に、水酸基(官能基(a)に含まれるものとは別個のもの)、アミノ基、カルボキシル基、リン酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基から選ばれる少なくとも1種の親水性官能基(b)を1個以上含有する。なかでも、水酸基、およびアミノ基が好ましい。
 また、親水性官能基の数は1~4個が好ましい。
 なお、化合物(A)中の官能基(b)は、官能基(a)を有する化合物と、官能基(b)とを有する化合物とを反応させて合成してもよい。官能基(b)を有する化合物としては、ヒドロキシルアミン、多価アルコール、アミンチオールアミンスルホン酸、ヒドロキシホスホン酸、アミン酸などが挙げられる。
 化合物(A)は、官能基(b)1個あたりの分子量(平均分子量/官能基数)が300~5000の範囲にあることが好ましく、より好ましくは400~3000の範囲であり、特に好ましくは500~2000の範囲である。官能基(b)1個あたりの分子量が300未満の場合は、化合物の合成が難しく、得られる皮膜の特性も劣る。一方、5000を超える場合は、官能基(b)の特徴である金属材料表面に対する密着性が低下するため好ましくない。
 なお、上記分子量の測定方法としては、ゲル・パーミッション・クロマトグラフィー(GPC)やNMRを用いて測定することができる。
 また、化合物(A)の骨格としては、特に限定されないが、エステル結合、エーテル結合、酸アミド結合、アミド結合、ウレタン結合、ウレア結合、ビニル結合などの結合を有していることが好ましい。
 化合物(A)の製造方法は、特に限定されないが、例えば、(1)2つ以上の、活性水素含有官能基を有する化合物とクロロシランとを反応させる方法、(2)ビニル基を有するシランカップリング剤と共重合可能なビニル化合物とを反応(重合)させる方法、(3)特定の反応性官能基を有するシランカップリング剤と、その反応性官能基と反応しえる官能基を有する化合物とを反応させる方法、(4)多官能シランカップリング剤に親水基を修飾する方法などが挙げられる。
 なかでも、(2)または(3)が好ましく、(3)が最も好ましい。以下にそれぞれの製造方法について説明する。
 化合物(A)の好ましい実施形態の一つとして、ビニル基を有するシランカップリング剤と、共重合可能なビニル化合物との反応(重合)により得られる化合物(反応生成物)が挙げられる。なお、この方法は上記の(2)の製造方法に該当する。
 ビニル基を有するシランカップリング剤としては、ビニル基を有していれば特に限定されないが、例えば、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、ビニルトリエトキシシランなどが挙げられる。
 また、共重合可能なビニル化合物としては、特に限定されないが、例えば、アクリル酸、ブチルアクリレート、メチルアクリレート、2-ヒドロキシエチルメタクリレートなどが挙げられる。
 上述の化合物を使用した反応形式は特に限定されず、例えば、アニオン重合、カチオン重合、ラジカル重合などが挙げられる。なかでも、ラジカル重合が好ましい。なお、選択される反応形式に応じて、公知の重合開始剤などを適宜使用してもよい。
 また、反応の際には適宜溶媒を使用してもよく、例えば、水、エタノール、イソプロピルアルコールなどが挙げられる。
 化合物(A)の他の好ましい実施形態の一つとして、反応性官能基(c1)を有するシランカップリング剤と、その反応性官能基(c1)と反応しえる官能基(c2)を有する化合物との反応により得られる化合物(反応生成物)が挙げられる。
 反応性官能基(c1)としては、他の官能基と反応して結合を形成する基であれば、特に限定されないが、例えば、水酸基、エポキシ基、1級アミノ基、2級アミノ基、メルカプト基、イソシアナート基、カルボキシル基、およびビニル基からなる群から選択される官能基が好ましい。なかでも、エポキシ基、1級アミノ基、2級アミノ基が好ましい。
 反応性官能基(c1)を有するシランカップリング剤の好ましい実施態様の一つとして、一般式(I)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、Xは、エポキシ基、アミノ基、メルカプト基、ビニル基、およびイソシアネート基からなる群から選択されるいずれかの官能基を表す。Lは、2価の連結基、または単なる結合手を表す。Yは、それぞれ独立に、アルコキシ基を表す。
 一般式(I)中、Xは、エポキシ基、アミノ基、メルカプト基、ビニル基、およびイソシアネート基からなる群から選択されるいずれかの官能基を表す。なかでも、エポキシ基、アミノ基が好ましい。
 一般式(I)中、Lは、2価の連結基、または単なる結合手を表す。
 Lで表される連結基としては、例えば、アルキレン基(炭素数1~20が好ましい)、-O-、-S-、アリーレン基、-CO-、-NH-、-SO2-、-COO-、-CONH-、またはこれらを組み合わせた基が挙げられる。なかでも、アルキレン基が好ましい。単なる結合手の場合、一般式(I)のXがSi(ケイ素原子)と直接連結することをさす。
 一般式(I)中、Yは、それぞれ独立に、アルコキシ基を表す。なかでも、炭素数1~3のアルコキシ基が好ましい。
 反応性官能基(c1)を有するシランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、および2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(アミノエチル)3-アミノプロピルトリメトキシシラン、および3-アミノプロピルトリエトキシシランなどのアミノシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプトシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシランなどのビニル基含有シランなどが挙げられる。
 官能基(c2)を有する化合物中における官能基(c2)は、上記の反応性官能基(c1)と反応可能であれば、特に限定されず、例えば、上記の反応性官能基(c1)で列挙された官能基などが好ましく挙げられる。
 官能基(c2)を有する化合物としては、反応性官能基(c1)を有するシランカップリング剤が好ましく挙げられる。つまり、化合物(A)は、反応性官能基(c1)を有するシランカップリング剤同士の反応生成物であることが好ましい。
 官能基(c2)を有する化合物としては、上記の反応性官能基(c1)を有するシランカップリング剤で例示したシランカップリング剤や、エチレンジアミン、アミノプロパンチオールなどのアミン化合物、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどのエーテル化合物などが挙げられる。
 反応性官能基(c1)を有するシランカップリング剤と、官能基(c2)を有する化合物との反応比は、特に制限されないが、シランカップリング剤:化合物(モル比)=5:1~0.5:1が好ましく、3:1~1:1がより好ましい。
 反応条件は、使用される化合物によって適宜最適な条件が選択される。また、反応の際に、溶媒(例えば、アルコールなど)などを使用してもよい。
 本発明の金属材料用表面処理剤中における化合物(A)の含有量は、特に限定されないが、得られる皮膜の諸特性がより優れる観点から、処理剤中の全固形分に対して、40~90質量%が好ましく、60~80質量%がより好ましい。なお、全固形分とは、後述する皮膜を構成する固形成分を意味し、溶媒などは含まれない。
<金属アルコキシド(B)>
 本発明の金属材料用表面処理剤は、Si、Ti、およびZrからなる群から選ばれる1つの元素を有する、少なくとも1種の金属アルコキシド(B)を有する。金属アルコキシド(B)と化合物(A)とを処理剤中に含有することにより、官能基間の強固な架橋反応が生じ、緻密な網目構造を有する皮膜形成が可能と推察される。また、金属アルコキシド(B)を含有して形成した化合物(A)の結合は、無機系皮膜が通常有する耐熱性、溶接性、連続加工性および導電性に優れる上、耐薬品性も有する。
 金属アルコキシド(B)は、Si、Ti、およびZrからなる群から選ばれる1つの元素を有し、アルコキシ基を有していれば特に制限されず、従来から公知のものを適宜選択して使用できる。上記金属アルコキシドは、金属に直接結合するアルコキシ基が加水分解された水酸基であっても構わない。
 なかでも、一般式Me(OR)(式中、Rは、それぞれ独立に、アルキル基または水素原子を表し、Rのうち少なくとも一つはアルキル基を表す。Meは、Si、Ti、またはZrを表す。)で示される化合物が好ましい。
 アルキル基としては炭素数1~3が好ましく、炭素数1~2がより好ましい。
 金属アルコキシド(B)としては、例えば、チタンテトライソプロポキシド、チタンテトラエトキシド、チタンブトキシドダイマー、チタンテトラ-2-エチルヘキソシド、ジルコニウムエトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、テトラメトキシシラン、テトラエトキシシラン、テトラノルマルプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-ヘキシルトリメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、イソブチルトリメトキシシラン、ビニルメトキシシラン、ビニルエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルメチルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルトリメトキシシラン、p-スチリルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、γ-イソシアネートプロピルトリエトキシシラン、γ-トリエトキシシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-(ビニルベンジルアミン)-β-アミノエチル-γ-アミノプロピルトリメトキシシランが挙げられ、その中でもテトラメトキシシラン、テトラエトキシシラン、テトラノルマルプロポキシシランなどがより好ましい。
 金属アルコキシド(B)の好ましい実施形態としては、テトラアルコキシシランが好ましく挙げられる。
 テトラアルコキシシランとしては、例えば、テトラエトキシシラン、テトラメトキシシラン、テトラノルマルプロポキシシランなどが挙げられる。
 上記化合物を使用すると、曲げ部の耐食性や耐酸性の点で好ましい。
 金属アルコキシド(B)は、2種以上(好ましくは2~4種)を併用することが好ましく、特に2種が好ましい。2種以上を併用することにより、加工部耐食性や曲げ部耐食性の点で好ましい。
 2種以上併用する場合の金属アルコキシド(B)の1種として、テトラアルコキシシランを使用することが好ましい。また、2種併用する場合の好ましい組み合わせとしては、テトラアルコキシシランとジルコニウムアルコキシド(例えば、ジルコニウムテトラプロポキシド)との組み合わせが挙げられる。
 本発明の金属材料用表面処理剤中における金属アルコキシド(B)の合計含有量は、特に限定されないが、得られる皮膜の諸特性がより優れる観点から、処理剤中の全固形分に対して、5~80質量%が好ましく、10~50質量%がより好ましい。
<化合物(C)>
 本発明の金属材料用表面処理剤には、フッ素含有化合物およびリン酸化合物からなる群から選ばれる少なくとも1種の化合物(C)が含まれる。
 フッ素含有化合物としては、フッ化物、錯フッ化物、その他のフッ素を含有する化合物であれば特に限定されない。例えば、フッ化水素酸、そのアンモニウム塩、そのアルカリ金属塩;フッ化スズ、フッ化マンガン、フッ化第一鉄、フッ化第二鉄、フッ化アルミニウム、フッ化亜鉛、フッ化バナジウム等の金属フッ化物;酸化フッ素、フッ化アセチル、フッ化ベンゾイル等の酸フッ化物が挙げられる。
 また、フッ素含有化合物として、Ti、Zr、Hf、Si、AlおよびBからなる群から選ばれる原子の少なくとも1種の元素を有するものが好適に用いられる。具体的には、例えば、(TiF62-、(ZrF62-、(HfF62-、(SiF62-、(AlF63-、(BF4OH)-などのアニオンに水素原子が1~3原子付加した錯体、これらのアニオンのアンモニウム塩、これらのアニオンの金属塩等が挙げられる。錯弗化物は、フッ素によるエッチング効果の他に、錯弗化物に使用されている金属によるキレート作用を有するため、皮膜の耐食性が向上する。
 なお、フッ素含有化合物は、単独でまたは2種以上を組み合わせて用いられる。
 リン酸化合物は、亜鉛系めっき表面に極僅かであるがリン酸亜鉛系化成皮膜を形成するため耐食性が向上する。リン酸化合物としては、例えば、リン酸、メタリン酸、ピロリン酸、オルトリン酸、三リン酸、四リン酸、およびこれらのアンモニウム塩、アルミニウム塩、マグネシウム塩、などが使用できる。上記記載以外の酸、例えば、硝酸、硫酸、塩酸のような強酸では、金属材料表面に対するエッチング力が強すぎるため、耐食性が低下する場合がある。また、これら強酸は、金属材料表面上で不動態化皮膜を形成するため、導電性が低下する場合があり望ましくない。
 本発明の金属材料用表面処理剤中における化合物(C)の含有量は、特に限定されないが、得られる皮膜の諸特性がより優れる観点から、処理剤中の全固形分に対して、0.1~50質量%が好ましく、0.5~30質量%がより好ましい。
<有機化合物(D)>
 本発明の金属材料用表面処理剤には、カルボン酸基、ホスホン酸基、およびスルホン酸基からなる群から選ばれる少なくとも1種の親水性官能基を有する有機化合物(D)が含まれる。有機化合物(D)を含有することにより、金属アルコキシド(B)と化合物(A)が形成するシロキサン結合の形成が促進される共に、化合物(A)の-SiRで表される官能基(a)の反応性が制御され、化合物(A)が水中において安定化できる。
 有機化合物(D)としては、例えば、ギ酸、酢酸、酪酸、シュウ酸、コハク酸、乳酸、L-アスコルビン酸、酒石酸、クエン酸、DL-リンゴ酸、マロン酸、マレイン酸、フタル酸、ニトリロトリスメチレンホスホン酸、ニトリロトリスプロピレンホスホン酸、ニトリロジエチルメチレンホスホン酸、ニトリロプロピルビスメチレンホスホン酸メタン、メタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、プロパン-1-ヒドロキシ-1,1-ジホスホン酸、スルホン酸、ベンゼンスルホン酸などが挙げられる。
 本発明の金属材料用表面処理剤中における有機化合物(D)の含有量は、特に限定されないが、得られる皮膜の諸特性がより優れる観点から、処理剤全量に対して、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
<水>
 本発明の金属材料用表面処理剤には、溶媒として水が含まれる。
 本発明の金属材料用表面処理剤中における水の含有量は、特に限定されないが、処理剤の取り扱いがより容易な観点から、処理剤全量に対して、30~99質量%が好ましく、40~95質量%がより好ましい。
 処理剤中における上記化合物(A)中のSi量(ケイ素成分)をSiOに換算したときの質量と、上記金属アルコキシド(B)中のSi量(ケイ素成分)、Ti量(チタン成分)、およびZr量(ジルコニウム成分)をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量との質量比(B/A)が、0.01~5.0であることが好ましく、0.5~3.0であることがより好ましい。上記範囲内であれば、耐酸性の点で好ましい。
 処理剤中における上記化合物(A)中のSi量をSiOに換算したときの質量と上記化合物(C)の質量との質量比(C/A)は、0.01~4.0であることが好ましく、0.05~2.0であることがより好ましい。0.01未満であると、酸化膜を取り除く効果が小さく、4.0を超えるとエッチング力が強すぎて、皮膜の耐食性を低下させる場合がある。
 処理剤中における上記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量と上記化合物(C)の質量との質量比(B/C)が、0.1~30であることが好ましく、5~20がより好ましい。上記範囲内であれば、導電性の点で好ましい。
 処理剤中における上記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量と上記有機化合物(D)の質量との質量比(B/D)が、0.1~5.0であることが好ましく、0.5~3.0がより好ましい。上記範囲内であれば、安定性、導電性の点で好ましい。
 上述した化合物以外に、本発明の金属材料用表面処理剤は、本発明の効果を損なわない範囲で、他の添加剤を含有していてもよい。以下に、それぞれの成分について説明する。
<金属化合物(E)>
 本発明の金属材料用表面処理剤には、Ti、Zr、V、W、Ni、Co、Fe、Zn、Mg、Al、Mn、CaおよびLiからなる群から選ばれる少なくとも1種の元素を含有する金属化合物(E)(ただし、フッ素含有化合物は含まれない)が含まれていてもよい。金属化合物(E)を含有することにより、皮膜の耐食性が更に向上する。
 金属化合物(E)としては、例えば、上記金属の炭酸塩、酸化物、水酸化物、硝酸塩、有機酸塩、有機化合物などが挙げられる。また、金属化合物(E)は、親水性官能基を有する有機化合物(D)にて、水中において安定化されることが望ましい。
 金属化合物(E)としては、例えば、メタタングステン酸アンモニウム、炭酸ジルコニウムアンモニウム、モリブデン酸アンモニウム、五酸化バナジウム、バナジン酸アンモニウム、バジン酸ナトリウム、バナジルアセチルアセトネート、蓚酸バナジウム、オキシ硫酸バナジウム、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、硝酸チタン、重リン酸アルミニウム、硝酸アルミニウム、重リン酸マグネシウム、りん酸二水素マンガン、硝酸ニッケル、硝酸コバルト、硝酸マンガン、アセチルアセトン亜鉛、アセチルアセトンニッケル、アセチルアセトンコバルトなどが挙げられる。
 本発明の金属材料用表面処理剤中における金属化合物(E)の含有量は、特に限定されないが、得られる皮膜の諸特性がより優れる観点から、処理剤中の全固形分に対して、1~40質量%が好ましく、5~40質量%がより好ましい。
 処理剤中における前記化合物(A)中のSi量をSiOに換算したときの質量と前記金属化合物(E)の質量との質量比(E/A)は、0.01~3.0であることが好ましく、0.5~2.0であることがより好ましい。0.01以上であると、十分な耐食性向上効果が得られる。3.0以下であると、安定性の点で好ましい。
 本発明の金属材料用表面処理剤には、さらに、被塗面に均一な皮膜を形成させるための濡れ性向上剤と呼ばれる界面活性剤や、増粘剤、導電性向上剤、意匠性向上のための着色顔料、造膜性向上のための造膜助剤などが含まれていてもよい。
 本発明の金属材料用表面処理剤には、さらなる耐食性向上のため、有機インヒビターと呼ばれる1分子中にC=O基、C=C基、C≡C基、C=N基、C≡N基およびN=N基からなる群から選ばれる少なくとも1種の不飽和基、または、N-N基あるいはS元素を有する官能基からなる群から選ばれる少なくとも1種の官能基を有する化合物が含まれていてもよい。
 これらの官能基を有する化合物としては、特に限定されないが、ホルムアルデヒド、アセトアルデヒドなどのアルデヒド類、アセトン、メチルエチルケトンなどのケトン類などのC=O基含有化合物、ベンゼンおよびその誘導体、ナフタレンおよびその誘導体、アクリル酸およびメタクリル酸およびその誘導体、アルキルカルボン酸エステル、アルキルアルデヒドなどのC=C基含有化合物、アセチレンアルコールやアセチレン誘導体などのC≡C基含有化合物、アジン、トリアジン、オサゾン染料、トリフェニルメタン染料、クニジン、ピリミジン、ピラゾール、イミダゾール、ピリジニウムおよびキノリニウム化合物などのC=N基含有化合物、エチレンシアンヒドリンなどのC≡N含有化合物、ヒドラジン化合物およびその誘導体などのN-N基含有化合物、アゾ染料などのN=N基含有化合物、スルホン酸、スルフォネート、スルフォアミド、チオ尿素および環状チオ尿素などのS元素含有化合物、などが挙げられる。
 本発明の金属材料用表面処理剤には、さらなる耐食性向上のため、水系樹脂(水溶性樹脂、または水分散性もしくはエマルジョン型樹脂を使用)が含まれていてもよい。
 樹脂の種類としては、焼付け硬化型であれば、特に限定するものではないが、例えば、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン-カルボン酸系樹脂、ナイロン系樹脂、ポリオキシアルキレン鎖を有する樹脂、ポリビニルアルコール、ポリグリセリン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロースなどが好ましく挙げられる。
 本発明の金属材料用表面処理剤は、必要に応じて、水以外の溶媒(例えば、アルコールなど)を含有してもよい。
 本発明の金属材料用表面処理剤の調製方法は、特に限定されない。例えば、化合物(A)、金属アルコキシド(B)、化合物(C)、有機化合物(D)、その他添加剤、水とを、混合ミキサーなどのかくはん機を用いて十分に混合することによって製造することができる。
<表面処理方法>
 本発明の金属材料用表面処理剤を用いた表面処理方法は、特に限定されないが、上述の金属材料用表面処理剤を金属材料表面上に塗布、乾燥させ、皮膜量が10~3000mg/mの皮膜を金属材料表面上に形成する表面処理方法が好ましい。
 以下に、その表面処理方法について説明する。
 処理剤を塗布の前に、必要に応じて、金属材料表面上の油分や汚れを除去する目的で、金属材料に前処理を施してもよい。金属材料は、防錆目的で防錆油が塗られている場合が多い。また、防錆油で塗油されていない場合でも、作業中に付着した油分や汚れなどがある。前処理を施すことにより、金属材料表面上を清浄して、本発明の処理剤によって金属材料表面が均一に濡れやすくなる。なお、油分や汚れなどがなく、本発明の処理剤で材料表面を均一に濡れる場合は、前処理行程は特に必要はない。
 なお、前処理の方法としては、特に限定されず、湯洗、溶剤洗浄、アルカリ脱脂洗浄などの方法が挙げられる。
 適用する金属材料は、特に限定されないが、亜鉛含有金属めっき鋼板、アルミニウム板、ステンレス鋼板が好ましい。これらの金属材料表面には事前にリン酸塩処理、クロメート処理等の前処理が施されていてもよい。
 金属材料表面に塗布する方法は、特に制限はなく、浸漬法、スプレー法、ロールコート法などの方法を使用することができる。
 また、処理(塗布)温度、処理(塗布)時間についても特に制限されないが、一般に処理(塗布)温度は10~40℃であることが好ましく、処理(塗布)時間は0.1~10秒であることが好ましい。
 金属材料表面上に塗布され形成された塗膜を乾燥することにより、溶媒、すなわち水またはアルコールが揮発し、所望の皮膜が形成される。乾燥方法としては、特に限定されず、熱風やインダクションヒーター、赤外線、近赤外線などにより加熱して、乾燥すればよい。
 乾燥温度は、到達板温として30~300℃であることが好ましく、40~250℃であることがより好ましく、60~200℃であることが特に好ましい。乾燥時間は、到達板温が上記条件を満たしていれば、特に制限されない。
 金属材料表面上に形成される皮膜の皮膜量は、10~3000mg/mの範囲であり、100~1000mg/mがより好ましい。上記範囲内であれば、耐食性と導電性の点で好ましい。
 なお、これらの皮膜量は、鋼板などの板状物の場合は、片面あたりの皮膜量をさす。
 上述の表面処理方法により形成された皮膜上に、乾燥後の膜厚が0.1~3.0μmになるように有機高分子膜を形成して、更に高度な耐食性や耐指紋性、潤滑性を付与することができる。このような有機高分子膜は既に公知のアクリル、ウレタン、エポキシ等樹脂エマルションや、これにシリカ、防錆剤、潤滑剤、紫外線吸収剤、顔料等が添加されたものを使用できる。
 上述の表面処理方法により処理された金属材料は、種々の用途に適用することができる。例えば、家電製品用鋼板、建材用鋼板、自動車用鋼板などが挙げられる。
 本発明の金属材料用表面処理剤を用いると、金属材料表面に優れた耐食性、密着性、および耐酸性はもとより、無機系皮膜が通常有する耐熱性、溶接性、連続加工性および導電性、有機系皮膜が通常有する耐指紋性や塗装性などを併せ持つ新規な皮膜が得られる。
 この理由は以下のように推測されるが、本発明はかかる推測に縛られるものではない。本発明の金属材料用表面処理剤を用いて形成される皮膜は、主に化合物(A)と金属アルコキシド(B)によるものである。まず、化合物(A)の1部が乾燥などにより濃縮されたときに金属アルコキシド(B)が触媒となり、連続皮膜を成膜すること、1部が加水分解して生成した-OR基が金属表面とSi-O-M結合(M:被塗物表面の金属元素)を形成することにより、著しいバリアー効果を発揮され、耐食性が向上すると推定される。
 一方、本発明の金属材料用表面処理剤を用いた皮膜は、主にケイ素を主成分として形成される。その構造については、ケイ素-有機鎖の配列が規則的であり、また有機鎖が比較的短いことから、皮膜中の極めて微小な区域に、規則的かつ緻密にケイ素含有部と有機物部、すなわち無機物と有機物が配列していると考えられる。そのため、無機系皮膜が通常有する耐熱性、溶接性、連続加工性および導電性、有機系皮膜が通常有する耐指紋性や塗装性などを併せ持つ新規な皮膜の形成が可能になると推定される。
 なお、皮膜中のケイ素含有部においては、ケイ素の約80%がシロキサン結合を形成していることが分析で確認されている。
 以下に本発明の実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。試験板の調製、実施例および比較例、および金属材料用表面処理剤の塗布の方法について下記に説明する。
試験板の調製
(1)試験素材
 下記に示した市販の素材を用いた。
・電気亜鉛めっき鋼板(EG):板厚=0.8mm、目付量=20/20(g/m )
・5%アルミニウム含有溶融亜鉛めっき鋼板(GF):板厚=0.8mm、目付量=90/90(g/m
・亜鉛ニッケル合金めっき鋼板(Zn/Ni):板厚=0.8mm、目付量=20/20(g/m
・溶融55%亜鉛合金めっき鋼板(GL):板厚=0.8mm、目付量=90/90(g/m
・合金化(Zn-Fe)溶融亜鉛めっき鋼板(GA):板厚=0.8mm、目付量=60/60(g/m
・溶融亜鉛めっき鋼板(GI):板厚=0.8mm、目付量=60/60(g/m )
・A-1100系アルミニウム板(AL):板厚=0.8mm
 なお、目付量はそれぞれの鋼板の主面上への目付量を示している。例えば、電気亜鉛めっき鋼板の場合は、20/20(g/m)であり、鋼板の両面のそれぞれに20g/mのめっきを有することを意味する。
(2)試験板の作製
 上記試験素材を、シリケート系アルカリ脱脂剤のファインクリーナー4336(登録商標:日本パーカライジング(株)製)を用いて、濃度20g/L、温度60℃の条件で2分間スプレー処理し、純水で30秒間水洗したのちに乾燥したものを試験板とした。この試験板に後述する金属材料用表面処理剤をバーコーターにて塗布し、熱風乾燥炉を用い、到達温度を90℃となるように乾燥した。
(3)金属材料用表面処理剤の構成成分
 化合物(A)として、以下の化合物A1~A9を用いた。
〔化合物A1〕
 トリメトキシクロロシラン2モルと、トリメチロールプロパン1モルとを、エタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物は水酸基を有しており、一分子中の官能基(a)数は2個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は約530であった。
〔化合物A2〕
 ビニルトリメトキシシラン2モルと、スルホエチルアクリレート1モルとを、エタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物はスルホン酸基を有しており、一分子中の官能基(a)数は2個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は約320であった。
〔化合物A3〕
 3-グリシドキシプロピルトリメトキシシラン2モルと、3-アミノプロピルトリエトキシシラン1モルとを、エタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物はアミノ基、水酸基を有しており、一分子中の官能基(a)数は3個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は約700であった。
〔化合物A4〕
 N-(アミノエチル)3-アミノプロピルトリメトキシシラン2モルと、3-イソシアネートプロピルトリメトキシシラン1モルとを、エタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物はアミノ基を有しており、一分子中の官能基(a)数は2個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は約800であった。
〔化合物A5〕
 3-メルカプトトリメトキシシラン4モルと、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン4モルとジメチロールプロピオン酸1モルをエタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物は水酸基、カルボキシル基を有しており、一分子中の官能基(a)数は4個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は約1900であった。
〔化合物A6〕
 3-グリシドキシプロピルトリメトキシシラン4モルと、エチレンジアミン1モルとをエタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物はアミノ基、水酸基を有しており、一分子中の官能基(a)数は4個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は約500であった。
〔化合物A7〕
 3-アミノプロピルトリエトキシシラン3モルと、トリメチロールプロパンポリグリシジルエーテル1モルとを、エタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物はアミノ基、水酸基を有しており、一分子中の官能基(a)数は3個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は300であった。
〔化合物A8〕
 3-メルカプトトリメトキシシラン7モルと、ペンタエリスリトールポリグリシジルエーテル1モルと、2-アミノプロパンチオール1モルとをエタノール中で反応させ生成物を得た。その後、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物はアミノ基を有しており、一分子中の官能基(a)数は7個で、官能基(b)1個当たりの分子量(平均分子量/官能基数)は1500であった。
〔化合物A9〕
 3-グリシドキシプロピルトリメトキシシラン175.1質量部と3-アミノプロピルトリメトキシシラン58.5質量部を混合させたシランカップリング剤に、純水と混合し、固形分が10質量%になるように調整した。
 得られた生成物の一分子中の官能基(a)数は1個で、官能基(a)1個当たりの分子量(平均分子量/官能基数)は約230であり、化合物(A)の範囲外であった。
<金属アルコキシド(B)>
B1:チタンテトライソプロポキシド
B2:テトラメトキシシラン
B3:テトラエトキシシラン
B4:テトラノルマルプロポキシシラン
B5:ジルコニウムテトラプロポキシド
<化合物(C)>
C1:チタンフッ化水素酸
C2:ジルコンフッ化水素酸
C3:ケイフッ化水素酸 
C4:ハフニウムフッ化水素酸
C5:チタンフッ化アンモニウム
C6:ジルコンフッ化アンモニウム
C7:フッ化アンモニウム 
C8:リン酸
C9:ピロリン酸
C10:りん酸水素二アンモニウム
<有機化合物(D)>
D1:酢酸
D2:酒石酸
D3:フタル酸
D4:エタン-1-ヒドロキシ-1,1-ジホスホン酸
D5:スルホン酸
<金属化合物(E)>
E1:メタタングステン酸アンモニウム
E2:炭酸ジルコニウムアンモニウム
E3:バナジルアセチルアセトネート
E4:チタンアセチルアセトネート
E5:バナジン酸アンモニウム
E6:重リン酸アルミニウム
E7:重リン酸マグネシウム
E8:りん酸二水素マンガン
E9:硝酸ニッケル
E10:硝酸アルミニウム
 上述した化合物(A)、金属アルコキド(B)、化合物(C)、有機化合物(D)、水、および金属化合物(E)を表1に示す所定量で水中にて配合し、金属材料用表面処理剤を調製した。表1中の成分(A)~(E)の配合量は、処理液1kg中に配合される量(g)を表す。また、各処理剤に含まれる成分(A)~(E)以外の成分は、主に水である。なお、表1中における化合物(A)の配合量は、化合物(A)中のSi量(ケイ素成分)をSiOに換算したときの質量を意味する。また、表1中における金属アルコキシド(B)の配合量は、金属アルコキシド(B)中のSi量(ケイ素成分)、Ti量(チタン成分)、およびZr量(ジルコニウム成分)をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量を意味する。また、表1中、2種の化合物を併用する場合の比率は、質量比(g)を意味する。
 調製された処理剤を、表1に示す試験板の表面に、所定の皮膜量になるようにバーコート塗布し、到達板温が90℃になるように乾燥して皮膜を形成した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(5)評価試験の方法
(5-1)平面部耐食性
 得られた各表面処理試験板に対して、JIS-Z-2371による塩水噴霧試験を120時間行った。次に、白錆発生面積率を目視で測定し評価を行った。ここで白錆発生面積率とは、観察部位の面積(50cm×120cm)に対する白錆発生部位の面積の百分率である。評価基準は以下のとおりである。
<評価基準>
◎=白錆発生が全面積の3%未満
○=白錆発生が全面積の3%以上10%未満
△=白錆発生が全面積の10%以上30%未満
×=白錆発生が全面積の30%以上
(5-2)アルカリ脱脂後耐食性
 アルカリ脱脂剤CL-N364S(日本パーカライジング(株)製)を2質量%の濃度で純水に溶解し、60℃に加温した。このアルカリ溶液に各サンプルを2分間浸漬し、取り出して水洗して乾燥した。各サンプルについて、JIS-Z-2371による塩水噴霧試験を72時間行い、白錆発生状況を観察した。ここで白錆発生面積率とは、観察部位の面積(50cm×120cm)に対する白錆発生部位の面積の百分率である。評価基準は以下のとおりである。
<評価基準>
◎=白錆発生が全面積の3%未満
○=白錆発生が全面積の3%以上10%未満
△=白錆発生が全面積の10%以上30%未満
×=白錆発生が全面積の30%以上
(5-3)加工部耐食性
 得られた各表面処理試験板に対して、エリクセン試験(7mm押し出し)を行った後、JIS-Z-2371による塩水噴霧試験を72時間行った。次に、白錆発生面積率を目視で測定し評価を行った。評価基準は以下のとおりである。
<評価基準>
◎=白錆発生が全面積の10%未満
○=白錆発生が全面積の10%以上20%未満
△=白錆発生が全面積の20%以上30%未満
×=白錆発生が全面積の30%以上
(5-4)曲げ部耐食性
 得られた各表面処理試験板に対して、エリクセン試験(2mm折り曲げ部)を行った後、JIS-Z-2371による塩水噴霧試験を72時間行った。次に、白錆発生面積率を目視で測定し評価を行った。評価基準は以下のとおりである。
<評価基準>
◎=白錆発生が全面積の10%未満
○=白錆発生が全面積の10%以上20%未満
△=白錆発生が全面積の20%以上30%未満
×=白錆発生が全面積の30%以上
(5-5)耐酸性
 得られた各表面処理試験板を1重量%の硫酸水溶液中に60分間浸漬し、ついで水洗乾燥した。皮膜外観変化および金属表面の変色(腐食)程度から、耐酸性を目視評価した。
<評価基準>
◎=皮膜外観変化および金属表面の変色が見られない
○=部分的にわずかな皮膜剥離(溶解も含む)、または金属表面の変色が見られる
△=ほぼ全面に広がる部分的な皮膜剥離(溶解も含む)、または金属表面の顕著な変色が見られる
×=皮膜が剥離または溶解することでほとんど残存しておらず、金属表面の変色も顕著である
(5-6)導電性
 層間抵抗試験機(東英工業株式会社製、装置名LRT-1A)により、得られた表面処理試験板の層間抵抗を測定した。
<評価基準>
◎=層間抵抗が1.0Ω未満
○=層間抵抗が1.0Ω以上2.0Ω未満
△=層間抵抗が2.0Ω以上3.0Ω未満
×=層間抵抗が3.0Ω未満
(5-7)耐熱性
 得られた表面処理試験板をオーブンにて200℃で2時間加熱後、平面部耐食性JIS-Z-2371による塩水噴霧試験を48時間行い、白錆発生状況を観察した。ここで白錆発生面積率とは、観察部位の面積(6cm×6cm)に対する白錆発生部位の面積の百分率である。評価基準は以下のとおりである。
<評価基準>
◎=白錆発生が全面積の3%未満
○=白錆発生が全面積の3%以上10%未満
△=白錆発生が全面積の10%以上30%未満
×=白錆発生が全面積の30%以上
(5-8)耐指紋性
 得られた表面処理試験板にワセリンを塗布し、色差計(日本電色工業株式会社製、color meter ZE2000)にて、ワセリン塗布前後のL値増減(△L)を測定した。評価基準は以下のとおりである。
<評価基準>
◎=△Lが0.5未満
○=△Lが0.5以上1.0未満
△=△Lが1.0以上2.0未満
×=△Lが2.0以上
(5-9)安定性
 金属材料用表面処理剤を40℃の高温槽にて放置し、ゲル化するまでの経過日数にて、処理剤の安定性を評価した。
<評価基準>
◎=ゲル化無し
○=ゲル化日数が90日以上120日未満
△=ゲル化日数が60日以上90日未満
×=ゲル化日数が60日未満
 実施例1~40、および比較例1~6に記載の金属材料用表面処理剤を用いて、上記の処理方法にて得られる表面処理試験の(5-1)~(5-9)の評価を行った結果を、表2に示す。
 なお、実用上の観点から、上記評価項目において「×」がないことが必要とされる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1の実施例1~40は、クロメート皮膜と同等の耐食性を示し、無機系と同等以上の導電性および耐熱性を示し、有機系と同等の耐指紋性を保有し、折り曲げ部耐食性と耐薬品性を備えた、極めて安定な金属材料用表面処理剤であることが分かった。
 また、実施例10および実施例11との比較から、金属アルコキシドを2種併用することによって、耐食性がさらに向上することが分かった。
 さらに、実施例33および実施例34との比較から、金属アルコキシドとしてテトラエトキシシラン(テトラアルコキシシラン)を用いると、耐食性、導電性など各種特性が向上することが分かった。
 一方、比較例においては、いずれかの項目において「×」が含まれており、実用的な観点から問題があった。なお、比較例4では、皮膜量が所定範囲外であったため、曲げ部耐食性のみが劣る結果となった。

Claims (10)

  1.  1分子中に-SiR(式中、R、RおよびRは、それぞれ独立に、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表し、R、RおよびRのうち少なくとも1つはアルコキシ基を表す。)で表される官能基(a)を2個以上と、水酸基(官能基(a)に含まれるものとは別個のもの)、アミノ基、カルボキシル基、リン酸基、ホスホン酸基、スルホン基、ポリオキシエチレン鎖およびアミド基から選ばれる少なくとも1種の親水性官能基(b)とを含有し、官能基(b)1個あたりの分子量(平均分子量/官能基数)が300~5000の範囲にある化合物(A)と、
     Si、Ti、およびZrからなる群から選ばれる1つの元素を有する、少なくとも1種の金属アルコキシド(B)と、
     フッ素含有化合物およびリン酸化合物からなる群から選ばれる少なくとも1種の化合物(C)と、
     カルボン酸基、ホスホン酸基、およびスルホン酸基からなる群から選ばれる少なくとも1種の親水性官能基を有する有機化合物(D)と、
     水と、を含有する金属材料用表面処理剤。
  2.  前記化合物(A)中のSi量をSiOに換算したときの質量と、前記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量との質量比(B/A)が0.01~5.0であり、
     前記化合物(A)中のSi量をSiOに換算したときの質量と化合物(C)の質量との質量比(C/A)が0.01~4.0である請求項1に記載の金属材料用表面処理剤。
  3.  前記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量と前記化合物(C)の質量との質量比(B/C)が、0.10~30.0である、請求項1または2に記載の金属材料用表面処理剤。
  4.  前記金属アルコキシド(B)中のSi量、Ti量、およびZr量をMO(Mは、Si、Ti、またはZrを表す)に換算したときの合計質量と前記有機化合物(D)の質量との質量比(B/D)が、0.10~5.0である、請求項1~3のいずれかに記載の金属材料用表面処理剤。
  5.  前記金属アルコキシド(B)として、少なくとも1種のテトラアルコキシシランが含有される請求項1~4のいずれかに記載の金属材料用表面処理剤。
  6.  2種の金属アルコキシド(B)を使用する、請求項1~5のいずれかに記載の金属材料用表面処理剤。
  7.  前記フッ素含有化合物が、Ti、Zr、Hf、Si、AlおよびBからなる群から選ばれる少なくとも1種の元素を有する、請求項1~6のいずれかに記載の金属材料用表面処理剤。
  8.  さらに、Ti、Zr、V、W、Ni、Co、Fe、Zn、Mg、Al、Mn、CaおよびLiからなる群から選ばれる少なくとも1種の元素を含有する金属化合物(E)(ただし、前記フッ素含有化合物は含まれない)を含有し、前記化合物(A)中のSi量をSiOに換算したときの質量と前記金属化合物(E)の質量との質量比(E/A)が0.01~3.0である、請求項1~7のいずれかに記載の金属材料用表面処理剤。
  9.  請求項1~8のいずれかに記載の金属材料用表面処理剤を金属材料表面上に塗布、乾燥させ、皮膜量が10~3000mg/mの皮膜を前記金属材料表面上に形成する、金属材料の表面処理方法。
  10.  請求項9に記載の金属材料の表面処理方法により得られる、皮膜を有する金属材料。
PCT/JP2008/072840 2008-12-16 2008-12-16 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料 WO2010070729A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010542765A JP5555178B2 (ja) 2008-12-16 2008-12-16 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料
CN200880132375.6A CN102257179B (zh) 2008-12-16 2008-12-16 金属材料用表面处理剂及使用其的金属材料的表面处理方法、表面处理金属材料
KR1020117013455A KR101285420B1 (ko) 2008-12-16 2008-12-16 금속재료용 표면처리제, 및 그것을 사용한 금속재료의 표면처리방법, 표면처리 금속재료
PCT/JP2008/072840 WO2010070729A1 (ja) 2008-12-16 2008-12-16 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料
TW098139694A TWI487808B (zh) 2008-12-16 2009-11-23 金屬材料表面用處理劑、及使用其之金屬材料之表面處理方法、表面處理金屬材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072840 WO2010070729A1 (ja) 2008-12-16 2008-12-16 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料

Publications (1)

Publication Number Publication Date
WO2010070729A1 true WO2010070729A1 (ja) 2010-06-24

Family

ID=42268420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072840 WO2010070729A1 (ja) 2008-12-16 2008-12-16 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料

Country Status (5)

Country Link
JP (1) JP5555178B2 (ja)
KR (1) KR101285420B1 (ja)
CN (1) CN102257179B (ja)
TW (1) TWI487808B (ja)
WO (1) WO2010070729A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007108A (ja) * 2011-06-27 2013-01-10 Nippon Steel & Sumitomo Metal Corp 表面処理アルミめっき鋼板とその製造方法
CN103121316A (zh) * 2011-11-18 2013-05-29 株式会社神户制钢所 耐腐蚀性和导电性优异的表面处理金属板
JP2013170313A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
JP2013170312A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
JP2016020522A (ja) * 2014-07-14 2016-02-04 関西ペイント株式会社 水性金属表面処理組成物
JP2016534220A (ja) * 2013-08-06 2016-11-04 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 金属表面予備処理のための被覆組成物、その製造およびその使用
JP2017500375A (ja) * 2013-10-01 2017-01-05 タータ スチール リミテッド 合金化処理溶融亜鉛めっき又は亜鉛めっき鋼表面を処理するためのクロムフリー水系コーティング
WO2018144580A1 (en) 2017-02-01 2018-08-09 Chemeon Surface Technology, Llc Dyed trivalent chromium conversion coatings and methods of using same
CN108611631A (zh) * 2018-05-25 2018-10-02 宁波宝陆汽车部件有限公司 防腐蚀易加工镀锌钢板的加工工艺
US10233653B2 (en) 2000-03-31 2019-03-19 Pergo (Europe) Ab Flooring material
KR20200101930A (ko) * 2017-11-28 2020-08-28 엔오에프 메탈 코팅스 유럽 고형의 탈수된 결합제, 그의 생산 방법, 및 이를 재수화하는 방법
JPWO2019087475A1 (ja) * 2017-10-31 2021-03-25 日本パーカライジング株式会社 前処理剤および化成処理剤

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042883A1 (ja) 2010-09-29 2012-04-05 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法および亜鉛系めっき鋼板
JP5870570B2 (ja) * 2011-09-14 2016-03-01 Jfeスチール株式会社 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法
US9314816B2 (en) 2011-12-07 2016-04-19 Samsung Electronics Co., Ltd. Methods of material hydrophilization by siloxanes containing nitrilopoly (methylenephosphonic acid) or derivatives thereof
EP2743374A1 (de) * 2012-12-11 2014-06-18 AMAG rolling GmbH Verfahren zur Behandlung der Oberfläche eines metallischen Substrats aus Aluminium oder einer Aluminiumlegierung
JP6235823B2 (ja) * 2013-03-29 2017-11-22 富士フイルム株式会社 ハードコート層形成用水性組成物およびハードコート層
CN104789951A (zh) * 2015-03-23 2015-07-22 芜湖协诚金属制品有限公司 一种新型镀锌板陶化膜层的处理剂
JP6647820B2 (ja) * 2015-09-04 2020-02-14 日揮触媒化成株式会社 透明被膜形成用塗布液、透明被膜形成用塗布液の製造方法、透明被膜付基材、および透明被膜付基材の製造方法
JP6352987B2 (ja) * 2016-07-21 2018-07-04 日本パーカライジング株式会社 電解処理用金属表面処理剤、電解処理用金属表面処理剤の製造方法、及び、金属材料の表面処理方法
WO2018055127A1 (fr) * 2016-09-23 2018-03-29 Devan Chemicals Composition de revêtement pour un textile
EP3656890A4 (en) * 2017-07-19 2021-06-09 Okuno Chemical Industries Co., Ltd. TREATMENT SOLUTION INTENDED FOR FILM FORMATION
CN108299917A (zh) * 2018-02-02 2018-07-20 朱子涵 一种酯化润滑型金属表面处理剂
CN108663833A (zh) * 2018-05-14 2018-10-16 合肥奇呗数字科技有限公司 一种自清洁的室外液晶显示屏
CN115613022A (zh) * 2022-09-28 2023-01-17 湖南金裕环保科技有限公司 铝及铝合金无铬本色钝化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082951A1 (ja) * 2005-02-02 2006-08-10 Nihon Parkerizing Co., Ltd. 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059184A (ja) * 1999-08-18 2001-03-06 Nisshin Steel Co Ltd めっき鋼板用表面処理液およびその処理方法
JP3857866B2 (ja) * 2000-02-29 2006-12-13 日本ペイント株式会社 ノンクロメート金属表面処理剤、表面処理方法および処理された塗装鋼材
JP3883831B2 (ja) * 2001-09-27 2007-02-21 Jfeスチール株式会社 耐白錆性に優れた表面処理鋼板及びその製造方法
JP4907485B2 (ja) * 2007-04-24 2012-03-28 新日本製鐵株式会社 表面処理金属及びその製造方法と表面処理液

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082951A1 (ja) * 2005-02-02 2006-08-10 Nihon Parkerizing Co., Ltd. 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233653B2 (en) 2000-03-31 2019-03-19 Pergo (Europe) Ab Flooring material
JP2013007108A (ja) * 2011-06-27 2013-01-10 Nippon Steel & Sumitomo Metal Corp 表面処理アルミめっき鋼板とその製造方法
CN103121316A (zh) * 2011-11-18 2013-05-29 株式会社神户制钢所 耐腐蚀性和导电性优异的表面处理金属板
CN103121316B (zh) * 2011-11-18 2015-09-16 株式会社神户制钢所 耐腐蚀性和导电性优异的表面处理金属板
JP2013170313A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
JP2013170312A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
JP2016534220A (ja) * 2013-08-06 2016-11-04 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 金属表面予備処理のための被覆組成物、その製造およびその使用
JP2017500375A (ja) * 2013-10-01 2017-01-05 タータ スチール リミテッド 合金化処理溶融亜鉛めっき又は亜鉛めっき鋼表面を処理するためのクロムフリー水系コーティング
JP2016020522A (ja) * 2014-07-14 2016-02-04 関西ペイント株式会社 水性金属表面処理組成物
WO2018144580A1 (en) 2017-02-01 2018-08-09 Chemeon Surface Technology, Llc Dyed trivalent chromium conversion coatings and methods of using same
EP3577172A4 (en) * 2017-02-01 2020-09-23 Chemeon Surface Technology, LLC TINTED TRIVALENT CHROME CONVERSION COATINGS AND PROCESSES FOR USE
EP4092087A1 (en) * 2017-02-01 2022-11-23 Chemeon Surface Technology, LLC Dyed trivalent chromium conversion coatings and methods of using same
JPWO2019087475A1 (ja) * 2017-10-31 2021-03-25 日本パーカライジング株式会社 前処理剤および化成処理剤
EP3705602A4 (en) * 2017-10-31 2021-08-04 Nihon Parkerizing Co., Ltd. PRE-TREATMENT AGENTS AND TREATMENT AGENTS FOR CHEMICAL CONVERSION
CN114086170A (zh) * 2017-10-31 2022-02-25 日本帕卡濑精株式会社 预处理剂和化学转化处理剂
US11965247B2 (en) 2017-10-31 2024-04-23 Nihon Parkerizing Co., Ltd. Pretreatment agent and chemical conversion treatment agent
KR20200101930A (ko) * 2017-11-28 2020-08-28 엔오에프 메탈 코팅스 유럽 고형의 탈수된 결합제, 그의 생산 방법, 및 이를 재수화하는 방법
JP2021508353A (ja) * 2017-11-28 2021-03-04 エヌオーエフ メタル コーティングス ヨーロッパNof Metal Coatings Europe 固体状の脱水バインダー、その製造方法、及びその再水和方法
JP7344891B2 (ja) 2017-11-28 2023-09-14 エヌオーエフ メタル コーティングス ヨーロッパ 固体状の脱水バインダー、その製造方法、及びその再水和方法
KR102619292B1 (ko) 2017-11-28 2024-01-02 엔오에프 메탈 코팅스 유럽 고형의 탈수된 결합제, 그의 생산 방법, 및 이를 재수화하는 방법
CN108611631A (zh) * 2018-05-25 2018-10-02 宁波宝陆汽车部件有限公司 防腐蚀易加工镀锌钢板的加工工艺

Also Published As

Publication number Publication date
JP5555178B2 (ja) 2014-07-23
CN102257179A (zh) 2011-11-23
TW201024459A (en) 2010-07-01
KR20110083742A (ko) 2011-07-20
TWI487808B (zh) 2015-06-11
KR101285420B1 (ko) 2013-07-12
CN102257179B (zh) 2014-05-28
JPWO2010070729A1 (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5555178B2 (ja) 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料
JP4683582B2 (ja) 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料
JP5555177B2 (ja) 金属材料用表面処理剤
JP5555179B2 (ja) 亜鉛めっき鋼板用表面処理剤、亜鉛めっき鋼板の表面処理方法および亜鉛めっき鋼板
JP4683581B2 (ja) 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料
JP6092786B2 (ja) 金属表面処理剤用水性バインダ組成物
JP5313432B2 (ja) 金属表面処理用組成物、金属表面処理方法及び表面処理された亜鉛めっき鋼板
EP2620524B1 (en) Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same
JP5554531B2 (ja) 金属材料の塗装方法
JP6523253B2 (ja) 亜鉛めっき鋼材用の金属表面処理剤、被覆方法及び被覆鋼材
JP6242010B2 (ja) 水性金属表面処理組成物
JP5661238B2 (ja) 表面処理亜鉛系めっき鋼板
JP6569194B2 (ja) 耐食性に優れた表面処理溶融亜鉛めっき鋼板
JP5314547B2 (ja) 金属材料用表面処理剤、表面処理方法、および表面処理金属材料
JP6056792B2 (ja) 亜鉛系めっき鋼板用の表面処理液ならびに表面処理亜鉛系めっき鋼板およびその製造方法
JP5489961B2 (ja) 金属表面処理用組成物、及び表面処理皮膜を有する金属基材
JP5496069B2 (ja) 金属表面処理用組成物、及び表面処理皮膜を有する金属基材
JP5528925B2 (ja) 金属表面処理剤、表面処理金属材料、および金属表面処理方法
JP2012017505A (ja) 金属表面処理剤、表面処理金属材料、および金属表面処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132375.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542765

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117013455

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878897

Country of ref document: EP

Kind code of ref document: A1