CN102113127B - 光电转换装置 - Google Patents

光电转换装置 Download PDF

Info

Publication number
CN102113127B
CN102113127B CN2009801298886A CN200980129888A CN102113127B CN 102113127 B CN102113127 B CN 102113127B CN 2009801298886 A CN2009801298886 A CN 2009801298886A CN 200980129888 A CN200980129888 A CN 200980129888A CN 102113127 B CN102113127 B CN 102113127B
Authority
CN
China
Prior art keywords
layer
photoelectric conversion
substrate
contact layer
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801298886A
Other languages
English (en)
Other versions
CN102113127A (zh
Inventor
山口贤刚
坂井智嗣
鹤我薰典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of CN102113127A publication Critical patent/CN102113127A/zh
Application granted granted Critical
Publication of CN102113127B publication Critical patent/CN102113127B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种通过将暴露于氢等离子体后的导电率设定在适当的范围而抑制漏电流并提高转换效率的光电转换装置。一种光电转换装置(100),在基板(1)上包括至少具备2层发电单元层(91、92)的光电转换层(3)和夹在所述发电单元层(91、92)之间的中间接触层(5),所述光电转换装置的特征在于,所述中间接触层(5)主要包含由Zn1-xMgxO(0.096≤x≤0.183)表示的化合物。

Description

光电转换装置
技术领域
本发明涉及太阳电池,尤其是涉及通过制成发电层而制作的薄膜系太阳电池。
背景技术
作为将太阳光的能量转换成电能量的太阳电池中使用的光电转换装置,已知有具备光电转换层的薄膜硅系光电转换装置,所述光电转换层通过等离子体CVD法等制成p型硅系半导体(p层)、i型硅系半导体(i层)及n型硅系半导体(n层)的薄膜而形成。
作为薄膜硅系太阳电池的优点,可列举有大面积化容易、膜厚薄到结晶系太阳电池的1/100左右而可以减少材料的情况等。因此,薄膜硅系太阳电池与结晶系太阳电池相比,能够以低成本进行制造。然而,作为薄膜硅系太阳电池的缺点,可列举有转换效率比结晶系低的情况。在本技术领域中,提高转换效率是重要的课题,提出有一种具有层叠了2层的发电单元层的光电转换层的串联型太阳电池。
在串联型太阳电池中,以抑制第一发电单元层与第二发电单元层之间的掺杂剂相互扩散及调整光量分配为目的,而将由透明导电膜构成的中间接触层插入。作为中间接触层,通常使用Ga掺杂ZnO(GZO)。GZO是折射率为2.0,比Si低,等离子体耐性优良且透明性优良的材料。
然而,GZO由于电阻率低,因此在作为集成型太阳电池模块时,在单元连接部成为漏电流的原因,从而存在开路电压及FF下降的课题。为了防止漏电流,提出有在连接部的结构中追加激光加工部等的解决方法。然而,由于设置新的加工部,因此存在有效面积减少、工序增加引起的成本上升的问题。
尝试了通过控制GZO的导电率对GZO进行高电阻化而改善FF的方法。如专利文献1记载所示,减少掺杂剂或调整成膜时的氧供给量而促进GZO的氧化,从而能够控制GZO的导电率。
专利文献1:日本特开2003-115601号公报
如专利文献1所示在中间接触层使用高电阻的GZO时,虽然能够使刚成膜之后的GZO的导电率下降,但在中间接触层上形成第二发电单元层时,由于暴露在氢等离子体下,而GZO的导电率增大8~9位(即,进行低电阻化),从而实际上成为漏电流的主要原因。导电率的增大的原因考虑为由于氢等离子体而在ZnO容易产生氧缺陷。
发明内容
本发明鉴于上述课题而作出,提供一种通过将在氢等离子体暴露后的导电率设定在适当的范围而抑制漏电流并提高转换效率的光电转换装置。
为了解决上述课题,本发明涉及一种光电转换装置,在基板上包括至少具备2层发电单元层的光电转换层和夹在相邻的所述发电单元层之间的中间接触层,所述光电转换装置的特征在于,所述中间接触层主要包含由Zn1-xMgxO(0.096≤x≤0.183)表示的化合物。
通过以对ZnO添加有MgO的化合物为主形成中间接触层,而能够防止在氢等离子体暴露后的电阻减少(即,导电率的增大)。尤其是,在对ZnO以9.6mol%以上且18.3mol%以下的比例添加有MgO的化合物中,能够抑制单元连接部中的漏电流并能够将在氢等离子体暴露后的中间接触层的导电率控制成可抑制接触电阻上升的值。因此,能够形成改善形状因子且具有高转换效率的光电转换装置。
在上述发明中,以导电率控制为目的,所述中间接触层也可以主要包含添加有Ga2O3的由Zn1-xMgxO(0.096≤x≤0.183)表示的化合物。
在上述发明中,在氢等离子体暴露后的所述中间接触层的方块电阻优选10kΩ/□以上且100kΩ/□以下。
为了抑制基于漏电流的形状因子,而优选在氢等离子体暴露后的中间接触层的方块电阻为10kΩ/□以上。另一方面,中间接触层成为高电阻时,层叠方向(相对于基板成膜面垂直的方向)的接触电阻(串联电阻)增加。因此,在氢等离子体暴露后的中间接触层的方块电阻优选为100kΩ/□以下。
也可以在所述基板侧的所述发电单元层与所述中间接触层之间具备主要包含ZnO或由Zn1-xMgxO(0<x≤0.096)表示的化合物的界面层。
如此,在基板侧形成的发电单元层上形成以ZnO或比本发明的中间接触层的Mg浓度低的上述组成范围的Zn1-xMgxO为主的界面层时,能够进一步减少膜层叠方向的接触电阻。其结果是,能够进一步提高形状因子,从而能够形成具有更高的光电转换效率的光电转换装置。
这种情况下,为了调整界面层的导电率,所述界面层也可以主要包含添加有Ga2O3的ZnO或由Zn1-xMgxO(0<x≤0.096)表示的化合物。
在上述发明中,所述界面层的膜厚优选为5nm以上且10nm以下。
通过形成界面层,虽然能够改善接触电阻,但当界面层增厚时,漏电流增加而形状因子减少。界面层的膜厚为5nm以上且10nm以下时,能够同时实现接触电阻的改善和漏电流的抑制,能够提高光电转换效率。
发明效果
通过在相邻的发电单元层之间形成主要包含由Zn1-xMgxO(0.096≤x≤0.183)表示的化合物的中间接触层,从而能够抑制单元连接部中的漏电流并能够降低膜垂直方向的接触电阻。因此,能够形成形状因子提高且具有高光电转换效率的光电转换装置。
另外,通过在基板侧的发电单元层与中间接触层之间形成以ZnO或比中间接触层的Mg浓度低的Zn1-xMgxO为主的界面层,能够进一步减少接触电阻。其结果是,能够进一步提高光电转换效率。
附图说明
图1是示意性地示出本发明的第一实施方式的光电转换装置的结构的剖视图。
图2是说明作为本发明的第一实施方式的光电转换装置,制造太阳电池板的一实施方式的简图。
图3是说明作为本发明的第一实施方式的光电转换装置,制造太阳电池板的一实施方式的简图。
图4是说明作为本发明的第一实施方式的光电转换装置,制造太阳电池板的一实施方式的简图。
图5是说明作为本发明的第一实施方式的光电转换装置,制造太阳电池板的一实施方式的简图。
图6是示出ZnMgO系膜中的MgO含有量与氢等离子体处理后的方块电阻之间的关系的图形。
图7是示出中间接触层的MgO含有量与模块形状因子之间的关系的图形。
图8是示出中间接触层的MgO含有量与模块的光电转换效率之间的关系的图形。
图9是示出界面层膜厚与模块形状因子之间的关系的图形。
图10是示出界面层膜厚与模块光电转换效率之间的关系的图形。
具体实施方式
图1是示出本发明的光电转换装置的结构的简图。光电转换装置100是串联型硅系太阳电池,具备:基板1、透明电极层2、作为太阳电池光电转换层3的第一发电单元层91(非晶质硅系)及第二发电单元层92(晶质硅系)、中间接触层5、以及背面电极层4。此外,在此,硅系是指包含硅(Si)、碳化硅(SiC)、硅锗(SiGe)在内的总称。而且,晶质硅系是指非晶质硅系以外的硅系,也包含微晶硅、多晶硅。
<第一实施方式>
以制造太阳电池板的工序为例说明第一实施方式的光电转换装置的制造方法。图2至图5是示出本实施方式的太阳电池板的制造方法的简图。
(1)图2(a)
使用浮法碱玻璃基板(基板面积为1m2以上,例如1.4m×1.1m×板厚:3.5mm~4.5mm)作为基板1。基板端面为了防止热应力或冲击等引起的破损而优选进行拐角倒角或圆角加工。
(2)图2(b)
作为透明电极层2,利用热CVD装置在约500℃下制成以氧化锡(SnO2)为主成分的膜厚约500nm以上且800nm以下的透明电极膜。此时,在透明电极膜的表面形成具有适当凹凸的纹理。作为透明电极层2,除了透明电极膜之外,也可以在基板1与透明电极膜之间形成碱性阻挡膜(未图示)。碱性阻挡膜利用热CVD装置在约500℃下对氧化硅膜(SiO2)进行成膜处理制成为膜厚50nm~150nm。
(3)图2(c)
然后,将基板1设置在X-Y工作台上,如图中箭头所示,从透明电极膜的膜面侧照射YAG激光的第一高次谐波(1064nm)。调整激光功率以使加工速度合适,使基板1与激光向相对于发电单元的串联连接方向垂直的方向移动,对透明电极膜激光蚀刻成宽度约6mm至15mm的规定宽度的长方形以形成槽10。
(4)图2(d)
作为第一发电单元层91,通过等离子体CVD装置制成由非晶质硅薄膜构成的p层、i层及n层。以SiH4气体及H2气体为主原料、减压气氛:30Pa以上且1000Pa以下、基板温度:约200℃,在透明电极层2上从太阳光的入射侧以非晶质硅p层31、非晶质硅i层32、非晶质硅n层33的顺序进行成膜。非晶质硅p层31以非晶质的B掺杂硅为主,膜厚为10nm以上且30nm以下。非晶质硅i层32的膜厚为200nm以上且350nm以下。非晶质硅n层33以非晶质硅中含有微晶硅的P掺杂硅为主,膜厚为30nm以上且50nm以下。为了提高界面特性,也可以在非晶质硅p层31与非晶质硅i层32之间设置缓冲层。
为了改善接触性并取得电流整合性而在第一发电单元层91与第二发电单元层92之间设置成为半反射膜的中间接触层5。使用RF磁控溅射装置,在靶:Ga2O3掺杂ZnO-MgO混合靶(MgO比率:5~10质量%)、RF功率:1.1~4.4W/cm2,成膜压力:0.13~0.67Pa、基板温度:25℃(室温附近)的条件下进行成膜。由此,形成膜厚为20nm以上且100nm以下的以Zn1-xMgxO(0.096≤x≤0.183)为主的中间接触层。刚成膜之后的中间接触层5的方块电阻为10MΩ/□左右。此外,中间接触层也可以不包含Ga2O3
接下来,在第一发电单元层91上,通过等离子体CVD装置,在减压气氛:3000Pa以下、基板温度:约200℃、等离子体发生频率:40MHz以上且100MHz以下,依次制成作为第二发电单元层92的晶质硅p层41、晶质硅i层42、以及晶质硅n层43。晶质硅p层41以掺杂了B的微晶硅为主,膜厚为10nm以上且50nm以下。晶质硅i层42以微晶硅为主,膜厚为1.2μm以上且3.0μm以下。晶质硅n层43以掺杂了P的微晶硅为主,膜厚为20nm以上且50nm以下。在此,也可以在晶质硅i层42与晶质硅n层43的界面上形成非晶质硅n层。
通过等离子体CVD法形成以微晶硅为主的i层膜时,等离子体放电电极与基板1的表面的距离d优选3mm以上且10mm以下。小于3mm时,由于难以根据对应于大型基板的成膜室内的各结构设备精度而将距离d保持一定,且过近会有放电不稳定的可能性。在大于10mm时,难以得到充分的成膜速度(1nm/s以上),并且等离子体的均一性下降,且由于离子冲击而膜质下降。
在第二发电单元层成膜时,中间接触层暴露在氢等离子体下。由此,中间接触层的电阻下降。
图6中表示ZnMgO系化合物中的MgO含有量与氢等离子体处理后的ZnMgO系膜的方块电阻之间的关系。在该图中,横轴是MgO含有量,纵轴是方块电阻。ZnMgO系膜的成膜在靶:ZnO烧结体(Ga2O3掺杂剂)靶或ZnO-MgO混合靶(Ga2O3掺杂剂,MgO质量比率:5~12.5%)、基板温度:25℃、RF功率:4.4W/cm2、靶-基板距离:90mm、成膜速度0.17nm/s,膜厚:70nm的条件下实施。成膜后的氢等离子体处理在H2气体流量:0.1slm、压力:133Pa、施加电力密度:0.5W/cm2、处理时间:5分钟的条件下实施。
使用与本实施方式的模块结构相对应的等价电路来解析对形状因子的影响时,若中间接触层的方块电阻为10kΩ/□以上则能够减少漏电流。而且,在膜垂直方向(层叠方向)上,减少成为串联电阻增加的主要原因的接触电阻的情况不可或缺。解析的结果是,中间接触层的方块电阻优选100kΩ/□。
根据图6,可以说是能得到MgO质量5%(9.6mol%)至10%(18.3mol%)、方块电阻10kΩ/□以上且100kΩ/□以下的ZnMgO系膜。
(5)图2(e)
将基板1设置在X-Y工作台上,如图的箭头所示,从光电转换层3的膜面侧照射激光二极管激励YAG激光的第二高次谐波(532nm)。设脉冲振荡:10kHz至20kHz,调整激光功率以使加工速度合适,并对透明电极层2的激光蚀刻线的约100μm至150μm的横侧进行激光蚀刻以形成槽11。而且该激光也可以从基板1侧照射,这种情况下,利用由光电转换层3的非晶质硅系的第一发电单元层吸收的能量所产生的高蒸气压能够对光电转换层3进行蚀刻,因此能够进行更稳定的激光蚀刻加工。激光蚀刻线的位置以与前工序中的蚀刻线不交叉的方式考虑定位公差来选定。
(6)图3(a)
通过溅射装置,在减压气氛中、成膜温度:150℃至200℃下,制成Ag膜/Ti膜作为背面电极层4。在本实施方式中,依次层叠150nm以上且500nm以下的Ag膜、作为对该Ag膜进行保护的防蚀效果高的10nm以上且20nm以下的Ti膜。或者,也可以使背面电极层4形成为具有25nm至100nm的膜厚的Ag膜与具有15nm至500nm的膜厚的Al膜的层叠结构。以减少晶质硅n层43与背面电极层4之间的接触电阻和提高光反射为目的,也可以通过溅射装置在光电转换层3与背面电极层4之间制成膜厚为50nm以上且100nm以下的GZO(Ga掺杂ZnO)膜。
(7)图3(b)
将基板1设置在X-Y工作台上,如图的箭头所示,从基板1侧照射激光二极管激励YAG激光的第二高次谐波(532nm)。激光由光电转换层3吸收,利用此时产生的高的气体蒸气压使背面电极层4爆裂而将其除去。设脉冲振荡:1kHz以上且10kHz以下,调整激光功率以使加工速度合适,对透明电极层2的激光蚀刻线的250μm至400μm的横侧进行激光蚀刻以形成槽12。
(8)图3(c)和图4(a)
区分发电区域,除去在基板端周边的膜端部因激光蚀刻引起的串联连接部分容易短路的影响。将基板1设置在X-Y工作台上,从基板1侧照射激光二极管激励YAG激光的第二高次谐波(532nm)。激光被透明电极层2和光电转换层3吸收,利用此时产生的高的气体蒸气压使背面电极层4爆裂,而将背面电极层4/光电转换层3/透明电极层2除去。设脉冲振荡:1kHz以上且10kHz以下,调整激光功率以使加工速度合适,如图3(c)所示,对距基板1端部为5mm至20mm的位置进行激光蚀刻以形成X方向绝缘槽15。此外,在图3(c)中,由于成为沿串联连接光电转换层3的方向剖开的X方向剖视图,因此本来应该表现出在绝缘槽15位置存在有进行了背面电极层4/光电转换层3/透明电极层2的膜研磨除去后的周围膜除去区域14的状态(参照图4(a)),但为了便于说明对基板1的端部的加工,而在该位置以表示Y方向剖面而形成的绝缘槽作为X方向绝缘槽15进行说明。此时,由于在后工序中进行基板1周围膜除去区域的膜面研磨除去处理,因此无需设置Y方向绝缘槽。
绝缘槽15在距基板1的一端为5mm至15mm的位置结束蚀刻,从而在抑制外部湿分从太阳电池板端部向太阳电池模块6内部的侵入方面呈现有效的效果,因此优选。
此外,以上的工序中的激光为YAG激光,但也能够同样使用YVO4激光或光纤维激光等。
(9)图4(a:从太阳电池膜面侧观察的图,b:从受光面的基板侧观察的图)
为了确保后工序的经由EVA等的与背板24的牢固的胶粘/密封面,而基板1周边(周围膜除去区域14)的层叠膜具有台阶且容易剥离,因此除去该膜而形成周围膜除去区域14。以距基板1的一端为5~20mm在基板1的整个周围除去膜时,X方向比上述的图3(c)工序中设置的绝缘槽15靠近基板端侧,Y方向比基板端侧部附近的槽10靠近基板端侧,使用砂轮研磨或喷砂研磨等除去背面电极层4/光电转换层3/透明电极层2。
研磨屑或磨粒是对基板1进行清洗处理而除去。
(10)图5(a)(b)
端子箱23的安装部分在背板24设置开口贯通窗而取出集电板。在该开口贯通窗部分设置多层绝缘材料而抑制湿分等从外部侵入。
使用铜箔从串联排列的一端的太阳电池发电单元和另一端部的太阳电池发电单元集电而从太阳电池板反面侧的端子箱23的部分取出电力进行处理。为了防止铜箔与各部分的短路而配置比铜箔宽度宽的绝缘板。
将集电用铜箔等配置在规定位置后,覆盖太阳电池模块6的整体,以不从基板1露出的方式配置基于EVA(乙烯-醋酸乙烯共聚物)等的胶粘填充材料板。
在EVA上设置防水效果高的背板24。背板24在本实施方式中为了提高防水防湿效果而由PET板/Al箔/PET板的3层结构构成。
通过层压装置在减压气氛中对直至将背板24配置在规定位置上而成的构件进行内部的除气并在约150~160℃下进行冲压并使EVA交联而贴紧。
(11)图5(a)
在太阳电池模块6的反面侧通过胶粘剂安装端子箱23。
(12)图5(b)
通过焊锡等将铜箔和端子箱23的输出电缆连接,通过密封剂(灌注剂)填充而密闭端子箱23的内部。由此完成太阳电池板50。
(13)图5(c)
对于到图5(b)为止的工序中形成的太阳电池板50进行发电检查及规定的性能试验。发电检查使用AM1.5、全天日照标准太阳光(1000W/m2)的太阳模拟器进行。
(14)图5(d)
在发电检查(图5(c))前后,以外观检查为首进行规定的性能检查。
本实施方式的太阳电池由于将中间接触层5的电阻率控制为10kΩ/□以上且100kΩ/□以下,因此减少单元连接部的漏电流,并减少膜层叠方向的接触电阻。因此,形状因子增大而光电转换效率提高。
<第二实施方式>
第二实施方式的光电转换装置在图1中的第一发电单元层91与中间接触层5之间具备界面层。
界面层主要包含ZnO或由Zn1-xMgxO(其中,满足0<x≤0.096)表示的化合物。即,界面层不含有Mg或比中间接触层的Mg含有量少。作为界面层的ZnO或Zn1-xMgxO也可以含有Ga2O3作为掺杂剂。
界面层的成膜可以在与中间接触层不同的成膜室中实施,也可以在同一成膜室中实施。
当在分别不同的成膜室中制成界面层和中间接触层时,通过以下的工序形成界面层及中间接触层。
界面层的成膜使用RF磁控溅射装置,在靶:Ga2O3掺杂ZnO烧结体或Ga2O3掺杂ZnO-MgO混合靶(MgO比率:0~5质量%,其中不包含0质量%)、RF功率:1.1~4.4W/cm2、成膜压力:0.13~0.67Pa、基板温度:25℃(室温附近)的条件下实施。通过上述条件下的成膜,而形成以ZnO或Zn1-xMgxO(0<x≤0.096)为主的界面层。考虑到第一发电单元层91与界面层的接触电阻及单元连接部的漏电流时,界面层的膜厚优选为5nm以上且10nm以下。
界面层形成后,通过与第一实施方式同样的条件,形成比界面层的MgO含有量多的中间接触层。在本实施方式中,界面层及中间接触层的总计膜厚为20nm以上且100nm以下。
在同一成膜室形成界面层和中间接触层时,使用并列配置有Ga2O3掺杂ZnO烧结体或Ga2O3掺杂ZnO-MgO混合靶(MgO比率:0~5质量%,其中不包含0质量%)和Ga2O3掺杂ZnO-MgO混合靶(MgO比率:5~10质量%)的基板输送型的RF磁控溅射装置。设定基板输送速度或各靶的基板输送方向的宽度以使界面层的膜厚为5nm以上且10nm以下并使界面层及中间接触层的总计膜厚为20nm以上且100nm以下。例如,使成膜条件与上述的条件大致相同,从ZnO烧结体或低Mg含有率混合靶侧向高Mg含有率混合靶侧输送基板并实施成膜。
如上所述在同一成膜室内形成界面层及中间接触层时,考虑到与在不同的成膜室内形成各层的情况不同,界面层与中间接触层的边界不明确,而Mg含有量从界面层朝向中间接触层连续增加。
第二实施方式的太阳电池的第一发电单元层与界面层的接触电阻比第一实施方式中的第一发电单元层与中间接触层的接触电阻减少。而且,通过使界面层形成为5nm以上且10nm以下的膜厚,进一步抑制单元连接方向的漏电流。因此,在第二实施方式的太阳电池中,光电转换效率进一步提高。
(实施例)
(实施例1)
在玻璃基板(5cm角)上形成图1所示的结构的串联型太阳电池模块。此外,使第一发电单元层的i层的膜厚为250nm,使第二发电单元层的i层的膜厚为1.9μm。
中间接触层的成膜在靶:ZnO烧结体靶(Ga2O3掺杂剂)或ZnO-MgO混合靶(Ga2O3掺杂剂,MgO质量比率:5~12.5%)、基板温度:25℃、RF功率:4.4W/cm2、靶-基板距离:90mm、成膜速度0.17nm/s、膜厚:70nm的条件下实施。
图7示出中间接触层的MgO含有量与模块形状因子之间的关系。在该图中,横轴是MgO含有量,纵轴是在MgO含有量为0%时的值下标准化的模块形状因子。图8示出中间接触层的MgO含有量与模块的光电转换效率之间的关系。在该图中,横轴是MgO含有量,纵轴是在MgO含有量为0%时的值下标准化的模块的光电转换效率。
如图7及图8所示,通过在中间接触层适用ZnMgO系材料,从而形状因子及光电转换效率提高。MgO含有量在5质量%(9.6mol%)至10质量%(18.3mol%)的范围内,能够得到较高的形状因子及光电转换效率。MgO含有量超过10质量%时,能观察到由于接触电阻上升而形状因子及光电转换效率有减少的倾向。
(实施例2)
在玻璃基板(5cm角)上形成串联型太阳电池模块。此外,使第一发电单元层的i层的膜厚为250nm,使第二发电单元层的i层的膜厚为1.9μm。
在实施例2的串联型太阳电池模块中,在第一发电单元层与中间接触层之间设置了界面层。界面层的成膜使用ZnO烧结体靶(Ga2O3掺杂剂)、在与实施例1的中间接触层成膜相同的条件下实施。界面层的膜厚为5nm至15nm。中间接触层的成膜使用ZnO-MgO混合靶(Ga2O3掺杂剂,MgO质量比率:10%),在与实施例1相同条件下实施。中间接触层的膜厚为70nm。此外,在实施例2中,界面层及中间接触层的成膜在不同的成膜室中实施。
图9示出界面层膜厚与模块形状因子之间的关系。在该图中,横轴是界面层膜厚,纵轴是在界面层膜厚0nm(仅中间接触层)时的值下标准化的模块形状因子。图10示出界面层膜厚与模块光电转换效率之间的关系。在该图中,横轴是界面层膜厚,纵轴是在未设置界面层时的值下标准化的模块光电转换效率。
界面层膜厚为5nm以上且10nm以下,与未设置界面层的情况相比,模块的形状因子及光电转换效率提高。界面层为15nm时,模块的形状因子及光电转换效率下降。这是因为当界面层较厚时,界面层中产生漏电流而接触性变差的缘故。
中间接触层的MgO含有量为5质量%时,也能预见到同样的效果。
(实施例3)
形成了与实施例2同样的结构的串联型太阳电池模块。在实施例3中,在同一成膜室内实施界面层及中间接触层的成膜。
使用了沿基板输送方向并列配置有8个靶的基板输送型的成膜装置。基板导入侧(上游侧)的一靶为ZnO烧结体靶(Ga2O3掺杂剂),其余靶为ZnO-MgO混合靶(Ga2O3掺杂剂,MgO质量比率:10%)。成膜条件与实施例1及实施例2相同。以使中间接触层的总膜厚成为70nm的输送速度进行成膜。
实施例3的串联型太阳电池模块的形状因子及光电转换效率相对于未形成中间接触层的串联型太阳电池模块,分别为1.03倍、1.05倍。
在上述实施方式中,作为太阳电池,说明了串联型太阳电池,但本发明并不局限于该例。例如,也同样能够适用于三层型太阳电池。
标号说明:
1基板
2透明电极层
3光电转换层
4背面电极层
5中间接触层
6太阳电池模块
31非晶质硅p层
32非晶质硅i层
33非晶质硅n层
41晶质硅p层
42晶质硅i层
43晶质硅n层
91第一发电单元层
92第二发电单元层
100光电转换装置

Claims (6)

1.一种光电转换装置,在基板上包括至少具备2层发电单元层的光电转换层和夹在所述发电单元层之间的中间接触层,所述光电转换装置的特征在于,
所述中间接触层主要包含由Zn1-xMgxO(0.096≤x≤0.183)表示的化合物。
2.根据权利要求1所述的光电转换装置,其特征在于,
所述中间接触层主要包含添加有Ga2O3的由Zn1-xMgxO(0.096≤x≤0.183)表示的化合物。
3.根据权利要求1所述的光电转换装置,其特征在于,
在氢等离子体暴露后的所述中间接触层的方块电阻为10kΩ/□以上且100kΩ/□以下。
4.根据权利要求1所述的光电转换装置,其特征在于,
在所述基板侧的所述发电单元层与所述中间接触层之间具备主要包含ZnO或由Zn1-xMgxO(0<x<0.096)表示的化合物的界面层。
5.根据权利要求4所述的光电转换装置,其特征在于,
所述界面层主要包含添加有Ga2O3的ZnO或由Zn1-xMgxO(0<x<0.096)表示的化合物。
6.根据权利要求4或5所述的光电转换装置,其特征在于,
所述界面层的膜厚为5nm以上且10nm以下。
CN2009801298886A 2008-11-19 2009-08-20 光电转换装置 Expired - Fee Related CN102113127B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008295750A JP5022341B2 (ja) 2008-11-19 2008-11-19 光電変換装置
JP2008-295750 2008-11-19
PCT/JP2009/064570 WO2010058640A1 (ja) 2008-11-19 2009-08-20 光電変換装置

Publications (2)

Publication Number Publication Date
CN102113127A CN102113127A (zh) 2011-06-29
CN102113127B true CN102113127B (zh) 2013-06-05

Family

ID=42198079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801298886A Expired - Fee Related CN102113127B (zh) 2008-11-19 2009-08-20 光电转换装置

Country Status (6)

Country Link
US (1) US8598447B2 (zh)
EP (1) EP2348541A1 (zh)
JP (1) JP5022341B2 (zh)
KR (1) KR20110018951A (zh)
CN (1) CN102113127B (zh)
WO (1) WO2010058640A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472595A4 (en) * 2009-08-26 2013-10-30 Sharp Kk STACKED PHOTOVOLTAIC ELEMENT AND METHOD FOR PRODUCING THE STACKED PHOTOVOLTAIC ELEMENT
CN105914241B (zh) 2010-09-22 2018-07-24 第一太阳能有限公司 光伏装置和形成光伏装置的方法
KR101219835B1 (ko) 2011-01-25 2013-01-21 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US20140246083A1 (en) 2013-03-01 2014-09-04 First Solar, Inc. Photovoltaic devices and method of making
TWI676299B (zh) 2014-10-06 2019-11-01 日商鐘化股份有限公司 太陽能電池及太陽能電池模組、以及太陽能電池及太陽能電池模組之製造方法
DE102019006095A1 (de) * 2019-08-29 2021-03-04 Azur Space Solar Power Gmbh Vereinzelungsverfahren zur Vereinzelung einer mehrere Solarzellenstapel umfasssenden Halbleiterscheibe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599052A (zh) * 2003-09-19 2005-03-23 中国科学院上海微系统与信息技术研究所 一种含镁锌氧的金属-绝缘层-半导体结构及制备工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3434259B2 (ja) 1999-03-05 2003-08-04 松下電器産業株式会社 太陽電池
JP4240889B2 (ja) 2001-02-01 2009-03-18 キヤノン株式会社 透明導電膜の形成方法、及び光起電力素子の製造方法
KR101057571B1 (ko) * 2007-02-26 2011-08-17 가부시키가이샤 무라타 세이사쿠쇼 도전막 및 도전막의 제조방법
JP2008270562A (ja) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd 多接合型太陽電池
JP4425296B2 (ja) * 2007-07-09 2010-03-03 三洋電機株式会社 光起電力装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599052A (zh) * 2003-09-19 2005-03-23 中国科学院上海微系统与信息技术研究所 一种含镁锌氧的金属-绝缘层-半导体结构及制备工艺

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP特开2008-270562A 2008.11.06
于磊 *
庞小凤 *
张志勇.宽禁带半导体Mg_xZn_(1-x)O薄膜的研究报道.《2006年材料科学与工程新进展——"2006北京国际材料周"论文集》.2006,269-274.
赵莉 *

Also Published As

Publication number Publication date
US8598447B2 (en) 2013-12-03
KR20110018951A (ko) 2011-02-24
WO2010058640A1 (ja) 2010-05-27
JP5022341B2 (ja) 2012-09-12
EP2348541A1 (en) 2011-07-27
JP2010123737A (ja) 2010-06-03
CN102113127A (zh) 2011-06-29
US20110120521A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
CN102113127B (zh) 光电转换装置
CN101772844B (zh) 光电变换装置及其制造方法
CN101622719B (zh) 光电变换装置及其制造方法
CN114709294A (zh) 太阳能电池及其制备方法、光伏组件
CN102105991B (zh) 光电转换装置的制造方法及光电转换装置
CN101779294B (zh) 光电转换装置
CN102067325B (zh) 光电转换装置和光电转换装置的制造方法
CN102084493A (zh) 光电转换装置的制造方法和光电转换装置
CN102414842A (zh) 光电转换装置的制造方法
TW201340364A (zh) 積體化太陽電池的製造方法
JP2009094272A (ja) 光電変換モジュールおよび光電変換モジュールの製造方法
JP5030745B2 (ja) 光電変換装置の製造方法
US20120090664A1 (en) Photovoltaic device
CN102105992B (zh) 光电转换装置的制造方法
CN102113129A (zh) 光电转换装置
CN102959719A (zh) 光电转换装置的制造方法
CN102197493B (zh) 光电转换装置的制造方法及制膜装置
CN102379044A (zh) 光电转换装置
CN102176487A (zh) 光电转换装置及其制造方法
CN103081116A (zh) 光电转换装置的制造方法
CN102414841A (zh) 光电转换装置
CN101765922A (zh) 光电转换装置的制造方法及光电转换装置
WO2013099731A1 (ja) 薄膜太陽電池モジュールおよび薄膜太陽電池モジュールの製造方法
US20110318871A1 (en) Process for producing photovoltaic device
CN115172479A (zh) 一种太阳能电池及其制备方法、光伏组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605

Termination date: 20150820

EXPY Termination of patent right or utility model