JP5030745B2 - 光電変換装置の製造方法 - Google Patents

光電変換装置の製造方法 Download PDF

Info

Publication number
JP5030745B2
JP5030745B2 JP2007309130A JP2007309130A JP5030745B2 JP 5030745 B2 JP5030745 B2 JP 5030745B2 JP 2007309130 A JP2007309130 A JP 2007309130A JP 2007309130 A JP2007309130 A JP 2007309130A JP 5030745 B2 JP5030745 B2 JP 5030745B2
Authority
JP
Japan
Prior art keywords
layer
contact layer
intermediate contact
film
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007309130A
Other languages
English (en)
Other versions
JP2009135220A (ja
Inventor
信樹 山下
和孝 宇田
英四郎 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007309130A priority Critical patent/JP5030745B2/ja
Publication of JP2009135220A publication Critical patent/JP2009135220A/ja
Application granted granted Critical
Publication of JP5030745B2 publication Critical patent/JP5030745B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、光電変換装置の製造方法に関し、特に光電変換層を製膜で作製する集積型タンデム太陽電池の製造方法に関する。
タンデム太陽電池は、吸収波長帯域が異なる光電変換セルを2段重ねた構造を有する高効率の太陽電池である。例えば、太陽光入射側の非晶質シリコン(a−Si)で短波長の光を吸収させ、吸収されなかった長波長の光を結晶質シリコン(例えば非晶質層が混在する微結晶シリコン)に吸収させる。a−Siで吸収しきれずに透過してしまう短波長の光を、透明な中間層でa−Si膜側に反射させて光路を長くし吸収させることで、a−Siの膜厚を大きくせずに発生電流を大きくすることができる。
このような中間層は、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム錫(ITO)などの金属酸化物を主成分とし、一般に低抵抗膜とされる。透明金属酸化物の導電率は、酸素欠損量やドーピング元素含有量によって変化する性質がある。
透明電極の比抵抗は低いもので約5×10−4Ω・cm程度であるが、裏面電極に使用される金属膜の比抵抗に比べて2桁程大きい。そのため、光電変換セルで発生した電流が透明電極を流れる間に電力損失が生じてしまう。これは基板面積が大きくなる程顕著となる。
光電変換セルで発生した電流の損失を小さくするために、集積構造の太陽電池とすることが知られている。これは、太陽電池(発電ユニット)を1枚の基板上に複数個作製し、それぞれ直列接続したものである。発電膜を分割し1つの発電ユニットの面積を小さくすることで、透明電極に流れる電流量を減らし、直列化で電圧を高めることで、損失を抑えている。なお、上記分離溝や接続溝は、直列接続方向に対して垂直方向に延在するように、レーザスクライブによって形成される。
太陽電池には、透明基板側から太陽光が入射するスーパーストレート型と、上部電極側から太陽光が入射するサブストレート型とがある。スーパーストレート型で中間層を挿入した集積型薄膜シリコンタンデム型太陽電池が、特許文献1及び特許文献2などに開示されている。特許文献1及び特許文献2では、中間層の比抵抗が1×10−1Ω・cm以下が好ましいとされている。しかし、中間層の比抵抗が低いと、上部光電変換セルから下部光電変換セルに流れるべき電流の一部が、中間層を通って接続溝を覆う上部電極に漏れるサイドリークと呼ばれる現象が発生する。
サイドリークを防止する集積構造の一例が、特許文献3に開示されている。この集積構造では、下部電極分離溝と接続溝の間に、下部光電変換セル及び中間層を除去する分離溝を設けることで、発電ユニットから接続溝へ中間層を通って流れる電流経路が遮断されている。しかし、この集積構造では、分離溝が増えることで、発電に寄与しない接続部の面積が増加し、また、レーザ加工装置が余計に必要になるという問題が生じる。
一方、分離溝を設けずにサイドリークを防止するために、高抵抗(1〜100Ω・cm)の透明中間層を設けることが行われている(特許文献4)。高抵抗の透明中間層を使用することで、サイドリークの影響が無視できるほど小さくなるので、透明中間層を分割することなく、下部電極分離溝と、接続溝と、上部電極分離溝とによって発電ユニットが直列接続される従来のモジュール構造を使用できる。
特開2001−274430号公報 特開2002−118273号公報 特開2002−261308号公報 特開2005−322707号公報
特許文献4に記載されるように、高抵抗の中間層を設けることにより、サイドリークを防止し高効率の太陽電池を得ることができる。中間層の電気的特性と光学的特性には相関があり、高効率の太陽電池を得るためには、太陽電池モジュールとしたときに高いモジュール出力が得られる抵抗率に中間層を設定するとともに、吸収波長帯域全体で中間層の透過率を高くする必要がある。一般的に中間層の製膜は100℃以上の製膜温度で行われる。高温で製膜を実施すると、製膜中に太陽光入射側の非晶質シリコンのn層にダメージを与えるとともに、中間層との界面に反応物が生成し、中間層の内部透過率が数%低下する。また、製膜プロセスの観点からは、大面積基板に対して製膜する際に、基板内で温度分布が生じ、膜質の不均一、さらには基板の歪発生による割れが生じ、歩留まりが低下する。
本発明はこのような事情に鑑みてなされたものであり、高抵抗の中間コンタクト層によりサイドリークを防止したモジュール出力の大きい集積型タンデム太陽電池の製造方法を提供することを目的とする。
上記課題を解決するために、本発明は、積層された少なくとも2層の電池層と、該2層の電池層の間に介在し、該2層の電池層を電気的及び光学的に接続する中間コンタクト層とを備えた光電変換装置の製造方法であって、前記中間コンタクト層が、膜厚40nm以上80nm以下、抵抗率1Ω・cm以上5Ω・cm以下となるように、前記中間コンタクト層を30℃以上50℃以下の温度で形成する光電変換装置の製造方法を提供する。
従来の方法では、製膜温度が150℃から200℃と高温にて中間コンタクト層を形成し、抵抗率が低い中間コンタクト層を得ていた。中間コンタクト層を高温で製膜すると、結晶成長が促進され、さらに結晶粒界の密着が促進されるため、電気伝導が良くなり、抵抗率が低くなる。一方、本発明は、中間コンタクト層を30℃以上50℃以下の温度で形成するものである。これにより、高抵抗の中間コンタクト層を確実に形成することができ、例えば集積型タンデム太陽電池におけるサイドリークを防止することができる。さらに、中間コンタクト層を低温で形成すると中間コンタクト層の膜質及び膜厚が均一となるので、生産工程における歩留まりを向上させることができる。
本発明の光電変換装置の製造方法において、中間コンタクト層が、膜厚40nm以上80nm以下、抵抗率1Ω・cm以上5Ω・cm以下となるように形成されることが好ましい。より好ましくは、膜厚50nm以上80nm以下、さらに好ましくは50nm以上70nm以下で、抵抗率1Ω・cm以上5Ω・cm以下となるように形成される。これにより、例えば集積型タンデム太陽電池とした場合、モジュール出力を向上させることができる。
上記発明において、前記中間コンタクト層が、ガリウムを添加した酸化亜鉛から成ることが好ましい。
上記発明において、前記中間コンタクト層が、酸素を添加した希ガスをスパッタガスとして用いたスパッタリング法で形成されることが好ましい。この場合、前記スパッタガス中の前記酸素の添加量が、前記酸素及び前記希ガスの体積の合計に対して0.5体積%以上5体積%以下とされることが好ましい。
酸素及び希ガスの体積の合計に対して0.5体積%以上5体積%以下のスパッタガスを用いてスパッタリング法により中間コンタクト層を形成すれば、中間コンタクト層の抵抗率を高くするとともに、吸収波長帯域における長波長領域の透過率を高くすることができる。
上記発明において、前記中間コンタクト層を形成した後に、前記中間コンタクト層を真空中で加熱しても良い。この場合、1×10−4Pa以上5×10−4Pa以下の減圧雰囲気で加熱することが好ましい。更に、140℃以上200℃以下の温度で加熱することが好ましい。
このように、中間コンタクト層形成後に真空中で加熱することにより、中間コンタクト層の抵抗率を更に上昇させることができる。このときの雰囲気は真空中である必要がある。熱処理で抵抗率が上昇する要因は、中間コンタクト層中の酸素欠損が減少することである。真空中かつ高温での熱処理を行うことにより、酸素欠損を減少させることが出来、その制御性が高まる。
上記の製造方法を用いれば、高い抵抗率を有するとともに、吸収波長帯域全体で高い透過率を有する中間コンタクト層が形成された光電変換装置を製造することができる。集積型タンデム太陽電池においては、サイドリークを防止し、モジュール出力の大きい太陽電池を得ることができる。特に本願発明の低温における中間コンタクト層の製膜では、結晶成長が抑制され、膜面垂直方向に成長した結晶の粒界、つまり膜面方向に多くの粒界が発生し、膜面方向の抵抗率を特に高くし、サイドリークを防止することが出来る。さらに、膜面垂直方向は結晶がつながっており、見かけの抵抗率より低抵抗となっているので、非晶質シリコンと結晶質シリコン間の電気的接合を良好に保つことが出来る。
また、本発明は、参考例として、絶縁基板上に、透明電極層と、積層された少なくとも2層の電池層と、該2層の電池層との間に介在する中間コンタクト層と、裏面電極層とを備えた光電変換装置であって、前記中間コンタクト層が、膜厚40nm以上80nm以下、かつ、抵抗率1Ω・cm以上5Ω・cm以下である光電変換装置を提供する。
抵抗率が1Ω・cm以上5Ω・cm以下と高抵抗の中間コンタクト層を50nm以上80nm以下の膜厚で形成することで、サイドリークを防止し、変換効率の高い光電変換装置とすることができる。
本発明によれば、高抵抗かつ吸収波長帯域全体で高透過率の中間コンタクト層を形成することが可能となる。本発明の製造方法によって製造された光電変換装置は、例えば集積型タンデム太陽電池の場合、サイドリークの問題を克服でき、モジュール出力が増大する。また、中間コンタクト層の膜質及び膜厚を均一に形成することが出来るため、歩留まりを向上させることができる。
まず、本発明の光電変換装置の製造方法により製造される光電変換装置の構成について説明する。
図1は、本発明の光電変換装置の製造方法により製造される光電変換装置の構成を示す概略図である。光電変換装置100は、シリコン系太陽電池であり、基板1、透明電極層2、光電変換層3としての第1電池層101(アモルファスシリコン系)及び第2電池層102(結晶質シリコン系)、第1電池層101と第2電池層102との間の中間コンタクト層5、及び、裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、アモルファスシリコン系すなわち非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコン系も含まれる。
次に、本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する実施形態を図2から図5を用いて説明する。
(1)図2(a):
基板1としてソーダフロートガラス基板(例えば、1.4m×1.1m×板厚:3〜6mmの一辺が1mを超える大面積基板)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(2)図2(b):
透明電極層2として酸化錫(SnO)を主成分とする膜厚約500nm以上800nm以下の透明電極膜を、熱CVD装置にて約500℃で製膜する。この際、透明電極膜の表面には、適当な凹凸のあるテクスチャーが形成される。透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、膜厚50nm以上150nm以下の酸化シリコン膜(SiO)を熱CVD装置にて約500℃で製膜する。
(3)図2(c):
その後、基板1をX−Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、透明電極層の層面側から入射する。加工速度が適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(4)図2(d):
第1電池層101として、アモルファスシリコン薄膜からなるp層膜/i層膜/n層膜を、プラズマCVD装置により製膜する。SiHガスとHガスとを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、透明電極層2上に太陽光の入射する側からp層、i層、n層の順で製膜する。p層はアモルファスのBドープSi膜であり、膜厚10nm以上30nm以下である。i層はアモルファスのSi膜であり、膜厚200nm以上350nm以下である。n層はpドープ微結晶Si膜であり、膜厚30nm以上50nm以下である。p層膜とi層膜の間には界面特性の向上のためにバッファー層を設けても良い。
次に、第1電池層101上に、第1電池層101と第2電池層102との接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層5として、GZO(GaドープZnO)膜をスパッタリング法にて形成する。DCスパッタリング装置により、ターゲット:GaドープZnO焼結体を用い、減圧雰囲気:0.5Pa、製膜温度:30℃以上50℃以下、スパッタガス:アルゴン(Ar)、酸素(O)量:0.5体積%以上5体積%以下の条件にて、膜厚40nm以上80nm以下、抵抗率1Ω・cm以上5Ω・cm以下の中間コンタクト層5を形成する。
一般に、中間コンタクト層は抵抗率を低くするため、例えば150℃から200℃に基板を加熱して製膜するが、本実施形態では中間コンタクト層5を低温にて製膜する。低温製膜により、GZOの膜面方向で結晶粒界が粗となるので、抵抗率が高い中間コンタクト層が得られる。また、低温製膜により中間コンタクト層の膜質及び膜厚が均一となる。特に、30℃以上50℃以下で中間コンタクト層を製膜すると、抵抗率1Ω・cm以上5Ω・cm以下が得られる。
製膜時の酸素量により、GZOの電気的特性及び光学的特性は変化する。酸素量が少ないと、GZOは低抵抗となり、長波長領域での透過率が減少する。酸素量が多くなると、抵抗率が上昇し、長波長領域でも高い透過率を示す。製膜時の酸素量を0.5体積%以上5体積%以下とすると、抵抗率が1Ω・cm以上5Ω・cm以下と高抵抗であり、長波長領域でも高い透過率を有する中間コンタクト層とすることが出来る。
中間コンタクト層5を形成した後、後述の第2電池層102のp層製膜前に、真空中において加熱処理を施しても良い。この場合、圧力:1×10−4Pa以上5×10−4Pa以下、温度:140℃以上200℃以下にて加熱処理を行うことが好ましい。真空中における加熱処理によって、雰囲気中に残存する微量のOによって中間コンタクト層表面が酸化されると考えられ、これにより中間コンタクト層の抵抗率を更に上昇させる。
なお、上記の加熱処理を、後工程の第2電池層のp層形成のためのロードロックチャンバで行えば、工程に要する時間を短縮させることが出来るため有利である。
次に、中間コンタクト層5の上に、プラズマCVD装置により、減圧雰囲気:3000Pa以下、基板温度:約200℃、プラズマ発生周波数:40MHz以上100MHz以下にて、第2電池層102として、微結晶シリコン薄膜からなる微結晶p層膜/微結晶i層膜/微結晶n層膜を順次製膜する。
第2電池層102は、本実施形態では、微結晶p層はBドープした微結晶SiC膜であり、膜厚10nm以上50nm以下である。微結晶i層は微結晶Si膜であり、膜厚1.2μm以上3.0μm以下である。微結晶n層はpドープした微結晶Siであり、膜厚20nm以上50nm以下である。
微結晶シリコン薄膜、特に微結晶i層膜をプラズマCVD法で形成するにあたり、プラズマ放電電極と基板1の表面との距離dは、3mm以上10mm以下にすることが好ましい。3mmより小さい場合、大型基板に対応する製膜室内の各構成機器精度から距離dを一定に保つことが難しくなるとともに、近過ぎて放電が不安定になる恐れがある。10mmより大きい場合、十分な製膜速度(1nm/s以上)を得難くなるとともに、プラズマの均一性が低下しイオン衝撃により膜質が低下する。
(5)図2(e)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から入射する。パルス発振:10kHz以上20kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から入射しても良い。この場合は光電変換層3の第1電池層101で吸収されたエネルギーで発生する高い蒸気圧を利用できるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め交差を考慮して選定する。
(6)図3(a)
裏面電極層4としてAg膜/Ti膜をスパッタリング装置により減圧雰囲気、約150℃にて順次製膜する。本実施形態では、裏面電極層4はAg膜:200nm以上500nm以下、これを保護するものとして防食効果の高いTi膜:10nm以上20nm以下をこの順に積層させたものとされる。第2電池層102のn層と裏面電極層4との接触抵抗低減と光反射向上を目的に、光電変換層3と裏面電極層4との間にGZO(GaドープZnO)膜を膜厚:50nm以上100nm以下、スパッタリング装置により製膜して設けても良い。また、Ti膜に変えてAl膜:250nm以上350nm以下としてもよい。TiをAlとすることで、防食効果を保持しつつ、材料コストを低減することが可能となる。
(7)図3(b)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から入射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(8)図3(c)
発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から入射する。レーザー光が透明電極層2と光電変換層3とで吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。このとき、Y方向絶縁溝は後工程で基板1周囲領域の膜面研磨除去処理を行うので、設ける必要がない。
絶縁溝15は基板1の端より5mmから10mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール6内部への外部湿分浸入の抑制に、有効な効果を呈するので好ましい。
尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。
(9)図4(a)
後工程のEVA等を介したバックシート24との健在な接着・シール面を確保するために、基板1周辺(周囲領域14)の積層膜は、段差があるとともに剥離し易いため、積層膜を除去する。基板1の端から5mmから20mmで基板1の全周囲にわたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。研磨屑や砥粒は基板1を洗浄処理して除去する。
(10)図4(b)
端子箱取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層を設置して外部からの湿分などの浸入を抑制する。
直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
集電用銅箔などが所定位置に配置された後に、太陽電池モジュール6の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/AL箔/PETシートの3層構造よりなる。
バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150℃から160℃でプレスしながら、EVAを架橋させて密着させる。
(11)図5(a)
太陽電池モジュール6の裏側に端子箱23を接着剤で取付ける。
(12)図5(b)
銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(13)図5(c)
図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m)のソーラシミュレータを用いて行う。
(14)図5(d)
発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
上記実施形態で製造された太陽電池モジュールは、抵抗率が1Ω・cm以上5Ω・cm以下と高抵抗の中間コンタクト層を50nm以上80nm以下の膜厚で形成し、サイドリークを防止している。また、中間コンタクト層製膜時の酸素添加量をコントロールして、吸収波長帯域で高透過率の中間コンタクト層としている。このため、太陽電池モジュールの出力が向上し、高効率の太陽電池パネルを得ることが可能となる。
以下、本発明の実施例について説明する。
〔実施例〕
DCスパッタリング装置にて、ターゲット:GaドープZnO焼結体を用い、減圧雰囲気:0.5Pa、スパッタガス:アルゴン(Ar)、酸素(O)量:0.5体積%の条件で、GZOからなる中間コンタクト層を、製膜温度を変えて形成した。中間コンタクト層の抵抗率を、4端子抵抗測定器にて測定したシート抵抗と膜厚より求めた。
図6に、中間コンタクト層の製膜時の基板温度と抵抗率の関係を示す。同図において、横軸は基板温度、縦軸は抵抗率である。基板温度が低くなると抵抗率が上昇し、基板温度30℃以上50℃以下にて抵抗率1Ω・cm以上5Ω・cm以下が得られた。
DCスパッタリング装置にて、ターゲット:GaドープZnO焼結体を用い、減圧雰囲気:0.5Pa、スパッタガス:アルゴン(Ar)、製膜温度:50℃の条件で、酸素添加量を変えてGZOからなる中間コンタクト層を形成した。
図7に、酸素添加量と中間コンタクト層の抵抗率の関係を示す。同図において、横軸は酸素添加量、縦軸は抵抗率である。図8に、各酸素添加量で形成した中間コンタクト層の透過スペクトルを示す。同図において、横軸は波長、縦軸は内部透過率である。なお、図7及び図8における中間コンタクト層の膜厚は60nmとした。
図7に示すように、酸素を添加することによって抵抗率が上昇した。特に、0.5体積%以上5体積%以下の酸素添加量で、抵抗率が1Ω・cm以上5Ω・cm以下となった。
図8に示すように、酸素添加量が0.5体積%以上5体積%以下の場合、長波長領域での透過率を高くすることができ、波長450nmから800nmの領域で透過率95%以上が得られた。一方、酸素添加量が0体積%から0.4体積%の場合は、波長が長くなるほど透過率が減少し、波長600nm以上で透過率が95%以下となった。このように、中間コンタクト層形成時の酸素添加量を0.5体積%以上5体積%以下とすることで、長波長領域での透過率を高くすることができた。
次に、上記製造方法により、製膜温度及び酸素添加量を調整して抵抗率を変えた中間コンタクト層(膜厚30nm、50nm、100nm)を有する太陽電池モジュールを製造した。図9に、中間コンタクト層の抵抗率と太陽電池モジュールの出力(相対比)を示す。いずれの中間コンタクト層膜厚でも、抵抗率が1Ω・cm以上5Ω・cm以下の範囲でモジュール出力が大きくなった。中間コンタクト層膜厚50nmの太陽電池モジュールにおいて、抵抗率1Ω・cm以上5Ω・cmの範囲で、膜厚100nm抵抗率10Ω・cmの中間コンタクト層を形成したモジュールに対するモジュール出力が10%以上増大しており、モジュール出力を大幅に向上させることができた。
また、抵抗率がそれぞれ1Ω・cm、3Ω・cm、5Ω・cmの膜厚が異なる中間コンタクト層を形成した太陽電池モジュールを製造した。図10に、中間コンタクト層の膜厚と太陽電池モジュールの出力(相対比)を示す。図10から明らかなように、膜厚が50nmから80nmの範囲内でモジュール出力が増大した。
以上のように、製膜温度30℃以上50℃以下にて中間コンタクト層を製膜して、抵抗率1Ω・cm以上5Ω・cm以下が得られた。更に、製膜時に酸素を0.5体積%以上5体積%以下添加することにより、吸収波長帯域全体で高い透過率とすることができた。このように、製膜温度および製膜時の酸素添加量を最適化して、抵抗率1Ω・cm以上5Ω・cm、膜厚50nm以上80nmの中間コンタクト層を形成することにより、高いモジュール出力の太陽電池が得られた。
図11に、中間コンタクト層の製膜温度と太陽電池モジュールの歩留まり(相対比)との関係を示す。同図において、横軸は基板温度、縦軸は歩留まりである。このように、製膜温度30℃以上50℃以下にて中間コンタクト層を形成すると、歩留まりを向上させることができた。
ガラス基板上に、DCスパッタリング装置にて、ターゲット:GaドープZnO焼結体を用い、減圧雰囲気:0.5Pa、スパッタガス:アルゴン(Ar)、酸素(O)量:0.5体積%、製膜温度:50℃の条件で、GZOからなる中間コンタクト層を形成した。中間コンタクト層の抵抗率を測定したところ、2.5Ω・cmだった。その後、減圧雰囲気:5×10−4Paにて、IRヒータを用い150℃で加熱処理した。その結果、中間コンタクト層の抵抗率は、4.0Ω・cmに上昇した。さらに、長波長領域での透過率が高くなり、波長450nmから800nmの領域で透過率3%が以上高くなった。
中間コンタクト層を形成後に上記条件にて加熱処理をした太陽電池モジュールと、加熱処理をしなかった太陽電池モジュールとを作製し、性能を評価した。その結果、加熱処理を施した太陽電池モジュールは、加熱処理無しの太陽電池モジュールに比べ、発電電流が2%上昇した。このように加熱処理により抵抗率が増加し、更に長波長域の透過率が向上したため、モジュール性能を向上させることができた。
本発明の光電変換装置の製造方法により製造される光電変換装置の構成を表す概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。 中間コンタクト層の製膜温度と抵抗率の関係を示すグラフである。 酸素添加量と中間コンタクト層の抵抗率の関係を示すグラフである。 各酸素添加量で形成した中間コンタクト層の透過スペクトルである。 中間コンタクト層の抵抗率と太陽電池モジュールの出力を示すグラフである。 中間コンタクト層の膜厚と太陽電池モジュールの出力を示すグラフである。 中間コンタクト層の製膜温度と太陽電池モジュールの歩留まりとの関係を示すグラフである。
符号の説明
1 基板
2 透明電極層
3 光電変換層
4 裏面電極層
5 中間コンタクト層
6 太陽電池モジュール
100 光電変換装置
101 第1電池層
102 第2電池層

Claims (4)

  1. 積層された少なくとも2層の電池層と、該2層の電池層の間に介在し、該2層の電池層を電気的及び光学的に接続する中間コンタクト層とを備えた光電変換装置の製造方法であって、
    前記中間コンタクト層が、ガリウムを添加した酸化亜鉛からなり、酸素を添加した希ガスをスパッタガスとして用いたスパッタリング法で形成され
    前記中間コンタクト層が、膜厚40nm以上80nm以下、抵抗率1Ω・cm以上5Ω・cm以下となるように、前記中間コンタクト層を30℃以上50℃以下の温度、及び、前記スパッタガス中の前記酸素の添加量を前記酸素及び前記希ガスの体積の合計に対して0.5体積%以上5体積%以下として形成する光電変換装置の製造方法。
  2. 前記中間コンタクト層を形成した後に、前記中間コンタクト層が真空中で加熱される請求項1に記載の光電変換装置の製造方法。
  3. 前記中間コンタクト層が、1×10−4Pa以上5×10−4Pa以下の減圧雰囲気で加熱される請求項に記載の光電変換装置の製造方法。
  4. 前記中間コンタクト層が、140℃以上200℃以下の温度で加熱される請求項または請求項に記載の光電変換装置の製造方法。
JP2007309130A 2007-11-29 2007-11-29 光電変換装置の製造方法 Expired - Fee Related JP5030745B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309130A JP5030745B2 (ja) 2007-11-29 2007-11-29 光電変換装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309130A JP5030745B2 (ja) 2007-11-29 2007-11-29 光電変換装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009135220A JP2009135220A (ja) 2009-06-18
JP5030745B2 true JP5030745B2 (ja) 2012-09-19

Family

ID=40866857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309130A Expired - Fee Related JP5030745B2 (ja) 2007-11-29 2007-11-29 光電変換装置の製造方法

Country Status (1)

Country Link
JP (1) JP5030745B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061017A (ja) * 2009-09-10 2011-03-24 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法
JP2011109011A (ja) * 2009-11-20 2011-06-02 Mitsubishi Heavy Ind Ltd 光電変換装置
KR102564282B1 (ko) * 2018-05-10 2023-08-11 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 텐덤 태양전지 및 이의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987833A (ja) * 1995-09-26 1997-03-31 Asahi Glass Co Ltd 透明導電膜の製造方法
US20020084455A1 (en) * 1999-03-30 2002-07-04 Jeffery T. Cheung Transparent and conductive zinc oxide film with low growth temperature
JP2002118273A (ja) * 2000-10-05 2002-04-19 Kanegafuchi Chem Ind Co Ltd 集積型ハイブリッド薄膜光電変換装置
JP2002222972A (ja) * 2001-01-29 2002-08-09 Sharp Corp 積層型太陽電池
JP2003204071A (ja) * 2001-12-28 2003-07-18 Mitsubishi Heavy Ind Ltd Ga含有酸化亜鉛膜を有する光電変換素子及びその製造方法
JP4568531B2 (ja) * 2004-05-07 2010-10-27 三菱重工業株式会社 集積型太陽電池及び集積型太陽電池の製造方法
JP2006120745A (ja) * 2004-10-20 2006-05-11 Mitsubishi Heavy Ind Ltd 薄膜シリコン積層型太陽電池
JP2007227631A (ja) * 2006-02-23 2007-09-06 Mitsubishi Heavy Ind Ltd 薄膜シリコン太陽電池及びその製造方法
JP2007258537A (ja) * 2006-03-24 2007-10-04 Mitsubishi Heavy Ind Ltd 光電変換装置及びその製造方法

Also Published As

Publication number Publication date
JP2009135220A (ja) 2009-06-18

Similar Documents

Publication Publication Date Title
JP5330723B2 (ja) 光電変換装置
JP5022341B2 (ja) 光電変換装置
WO2010052953A1 (ja) 光電変換装置の製造方法及び光電変換装置
WO2010050035A1 (ja) 光電変換装置の製造方法
JP4764469B2 (ja) 光電変換装置及び光電変換装置の製造方法
JP5030745B2 (ja) 光電変換装置の製造方法
WO2011030598A1 (ja) 光電変換装置の製造方法
JP5254917B2 (ja) 光電変換装置の製造方法
WO2011070805A1 (ja) 光電変換装置の製造方法
WO2011061956A1 (ja) 光電変換装置
WO2010064455A1 (ja) 光電変換装置
WO2011040078A1 (ja) 光電変換装置
WO2012014550A1 (ja) 光電変換装置の製造方法
WO2012036074A1 (ja) 光電変換装置の製造方法
JP4875566B2 (ja) 光電変換装置の製造方法
WO2010061667A1 (ja) 光電変換装置の製造方法
JP2009152441A (ja) 光電変換装置の製造方法及び光電変換装置
WO2011033885A1 (ja) 光電変換装置
JP2009158667A (ja) 光電変換装置及びその製造方法
JP2009164251A (ja) 光電変換装置の製造方法
JP2010251424A (ja) 光電変換装置
JP2010135637A (ja) 光電変換装置
JP2010141198A (ja) 光電変換装置
JP2011077380A (ja) 光電変換装置
JP2010199305A (ja) 光電変換装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees