WO2010058640A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2010058640A1
WO2010058640A1 PCT/JP2009/064570 JP2009064570W WO2010058640A1 WO 2010058640 A1 WO2010058640 A1 WO 2010058640A1 JP 2009064570 W JP2009064570 W JP 2009064570W WO 2010058640 A1 WO2010058640 A1 WO 2010058640A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
film
intermediate contact
contact layer
Prior art date
Application number
PCT/JP2009/064570
Other languages
English (en)
French (fr)
Inventor
賢剛 山口
智嗣 坂井
薫典 鶴我
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2009801298886A priority Critical patent/CN102113127B/zh
Priority to EP09827421A priority patent/EP2348541A1/en
Priority to US13/003,615 priority patent/US8598447B2/en
Publication of WO2010058640A1 publication Critical patent/WO2010058640A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a solar cell, and more particularly to a thin-film solar cell in which a power generation layer is formed by film formation.
  • Photoelectric conversion devices used in solar cells that convert solar energy into electrical energy include p-type silicon-based semiconductors (p-layers), i-type silicon-based semiconductors (i-layers), and n-type silicon-based semiconductors (n-layers).
  • p-layers p-type silicon-based semiconductors
  • i-layers i-type silicon-based semiconductors
  • n-layers n-type silicon-based semiconductors
  • the thin-film silicon solar cell includes that the area can be easily increased and that the film thickness is as thin as about 1/100 that of a crystalline solar cell, and that the material can be reduced. For this reason, the thin film silicon solar cell can be manufactured at a lower cost than the crystalline solar cell.
  • a disadvantage of the thin-film silicon solar cell is that the conversion efficiency is lower than that of the crystal system. In this technical field, improvement of conversion efficiency is an important issue, and a tandem solar cell having a photoelectric conversion layer in which two power generation cell layers are stacked has been proposed.
  • an intermediate contact layer made of a transparent conductive film is inserted for the purpose of suppressing dopant interdiffusion between the first power generation cell layer and the second power generation cell layer and adjusting the light quantity distribution. Is done.
  • the intermediate contact layer it is common to use Ga-doped ZnO (GZO).
  • GZO is a material having a refractive index of 2.0 and lower than Si, excellent plasma resistance, and excellent transparency.
  • GZO has a low resistivity
  • leakage current is caused in the cell connection portion, and the open circuit voltage and FF are reduced.
  • solutions such as adding a laser processing part to the structure of the connection part have been proposed.
  • the effective area is reduced and the cost is increased due to an increase in processes.
  • the conductivity of GZO can be controlled by reducing dopants or adjusting the amount of oxygen supplied during film formation to promote oxidation of GZO.
  • This invention is made
  • the electrical conductivity after hydrogen plasma exposure is set to the appropriate range, and the photoelectric conversion apparatus which the leakage current was suppressed and conversion efficiency improved is provided. .
  • the present invention provides a photoelectric conversion device including a photoelectric conversion layer including at least two power generation cell layers on a substrate, and an intermediate contact layer interposed between the adjacent power generation cell layers.
  • the intermediate contact layer mainly contains a compound represented by Zn 1-x Mg x O 2 (0.096 ⁇ x ⁇ 0.183).
  • an intermediate contact layer mainly composed of a compound obtained by adding MgO to ZnO By using an intermediate contact layer mainly composed of a compound obtained by adding MgO to ZnO, it is possible to prevent a decrease in resistance (that is, an increase in conductivity) after exposure to hydrogen plasma.
  • the conductivity of the intermediate contact layer after exposure to hydrogen plasma is determined as the contact resistance while suppressing the leakage current at the cell connection portion. It becomes controllable to the value by which a raise is suppressed. For this reason, it can be set as the photoelectric conversion apparatus which a form factor is improved and has high conversion efficiency.
  • the intermediate contact layer is made of a compound represented by Zn 1-x Mg x O 2 (0.096 ⁇ x ⁇ 0.183) to which Ga 2 O 3 is added. It may be included mainly.
  • the sheet resistance of the intermediate contact layer after exposure to hydrogen plasma is preferably 10 k ⁇ / ⁇ or more and 100 k ⁇ / ⁇ or less.
  • the sheet resistance of the intermediate contact layer after exposure to hydrogen plasma is desirably 10 k ⁇ / ⁇ or more.
  • the contact resistance (series resistance) in the stacking direction (direction perpendicular to the substrate film-forming surface) increases. Therefore, the sheet resistance of the intermediate contact layer after exposure to hydrogen plasma is preferably 100 k ⁇ / ⁇ or less.
  • An interface layer mainly including a compound represented by ZnO or Zn 1-x Mg x O 2 (0 ⁇ x ⁇ 0.096) is provided between the power generation cell layer on the substrate side and the intermediate contact layer. Also good.
  • ZnO or Zn 1-x Mg x O 2 having the above composition range whose Mg concentration is lower than that of the intermediate contact layer of the present invention is mainly formed on the power generation cell layer formed on the substrate side.
  • the interface layer is formed, the contact resistance in the film stacking direction can be further reduced. As a result, the form factor can be further improved, and a photoelectric conversion device having higher photoelectric conversion efficiency can be obtained.
  • the interface layer is represented by ZnO to which Ga 2 O 3 is added or Zn 1-x Mg x O 2 (0 ⁇ x ⁇ 0.096).
  • a compound may be mainly contained.
  • the thickness of the interface layer is preferably 5 nm or more and 10 nm or less.
  • the contact resistance can be improved.
  • the leakage resistance increases and the form factor decreases.
  • the thickness of the interface layer is not less than 5 nm and not more than 10 nm, it is possible to improve the contact resistance and suppress the leakage resistance and improve the photoelectric conversion efficiency.
  • an intermediate contact layer mainly containing a compound represented by Zn 1-x Mg x O 2 (0.096 ⁇ x ⁇ 0.183) between adjacent power generation cell layers leakage current in the cell connection portion And the contact resistance in the direction perpendicular to the film can be reduced. Therefore, the form factor is improved and a photoelectric conversion device having high photoelectric conversion efficiency can be obtained. Further, by forming an interface layer mainly composed of Zn 1 or Zn 1-x Mg x O 2 having a lower Mg concentration than the intermediate contact layer between the power generation cell layer on the substrate side and the intermediate contact layer, the contact layer Can be further reduced. As a result, the photoelectric conversion efficiency can be further improved.
  • FIG. 1 is a schematic diagram showing the configuration of the photoelectric conversion device of the present invention.
  • the photoelectric conversion device 100 is a tandem silicon solar cell, and includes a substrate 1, a transparent electrode layer 2, a first power generation cell layer 91 (amorphous silicon system) and a second power generation cell layer as the solar cell photoelectric conversion layer 3. 92 (crystalline silicon type), an intermediate contact layer 5, and a back electrode layer 4.
  • the silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe).
  • the crystalline silicon system means a silicon system other than the amorphous silicon system, and includes microcrystalline silicon and polycrystalline silicon.
  • a method for manufacturing a photoelectric conversion device according to the first embodiment will be described by taking a process for manufacturing a solar cell panel as an example.
  • 2 to 5 are schematic views showing a method for manufacturing the solar cell panel of the present embodiment.
  • FIG. 2 (a) A soda float glass substrate (substrate area is 1 m 2 or more, for example, 1.4 m ⁇ 1.1 m ⁇ plate thickness: 3.5 mm to 4.5 mm) is used as the substrate 1.
  • the end face of the substrate is preferably subjected to corner chamfering or R chamfering to prevent damage due to thermal stress or impact.
  • FIG. 2 (b) As the transparent conductive layer 2, a transparent conductive film having a thickness of about 500 nm to 800 nm and having tin oxide (SnO 2 ) as a main component is formed at about 500 ° C. with a thermal CVD apparatus. At this time, a texture with appropriate irregularities is formed on the surface of the transparent electrode film.
  • an alkali barrier film (not shown) may be formed between the substrate 1 and the transparent electrode film.
  • a silicon oxide film (SiO 2 ) is formed at a temperature of about 500 ° C. with a thermal CVD apparatus at 50 nm to 150 nm.
  • FIG. 2 (c) Thereafter, the substrate 1 is set on an XY table, and the first harmonic (1064 nm) of the YAG laser is irradiated from the film surface side of the transparent electrode film as indicated by an arrow in the figure.
  • the laser power is adjusted to be appropriate for the processing speed, and the transparent electrode film is moved relative to the direction perpendicular to the series connection direction of the power generation cells so that the substrate 1 and the laser light are moved relative to each other to form the groove 10.
  • FIG. 2 (d) As the first power generation cell layer 91, a p layer, an i layer, and an n layer made of an amorphous silicon thin film are formed by a plasma CVD apparatus. Using SiH 4 gas and H 2 gas as main raw materials, the amorphous silicon p layer 31 from the side on which sunlight is incident on the transparent electrode layer 2 at a reduced pressure atmosphere: 30 Pa to 1000 Pa and a substrate temperature: about 200 ° C. Then, an amorphous silicon i layer 32 and an amorphous silicon n layer 33 are formed in this order.
  • the amorphous silicon p layer 31 is mainly made of amorphous B-doped silicon and has a thickness of 10 nm to 30 nm.
  • the amorphous silicon i layer 32 has a thickness of 200 nm to 350 nm.
  • the amorphous silicon n layer 33 is mainly P-doped silicon containing microcrystalline silicon in amorphous silicon, and has a thickness of 30 nm to 50 nm.
  • a buffer layer may be provided between the amorphous silicon p layer 31 and the amorphous silicon i layer 32 in order to improve interface characteristics.
  • An intermediate contact layer 5 serving as a semi-reflective film is provided between the first power generation cell layer 91 and the second power generation cell layer 92 in order to improve contact and to obtain current matching.
  • target Ga 2 O 3 doped ZnO—MgO mixed target (MgO ratio: 5 to 10% by mass), RF power: 1.1 to 4.4 W / cm 2 , film forming pressure: 0.
  • the film is formed under conditions of 13 to 0.67 Pa and substrate temperature: 25 ° C. (near room temperature).
  • an intermediate contact layer mainly composed of Zn 1-x Mg x O 2 (0.096 ⁇ x ⁇ 0.183) having a film thickness of 20 nm to 100 nm is formed.
  • the sheet resistance of the intermediate contact layer 5 immediately after film formation is about 10 M ⁇ / ⁇ . Note that the intermediate contact layer may not contain Ga 2 O 3 .
  • the second power generation cell layer 92 is formed on the first power generation cell layer 91 using a plasma CVD apparatus at a reduced pressure atmosphere: 3000 Pa or less, a substrate temperature: about 200 ° C., and a plasma generation frequency: 40 MHz or more and 100 MHz or less.
  • a crystalline silicon p layer 41, a crystalline silicon i layer 42, and a crystalline silicon n layer 43 are sequentially formed.
  • the crystalline silicon p layer 41 is mainly made of B-doped microcrystalline silicon and has a thickness of 10 nm to 50 nm.
  • the crystalline silicon i layer 42 is mainly made of microcrystalline silicon and has a film thickness of 1.2 ⁇ m or more and 3.0 ⁇ m or less.
  • the crystalline silicon n layer 43 is mainly made of P-doped microcrystalline silicon and has a thickness of 20 nm to 50 nm.
  • an amorphous silicon n layer may be formed at the interface between the crystalline silicon i layer 42 and the crystalline silicon n layer 43.
  • the distance d between the plasma discharge electrode and the surface of the substrate 1 is preferably 3 mm or more and 10 mm or less. If it is smaller than 3 mm, it is difficult to keep the distance d constant from the accuracy of each component device in the film forming chamber corresponding to the large substrate, and there is a possibility that the discharge becomes unstable because it is too close. When it is larger than 10 mm, it is difficult to obtain a sufficient film forming speed (1 nm / s or more), and the uniformity of the plasma is lowered and the film quality is lowered by ion bombardment.
  • FIG. 6 shows the relationship between the MgO content in the ZnMgO-based compound and the sheet resistance of the ZnMgO-based film after the hydrogen plasma treatment.
  • the horizontal axis represents the MgO content
  • the vertical axis represents the sheet resistance.
  • a ZnMgO-based film is formed by using a target: ZnO sintered body (Ga 2 O 3 dopant) target or ZnO—MgO mixed target (Ga 2 O 3 dopant, MgO mass ratio: 5 to 12.5%), substrate temperature: The measurement was carried out under the conditions of 25 ° C., RF power: 4.4 W / cm 2 , target-substrate distance: 90 mm, film forming speed 0.17 nm / s, and film thickness: 70 nm. The hydrogen plasma treatment after film formation was performed under the conditions of H 2 gas flow rate: 0.1 slm, pressure: 133 Pa, applied power density: 0.5 W / cm 2 , treatment time: 5 minutes.
  • the leakage current can be reduced when the sheet resistance of the intermediate contact layer is 10 k ⁇ / ⁇ or more.
  • the sheet resistance of the intermediate contact layer is preferably 100 k ⁇ / ⁇ . From FIG. 6, it can be said that a ZnMgO-based film having a sheet resistance of 10 k ⁇ / ⁇ or more and 100 k ⁇ / ⁇ or less with an MgO mass of 5% (9.6 mol%) to 10% (18.3 mol%) is obtained.
  • FIG. 2 (e) The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the film surface side of the photoelectric conversion layer 3 as shown by the arrow in the figure.
  • Pulse oscillation 10 kHz to 20 kHz
  • laser power is adjusted so as to be suitable for the processing speed
  • laser etching is performed so that grooves 11 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from about 100 ⁇ m to 150 ⁇ m.
  • this laser may be irradiated from the substrate 1 side.
  • photoelectric conversion is performed by using a high vapor pressure generated by energy absorbed by the amorphous silicon-based first power generation cell layer of the photoelectric conversion layer 3. Since the layer 3 can be etched, a more stable laser etching process can be performed. The position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.
  • FIG. 3 An Ag film / Ti film is formed as the back electrode layer 4 by a sputtering apparatus at a reduced pressure atmosphere and at a film forming temperature of 150 ° C. to 200 ° C.
  • an Ag film 150 nm or more and 500 nm or less
  • a Ti film having a high anticorrosion effect 10 nm or more and 20 nm or less are stacked in this order to protect them.
  • the back electrode layer 4 may have a laminated structure of an Ag film having a thickness of 25 nm to 100 nm and an Al film having a thickness of 15 nm to 500 nm.
  • a film thickness of 50 nm or more and 100 nm or less is formed between the photoelectric conversion layer 3 and the back electrode layer 4 by a sputtering apparatus.
  • a GZO (Ga-doped ZnO) film may be formed and provided.
  • FIG. 3 (b) The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the substrate 1 side as indicated by the arrow in the figure.
  • the laser light is absorbed by the photoelectric conversion layer 3, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time.
  • Pulse oscillation laser power is adjusted so as to be suitable for the processing speed from 1 kHz to 10 kHz, and laser etching is performed so that grooves 12 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from 250 ⁇ m to 400 ⁇ m. .
  • FIG. 3 (c) and FIG. 4 (a) The power generation region is divided to eliminate the influence that the serial connection portion due to laser etching is likely to be short-circuited at the film edge around the substrate edge.
  • the substrate 1 is set on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is irradiated from the substrate 1 side.
  • the laser light is absorbed by the transparent electrode layer 2 and the photoelectric conversion layer 3, and the back electrode layer 4 explodes using the high gas vapor pressure generated at this time, and the back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 is removed.
  • Pulse oscillation 1 kHz or more and 10 kHz or less
  • the laser power is adjusted so as to be suitable for the processing speed, and the position of 5 mm to 20 mm from the end of the substrate 1 is placed in the X-direction insulating groove as shown in FIG.
  • Laser etching is performed to form 15.
  • FIG.3 (c) since it becomes X direction sectional drawing cut
  • the insulating groove formed to represent the Y-direction cross section at the position will be described as the X-direction insulating groove 15.
  • the Y-direction insulating groove does not need to be provided because the film surface polishing removal processing of the peripheral film removal region of the substrate 1 is performed in a later process.
  • the insulating groove 15 exhibits an effective effect in suppressing external moisture intrusion into the solar cell module 6 from the end portion of the solar cell panel by terminating the etching at a position of 5 mm to 15 mm from the end of the substrate 1. Therefore, it is preferable.
  • the laser beam in the above steps is a YAG laser
  • a YVO4 laser or a fiber laser there are some that can use a YVO4 laser or a fiber laser in the same manner.
  • FIG. 4 (a: view from the solar cell film side, b: view from the substrate side of the light receiving surface) Since the laminated film around the substrate 1 (peripheral film removal region 14) has a step and is easy to peel off in order to ensure a sound adhesion / seal surface with the back sheet 24 via EVA or the like in a later process, The film is removed to form a peripheral film removal region 14. When removing the film over the entire periphery of the substrate 1 at 5 to 20 mm from the end of the substrate 1, the X direction is closer to the substrate end than the insulating groove 15 provided in the step of FIG.
  • the back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 are removed by using grinding stone polishing, blast polishing, or the like on the substrate end side with respect to the groove 10 near the side portion. Polishing debris and abrasive grains were removed by cleaning the substrate 1.
  • FIGS. 5 (a) and 5 (b) An attachment portion of the terminal box 23 is provided with an opening through window in the back sheet 24 to take out the current collector plate. Insulating materials are installed in a plurality of layers in the opening through window portion to suppress intrusion of moisture and the like from the outside. Processing so that power can be taken out from the terminal box 23 on the back side of the solar battery panel by collecting copper foil from one end of the photovoltaic power generation cells arranged in series and the other end of the solar power generation cell. To do. In order to prevent a short circuit with each part, the copper foil arranges an insulating sheet wider than the copper foil width.
  • an adhesive filler sheet made of EVA (ethylene vinyl acetate copolymer) or the like is disposed so as to cover the entire solar cell module 6 and not protrude from the substrate 1. .
  • a back sheet 24 having a high waterproof effect is installed on the EVA.
  • the back sheet 24 has a three-layer structure of PET sheet / Al foil / PET sheet so that the waterproof and moisture-proof effect is high.
  • the one with the back sheet 24 arranged in a predetermined position is deaerated inside in a reduced pressure atmosphere by a laminator and pressed at about 150 to 160 ° C., and EVA is crosslinked and brought into close contact.
  • FIG. 5 (a) The terminal box 23 is attached to the back side of the solar cell module 6 with an adhesive.
  • FIG. 5 (b) The copper foil and the output cable of the terminal box 23 are connected by solder or the like, and the inside of the terminal box 23 is filled with a sealing agent (potting agent) and sealed. Thus, the solar cell panel 50 is completed.
  • FIG. 5 (c) A power generation inspection and a predetermined performance test are performed on the solar cell panel 50 formed in the steps up to FIG. The power generation inspection is performed using a solar simulator of AM1.5 and solar radiation standard sunlight (1000 W / m 2 ).
  • FIG. 5 (d) Before and after the power generation inspection (FIG. 5C), a predetermined performance inspection is performed including an appearance inspection.
  • the resistivity of the intermediate contact layer 5 is controlled to be 10 k ⁇ / ⁇ or more and 100 k ⁇ / ⁇ or less, the leakage current at the cell connection portion is reduced and the contact resistance in the film stacking direction is reduced. Reduce. Therefore, the form factor increases and the photoelectric conversion efficiency is improved.
  • the photoelectric conversion device includes an interface layer between the first power generation cell layer 91 and the intermediate contact layer 5 in FIG.
  • the interface layer mainly contains a compound represented by ZnO or Zn 1-x Mg x O 2 (provided that 0 ⁇ x ⁇ 0.096 is satisfied). That is, the interface layer does not contain Mg or has a lower Mg content than the intermediate contact layer.
  • ZnO or Zn 1-x Mg x O 2 as the interface layer may contain Ga 2 O 3 as a dopant.
  • the film formation of the interface layer may be performed in a film formation chamber different from the intermediate contact layer or in the same film formation chamber.
  • the interfacial layer is formed by using an RF magnetron sputtering apparatus, target: Ga 2 O 3 doped ZnO sintered body or Ga 2 O 3 doped ZnO—MgO mixed target (MgO ratio: 0 to 5 mass%, 0 mass%)
  • RF power is 1.1 to 4.4 W / cm 2
  • film forming pressure is 0.13 to 0.67 Pa
  • substrate temperature is 25 ° C. (near room temperature).
  • an interface layer mainly composed of ZnO or Zn 1-x Mg x O 2 (0 ⁇ x ⁇ 0.096) is formed.
  • the film thickness of the interface layer is preferably 5 nm or more and 10 nm or less.
  • an intermediate contact layer having a higher MgO content than the interface layer is formed under the same conditions as in the first embodiment.
  • the total film thickness of the interface layer and the intermediate contact layer is 20 nm or more and 100 nm or less.
  • a Ga 2 O 3 doped ZnO sintered body or a Ga 2 O 3 doped ZnO—MgO mixed target (MgO ratio: 0 to 5 mass%, provided that 0
  • a substrate transport type RF magnetron sputtering apparatus in which a Ga 2 O 3 -doped ZnO—MgO mixed target (MgO ratio: 5 to 10 mass%) is arranged in parallel is used.
  • the substrate transport speed and the width of each target in the substrate transport direction are set so that the film thickness of the interface layer is 5 nm to 10 nm and the total film thickness of the interface layer and the intermediate contact layer is 20 nm to 100 nm.
  • film formation is performed while conveying the substrate from the ZnO sintered body or the low Mg content mixed target side to the high Mg content mixed target side, with the film formation conditions being substantially the same as those described above.
  • the boundary between the interface layer and the intermediate contact layer is not clear, unlike when each layer is formed in a different film forming chamber. It is considered that the Mg content continuously increases from the center toward the intermediate contact layer.
  • the contact resistance between the first power generation cell layer and the interface layer is lower than the contact resistance between the first power generation cell layer and the intermediate contact layer in the first embodiment.
  • the leakage current in the cell connection direction is further suppressed by setting the interface layer to a film thickness of 5 nm or more and 10 nm or less. For this reason, in the solar cell of 2nd Embodiment, a photoelectric conversion efficiency improves further.
  • Example 1 A tandem solar cell module having the structure shown in FIG. 1 was formed on a glass substrate (5 cm square). The film thickness of the i layer of the first power generation cell layer was 250 nm, and the film thickness of the i layer of the second power generation cell layer was 1.9 ⁇ m.
  • the intermediate contact layer is formed by using a target: ZnO sintered body target (Ga 2 O 3 dopant) or ZnO—MgO mixed target (Ga 2 O 3 dopant, MgO mass ratio: 5 to 12.5%), substrate temperature: The measurement was carried out under the conditions of 25 ° C., RF power: 4.4 W / cm 2 , target-substrate distance: 90 mm, film forming speed 0.17 nm / s, and film thickness: 70 nm.
  • a target ZnO sintered body target (Ga 2 O 3 dopant) or ZnO—MgO mixed target (Ga 2 O 3 dopant, MgO mass ratio: 5 to 12.5%
  • substrate temperature The measurement was carried out under the conditions of 25 ° C., RF power: 4.4 W / cm 2 , target-substrate distance: 90 mm, film forming speed 0.17 nm / s, and film thickness: 70 nm.
  • FIG. 7 shows the relationship between the MgO content of the intermediate contact layer and the module form factor.
  • the horizontal axis represents the MgO content
  • the vertical axis represents the module shape factor normalized by the value when the MgO content is 0%.
  • FIG. 8 shows the relationship between the MgO content of the intermediate contact layer and the photoelectric conversion efficiency of the module.
  • the horizontal axis represents the MgO content
  • the vertical axis represents the photoelectric conversion efficiency of the module normalized by the value when the MgO content is 0%.
  • the form factor and photoelectric conversion efficiency were improved by applying a ZnMgO-based material to the intermediate contact layer.
  • Example 2 A tandem solar cell module was formed on a glass substrate (5 cm square). The film thickness of the i layer of the first power generation cell layer was 250 nm, and the film thickness of the i layer of the second power generation cell layer was 1.9 ⁇ m. In the tandem solar cell module of Example 2, an interface layer was provided between the first power generation cell layer and the intermediate contact layer. The interface layer was formed using a ZnO sintered body target (Ga 2 O 3 dopant) under the same conditions as those for forming the intermediate contact layer of Example 1. The film thickness of the interface layer was 5 nm to 15 nm.
  • a ZnO sintered body target Ga 2 O 3 dopant
  • the intermediate contact layer was formed under the same conditions as in Example 1 using a ZnO—MgO mixed target (Ga 2 O 3 dopant, MgO mass ratio: 10%).
  • the film thickness of the intermediate contact layer was 70 nm.
  • the interface layer and the intermediate contact layer were formed in different film forming chambers.
  • FIG. 9 shows the relationship between the interface layer thickness and the module form factor.
  • the horizontal axis represents the interface layer thickness
  • the vertical axis represents the module shape factor normalized by the value when the interface layer thickness is 0 nm (only the intermediate contact layer).
  • FIG. 10 shows the relationship between the interface layer thickness and the module photoelectric conversion efficiency.
  • the horizontal axis represents the interface layer thickness
  • the vertical axis represents the module photoelectric conversion efficiency normalized by the value when no interface layer is provided.
  • the interface layer thickness is 5 nm or more and 10 nm or less
  • the module shape factor and photoelectric conversion efficiency are improved as compared with the case where the interface layer is not provided.
  • the interface layer was 15 nm
  • the module shape factor and photoelectric conversion efficiency were reduced. This is considered to be because when the interface layer is thick, leakage current is generated in the interface layer and the contact property is deteriorated. Even when the MgO content of the intermediate contact layer was 5% by mass, the same effect was observed.
  • Example 3 A tandem solar cell module having the same configuration as that of Example 2 was formed.
  • the interface layer and the intermediate contact layer were formed in the same film forming chamber.
  • a substrate transport type film forming apparatus in which eight targets are arranged in parallel in the substrate transport direction was used.
  • One target on the substrate introduction side (upstream side) is a ZnO sintered body target (Ga 2 O 3 dopant), and the remaining target is a ZnO—MgO mixed target (Ga 2 O 3 dopant, MgO mass ratio: 10%). It was.
  • the film forming conditions were the same as in Example 1 and Example 2.
  • the intermediate contact layer was formed at a conveyance speed at which the total film thickness was 70 nm.
  • the form factor and photoelectric conversion efficiency of the tandem solar cell module of Example 3 were 1.03 and 1.05 times that of the tandem solar cell module that does not form the intermediate contact layer, respectively.
  • tandem solar cell has been described as a solar cell, but the present invention is not limited to this example.
  • the present invention can be similarly applied to a triple solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 水素プラズマ曝露後の導電率が適正な範囲に設定されることにより、漏れ電流が抑制されて変換効率が向上した光電変換装置を提供する。基板(1)上に、少なくとも2層の発電セル層(91,92)を備える光電変換層(3)と、前記発電セル層(91,92)の間に介在する中間コンタクト層(5)とを含む光電変換装置(100)であって、前記中間コンタクト層(5)が、Zn1-xMg(0.096≦x≦0.183)で表される化合物を主として含むことを特徴とする。

Description

光電変換装置
 本発明は太陽電池に関し、特に発電層を製膜で作製する薄膜系太陽電池に関する。
 太陽光のエネルギーを電気エネルギーに変換する太陽電池に用いられる光電変換装置としては、p型シリコン系半導体(p層)、i型シリコン系半導体(i層)及びn型シリコン系半導体(n層)の薄膜をプラズマCVD法等で製膜して形成した光電変換層を備えた薄膜シリコン系光電変換装置が知られている。
 薄膜シリコン系太陽電池の長所としては、大面積化が容易であること、膜厚が結晶系太陽電池の1/100程度と薄く、材料が少なくて済むことなどが挙げられる。このため、薄膜シリコン系太陽電池は、結晶系太陽電池と比較して低コストでの製造が可能となる。しかしながら、薄膜シリコン系太陽電池の短所としては、変換効率が結晶系に比べて低いことが挙げられる。本技術分野においては、変換効率の向上が重要な課題となっており、2層の発電セル層を積層した光電変換層を有するタンデム型太陽電池が提案されている。
 タンデム型太陽電池において、第1の発電セル層と第2の発電セル層との間でのドーパント相互拡散の抑制、及び、光量配分の調整を目的として、透明導電膜からなる中間コンタクト層が挿入される。中間コンタクト層としては、GaドープZnO(GZO)を用いることが一般的である。GZOは、屈折率が2.0とSiよりも低く、プラズマ耐性に優れ、かつ、透明性に優れた材料である。
 しかし、GZOは抵抗率が低いため、集積型太陽電池モジュールとした場合に、セル接続部において漏れ電流の原因となり、開放電圧及びFFが低下するという課題があった。漏れ電流を防止するために、接続部の構造にレーザー加工部を追加するなどの解決方法が提案されている。しかし、新たな加工部を設けることにより、有効面積の減少や工程増加によるコストアップという問題があった。
 GZOの導電率を制御してGZOを高抵抗化することによって、FFの改善が試みられている。特許文献1に記載されるように、GZOの導電率は、ドーパントを低減することや、製膜時の酸素供給量を調整してGZOの酸化を促進することによって制御できる。
特開2003-115601号公報
 特許文献1のように中間コンタクト層に高抵抗のGZOを使用した場合、製膜直後のGZOの導電率を低下させることはできるものの、中間コンタクト層上に第2の発電セル層を形成する際に水素プラズマに曝されることにより、GZOの導電率が8~9桁増大し(すなわち、低抵抗化し)、実質的に漏れ電流の要因となることが問題となっていた。導電率の増大は、水素プラズマによってZnOに酸素欠陥が発生しやすいためと考えられた。
 本発明は、上記課題に鑑みなされたものであって、水素プラズマ曝露後の導電率が適正な範囲に設定されることにより、漏れ電流が抑制されて変換効率が向上した光電変換装置を提供する。
 上記課題を解決するために、本発明は、基板上に、少なくとも2層の発電セル層を備える光電変換層と、隣り合う前記発電セル層の間に介在する中間コンタクト層とを含む光電変換装置であって、前記中間コンタクト層が、Zn1-xMg(0.096≦x≦0.183)で表される化合物を主として含むことを特徴とする。
 ZnOにMgOを添加した化合物を主とする中間コンタクト層とすることにより、水素プラズマ曝露後の抵抗減少(すなわち、導電率の増大)を防止することができる。特に、ZnOにMgOを9.6mol%以上18.3mol%以下の割合で添加した化合物においては、セル接続部における漏れ電流を抑制しつつ、水素プラズマ曝露後の中間コンタクト層の導電率をコンタクト抵抗上昇が抑制される値に制御可能となる。このため、形状因子が改善され、高い変換効率を有する光電変換装置とすることができる。
 上記発明において、導電率制御を目的として、前記中間コンタクト層が、Gaが添加されたZn1-xMg(0.096≦x≦0.183)で表される化合物を主として含んでも良い。
 上記発明において、水素プラズマ曝露後の前記中間コンタクト層のシート抵抗が、10kΩ/□以上100kΩ/□以下であることが好ましい。
 漏れ電流による形状因子を抑制するためには、水素プラズマ曝露後の中間コンタクト層のシート抵抗が10kΩ/□以上であることが望ましい。一方、中間コンタクト層が高抵抗となると、積層方向(基板製膜面に対して垂直方向)のコンタクト抵抗(直列抵抗)が増加する。従って、水素プラズマ曝露後の中間コンタクト層のシート抵抗は、100kΩ/□以下であることが好ましい。
 前記基板側の前記発電セル層と前記中間コンタクト層との間に、ZnOまたはZn1-xMg(0<x≦0.096)で表される化合物を主として含む界面層を備えても良い。
 このように、基板側に形成された発電セル層上に、ZnO、または、本発明の中間コンタクト層よりもMg濃度が低い上記組成範囲とされるZn1-xMgを主とする界面層を形成すると、膜積層方向のコンタクト抵抗をさらに低減させることができる。その結果、形状因子を更に向上させることができ、より高い光電変換効率を有する光電変換装置とすることができる。
 この場合、界面層の導電率を調整するために、前記界面層が、Gaが添加されたZnOまたはZn1-xMg(0<x≦0.096)で表される化合物を主として含んでも良い。
 上記発明において、前記界面層の膜厚が、5nm以上10nm以下であることが好ましい。
 界面層を形成することにより、コンタクト抵抗を改善することができるが、界面層が厚くなると、漏れ抵抗が増加して形状因子が低減する。界面層の膜厚が、5nm以上10nm以下であるときに、コンタクト抵抗の改善と漏れ抵抗の抑制とを両立させて、光電変換効率を向上させることができる。
 隣り合う発電セル層の間に、Zn1-xMg(0.096≦x≦0.183)で表される化合物を主として含む中間コンタクト層とすることにより、セル接続部における漏れ電流を抑制することができるとともに、膜垂直方向のコンタクト抵抗が低くすることができる。そのため、形状因子が向上し、高い光電変換効率を有する光電変換装置とすることができる。
 また、基板側の発電セル層と中間コンタクト層との間に、ZnOまたは中間コンタクト層よりもMg濃度が低いZn1-xMgを主とする界面層を形成することにより、コンタクト層をより低減させることも可能である。この結果、光電変換効率を更に向上させることができる。
本発明の第1実施形態に係る光電変換装置の構成を模式的に示した断面図である。 本発明の第1実施形態に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の第1実施形態に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の第1実施形態に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の第1実施形態に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。 ZnMgO系膜におけるMgO含有量と水素プラズマ処理後のシート抵抗との関係を示すグラフである。 中間コンタクト層のMgO含有量とモジュール形状因子との関係を示すグラフである。 中間コンタクト層のMgO含有量とモジュールの光電変換効率との関係を示すグラフである。 界面層膜厚とモジュール形状因子との関係を示すグラフである。 界面層膜厚とモジュール光電変換効率との関係を示すグラフである。
 図1は、本発明の光電変換装置の構成を示す概略図である。光電変換装置100は、タンデム型シリコン系太陽電池であり、基板1、透明電極層2、太陽電池光電変換層3としての第1発電セル層91(非晶質シリコン系)及び第2発電セル層92(結晶質シリコン系)、中間コンタクト層5、及び裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコンも含まれる。
<第1実施形態>
 第1実施形態に係る光電変換装置の製造方法を、太陽電池パネルを製造する工程を例に挙げて説明する。図2から図5は、本実施形態の太陽電池パネルの製造方法を示す概略図である。
(1)図2(a)
 基板1としてソーダフロートガラス基板(基板面積が1m以上、例えば1.4m×1.1m×板厚:3.5mm~4.5mm)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(2)図2(b)
 透明導電層2として、酸化錫(SnO)を主成分とする膜厚約500nm以上800nm以下の透明導電膜を、熱CVD装置にて約500℃で製膜する。この際、透明電極膜の表面には、適当な凹凸のあるテクスチャーが形成される。透明導電層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、酸化シリコン膜(SiO)を50nm~150nm、熱CVD装置にて約500℃で製膜処理する。
(3)図2(c)
 その後、基板1をX-Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、透明電極膜の膜面側から照射する。加工速度に適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(4)図2(d)
 第1発電セル層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiHガス及びHガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、透明電極層2上に太陽光の入射する側から非晶質シリコンp層31、非晶質シリコンi層32、非晶質シリコンn層33の順で製膜する。非晶質シリコンp層31は非晶質のBドープシリコンを主とし、膜厚10nm以上30nm以下である。非晶質シリコンi層32は、膜厚200nm以上350nm以下である。非晶質シリコンn層33は、非晶質シリコンに微結晶シリコンを含有するPドープシリコンを主とし、膜厚30nm以上50nm以下である。非晶質シリコンp層31と非晶質シリコンi層32の間には、界面特性の向上のためにバッファー層を設けても良い。
 第1発電セル層91と第2発電セル層92の間に、接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層5を設ける。RFマグネトロンスパッタリング装置を用い、ターゲット:GaドープZnO-MgO混合ターゲット(MgO比率:5~10質量%)、RFパワー:1.1~4.4W/cm、製膜圧力:0.13~0.67Pa、基板温度:25℃(室温付近)の条件で製膜する。これにより、膜厚:20nm以上100nm以下のZn1-xMg(0.096≦x≦0.183)を主とする中間コンタクト層が形成される。製膜直後の中間コンタクト層5のシート抵抗は、10MΩ/□程度である。なお、中間コンタクト層は、Gaを含まなくても良い。
 次に、第1発電セル層91の上に、プラズマCVD装置により、減圧雰囲気:3000Pa以下、基板温度:約200℃、プラズマ発生周波数:40MHz以上100MHz以下にて、第2発電セル層92としての結晶質シリコンp層41、結晶質シリコンi層42、及び、結晶質シリコンn層43を順次製膜する。結晶質シリコンp層41はBドープした微結晶シリコンを主とし、膜厚10nm以上50nm以下である。結晶質シリコンi層42は微結晶シリコンを主とし、膜厚は1.2μm以上3.0μm以下である。結晶質シリコンn層43はPドープした微結晶シリコンを主とし、膜厚20nm以上50nm以下である。ここで、結晶質シリコンi層42と結晶質シリコンn層43との界面に、非晶質シリコンn層を形成しても良い。
 微結晶シリコンを主とするi層膜をプラズマCVD法で形成するにあたり、プラズマ放電電極と基板1の表面との距離dは、3mm以上10mm以下にすることが好ましい。3mmより小さい場合、大型基板に対応する製膜室内の各構成機器精度から距離dを一定に保つことが難しくなるとともに、近過ぎて放電が不安定になる恐れがある。10mmより大きい場合、十分な製膜速度(1nm/s以上)を得難くなるとともに、プラズマの均一性が低下しイオン衝撃により膜質が低下する。
 第2発電セル層製膜時に、中間コンタクト層は水素プラズマに曝される。これにより、中間コンタクト層の抵抗が低下する。
 図6に、ZnMgO系化合物におけるMgO含有量と、水素プラズマ処理後のZnMgO系膜のシート抵抗との関係を示す。同図において、横軸はMgO含有量、縦軸はシート抵抗である。ZnMgO系膜の製膜は、ターゲット:ZnO焼結体(Gaドーパント)ターゲットまたはZnO-MgO混合ターゲット(Gaドーパント、MgO質量比率:5~12.5%)、基板温度:25℃、RFパワー:4.4W/cm、ターゲット-基板距離:90mm、製膜速度0.17nm/s、膜厚:70nmの条件で実施した。製膜後の水素プラズマ処理は、Hガス流量:0.1slm、圧力:133Pa、印加電力密度:0.5W/cm、処理時間:5分の条件で実施した。
 本実施形態のモジュール構造に対応する等価回路を用いて形状因子への影響を解析したところ、中間コンタクト層のシート抵抗を10kΩ/□以上であると漏れ電流を低減することができる。また、膜垂直方向(積層方向)においては、直列抵抗増加の要因となるコンタクト抵抗を低くすることが不可欠である。解析の結果、中間コンタクト層のシート抵抗は、100kΩ/□であることが望ましい。
 図6より、MgO質量5%(9.6mol%)から10%(18.3mol%)で、シート抵抗10kΩ/□以上100kΩ/□以下のZnMgO系膜が得られると言える。
(5)図2(e)
 基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から照射する。パルス発振:10kHzから20kHzとして、加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から照射しても良く、この場合は光電変換層3の非晶質シリコン系の第1発電セル層で吸収されたエネルギーで発生する高い蒸気圧を利用して光電変換層3をエッチングできるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
(6)図3(a)
 裏面電極層4としてAg膜/Ti膜を、スパッタリング装置により、減圧雰囲気、製膜温度:150℃から200℃にて製膜する。本実施形態では、Ag膜:150nm以上500nm以下、これを保護するものとして防食効果の高いTi膜:10nm以上20nm以下を、この順に積層する。あるいは、裏面電極層4を、25nmから100nmの膜厚を有するAg膜と、15nmから500nmの膜厚を有するAl膜との積層構造としても良い。結晶質シリコンn層43と裏面電極層4との接触抵抗低減と光反射向上を目的に、光電変換層3と裏面電極層4との間に、スパッタリング装置により、膜厚:50nm以上100nm以下のGZO(GaドープZnO)膜を製膜して設けても良い。
(7)図3(b)
 基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から照射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(8)図3(c)と図4(a)
 発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から照射する。レーザー光が透明電極層2と光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。なお、図3(c)では、光電変換層3が直列に接続された方向に切断したX方向断面図となっているため、本来であれば絶縁溝15位置には裏面電極層4/光電変換層3/透明電極層2の膜研磨除去をした周囲膜除去領域14がある状態(図4(a)参照)が表れるべきであるが、基板1の端部への加工の説明の便宜上、この位置にY方向断面を表して形成された絶縁溝をX方向絶縁溝15として説明する。このとき、Y方向絶縁溝は後工程で基板1周囲膜除去領域の膜面研磨除去処理を行うので、設ける必要がない。
 絶縁溝15は基板1の端より5mmから15mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール6内部への外部湿分浸入の抑制に、有効な効果を呈するので好ましい。
 尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。
(9)図4(a:太陽電池膜面側から見た図、b:受光面の基板側から見た図)
 後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲膜除去領域14)の積層膜は、段差があるとともに剥離し易いため、この膜を除去して周囲膜除去領域14を形成する。基板1の端から5~20mmで基板1の全周囲にわたり膜を除去するにあたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。
 研磨屑や砥粒は基板1を洗浄処理して除去した。
(10)図5(a)(b)
 端子箱23の取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層で設置して外部からの湿分などの浸入を抑制する。
 直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱23の部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
 集電用銅箔などが所定位置に配置された後に、太陽電池モジュール6の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
 EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/Al箔/PETシートの3層構造よりなる。
 バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150~160℃でプレスしながら、EVAを架橋させて密着させる。
(11)図5(a)
 太陽電池モジュール6の裏側に端子箱23を接着剤で取付ける。
(12)図5(b)
 銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱23の内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(13)図5(c)
 図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m)のソーラシミュレータを用いて行う。
(14)図5(d)
 発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
 本実施形態の太陽電池は、中間コンタクト層5の抵抗率が10kΩ/□以上100kΩ/□以下に制御されているため、セル接続部での漏れ電流が低減するとともに、膜積層方向のコンタクト抵抗が低減する。そのため、形状因子が増大して光電変換効率が向上する。
<第2実施形態>
 第2実施形態に係る光電変換装置は、図1における第1発電セル層91と中間コンタクト層5との間に、界面層を備える。
 界面層は、ZnO、または、Zn1-xMg(ただし、0<x≦0.096を満たす)で表される化合物を主として含む。すなわち、界面層は、Mgを含まないか、中間コンタクト層よりもMg含有量が少ない。界面層としてのZnOまたはZn1-xMgは、ドーパントとしてGaを含んでも良い。
 界面層の製膜は、中間コンタクト層と異なる製膜室で実施しても良いし、同一の製膜室で実施しても良い。
 界面層と中間コンタクト層とをそれぞれ異なる製膜室で製膜する場合、以下の工程により界面層及び中間コンタクト層が形成される。
 界面層の製膜は、RFマグネトロンスパッタリング装置を用い、ターゲット:GaドープZnO焼結体またはGaドープZnO-MgO混合ターゲット(MgO比率:0~5質量%、但し0質量%を含まず)、RFパワー:1.1~4.4W/cm、製膜圧力:0.13~0.67Pa、基板温度:25℃(室温付近)の条件で実施する。上記条件での製膜により、ZnOまたはZn1-xMg(0<x≦0.096)を主とする界面層を形成する。第1セル層と界面層とのコンタクト抵抗、及び、セル接続部における漏れ電流を考慮すると、界面層の膜厚は、5nm以上10nm以下であることが好ましい。
 界面層形成後、第1実施形態と同様の条件により、界面層よりもMgO含有量が多い中間コンタクト層を形成する。本実施形態において、界面層及び中間コンタクト層の合計膜厚は、20nm以上100nm以下とされる。
 界面層と中間コンタクト層とを同一の製膜室で形成する場合、GaドープZnO焼結体またはGaドープZnO-MgO混合ターゲット(MgO比率:0~5質量%、但し0質量%を含まず)と、GaドープZnO-MgO混合ターゲット(MgO比率:5~10質量%)とが並列配置された基板搬送型のRFマグネトロンスパッタリング装置を使用する。界面層の膜厚が5nm以上10nm以下、界面層及び中間コンタクト層の合計膜厚が20nm以上100nm以下となるように、基板搬送速度や各ターゲットの基板搬送方向の幅を設定する。例えば、製膜条件を上述の条件と略同一として、ZnO焼結体または低Mg含有率混合ターゲット側から高Mg含有率混合ターゲット側へと、基板を搬送しながら製膜を実施する。
 上述のように同一製膜室内で界面層及び中間コンタクト層を形成する場合は、異なる製膜室内で各層を形成する場合と異なり、界面層と中間コンタクト層との境界は明確ではなく、界面層から中間コンタクト層に向かって連続的にMg含有量が増加していると考えられる。
 第2実施形態の太陽電池は、第1発電セル層と界面層とのコンタクト抵抗が、第1実施形態における第1発電セル層と中間コンタクト層とのコンタクト抵抗よりも低減する。また、界面層を5nm以上10nm以下の膜厚とすることにより、セル接続方向の漏れ電流がより抑制される。このため、第2実施形態の太陽電池では、光電変換効率が更に向上する。
(実施例)
(実施例1)
 ガラス基板(5cm角)上に、図1に示す構造のタンデム型太陽電池モジュールを形成した。なお、第1発電セル層のi層の膜厚を250nm、第2発電セル層のi層の膜厚を1.9μmとした。
 中間コンタクト層の製膜は、ターゲット:ZnO焼結体ターゲット(Gaドーパント)またはZnO-MgO混合ターゲット(Gaドーパント、MgO質量比率:5~12.5%)、基板温度:25℃、RFパワー:4.4W/cm、ターゲット-基板距離:90mm、製膜速度0.17nm/s、膜厚:70nmの条件で実施した。
 図7に、中間コンタクト層のMgO含有量とモジュール形状因子との関係を示す。同図において、横軸はMgO含有量、縦軸はMgO含有量が0%の場合における値で規格化したモジュール形状因子である。図8に、中間コンタクト層のMgO含有量とモジュールの光電変換効率との関係を示す。同図において、横軸はMgO含有量、縦軸はMgO含有量が0%の場合における値で規格化したモジュールの光電変換効率である。
 図7及び図8に示すように、中間コンタクト層にZnMgO系材料を適用することにより、形状因子及び光電変換効率が向上した。MgO含有量5質量%(9.6mol%)から10質量%(18.3mol%)の範囲で、高い形状因子及び光電変換効率が得られた。MgO含有量が10質量%を超えると、コンタクト抵抗上昇のために、形状因子及び光電変換効率が減少する傾向が見られた。
(実施例2)
 ガラス基板(5cm角)上に、タンデム型太陽電池モジュールを形成した。なお、第1発電セル層のi層の膜厚を250nm、第2発電セル層のi層の膜厚を1.9μmとした。
 実施例2のタンデム型太陽電池モジュールでは、第1発電セル層と中間コンタクト層との間に界面層を設けた。界面層の製膜は、ZnO焼結体ターゲット(Gaドーパント)を用い、実施例1の中間コンタクト層製膜と同じ条件で実施した。界面層の膜厚は、5nmから15nmとした。中間コンタクト層の製膜は、ZnO-MgO混合ターゲット(Gaドーパント、MgO質量比率:10%)を用い、実施例1と同じ条件で実施した。中間コンタクト層の膜厚は、70nmとした。なお、実施例2において、界面層及び中間コンタクト層の製膜は、異なる製膜室中で実施した。
 図9に、界面層膜厚とモジュール形状因子との関係を示す。同図において、横軸は界面層膜厚、縦軸は界面層膜厚0nm(中間コンタクト層のみ)場合の値で規格化したモジュール形状因子である。図10に、界面層膜厚とモジュール光電変換効率との関係を示す。同図において、横軸は界面層膜厚、縦軸は界面層を設けない場合の値で規格化したモジュール光電変換効率である。
 界面層膜厚5nm以上10nm以下で、界面層を設けない場合と比較してモジュールの形状因子及び光電変換効率が向上した。界面層が15nmの場合は、モジュールの形状因子及び光電変換効率が低下した。これは、界面層が厚い場合には、界面層において漏れ電流が発生してコンタクト性が悪化するためと考えられた。
 中間コンタクト層のMgO含有量を5質量%とした場合でも、同様の効果が見られた。
(実施例3)
 実施例2と同様の構成のタンデム型太陽電池モジュールを形成した。実施例3では、界面層及び中間コンタクト層の製膜を、同一製膜室内で実施した。
 基板搬送方向に8つのターゲットが並列配置された基板搬送型の製膜装置を用いた。基板導入側(上流側)の一のターゲットを、ZnO焼結体ターゲット(Gaドーパント)とし、残りのターゲットをZnO-MgO混合ターゲット(Gaドーパント、MgO質量比率:10%)とした。製膜条件は、実施例1及び実施例2と同様とした。中間コンタクト層の総膜厚が70nmとなる搬送速度で製膜した。
 実施例3のタンデム型太陽電池モジュールの形状因子及び光電変換効率は、中間コンタクト層を形成しないタンデム型太陽電池モジュールに対して、それぞれ1.03倍、1.05倍となった。
 上記実施の形態では太陽電池として、タンデム型太陽電池について説明したが、本発明は、この例に限定されるものではない。例えば、トリプル型太陽電池にも同様に適用可能である。
 1 基板
 2 透明電極層
 3 光電変換層
 4 裏面電極層
 5 中間コンタクト層
 6 太陽電池モジュール
 31 非晶質シリコンp層
 32 非晶質シリコンi層
 33 非晶質シリコンn層
 41 結晶質シリコンp層
 42 結晶質シリコンi層
 43 結晶質シリコンn層
 91 第1発電セル層
 92 第2発電セル層
 100 光電変換装置

Claims (6)

  1.  基板上に、少なくとも2層の発電セル層を備える光電変換層と、前記発電セル層の間に介在する中間コンタクト層とを含む光電変換装置であって、
     前記中間コンタクト層が、Zn1-xMg(0.096≦x≦0.183)で表される化合物を主として含むことを特徴とする光電変換装置。
  2.  前記中間コンタクト層が、Gaが添加されたZn1-xMg(0.096≦x≦0.183)で表される化合物を主として含むことを特徴とする請求項1に記載の光電変換装置。
  3.  水素プラズマ曝露後の前記中間コンタクト層のシート抵抗が、10kΩ/□以上100kΩ/□以下であることを特徴とする請求項1または請求項2に記載の光電変換装置。
  4.  前記基板側の前記発電セル層と前記中間コンタクト層との間に、ZnOまたはZn1-xMg(0<x≦0.096)で表される化合物を主として含む界面層を備えることを特徴とする請求項1乃至請求項3のいずれかに記載の光電変換装置。
  5.  前記界面層が、Gaが添加されたZnOまたはZn1-xMg(0<x≦0.096)で表される化合物を主として含むことを特徴とする請求項4に記載の光電変換装置。
  6.  前記界面層の膜厚が、5nm以上10nm以下であることを特徴とする請求項4または請求項5に記載の光電変換装置。
PCT/JP2009/064570 2008-11-19 2009-08-20 光電変換装置 WO2010058640A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801298886A CN102113127B (zh) 2008-11-19 2009-08-20 光电转换装置
EP09827421A EP2348541A1 (en) 2008-11-19 2009-08-20 Photoelectric conversion device
US13/003,615 US8598447B2 (en) 2008-11-19 2009-08-20 Photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008295750A JP5022341B2 (ja) 2008-11-19 2008-11-19 光電変換装置
JP2008-295750 2008-11-19

Publications (1)

Publication Number Publication Date
WO2010058640A1 true WO2010058640A1 (ja) 2010-05-27

Family

ID=42198079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064570 WO2010058640A1 (ja) 2008-11-19 2009-08-20 光電変換装置

Country Status (6)

Country Link
US (1) US8598447B2 (ja)
EP (1) EP2348541A1 (ja)
JP (1) JP5022341B2 (ja)
KR (1) KR20110018951A (ja)
CN (1) CN102113127B (ja)
WO (1) WO2010058640A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472595A1 (en) * 2009-08-26 2012-07-04 Sharp Kabushiki Kaisha Stacked photovoltaic element and method for manufacturing stacked photovoltaic element
WO2012102449A1 (en) * 2011-01-25 2012-08-02 Lg Innotek Co., Ltd. Solar cell and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229306B (zh) 2010-09-22 2016-08-03 第一太阳能有限公司 具有氧化锌镁窗口层的薄膜光伏装置
US20140246083A1 (en) 2013-03-01 2014-09-04 First Solar, Inc. Photovoltaic devices and method of making
WO2016056546A1 (ja) 2014-10-06 2016-04-14 株式会社カネカ 太陽電池および太陽電池モジュール、ならびに太陽電池および太陽電池モジュールの製造方法
DE102019006095A1 (de) * 2019-08-29 2021-03-04 Azur Space Solar Power Gmbh Vereinzelungsverfahren zur Vereinzelung einer mehrere Solarzellenstapel umfasssenden Halbleiterscheibe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270562A (ja) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd 多接合型太陽電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3434259B2 (ja) 1999-03-05 2003-08-04 松下電器産業株式会社 太陽電池
JP4240889B2 (ja) 2001-02-01 2009-03-18 キヤノン株式会社 透明導電膜の形成方法、及び光起電力素子の製造方法
CN1307707C (zh) 2003-09-19 2007-03-28 中国科学院上海微系统与信息技术研究所 一种含镁锌氧的金属-绝缘层-半导体结构及制备工艺
EP2061041A4 (en) * 2007-02-26 2011-06-29 Murata Manufacturing Co LADDERING FILM AND METHOD FOR PRODUCING A CONDUCTIVE FILM
JP4425296B2 (ja) * 2007-07-09 2010-03-03 三洋電機株式会社 光起電力装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270562A (ja) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd 多接合型太陽電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472595A1 (en) * 2009-08-26 2012-07-04 Sharp Kabushiki Kaisha Stacked photovoltaic element and method for manufacturing stacked photovoltaic element
EP2472595A4 (en) * 2009-08-26 2013-10-30 Sharp Kk STACKED PHOTOVOLTAIC ELEMENT AND METHOD FOR PRODUCING THE STACKED PHOTOVOLTAIC ELEMENT
WO2012102449A1 (en) * 2011-01-25 2012-08-02 Lg Innotek Co., Ltd. Solar cell and method for manufacturing the same
CN103222068A (zh) * 2011-01-25 2013-07-24 Lg伊诺特有限公司 太阳能电池及其制造方法
US9818902B2 (en) 2011-01-25 2017-11-14 Lg Innotek Co., Ltd. Solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
KR20110018951A (ko) 2011-02-24
US8598447B2 (en) 2013-12-03
EP2348541A1 (en) 2011-07-27
CN102113127B (zh) 2013-06-05
JP5022341B2 (ja) 2012-09-12
US20110120521A1 (en) 2011-05-26
JP2010123737A (ja) 2010-06-03
CN102113127A (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
AU2008233856B2 (en) Photovoltaic device and process for producing same.
JP5022341B2 (ja) 光電変換装置
JP5330723B2 (ja) 光電変換装置
WO2010052953A1 (ja) 光電変換装置の製造方法及び光電変換装置
WO2010050035A1 (ja) 光電変換装置の製造方法
JP4764469B2 (ja) 光電変換装置及び光電変換装置の製造方法
WO2011030598A1 (ja) 光電変換装置の製造方法
WO2011061956A1 (ja) 光電変換装置
JP5030745B2 (ja) 光電変換装置の製造方法
WO2011070805A1 (ja) 光電変換装置の製造方法
WO2010064455A1 (ja) 光電変換装置
JP2011061124A (ja) 光電変換装置の製造方法及び光電変換装置
WO2012014550A1 (ja) 光電変換装置の製造方法
WO2012036074A1 (ja) 光電変換装置の製造方法
JP4875566B2 (ja) 光電変換装置の製造方法
WO2010061667A1 (ja) 光電変換装置の製造方法
WO2011033885A1 (ja) 光電変換装置
JP2009158667A (ja) 光電変換装置及びその製造方法
US20110318871A1 (en) Process for producing photovoltaic device
JP2010251424A (ja) 光電変換装置
JP2010135637A (ja) 光電変換装置
JP2008251914A (ja) 多接合型光電変換装置
JP2011077380A (ja) 光電変換装置
JP2011096848A (ja) 光電変換装置の製造方法
JP2010199305A (ja) 光電変換装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129888.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13003615

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117001308

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009827421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE