WO2010063480A1 - Neues elektrodenaktivmaterial für elektrochemische elemente - Google Patents

Neues elektrodenaktivmaterial für elektrochemische elemente Download PDF

Info

Publication number
WO2010063480A1
WO2010063480A1 PCT/EP2009/008673 EP2009008673W WO2010063480A1 WO 2010063480 A1 WO2010063480 A1 WO 2010063480A1 EP 2009008673 W EP2009008673 W EP 2009008673W WO 2010063480 A1 WO2010063480 A1 WO 2010063480A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
silicon
electrode
carbon
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2009/008673
Other languages
German (de)
English (en)
French (fr)
Inventor
Stefan Koller
Stefan Pichler
Bernd Fuchsbichler
Frank Uhlig
Calin Wurm
Thomas Wöhrle
Martin Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VARTA Microbattery GmbH
Original Assignee
VARTA Microbattery GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VARTA Microbattery GmbH filed Critical VARTA Microbattery GmbH
Priority to CN200980148623.0A priority Critical patent/CN102239585B/zh
Priority to EP09807494.1A priority patent/EP2364511B1/de
Priority to JP2011538901A priority patent/JP5779101B2/ja
Priority to KR1020117013003A priority patent/KR101625252B1/ko
Priority to US13/132,213 priority patent/US20110309310A1/en
Publication of WO2010063480A1 publication Critical patent/WO2010063480A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material for the electrodes of an electrochemical element, a method for producing the active material and an electrode with such an active material and an electrochemical element having at least one such electrode.
  • Rechargeable lithium batteries in which metallic lithium is used as the negative electrode material are known to have a very high energy density.
  • cyclization (charging and discharging) of such batteries can cause a number of problems.
  • unavoidable side reactions of metallic lithium with the electrolyte solution lead to an occupancy of the lithium surface with decomposition products, which can influence the processes of lithium deposition and dissolution.
  • dendrites may also be formed, possibly damaging the electrode separator.
  • SEI solid electrolyte interface
  • SEI solid electrolyte interface
  • a material that can intercalate comparatively large amounts of lithium ions is metallic silicon.
  • an amount of lithium ions can be taken up which exceeds the comparable amount by more than ten times for a graphite electrode.
  • the problem is that the inclusion of such a large amount of lithium ions can be accompanied by an extremely high volume change (up to 300%), which in turn can have a very negative impact on the mechanical integrity of electrodes with silicon as the active material.
  • the intermetallic phases formed in the lithiation of silicon exhibit a potential that has a similar potential to reduce them as metallic lithium itself. Therefore, an SEI is formed here as well. Since the specific surface of an active material containing large amounts of nanoparticles is very large, the formation of the SEI consumes a correspondingly large amount of electrolyte and lithium. As a result, in turn, the positive electrode must always be oversized, which in the As a consequence, the energy density of a corresponding lithium-ion cell is considerably reduced and the advantage of the high energy density of the negative electrode is at least partially compensated.
  • active materials can be obtained which are outstandingly suitable for use in electrodes, in particular in negative electrodes, of electrochemical elements.
  • Preferred fields of application are, in particular, electrodes for rechargeable batteries with lithium-ion and lithium-polymer technology.
  • active material should generally be understood as meaning a material which directly intervenes in the process of converting chemical energy into electrical energy in an electrochemical element
  • lithium ions can be incorporated into the active material of a negative electrode are stored under the absorption of electrons and desorbed again with the release of electrons.
  • the inventive method comprises at least three steps, namely
  • the active material thus obtained is thus a composite material based on carbon particles, on the surface of which metallic silicon has been deposited.
  • the carbon particles may in particular be graphite particles, CNTs (carbon nanotubes) or mixtures of both.
  • graphite particles are basically not limited, so basically all graphite particles can be used, which can also be used in known from the prior art graphite electrodes.
  • CNTs are known to be microscopic tubular structures made of carbon, in which lithium ions can also be incorporated.
  • CNTs suitable for use as active materials are described, for example, in WO 2007/095013.
  • silicon precursor is to be understood in principle to mean any substance or chemical compound which can be decomposed, in particular by heating, whereby metallic silicon is deposited.
  • Such substances and compounds are known in principle to the person skilled in the art.
  • the precursor from the gas phase on the carbon particles.
  • a liquid or contained in a liquid silicon precursor to the Surface of the carbon particles applied, followed by the mentioned thermal decomposition.
  • the silicon precursor may be both dissolved and dispersed in the liquid.
  • the application of the silicon precursor to the surface of the carbon particles can basically be done in various ways. The most favorable procedure here depends fundamentally on the nature of the precursor, which will be discussed in more detail later.
  • the carbon particles provided can be introduced, for example, into a solution in which the silicon precursor is contained. This can then settle on the surface of the carbon particles.
  • solvent should be removed prior to subsequent thermal decomposition.
  • the silicon precursor is particularly preferably at least one silane, very particularly preferably an oligomeric or polymeric silane.
  • oligomeric or polymeric silanes are used which can be described by the general formula - [SiHa] n - with n> 10, ie have a minimum chain length of at least 10 silicon atoms.
  • Such silanes are usually liquid or can be processed in solution. So there is no need to use gaseous precursors, the corresponding expenditure on equipment is accordingly relatively low.
  • a silane mixture which is particularly suitable as a silicon precursor can be obtained, for example, by oligomerization or polymerization starting from cyclic silanes.
  • the oligomerization or the polymerization can - O -
  • the average molecular weight M w of a silane mixture which is particularly preferred according to the invention is preferably in particular between 500 and 5,000.
  • the decomposition of the silicon precursor is usually carried out by a heat treatment, in particular at a temperature> 300 ° C.
  • a temperature> 300 ° C At such a temperature, oligomeric and polymeric silanes decompose usually with elimination of hydrogen.
  • metallic silicon in particular into amorphous metallic silicon.
  • Particularly preferred temperatures between 300 0 C and 1200 0 C are selected. For energetic reasons, usually the aim is to carry out the conversion at the lowest possible temperatures. In particular, temperatures between 300 0 C and 600 0 C are therefore preferred. At such temperatures, a substantially complete conversion of the oligosiloxane or polysilane can take place.
  • Silanes or silane mixtures which are suitable according to the invention and suitable conditions for the decomposition of such silanes and silane mixtures are also described in Shimoda et al.'S scientific paper "Solution-processed Silicone Films and Transistors" (NATURE Vol. 440, April 06, 2006, pages 783 In particular the corresponding experimental statements in this publication are hereby incorporated by reference in their entirety.
  • the active material preparable by a process according to the invention is also an object of the present invention.
  • it comprises carbon particles whose surface is at least partially coated with a layer of silicon, in particular one Layer of amorphous silicon, at least partially covered.
  • the active material according to the invention particularly preferably consists of such particles.
  • the layer of silicon on the surface of the carbon particles may form a substantially closed shell.
  • the composite particles of carbon and silicon have a core (formed by the carbon particle) and a shell of silicon arranged around it.
  • the layer of silicon can surface-oxidize.
  • the resulting layer of silicon oxide usually has a passivating effect, it counteracts oxidation of deeper-lying silicon layers.
  • the result is particles with a core of carbon, a middle layer of particular amorphous silicon and an outer layer of silicon oxide.
  • the conditions in the decomposition of the silicon precursor can be selected so that in the resulting layer or shell of silicon optionally still a small amount of hydrogen is contained. As a rule, however, it is present in a proportion of less than 5% by weight (based on the total weight of the layer or shell), preferably in a proportion of between 0.001% by weight and 5% by weight, in particular in one proportion between 0.01 and 3 wt .-%.
  • the carbon particles preferably have an average particle size between 1 ⁇ m and 200 ⁇ m, in particular between 1 ⁇ m and 100 ⁇ m, in particular between 10 ⁇ m and 30 ⁇ m.
  • the sheath of silicon is usually not thicker than 15 microns. This shows that the total size of the particles (mean particle size) in - O -
  • 215 microns in particular 115 microns does not exceed. It is particularly preferably between 10 .mu.m and 100 .mu.m, in particular between 15 .mu.m and 50 .mu.m.
  • the active material according to the invention is substantially free of particles with particle sizes in the nanoscale range.
  • the active material preferably contains no carbon-silicon particles with sizes ⁇ 1 ⁇ m.
  • the weight ratio of carbon to silicon in the active material according to the invention is preferably in the range between 1:10 and 10: 1. Values in the range between 1: 1 and 3: 1 are particularly preferred here.
  • the active material according to the invention electrodes, which have up to three times higher lithium-ion storage capacity than comparative electrodes with classic active material made of graphite.
  • the active material according to the invention showed a cyclic stability similar to the nanoparticulate silicon mentioned at the beginning in cyclization tests, but without the disadvantages described.
  • An electrode according to the invention is characterized in that it has an active material according to the invention.
  • the active material is incorporated in an electrode according to the invention in a binder matrix.
  • Suitable materials for such a binder matrix are known to the person skilled in the art.
  • copolymers of PVDF-HFP polyvinylidene difluoride-hexafluoropropylene
  • a possible alternative binder based on carboxymethylcellulose is disclosed in German Patent Application No. 10 2007 036 653.3, which has not yet been disclosed. - -
  • the active material is usually contained in an electrode according to the invention in an amount of at least 85% by weight. Further shares are attributable to the binder already mentioned and optionally to one or more conductivity additives (eg carbon black).
  • conductivity additives eg carbon black
  • An electrochemical element according to the invention is characterized in that it has at least one electrode according to the invention.
  • An electrochemical element according to the invention may, for example, be a stacked cell in which a plurality of electrodes and separators are stacked one above the other.
  • the fields of application for the active material according to the invention and thus the electrodes according to the invention are, however, in principle not limited, so that numerous other types (for example winding electrodes) are also conceivable.
  • FIG. 1 shows a comparison of the cycle stability of an electrode according to the invention with silicon-carbon composite particles with a comparable electrode with graphite as active material as a function of the charging or discharging cycles.
  • FIG. 2 shows a comparison of the cycle stability of an electrode according to the invention with silicon-carbon composite particles a comparable electrode already known from the prior art with a mixture of graphite and SiIi- zium nanoparticles as active material.
  • cyclopentasilane was polymerized under an argon atmosphere (water content and oxygen content ⁇ 1 ppm) by photo-induced ultraviolet light at a wavelength of 405 nm. It was polymerized until the resulting polysilane mixture had a gel-like consistency. This was blended with graphite particles having an average particle size of 15 ⁇ m, to give a paste which was subsequently heat-treated at a temperature of 823 K. The heat treatment was carried out until no more hydrogen evolution was observed. The material thus obtained was then ground in a ball mill and adjusted to an average particle size of about 20 microns.
  • the electrode paste thus obtained was knife-coated onto a copper foil in the thickness of 200 ⁇ m.
  • a comparative electrode wt .-% sodium umcarboxymethylzellulose (Walocell® ® CRT2000PPA12) added to water and to swell fully accommodated. 8
  • 20% nanoparticulate silicon (Nanostructured and Amorphous Materials Los Alamos) and 5% carbon nanofibers (Electrovac AG, LHT-XT) were sequentially introduced and highly energetically dispersed.
  • 5% conductive black (Super P) and 62% graphite (natural graphite, potato shaped) are finally introduced and dispersed.
  • the electrode paste thus obtained was knife-coated onto a copper foil in the thickness of 200 ⁇ m.
  • FIG. 1 shows a comparison of the cycle stability of an inventive electrode produced according to (2) with a comparable electrode with graphite as the active material (instead of the silicon-carbon composite particles) as a function of the charging or discharging cycles. It can be clearly seen that the electrode according to the invention has a significantly higher capacity.
  • FIG. 2 shows a comparison of an inventive electrode produced according to (2) with silicon-carbon composite particles with a comparison electrode produced in accordance with (3) as a function of the charge or charge. Unloading cycles shown. In the case of the electrode according to the invention (upper curve, triangles), the capacitance remains essentially constant even after more than 40 cycles, whereas in the case of the comparative electrode (lower curve, squares), a clear decrease in the capacitance is measurable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
PCT/EP2009/008673 2008-12-05 2009-12-04 Neues elektrodenaktivmaterial für elektrochemische elemente Ceased WO2010063480A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980148623.0A CN102239585B (zh) 2008-12-05 2009-12-04 用于电化学元件的新电极活性材料
EP09807494.1A EP2364511B1 (de) 2008-12-05 2009-12-04 Verfahren zur herstellung von elektrodenaktivmaterial für elektrochemische elemente
JP2011538901A JP5779101B2 (ja) 2008-12-05 2009-12-04 電気化学素子のための新規な電極活物質
KR1020117013003A KR101625252B1 (ko) 2008-12-05 2009-12-04 전기화학적 소자용 신규한 전극-활성 물질
US13/132,213 US20110309310A1 (en) 2008-12-05 2009-12-04 Electrode-active material for electrochemical elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008063552.9 2008-12-05
DE102008063552A DE102008063552A1 (de) 2008-12-05 2008-12-05 Neues Elektrodenaktivmaterial für elektrochemische Elemente

Publications (1)

Publication Number Publication Date
WO2010063480A1 true WO2010063480A1 (de) 2010-06-10

Family

ID=41800508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/008673 Ceased WO2010063480A1 (de) 2008-12-05 2009-12-04 Neues elektrodenaktivmaterial für elektrochemische elemente

Country Status (7)

Country Link
US (1) US20110309310A1 (enExample)
EP (1) EP2364511B1 (enExample)
JP (1) JP5779101B2 (enExample)
KR (1) KR101625252B1 (enExample)
CN (1) CN102239585B (enExample)
DE (1) DE102008063552A1 (enExample)
WO (1) WO2010063480A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026029A (ja) * 2011-07-21 2013-02-04 Japan Science & Technology Agency 蓄電デバイスの電極材料の製造方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672676B2 (ja) * 2009-08-20 2015-02-18 日産自動車株式会社 リチウムイオン二次電池用負極、その製造方法およびこれを用いたリチウムイオン二次電池
DE102011008815B4 (de) * 2011-01-19 2024-06-20 Volkswagen Ag Verfahren zur Herstellung von einem Kohlenstoffträger mit auf der Oberfläche befindlichen nanoskaligen Siliciumpartikeln
EP2573845B1 (de) 2011-09-26 2018-10-31 VARTA Micro Innovation GmbH Strukturstabiles Aktivmaterial für Batterieelektroden
CN102651476B (zh) * 2012-05-28 2015-01-28 深圳市贝特瑞新能源材料股份有限公司 锂离子电池硅碳复合负极材料及其制备方法
DE102012209313A1 (de) 2012-06-01 2013-12-05 Robert Bosch Gmbh Lithium-Luft-Zelle
JP6011313B2 (ja) * 2012-12-19 2016-10-19 株式会社豊田自動織機 負極活物質とその製造方法及び蓄電装置
DE102013211388A1 (de) 2013-06-18 2014-12-18 Wacker Chemie Ag Elektrodenmaterial und dessen Verwendung in Lithium-Ionen-Batterien
EP2838139B1 (de) 2013-08-12 2017-01-11 VARTA Micro Innovation GmbH Elektrochemisches Aktivmaterial und seine Herstellung
DE102013227049A1 (de) 2013-12-20 2015-06-25 Varta Micro Innovation Gmbh Magnesiumbatterie und negative Elektrode dafür
CN106537652B (zh) 2014-02-13 2020-07-24 罗克伍德锂有限责任公司 稳定化的(部分)锂化的石墨材料、其制造方法和用于锂电池组的用途
DE102014009554A1 (de) * 2014-06-12 2015-12-17 Daimler Ag Elektrodenmaterial für einen elektrochemischen Speicher, Verfahren zur Herstellung eines Elektrodenmaterials sowie elektrochemischer Energiespeicher
TWI707823B (zh) * 2015-02-13 2020-10-21 德商洛克伍德鋰公司 穩定化(部分)鋰化的石墨材料,其製造方法及用於鋰電池的應用
EP3113275B1 (de) 2015-06-29 2021-06-09 VARTA Micro Innovation GmbH Sekundäre magnesiumbatterie und elektrolytsystem sowie elektrode für eine sekundäre magnesiumbatterie
KR101950858B1 (ko) 2015-10-15 2019-02-22 주식회사 엘지화학 음극 활물질 및 이를 포함하는 이차 전지
US10411254B2 (en) 2015-10-15 2019-09-10 Lg Chem, Ltd. Negative electrode active material and secondary battery including the same
KR101931143B1 (ko) 2015-10-15 2018-12-20 주식회사 엘지화학 음극 활물질 및 이를 포함하는 이차 전지
KR102048343B1 (ko) * 2016-05-27 2019-11-25 주식회사 엘지화학 음극활물질 및 이를 포함하는 리튬 이차전지
EP3629402A1 (de) * 2018-09-27 2020-04-01 Siemens Aktiengesellschaft Lithium-ionen-akkumulator und material sowie verfahren zum herstellen desselben
GB201818232D0 (en) 2018-11-08 2018-12-26 Nexeon Ltd Electroactive materials for metal-ion batteries
GB2580033B (en) 2018-12-19 2021-03-10 Nexeon Ltd Electroactive materials for metal-Ion batteries
US12176521B2 (en) 2018-11-08 2024-12-24 Nexeon Limited Electroactive materials for metal-ion batteries
GB201818235D0 (en) 2018-11-08 2018-12-26 Nexeon Ltd Electroactive materials for metal-ion batteries
US12218341B2 (en) 2018-11-08 2025-02-04 Nexeon Limited Electroactive materials for metal-ion batteries
CN120149356A (zh) 2018-12-21 2025-06-13 奈克松有限公司 用于制备金属离子电池用的电活性材料的方法
US10508335B1 (en) 2019-02-13 2019-12-17 Nexeon Limited Process for preparing electroactive materials for metal-ion batteries
US10964940B1 (en) 2020-09-17 2021-03-30 Nexeon Limited Electroactive materials for metal-ion batteries

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278005A (en) * 1992-04-06 1994-01-11 Advanced Energy Technologies Inc. Electrochemical cell comprising dispersion alloy anode
EP1045465A2 (en) * 1999-04-14 2000-10-18 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
US20020009646A1 (en) * 2000-06-16 2002-01-24 Keiko Matsubara Negative active material for rechargeable lithium battery and method of preparing same
JP2002255529A (ja) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd 炭素質材料及びリチウム二次電池
US6733922B2 (en) * 2001-03-02 2004-05-11 Samsung Sdi Co., Ltd. Carbonaceous material and lithium secondary batteries comprising same
WO2004049473A2 (en) * 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
JP2004182512A (ja) * 2002-12-02 2004-07-02 Showa Denko Kk 炭素材料、その製造方法及び用途
WO2007095013A1 (en) * 2006-02-15 2007-08-23 Fmc Corporation - Lithium Division A carbon nanotube lithium metal powder battery
US20080145757A1 (en) * 2006-12-19 2008-06-19 Mah Sang-Kook Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
WO2009112714A2 (fr) * 2008-02-26 2009-09-17 Commissariat A L'energie Atomique Procede de fabrication d'une electrode a base de silicium, electrode a base de silicium et batterie au lithium comprenant une telle electrode

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218098B2 (ja) * 1998-12-02 2009-02-04 パナソニック株式会社 非水電解質二次電池およびその負極材料
KR100627203B1 (ko) * 2001-08-14 2006-09-22 제이에스알 가부시끼가이샤 실란 조성물, 실리콘막의 형성법 및 태양 전지의 제조법
KR100433822B1 (ko) * 2002-01-17 2004-06-04 한국과학기술연구원 금속이 피복된 탄소 활물질, 이의 제조방법, 및 이를포함하는 금속-탄소 하이브리드 전극 및 리튬이차전지
EP1603662B1 (en) * 2003-03-07 2007-08-01 Seldon Technologies LLC Purification of fluids with nanomaterials
EP1640342A4 (en) * 2003-06-13 2006-11-22 Jsr Corp SILANEPOLYMER AND METHOD FOR FORMING SILICON FILM
DE102005011940A1 (de) * 2005-03-14 2006-09-21 Degussa Ag Verfahren zur Herstellung von beschichteten Kohlenstoffpartikel und deren Verwendung in Anodenmaterialien für Lithium-Ionenbatterien
DE102007036653A1 (de) 2007-07-25 2009-02-05 Varta Microbattery Gmbh Elektroden und Lithium-Ionen-Zellen mit neuartigem Elektrodenbinder
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
DE102011008815B4 (de) * 2011-01-19 2024-06-20 Volkswagen Ag Verfahren zur Herstellung von einem Kohlenstoffträger mit auf der Oberfläche befindlichen nanoskaligen Siliciumpartikeln
JP5743089B2 (ja) * 2011-07-21 2015-07-01 Jsr株式会社 蓄電デバイスの電極材料の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278005A (en) * 1992-04-06 1994-01-11 Advanced Energy Technologies Inc. Electrochemical cell comprising dispersion alloy anode
EP1045465A2 (en) * 1999-04-14 2000-10-18 Sony Corporation Material for negative electrode and nonaqueous-electrolyte battery incorporating the same
US20020009646A1 (en) * 2000-06-16 2002-01-24 Keiko Matsubara Negative active material for rechargeable lithium battery and method of preparing same
US6589696B2 (en) * 2000-06-16 2003-07-08 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2002255529A (ja) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd 炭素質材料及びリチウム二次電池
US6733922B2 (en) * 2001-03-02 2004-05-11 Samsung Sdi Co., Ltd. Carbonaceous material and lithium secondary batteries comprising same
WO2004049473A2 (en) * 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
US20060035149A1 (en) * 2002-11-26 2006-02-16 Show A Denko K.K. Electrode material, and production method and use thereof
JP2004182512A (ja) * 2002-12-02 2004-07-02 Showa Denko Kk 炭素材料、その製造方法及び用途
WO2007095013A1 (en) * 2006-02-15 2007-08-23 Fmc Corporation - Lithium Division A carbon nanotube lithium metal powder battery
US20080145757A1 (en) * 2006-12-19 2008-06-19 Mah Sang-Kook Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
WO2009112714A2 (fr) * 2008-02-26 2009-09-17 Commissariat A L'energie Atomique Procede de fabrication d'une electrode a base de silicium, electrode a base de silicium et batterie au lithium comprenant une telle electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BARANCHUGOV ET AL: "Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes", ELECTROCHEMISTRY COMMUNICATION, ELSEVIER, AMSTERDAM, NL, vol. 9, no. 4, 1 April 2007 (2007-04-01), pages 796 - 800, XP022015834, ISSN: 1388-2481 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026029A (ja) * 2011-07-21 2013-02-04 Japan Science & Technology Agency 蓄電デバイスの電極材料の製造方法

Also Published As

Publication number Publication date
EP2364511A1 (de) 2011-09-14
DE102008063552A1 (de) 2010-06-10
CN102239585A (zh) 2011-11-09
JP5779101B2 (ja) 2015-09-16
KR20110100209A (ko) 2011-09-09
EP2364511B1 (de) 2017-02-01
US20110309310A1 (en) 2011-12-22
CN102239585B (zh) 2016-06-01
KR101625252B1 (ko) 2016-05-27
JP2012511224A (ja) 2012-05-17

Similar Documents

Publication Publication Date Title
EP2364511B1 (de) Verfahren zur herstellung von elektrodenaktivmaterial für elektrochemische elemente
DE602005001023T2 (de) Lithiumionen leitender und anorganische Füllstoffe enthaltender Kompositpolymerelektrolyt für Lithium-Sekundärbatterie sowie zugehörige Herstellungsmethode
DE102011077932B4 (de) Kathodeneinheit für Alkalimetall-Schwefel-Batterie mit optimierter Ableiterstruktur sowie eine diese Kathodeneinheit enthaltende Batterie und ein Verfahren zur Herstellung der Kathodeneinheit
DE112014000685T5 (de) Elektrodenmaterialien mit einer synthetischen Festelektrolyt-Grenzfläche
EP2838139B1 (de) Elektrochemisches Aktivmaterial und seine Herstellung
WO2014202529A1 (de) Elektrodenmaterial und dessen verwendung in lithium-ionen-batterien
EP2769427B1 (de) Aktivmaterial für batterien
DE112013001595T5 (de) Festkörper-Lithiumsekundärbatterie
DE102015222553A1 (de) Kathode für eine Festkörper-Lithium-Batterie und Akkumulator, bei welchem diese eingesetzt wird
DE112012002904T5 (de) Aktives Material für eine wiederaufladbare Batterie
DE102010044008A1 (de) Lithium-Ionen-Zelle mit verbessertem Alterungsverhalten
EP3008768A1 (de) Lithium-ionen-zelle für eine sekundärbatterie
EP2342773A1 (de) Trennschicht zur trennung von anode und kathode in lithium-ionen-akkumulatoren oder -batterien
WO2013045327A1 (de) Strukturstabiles aktivmaterial für batterieelektroden
DE102014210613A1 (de) Verfahren zur Herstellung von sphärischen Silizium-Kohlenstoff-Nanokompositen, sphärische Silizium-Kohlenstoff-Nanokomposite und deren Verwendung
EP2166598A2 (de) Elektrode und Separatormaterial für Lithium-Ionen-Zellen sowie Verfahren zu deren Herstellung
DE102021131605A1 (de) Festkörperbatterie
DE102021111986A1 (de) Negative lithium-metall-elektrode und verfahren zur herstellung dieser elektrode
DE112018000584T5 (de) Porös-kohlenstoffbeschichtete Schwefelpartikel und ihre Herstellung und Verwendung
WO2013087271A1 (de) Elektrode, verfahren zum herstellen einer elektrode und energiespeicher umfassend eine elektrode
DE112019006094T5 (de) Elektroaktive materialien modifiziert mit molekularer dünnfilmhülle
DE102012023279A1 (de) Partikuläres Elektrodenmaterial mit einer partikulären, nanostrukturierten Beschichtung und Verfahren zu dessen Herstellung
AT509807B1 (de) Material für negative elektroden und negative elektroden sowie batterien umfassend dieses material und verfahren zur herstellung des materials
DE202009013175U1 (de) Elektrode und Separatormaterial für Lithium-Ionen-Zellen
EP2793303B1 (de) Lithium-Ionen-Zelle mit optimierter Elektrodenkinetik

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148623.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807494

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009807494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009807494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011538901

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117013003

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13132213

Country of ref document: US