WO2010058443A1 - 配線基板及び配線基板の製造方法 - Google Patents

配線基板及び配線基板の製造方法 Download PDF

Info

Publication number
WO2010058443A1
WO2010058443A1 PCT/JP2008/003401 JP2008003401W WO2010058443A1 WO 2010058443 A1 WO2010058443 A1 WO 2010058443A1 JP 2008003401 W JP2008003401 W JP 2008003401W WO 2010058443 A1 WO2010058443 A1 WO 2010058443A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
layer
wiring
prepreg
metal plate
Prior art date
Application number
PCT/JP2008/003401
Other languages
English (en)
French (fr)
Inventor
阿部知行
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/003401 priority Critical patent/WO2010058443A1/ja
Priority to JP2010539054A priority patent/JP5170253B2/ja
Priority to KR1020117012427A priority patent/KR101148628B1/ko
Publication of WO2010058443A1 publication Critical patent/WO2010058443A1/ja
Priority to US13/111,257 priority patent/US20110220396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4641Manufacturing multilayer circuits by laminating two or more circuit boards having integrally laminated metal sheets or special power cores
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers

Definitions

  • the present invention relates to a wiring board and a method for manufacturing the wiring board, and more specifically to a wiring board including a conductive core substrate and a method for manufacturing the wiring board.
  • a demand for miniaturization of electronic parts such as semiconductor elements and wiring boards (package boards) such as printed boards provided in electronic devices.
  • electronic parts such as semiconductor elements and wiring boards (package boards) such as printed boards provided in electronic devices.
  • wiring boards such as printed boards provided in electronic devices.
  • the importance of multilayer wiring boards in which wiring layers are multilayered is increasing.
  • a multilayer wiring board for example, a built-up multilayer wiring board in which wiring in which insulating layers and conductor layers are alternately stacked is formed on one main surface or both main surfaces of a core substrate is employed.
  • a demand for miniaturization of electronic parts such as semiconductor elements and wiring boards (package boards) such as printed boards provided in electronic devices.
  • electronic parts such as semiconductor elements and wiring boards (package boards) such as printed boards provided in electronic devices.
  • wiring boards such as printed boards provided in electronic devices.
  • the importance of multilayer wiring boards in which wiring layers are multilayered is increasing.
  • a multilayer wiring board for example, a built-up multilayer wiring board in which wiring in which insulating layers and conductor layers are alternately stacked is formed on one main surface or both main surfaces of a core substrate is employed.
  • the thermal expansion coefficient is about 12 ppm / ° C. to 20 ppm / ° C.
  • a semiconductor element made of silicon (Si) has a thermal expansion coefficient of about 3.5 ppm / ° C.
  • the thermal expansion coefficients of the wiring layer and the semiconductor element are greatly different. Therefore, when a semiconductor element is mounted on the build-up multilayer wiring board by bare chip, thermal stress and thermal strain may occur between the semiconductor element and the build-up multilayer wiring board, resulting in fatigue failure or disconnection. There is.
  • a base material including a carbon fiber (carbon fiber) material is adopted as the core substrate, and a thermally conductive material is provided above and below the core substrate.
  • a wiring board in which a wiring layer including the wiring layer is arranged has been proposed. JP-T-2004-515610
  • the thickness of the wiring layer and the insulating layer laminated on the surface of the core substrate is 6.0 mm to 7.0 mm. That is, the thickness of the wiring layer and the insulating layer is about 5 to 6 times that of the core substrate.
  • the thermal expansion coefficient of the glass epoxy prepreg is usually 10 ppm / ° C. to 20 ppm / ° C., which is larger than that of a core substrate containing a carbon fiber (carbon fiber) material.
  • the glass epoxy prepreg on the wiring board expands more than the semiconductor element. Furthermore, since the proportion of the wiring layer containing the heat conductive material is reduced, the amount of stress deformation caused by thermal expansion of the glass epoxy prepreg is more dominant than the amount of stress deformation of the wiring layer. become. Therefore, there has been a problem that thermal stress and thermal strain are generated in the wiring board, resulting in fatigue failure or disconnection.
  • An object of the present invention is to provide a wiring board having a structure capable of suppressing fatigue failure or disconnection due to thermal stress and thermal strain even when the total number of wiring layers is increased in a multilayer wiring structure, and a method for manufacturing the wiring board. .
  • a substrate containing a carbon material a first insulating layer formed on the substrate, and formed on the first insulating layer.
  • the resin has a thermal expansion coefficient smaller than that of the resin and is larger than the elastic modulus of the resin.
  • the amount of displacement due to the thermal expansion of the resin is suppressed by the metal having the elastic modulus. Therefore, in addition to the substrate containing the carbon material, the amount of displacement due to the thermal expansion of the wiring substrate formed by stacking the wiring layers is suppressed. Accordingly, fatigue damage and disconnection of the wiring board due to thermal stress and thermal strain when the semiconductor element is mounted on the wiring board by bare chip can be suppressed.
  • FIG. 1 is a diagram showing a structure of a wiring board 50a according to the first embodiment.
  • FIG. 2 is a diagram showing a method of manufacturing the wiring board 50a according to the first embodiment.
  • FIG. 3 is a diagram showing a method of manufacturing the wiring board 50a according to the first embodiment.
  • FIG. 4 is a diagram showing a method of manufacturing the wiring board 50a according to the first embodiment.
  • FIG. 5 is a diagram showing a method of manufacturing the wiring board 50a according to the first embodiment.
  • FIG. 6 is a diagram showing a method of manufacturing the wiring board 50a according to the first embodiment.
  • FIG. 7 is a table showing the thermal expansion coefficient, elastic modulus, thermal deformation amount, and stress deformation amount of the core substrate 1, the prepreg 12, and the metal plate 4 according to the first embodiment.
  • FIG. 8 is a diagram showing the structure of the wiring board 50b according to the second embodiment.
  • FIG. 9 is a diagram showing a method of manufacturing the wiring board 50b according to the second embodiment.
  • FIG. 10 is a diagram showing a method of manufacturing the wiring board 50b according to the second embodiment.
  • FIG. 11 is a diagram showing a method of manufacturing the wiring board 50b according to the second embodiment.
  • FIG. 12 is a diagram showing a method of manufacturing the wiring board 50b according to the second embodiment.
  • FIG. 13 is a diagram showing a method of manufacturing the wiring board 50b according to the second embodiment.
  • FIG. 1 shows the structure of the wiring board 50a according to the first embodiment.
  • the core substrate is 1, the lower hole is 2, the insulating resin is 3, the metal plate is 4, the lower hole is 5, the first wiring layer is 6, The first intermediate layer is 7, the glass epoxy layer is 8, the second wiring layer is 9, the second intermediate layer is 11, the prepreg is 12, the through hole is 14, the third wiring layer is 15, and the wiring layer is 17. .
  • the flat core substrate 1 is formed by impregnating a resin material into glass fibers and prepregs 1b, 1c, and 1d obtained by impregnating an epoxy resin composition into a conductive carbon fiber (carbon fiber) material.
  • the prepregs 1 a and 1 e and a copper foil (not shown) that covers both surfaces of the core substrate 1 are laminated to form a laminate.
  • the total thickness of the core substrate 1 is, for example, 1.0 mm to 2.0 mm.
  • the number of prepregs for forming the carbon fiber reinforced core portion can be selected according to the thickness, strength, etc. of the core substrate 1 to be formed.
  • the thicknesses of the prepregs 1b, 1c, and 1d vary depending on the thickness of the carbon fiber to be used, but are, for example, about 100 ⁇ m to 300 ⁇ m. In addition to carbon fibers, carbon nanotubes, aramid fibers, or poly-p-phenylenebenzobisoxazole (PBO) fibers may be used.
  • the prepregs 1b, 1c, and 1d are mixed with 40 wt% to 60 wt% of carbon fibers.
  • the semiconductor element is made of silicon (Si)
  • its thermal expansion coefficient is about 3.5 ppm / ° C. This is because the thermal expansion coefficients of the prepregs 1b, 1c, and 1d are set to 1 ppm / ° C. to 2 ppm / ° C. in accordance with the thermal expansion coefficient of the semiconductor element.
  • the thermal expansion coefficient of the cured product of the prepregs 1a and 1e is about 12 ppm / ° C. to 16 ppm / ° C. by impregnating the glass fiber with a resin.
  • the elastic modulus of the cured product of the prepregs 1a and 1e is 10 GPa to 30 GPa.
  • the lower hole 2 is formed so as to penetrate the core substrate 1.
  • the number of formations of the lower holes 2 depends on the wiring layout and the like. Specifically, for example, about 1000 lower holes 2 may be formed.
  • the diameter of the pilot hole 2 is preferably formed, for example, from 0.3 mm to 1.0 mm and at intervals of, for example, 0.5 mm to 2.0 mm.
  • the insulating resin 3 is formed between the inside of the lower hole 2 and the outside of the through hole 14.
  • the insulating resin 3 is preferably an epoxy resin, for example.
  • the thickness of the insulating resin 3 is desirably 50 ⁇ m to 300 ⁇ m, for example. Since the insulating resin 3 serves as an insulating layer on the inner wall surface of the pilot hole 2 of the core substrate 1 having conductivity, it reliably insulates the core substrate 1 from the first wiring layer 6 and the second wiring layer 9 described later. can do.
  • the first intermediate layer 7 is formed from the metal plate 4 and the first wiring layer 6.
  • a lower hole 5 is formed in the metal plate 4 so as to penetrate the metal plate 4.
  • the first wiring layer 6 is formed so as to cover the surface of the metal plate 4 and the inner wall surface of the lower hole 5.
  • a prepreg 12 is formed between the metal plate 4 and the lower hole 5.
  • the number of formation of the lower holes 5 depends on the wiring layout or the like, but specifically, for example, about 1000 lower holes 5 may be formed.
  • the diameter of the lower hole 5 is preferably 0.3 mm to 1.0 mm, for example, and is formed with an interval of 0.5 mm to 2.0 mm, for example.
  • the arrangement positions of the lower hole 5 and the lower hole 2 coincide in a plane.
  • the metal plate 4 desirably has a thermal expansion coefficient of, for example, 0 ppm / ° C. to 5 ppm / ° C.
  • the metal plate 4 is desirably formed with a thickness of, for example, 50 ⁇ m to 200 ⁇ m.
  • the metal plate 4 is preferably made of, for example, Invar, Kovar, 42 alloy (Fe-42% Ni), tungsten, or molybdenum.
  • the elastic modulus of the metal plate 4 is desirably 130 GPa to 410 GPa, for example.
  • the elastic modulus of Invar is 140 GPa to 160 GPa.
  • the elastic modulus of Kovar is 130 GPa to 140 GPa.
  • the elastic modulus of 42 alloy is 140 GPa to 190 GPa.
  • the elastic modulus of tungsten is 403 GPa.
  • the elastic modulus of molybdenum is 327 GPa.
  • the first wiring layer 6 is preferably formed of, for example, copper (Cu).
  • the first wiring layer 6 is preferably formed with a thickness of 20 ⁇ m to 40 ⁇ m, for example.
  • the first wiring layer 6 is preferably used as a ground layer or a power supply layer, for example.
  • the second intermediate layer 11 is formed from the glass epoxy layer 8 and the second wiring layer 9.
  • the glass epoxy layer 8 is desirably formed with a thickness of 60 ⁇ m to 200 ⁇ m, for example.
  • the second wiring layer 9 is formed so as to sandwich the glass epoxy layer 8 vertically.
  • the second wiring layer 9 is desirably formed of, for example, copper (Cu).
  • the second wiring layer 9 is desirably formed with a thickness of 18 ⁇ m to 35 ⁇ m, for example.
  • the second wiring layer 9 is preferably used as a signal layer, for example.
  • the prepreg 12 is formed so as to be embedded between the core substrate 1 and the first intermediate layer 7 and between the first intermediate layer 7 and the second intermediate layer 11.
  • the prepreg 12 is desirably formed by, for example, impregnating a glass cloth with a thermosetting resin material.
  • the prepreg 12 is preferably formed with a thickness of, for example, 100 ⁇ m to 200 ⁇ m.
  • a prepreg 12 between the prepared hole 5 and a third wiring layer 15 described later is formed by laminating a core substrate 1, a first intermediate layer 7, and a second intermediate layer 11 described later via the prepreg 12. At this time, the heated and pressurized prepreg 12 is filled.
  • the coefficient of thermal expansion of the prepreg 12 is desirably 10 ppm / ° C. to 20 ppm / ° C.
  • the elastic modulus of the cured product of the prepreg 12 is 10 GPa to 30 GPa.
  • the wiring layer 17 is a layer in which the first intermediate layer 7, the second intermediate layer 11, and the prepreg 12 are stacked.
  • the thickness of the wiring layer 17 including the first intermediate layer 7 and the second intermediate layer 11 laminated on one side of the core substrate 1 is For example, it is 6.0 mm to 7.0 mm. That is, the thickness of the wiring layer 17 is about 5 to 6 times that of the core substrate 1.
  • the through hole 14 is formed so as to penetrate the core substrate 1, the first intermediate layer 7, the second intermediate layer 11, and the prepreg 12.
  • the through hole 14 is formed substantially concentrically with the lower hole 2 of the core substrate 1 and the lower hole 5 of the first intermediate layer 7.
  • the through hole 14 is desirably formed with a smaller diameter than the lower hole 2 and the lower hole 5.
  • the through hole 14 is desirably formed to have a diameter of 0.1 ⁇ m to 0.4 ⁇ m, for example.
  • Copper (Cu) is formed on substantially the entire inner wall surface of the through hole 14, the inner wall surface of the insulating resin 3 in the core substrate 1, the first intermediate layer 7, the second intermediate layer 11, and the periphery of the through hole 14 on the prepreg 12. ) Is formed by plating.
  • 2A shows prepregs 1b, 1c, and 1d that are formed by impregnating a carbon fiber with a resin material (polymer material), and prepregs 1a that are formed by impregnating a glass fiber with a resin material.
  • 1e and a copper foil (not shown) covering both surfaces of the core substrate 1 are overlapped and aligned.
  • the prepregs 1b, 1c, and 1d are desirably mixed with 40 wt% to 60 wt% carbon fiber.
  • the semiconductor element is made of silicon (Si)
  • its thermal expansion coefficient is about 3.5 ppm / ° C.
  • the thermal expansion coefficients of the prepregs 1b, 1c, and 1d are larger than the thermal expansion coefficient of silicon.
  • the mixing ratio of the carbon fibers in the prepregs 1b, 1c, and 1d is 60 wt% or more, it becomes difficult to form the prepregs 1b, 1c, and 1d.
  • the carbon fiber material for example, a carbon fiber cloth or a carbon fiber mesh or a carbon fiber nonwoven fabric that is woven with carbon fiber yarns bundled with carbon fibers and oriented so as to spread in the surface spreading direction can be used.
  • the epoxy resin composition containing the carbon fiber material is mixed with an inorganic filler such as an alumina filler, an aluminum nitride filler, or a silica filler to reduce the coefficient of thermal expansion.
  • an inorganic filler such as an alumina filler, an aluminum nitride filler, or a silica filler to reduce the coefficient of thermal expansion.
  • carbon nanotubes may be used in addition to the carbon fibers described above.
  • 10 wt% to 45 wt% of silica filler in the entire composition is mixed with the epoxy resin composition enclosing the carbon fiber.
  • the content rate of the silica filler in the whole composition is 10 wt% or less, it becomes difficult to ensure the flame resistance of the epoxy resin composition.
  • the content rate of the silica filler in the whole composition becomes 45 wt% or more, the moldability of the epoxy resin composition becomes difficult.
  • the prepregs 1a and 1e are arranged between the prepregs 1b, 1c, and 1d and a copper foil (not shown), and are interposed between the prepregs 1b, 1c, and 1d and the copper foil.
  • a woven fabric made of glass fiber was impregnated with an epoxy resin, and the epoxy resin was dried to be in a B-stage state.
  • the thickness of the prepregs 1a and 1e is about 100 ⁇ m to 200 ⁇ m.
  • the reason for using the prepregs 1a and 1e containing glass fibers is to prevent the strength of the core substrate 1 from decreasing and to keep the thermal expansion coefficient of the core substrate 1 small.
  • FIG. 2B shows that the prepregs 1a, 1b, 1c, 1d, and 1e shown in FIG. 2A and a copper foil (not shown) are heated and pressed from the state in which they are superposed on the surfaces of the prepregs 1a and 1e.
  • the resin contained in the prepregs 1 a, 1 b, 1 c, 1 d, and 1 e is thermoset to form the flat core substrate 1.
  • the core substrate 1 is configured such that a copper foil is integrally attached and formed on both surfaces of a laminated body in which prepregs 1b, 1c, and 1d are integrally formed via prepregs 1a and 1e.
  • the core substrate 1 thus formed had an average coefficient of thermal expansion in the plane direction of 2 ppm / ° C. and an average coefficient of thermal expansion in the thickness direction of 80 ppm / ° C. in the temperature range of 25 ° C. to 200 ° C.
  • FIG. 2C is a diagram showing a state where the core substrate 1 is drilled to form the prepared hole 2.
  • the diameter of the pilot hole 2 is desirably 0.8 mm to 1.0 mm, for example.
  • the prepared holes 2 are preferably formed at intervals of 1.0 mm to 2.0 mm, for example. When the lower hole 2 is formed, irregularities occur because silica filler (not shown) is also removed from the inner wall of the lower hole 2.
  • FIG. 2D shows a state where the inner wall surface of the lower hole 2 in the core substrate 1 is covered with a plating layer (not shown) and then the lower hole 2 is filled with the insulating resin 3.
  • the unevenness present on the inner wall of the lower hole 2 acts as an anchor so that the insulating resin 3 is firmly embedded in the lower hole 2.
  • FIG. 3A is a diagram showing a state in which a metal plate 4 constituting a first intermediate layer 7 described later is prepared.
  • FIG. 3B is a view showing that the metal plate 4 is drilled to form the prepared hole 5.
  • the lower holes 5 are preferably formed with a diameter of, for example, 0.8 mm to 1.0 mm, and at an interval of, for example, 1.0 mm to 2.0 mm.
  • FIG. 3C is a diagram showing that the first wiring layer 6 is formed on the surface of the metal plate 4 and the inner wall surface of the lower hole 5.
  • electroless copper plating and electrolytic copper plating are applied to the metal plate 4, and the first wiring is formed on the surface of the metal plate 4 and the inner wall surface of the lower hole 5. Covered by layer 6. By such a process, the first intermediate layer 7 is formed.
  • FIG. 3D shows that a laminated body of a glass epoxy layer 8 and a conductive layer 9a constituting the second intermediate layer 11 described later is prepared.
  • the conductive layer 9a is formed so as to sandwich the glass epoxy layer 8 vertically.
  • FIG. 3E is a view showing a state in which a dry film resist (photoresist) (not shown) is laminated on the surface of the conductive layer 9a, and is exposed and developed. By this step, a resist pattern 10 is formed on a portion where a second wiring layer 9 described later is formed.
  • a dry film resist photoresist
  • FIG. 3F is a diagram showing etching of the conductive layer 9a using the resist pattern 10 as a mask. By this etching process, the second wiring layer 9 is formed under the resist pattern 10.
  • FIG. 3G is a view showing that the resist pattern 10 is removed from the second wiring layer 9 after FIG. 3F.
  • the second wiring layer 9 is exposed on the surface of the glass epoxy layer 8 and the second intermediate layer 11 is formed.
  • the 4A shows the metal foil 13, the prepreg 12a, the second intermediate layer 11, the prepreg 12b, the first intermediate layer 7, the prepreg 12c, the core substrate 1, the prepreg 12d, the first intermediate layer 7, the prepreg 12e, and the second intermediate layer 11. It is a figure which shows the state which has arrange
  • the prepregs 12a to 12f are preferably formed by, for example, impregnating a glass cloth with a thermosetting resin material such as an epoxy resin.
  • the metal foil 13 is preferably made of copper (Cu).
  • FIG. 4B is a view showing a state in which the core substrate 1, the first intermediate layer 7 having the lower holes 5, the second intermediate layer 11, and the metal foil 13 are laminated and formed through the prepreg 12.
  • the prepreg 12a, the prepreg 12b, the prepreg 12c, the prepreg 12d, the prepreg 12e, and the prepreg 12f illustrated in FIG. 4A are cured as a result of the heat treatment to become the prepreg 12 illustrated in FIG. 4B.
  • the core substrate 1, the first intermediate layer 7 having the prepared holes 5, the second intermediate layer 11, and the metal foil 13 are laminated and formed through the prepreg 12.
  • the prepared holes 5 formed in advance in the first intermediate layer 7 are filled with the prepreg 12.
  • each member is pressurized by a vacuum press (not shown).
  • the pressurizing temperature is desirably 170 ° C. to 220 ° C., for example.
  • the prepregs 12a to 12f are interposed between the layers in an uncured state, and the core substrate 1, the first intermediate layer 7 and the second intermediate layer 11 are prepreg in a state where the respective layers are electrically insulated by heating and pressing. 12 is laminated and formed.
  • FIG. 5A is a diagram showing a through hole 14a for forming a through hole 14 to be described later in the core substrate 1 in which the first intermediate layer 7, the second intermediate layer 11, and the prepreg 12 are stacked.
  • the through hole 14a is concentric with the lower hole 2 of the core substrate 1 and the lower hole 5 of the first intermediate layer 7 by drilling, and the first intermediate layer 7, the second intermediate layer 11, the prepreg 12, and the core. It is desirable to form through the substrate 1 in the thickness direction.
  • the through hole 14a is desirably formed to have a diameter of 0.2 ⁇ m to 0.4 ⁇ m, for example.
  • the through hole 14 a is preferably formed to have a smaller diameter than the lower hole 2 of the core substrate 1 and the lower hole 5 of the first intermediate layer 7.
  • the insulating resin 3 is exposed on the inner wall surface of the through hole 14a at the part where the through hole 14a penetrates the core substrate 1. Further, the prepreg 12 is exposed on the inner wall surface of the through hole 14a at a portion where the through hole 14a penetrates the first intermediate layer 7.
  • FIG. 5B shows a state in which, after the through hole 14a is formed, the substrate is subjected to electroless copper plating and electrolytic copper plating, and the through hole 14 is formed on the inner surface of the through hole 14a.
  • electroless copper plating an electroless copper plating layer is formed on the entire inner surface of the through hole 14a and the surface of the substrate.
  • the third plating layer 15a is deposited on the entire inner wall surface of the through hole 14a and the entire surface of the substrate.
  • the third plating layer 15a formed on the inner wall surface of the through hole 14a becomes a through hole 14 that electrically connects the wiring patterns on the front and back surfaces of the substrate.
  • FIG. 6A is a view showing that a dry film resist (photoresist) (not shown) is laminated on the surface of the third plating layer 15a deposited on the substrate surface, and the dry film resist is exposed and developed. As shown in FIG. 6A, a resist pattern 16 is formed on a portion where a third wiring layer 15 described later is formed.
  • a dry film resist photoresist
  • FIG. 6B is a diagram showing that the third plating layer 15a is etched at a portion where the resist pattern 16 is not formed, and the resist pattern 16 is peeled off.
  • the third wiring layer 15 is formed by etching the third plating layer 15a.
  • the third wiring layer 15 is exposed on the surface of the substrate by peeling off the resist pattern 16 on the third wiring layer 15.
  • the wiring substrate 50a including the core substrate 1 and the wiring layer 17 formed by laminating the first intermediate layer 7, the second intermediate layer 11, and the prepreg 12 is formed.
  • FIG. 7 is a table showing the thermal expansion coefficient, elastic modulus, thermal deformation amount, and stress deformation amount of the metal plate 4 in the core substrate 1 and the prepreg 12 and the first intermediate layer 7 according to the first embodiment.
  • the thermal expansion coefficient in the core substrate 1 is 1 ppm / ° C. to 2 ppm / ° C.
  • the coefficient of thermal expansion in the prepreg 12 is 10 ppm / ° C. to 20 ppm / ° C.
  • the thermal expansion coefficient of the metal plate 4 is 0 ppm / ° C. to 5 ppm / ° C.
  • the elastic modulus in the core substrate 1 is 50 GPa to 60 GPa.
  • the elastic modulus in the prepreg 12 is 10 GPa to 30 GPa.
  • the elastic modulus in the metal plate 4 is 130 GPa to 410 GPa.
  • the prepreg 12 has a larger coefficient of thermal expansion than the core substrate 1, the amount of thermal deformation is increased. Since the prepreg 12 has a smaller elastic modulus than the core substrate 1, the stress deformation amount increases when stress due to elongation of the metal plate 4 is applied to the prepreg 12. However, in the wiring layer 17, the metal plate 4 and the prepreg 12 are formed in close contact via the first wiring layer 6. Since the metal plate 4 has a smaller thermal expansion coefficient than the prepreg 12, the amount of thermal deformation is small. On the other hand, since the metal plate 4 has a larger elastic modulus than the prepreg 12, the amount of stress deformation is small.
  • the thermal deformation amount of the metal plate 4 is small, but the thermal deformation amount of the prepreg 12 is large. Therefore, an elongation stress is applied to the metal plate 4 through the first wiring layer 6 due to a change in the displacement amount due to the thermal expansion of the prepreg 12.
  • the elastic modulus of the metal plate 4 is large, even if the elongation stress from the prepreg 12 is applied to the metal plate 4, the deformation amount of the metal plate 4 is small. Therefore, the amount of displacement of the prepreg 12 formed in close contact with the first wiring layer 6 is suppressed. Therefore, the displacement amount resulting from the thermal expansion of the wiring layer 17 formed by laminating the metal plate 4 and the prepreg 12 is suppressed.
  • the amount of displacement due to the thermal expansion of the wiring board 50a formed by laminating the wiring layer 17 in addition to the core substrate 1 containing the carbon material is suppressed.
  • fatigue damage and disconnection of the wiring board 50a due to thermal stress and thermal strain when the semiconductor element is mounted on the wiring board 50a in a bare chip can be suppressed.
  • the wiring board 50a according to the first embodiment even when the total number of the wiring layers 17 increases, the amount of displacement caused by the thermal expansion of the prepreg 12 is suppressed by the metal plate 4 constituting the first intermediate layer 7. . Therefore, the amount of displacement due to the thermal expansion of the wiring substrate 50a formed by laminating the wiring layer 17 in addition to the core substrate 1 containing the carbon material is suppressed. Therefore, fatigue damage and disconnection of the wiring board 50a due to thermal stress and thermal strain when the semiconductor element is mounted on the wiring board 50a in a bare chip can be suppressed. (Second embodiment)
  • FIG. 8 to FIG. 13 explain the structure of the wiring board 50b and the manufacturing method of the wiring board 50b in detail.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 8 shows the structure of the wiring board 50b according to the second embodiment.
  • the core substrate is 21, the lower hole is 2, the insulating resin is 3, the metal plate is 4, the lower hole is 5, the first wiring layer is 6, The first intermediate layer is 7, the glass epoxy layer is 8, the second wiring layer is 9, the second intermediate layer is 11, the prepreg is 12, the through hole is 14, the third wiring layer is 15, and the wiring layer is 17. .
  • the flat core substrate 21 has a metal plate 21c in the center, and a prepreg 21b formed by impregnating an epoxy resin composition into a conductive carbon fiber (carbon fiber) material so as to sandwich the upper and lower sides of the metal plate 21c. And 21d are stacked one above the other on the metal plate 21c. The prepregs 21a and 21e are stacked between the prepregs 21b and 21d and a copper foil (not shown).
  • the total thickness of the core substrate 21 is, for example, 1.0 mm to 2.0 mm.
  • the metal plate 21c preferably has a thermal expansion coefficient of, for example, 0 ppm / ° C. to 5 ppm / ° C.
  • the metal plate 21c is desirably formed with a thickness of, for example, 500 ⁇ m to 2000 ⁇ m.
  • the metal plate 21c is preferably made of, for example, Invar, Kovar, 42 alloy (Fe-42% Ni), tungsten, or molybdenum.
  • the elastic modulus of the metal plate 21c is desirably 130 GPa to 410 GPa, for example.
  • the elastic modulus of Invar is 140 GPa to 160 GPa.
  • the elastic modulus of Kovar is 130 GPa to 140 GPa.
  • the elastic modulus of 42 alloy is 140 GPa to 190 GPa.
  • the elastic modulus of tungsten is 403 GPa.
  • the elastic modulus of molybdenum is 327 GPa.
  • the prepregs 21b and 21d serve as a carbon fiber reinforced core, and the figure shows an example in which two prepregs 21b and 21d are overlapped.
  • the number of prepregs for forming the carbon fiber reinforced core portion can be appropriately selected according to the thickness and strength of the core substrate 21 to be formed.
  • the thickness of the prepregs 21b and 21d varies depending on the thickness of the carbon fiber to be used, but is about 100 ⁇ m to 300 ⁇ m, for example.
  • the prepregs 21b and 21d are mixed with 40 wt% to 60 wt% of carbon fibers.
  • the semiconductor element is made of silicon (Si)
  • its thermal expansion coefficient is about 3.5 ppm / ° C. This is because, together with the thermal expansion coefficient of the semiconductor element, the thermal expansion coefficients of the prepregs 21b and 21d are set to 1 ppm / ° C. to 2 ppm / ° C.
  • the lower hole 2 is formed so as to penetrate the core substrate 21 as in the first embodiment.
  • the number of formations of the lower holes 2 depends on the wiring layout and the like. Specifically, for example, about 1000 lower holes 2 may be formed.
  • the diameter of the pilot hole 2 is preferably formed, for example, from 0.3 mm to 1.0 mm and at intervals of, for example, 0.5 mm to 2.0 mm.
  • a copper foil (not shown) is coated on the outer surface of the core substrate 21.
  • the copper foil is used to protect the surface of the core substrate 21, to be used as a plating power supply layer when plating the core substrate 21, and to form the core substrate 21 by laminating wiring layers on both surfaces of the core substrate 21. Are provided for the purpose of improving the adhesion between the core substrate 21 and the wiring layer.
  • the thickness of the copper foil is preferably about 15 ⁇ m to 35 ⁇ m, for example.
  • FIG. 9A shows the prepregs 21b and 21d formed by impregnating a carbon fiber with a resin material (polymer material) around a metal plate 21c constituting the core substrate 21, and glass fiber with a resin material.
  • the state where the formed prepregs 21a and 21e and the copper foil (not shown) covering both surfaces of the prepregs 21a and 21e are overlapped and aligned is shown.
  • the prepregs 21b and 21d used in this example are obtained by impregnating a woven fabric formed of long-fiber carbon fibers with an epoxy resin and drying it to bring the epoxy resin into a B-stage state.
  • the thickness of the prepregs 21b and 21d varies depending on the thickness of the carbon fiber to be used, but is about 100 ⁇ m to 300 ⁇ m, for example.
  • the carbon fiber material as in the first embodiment, for example, a carbon fiber cloth or carbon fiber mesh or carbon fiber woven with carbon fiber yarns in which carbon fibers are bundled and oriented so as to spread in the surface spreading direction. Nonwoven fabric can be used.
  • FIG. 9B is a diagram showing heating and pressurization from the state in which the prepregs 21a, 21b, 21d, 21e, the metal plate 21c, and the copper foil (not shown) shown in FIG. 9A are overlapped.
  • the resin contained in the prepregs 21a, 21b, 21d, and 21e is thermally cured to form the flat core substrate 21.
  • the core substrate 21 is configured such that a copper foil is integrally formed on both surfaces of the core substrate 21 formed by integrally forming the prepregs 21b and 21d and the metal plate 21c via the prepregs 21a and 21e. .
  • the core substrate 21 thus formed had an average coefficient of thermal expansion in the plane direction of 2 ppm / ° C. and an average coefficient of thermal expansion in the thickness direction of 80 ppm / ° C. in the temperature range of 25 ° C. to 200 ° C.
  • FIG. 9C is a diagram showing the drilling process performed on the core substrate 21 to form the prepared hole 2.
  • the diameter of the pilot hole 2 is desirably 0.8 mm to 1.0 mm, for example.
  • the prepared holes 2 are preferably formed at intervals of 1.0 mm to 2.0 mm, for example. When the lower hole 2 is formed, irregularities occur because silica filler (not shown) is also removed from the inner wall of the lower hole 2.
  • FIG. 9D shows a state in which the inner wall surface of the lower hole 2 in the core substrate 21 is covered with a plating layer (not shown) and then the insulating resin 3 is filled in the lower hole 2 as in FIG. 2D.
  • FIG. 10A is a diagram showing the preparation of the metal plate 4 constituting the first intermediate layer 7 described later, as in FIG. 3A.
  • FIG. 10B is a diagram showing the formation of the pilot hole 5 by drilling the metal plate 4 as in FIG. 3B.
  • FIG. 10C is a diagram showing that the first wiring layer 6 is formed on the surface of the metal plate 4 and the inner wall surface of the lower hole 5 as in FIG. 3C. By this step, the first intermediate layer 7 is formed.
  • FIG. 10D shows the preparation of a laminated body of a glass epoxy layer 8 and a conductive layer 9a constituting the second intermediate layer 11 described later, as in FIG. 3D.
  • FIG. 10E is a diagram showing a state in which a dry film resist (photoresist) (not shown) is laminated on the surface of the conductive layer 9a, and is exposed and developed, as in FIG. 3E. By this step, a resist pattern 10 is formed on the portion where the second wiring layer 9 is formed.
  • a dry film resist photoresist
  • FIG. 10F is a diagram showing the second wiring layer 9 formed by etching the conductive layer 9a using the resist pattern 10 as a mask, as in FIG. 3F.
  • FIG. 10G is a diagram showing the resist pattern 10 being removed from the second wiring layer 9 after FIG. 10F in the same manner as FIG. 3G.
  • the second wiring layer 9 is exposed on the surface of the glass epoxy layer 8, and the second intermediate layer 11 is formed.
  • the 11A shows the metal foil 13, the prepreg 12a, the second intermediate layer 11, the prepreg 12b, the first intermediate layer 7, the prepreg 12c, the core substrate 21, the prepreg 12d, the first intermediate layer 7, the prepreg 12e, and the second intermediate layer 11. It is a figure which shows the state which has arrange
  • the prepregs 12a to 12f are preferably formed by, for example, impregnating a glass cloth with a thermosetting resin material.
  • the metal foil 13 is preferably made of copper (Cu).
  • FIG. 11B is a diagram showing a state in which the core substrate 21, the first intermediate layer 7 including the lower holes 5, the second intermediate layer 11, and the metal foil 13 are laminated and formed via the prepreg 12.
  • the prepreg 12a, the prepreg 12b, the prepreg 12c, the prepreg 12d, the prepreg 12e, and the prepreg 12f shown in FIG. 11A are cured to become the prepreg 12 shown in FIG. 11B as a result of heat treatment.
  • the core substrate 21, the first intermediate layer 7 including the prepared holes 5, the second intermediate layer 11, and the metal foil 13 are laminated and formed through the prepreg 12.
  • the prepared holes 5 formed in advance in the first intermediate layer 7 are filled with the prepreg 12.
  • the core substrate 21 it is desirable to arrange the core substrate 21 so that the lower hole 2 and the lower hole 5 of the first intermediate layer 7 are concentric. This is to prevent the through hole 14a from penetrating through the core substrate 21 and the first intermediate layer 7 which are conductive members when forming the through hole 14a described later.
  • Each member is pressurized by a vacuum press (not shown).
  • the pressurizing temperature is desirably 170 ° C. to 220 ° C., for example.
  • the prepregs 12a to 12f are interposed between the layers in an uncured state and heated and pressed, so that the core substrate 21, the first intermediate layer 7, and the second intermediate layer 11 are prepreg 12 while the respective layers are electrically insulated. Is laminated and formed.
  • FIG. 12A is a diagram showing a through hole 14a for forming a through hole 14 to be described later in the core substrate 21 in which the first intermediate layer 7, the second intermediate layer 11, and the prepreg 12 are stacked.
  • the through hole 14a is concentric with the lower hole 2 of the core substrate 21 and the lower hole 5 of the first intermediate layer 7, and the first intermediate layer 7, the second intermediate layer 11 and the core substrate 21 are thickened by drilling. It is desirable to form by penetrating in the vertical direction.
  • the through hole 14a is desirably formed with a diameter of, for example, 200 ⁇ m to 400 ⁇ m.
  • the through hole 14 a is preferably formed to have a smaller diameter than the lower hole 2 of the core substrate 21 and the lower hole 5 of the first intermediate layer 7.
  • the insulating resin 3 is exposed on the inner wall surface of the through hole 14a at the part where the through hole 14a penetrates the core substrate 21. Further, the prepreg 12 is exposed on the inner wall surface of the through hole 14a at a portion where the through hole 14a penetrates the first intermediate layer 7.
  • FIG. 12B is a diagram showing that the substrate is subjected to electroless copper plating and electrolytic copper plating after the through hole 14a is formed, as in FIG. 5B.
  • the third plating layer 15a is formed on the entire inner wall surface of the through hole 14 and the entire surface of the substrate.
  • FIG. 13A similarly to FIG. 6A, a dry film resist (photoresist) (not shown) is laminated on the surface of the third plating layer 15a deposited on the surface of the substrate, and the dry film resist is exposed and developed.
  • a resist pattern 16 is formed on a portion where a later-described third plating layer 15a is formed.
  • FIG. 13B is a diagram showing etching of the third plating layer 15a in a portion where the resist pattern 16 is not formed and peeling the resist pattern 16 in the same manner as FIG. 6B.
  • the third wiring layer 15 is formed under the resist pattern 16 by etching the third plating layer 15 a.
  • the third wiring layer 15 is exposed on the surface of the substrate by peeling off the resist pattern 16 on the third wiring layer 15.
  • the wiring substrate 50b including the core substrate 21 and the wiring layer 17 formed by stacking the first intermediate layer 7, the second intermediate layer 11, and the prepreg 12 is formed.
  • the wiring board 50b according to the second embodiment in addition to the wiring board 50a according to the first embodiment, carbon fiber and a metal having a high elastic modulus are applied to the core substrate 21. Therefore, as in the first embodiment, even when the total number of wiring layers 17 increases, the displacement due to the thermal expansion of the prepreg 12 is suppressed by the metal plate 4 in the first intermediate layer 7. Therefore, the amount of displacement due to the thermal expansion of the wiring board 50b formed by laminating the wiring layer 17 in addition to the core substrate 1 containing the carbon material is suppressed. Therefore, fatigue damage and disconnection of the wiring board 50b due to thermal stress and thermal strain when the semiconductor element is mounted on the wiring board 50b in a bare chip can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

(課題)多層配線構造において、配線層の総数が増加しても熱応力及び熱歪みによる疲労破壊又は断線を抑制できる構造を有する配線基板及び配線基板の製造方法を提供する。 (解決手段) 炭素素材を含有する基板と、基板上に形成された第1絶縁層と、第1絶縁層上に形成され、第1絶縁層が有する熱膨張係数よりも小さい熱膨張係数を有し、第1絶縁層が有する弾性率よりも大きい弾性率を有する金属板を有する中間層と、中間層上に形成された第2絶縁層と、を含み、中間層は、金属板上に形成された第1導体層を更に含み、第2絶縁層上に形成された第2導体層と、第2導体層上に形成された第3絶縁層と、を更に含み、炭素素材は、カーボンファイバ又はカーボンナノチューブである。

Description

配線基板及び配線基板の製造方法
 本発明は、配線基板及び配線基板の製造方法に関し、より具体的には、導電性を有するコア基板を備えた配線基板及び配線基板の製造方法に関する。
 電子機器に備えられる半導体素子等の電子部品及びプリント基板等の配線基板(パッケージ基板)の小型化が要求されている。一方、半導体素子の多ピン化に伴い、配線層を多層化した多層配線基板の重要性が高まっている。かかる多層配線基板として、例えば、絶縁層と導体層とが交互に積層された配線がコア基板の一方の主面又は両主面に形成されて成るビルトアップ多層配線基板が採用されている。
 電子機器に備えられる半導体素子等の電子部品及びプリント基板等の配線基板(パッケージ基板)の小型化が要求されている。一方、半導体素子の多ピン化に伴い、配線層を多層化した多層配線基板の重要性が高まっている。かかる多層配線基板として、例えば、絶縁層と導体層とが交互に積層された配線がコア基板の一方の主面又は両主面に形成されて成るビルトアップ多層配線基板が採用されている。
 このようなビルドアップ多層配線基板に半導体素子をベアチップ実装する場合に、以下の問題が発生する。例えば、配線層としてガラスエポキシ樹脂基板を用いる場合、その熱膨張係数は約12ppm/℃乃至20ppm/℃である。一方、シリコン(Si)から成る半導体素子は、その熱膨張係数が約3.5ppm/℃である。このように、配線層と半導体素子との熱膨張係数は大きく相違する。従って、このようなビルドアップ多層配線基板上に半導体素子をベアチップ実装すると、半導体素子とビルドアップ多層配線基板との間に、熱応力及び熱ひずみ等が発生して疲労破壊又は断線等を招くおそれがある。
 上記問題に対応するために、ガラスエポキシ樹脂基板として用いられるガラス布に代えて、カーボン繊維(炭素繊維)材を含む基材をコア基板として採用し、該コア基板の上下に熱伝導性材料を含む配線層を配置した配線基板が提案されている。
特表2004-515610号公報
 しかしながら、例えば、40層レベルまで配線層が積層されると、コア基板の厚みが1.2mmであるとき、コア基板の面上に積層される配線層及び絶縁層の厚みは、6.0mm乃至7.0mmとなる。即ち、配線層及び絶縁層の厚みは、コア基板の約5倍から6倍程度となる。配線層の層数が増加することに伴い、各配線層間を絶縁し、融着するガラスエポキシ系プリプレグが占める割合が、配線層が占める割合と比較して増加する。ガラスエポキシ系プリプレグの熱膨張係数は通常10ppm/℃乃至20ppm/℃であり、カーボン繊維(炭素繊維)材を含むコア基板と比較して大きい。
 そのため、ベアチップ実装時において、半導体素子及びビルドアップ多層配線基板の温度が上昇する際に、半導体素子よりも配線基板におけるガラスエポキシ系プリプレグのほうが大きく膨張する。さらに、熱伝導性材料を含む配線層が含有される割合が減少しているため、ガラスエポキシ系プリプレグの熱膨張によって発生する応力変形量のほうが、配線層の応力変形量と比較して支配的になる。そのため、熱応力及び熱歪みが配線基板に発生して疲労破壊又は断線等が発生する問題があった。
(発明が解決しようとする課題)
 本発明は、多層配線構造において、配線層の総数が増加しても熱応力及び熱歪みによる疲労破壊又は断線を抑制できる構造を有する配線基板及び配線基板の製造方法を提供することを目的とする。
(課題を解決するための手段)
 本発明の課題を解決するため、本発明の第1の側面によれば、炭素素材を含有する基板と、前記基板上に形成された第1絶縁層と、前記第1絶縁層上に形成され、前記第1絶縁層が有する熱膨張係数よりも小さい熱膨張係数を有し、前記第1絶縁層が有する弾性率よりも大きい弾性率を有する金属板を有する中間層と、前記中間層上に形成された第2絶縁層と、を含むことを特徴とする配線基板を提供する。
 本発明の課題を解決するため、本発明の第2の側面によれば、炭素素材を含有する基板を形成する工程と、前記基板上に第1絶縁層を形成する工程と、前記第1絶縁層が有する熱膨張係数よりも小さい熱膨張係数を有し、前記第1絶縁層が有する弾性率よりも大きい弾性率を有する金属板を有する中間層を前記第1絶縁層上に形成する工程と、前記中間層上に第2絶縁層を形成する工程と、を含むことを特徴とする配線基板の製造方法を提供する。
(発明の効果)
 本発明に係る配線基板及び配線基板の製造方法によれば、配線層の総数が増加しても、樹脂が有する熱膨張係数よりも小さい熱膨張係数を有し、樹脂が有する弾性率よりも大きい弾性率を有する金属によって樹脂の熱膨張に起因する変位量が抑制される。そのため、炭素素材を含有する基板に加えて、配線層を積層して形成された配線基板の熱膨張に起因する変位量が抑制される。従って、半導体素子を配線基板にベアチップ実装する際における熱応力及び熱歪みによる配線基板の疲労破壊及び断線を抑制できる。
図1は、第1実施例による配線基板50aの構造を示す図である。 図2は、第1実施例による配線基板50aの製造方法を示す図である。 図3は、第1実施例による配線基板50aの製造方法を示す図である。 図4は、第1実施例による配線基板50aの製造方法を示す図である。 図5は、第1実施例による配線基板50aの製造方法を示す図である。 図6は、第1実施例による配線基板50aの製造方法を示す図である。 図7は、第1実施例によるコア基板1、プリプレグ12及び金属板4の熱膨張係数、弾性率、熱変形量、及び応力変形量を示す表である。 図8は、第2実施例による配線基板50bの構造を示す図である。 図9は、第2実施例による配線基板50bの製造方法を示す図である。 図10は、第2実施例による配線基板50bの製造方法を示す図である。 図11は、第2実施例による配線基板50bの製造方法を示す図である。 図12は、第2実施例による配線基板50bの製造方法を示す図である。 図13は、第2実施例による配線基板50bの製造方法を示す図である。
符号の説明
 1 コア基板
 1a、1b、1c、1d、1e プリプレグ
 2 下孔
 3 絶縁樹脂
 4 金属板
 5 下孔
 6 第1配線層
 7 第1中間層
 8 ガラスエポキシ層
 9 第2配線層
 9a 導電層
 10 レジストパターン
 11 第2中間層
 12 プリプレグ
 12a、12b、12c、12d、12e、12f プリプレグ
 13 金属箔
 14 スルーホール
 14a 貫通孔
 15 第3配線層
 15a 第3メッキ層
 16 レジストパターン
 17 配線層
 21 コア基板
 21a、21b、21d、21e プリプレグ
 21c 金属板
 50a 配線基板
 50b 配線基板
 以下、本発明の第1実施例、及び第2実施例について説明する。ただし、本発明は各実施例に限定されるものではない。
 (第1実施例)
 本発明の第1実施例において、図1から図6までの図は、配線基板50aの構造、及び配線基板50aの製造方法を詳細に説明するものである。
 図1に、第1実施例に係る配線基板50aの構造を示す。
 図1を参照するに、第1実施例に係る配線基板50aにおいて、コア基板は1、下孔は2、絶縁樹脂は3、金属板は4、下孔は5、第1配線層は6、第1中間層は7、ガラスエポキシ層は8、第2配線層は9、第2中間層は11、プリプレグは12、スルーホールは14、第3配線層は15、及び配線層は17により示す。
 平板状のコア基板1は、導電性を有するカーボン繊維(炭素繊維)材にエポキシ系樹脂組成物を含浸させてなるプリプレグ1b、1c、及び1dと、ガラス繊維に樹脂材料を含浸させて形成したプリプレグ1a及び1eと、コア基板1の両表面を被覆する不図示の銅箔を重ね合わせて積層形成される。コア基板1の総厚は、例えば1.0mmから2.0mmである。
 なお、形成しようとするコア基板1の厚さ、強度等に合わせて炭素繊維強化コア部を形成するプリプレグの枚数を選択することができる。プリプレグ1b、1c、及び1dは、使用するカーボンファイバの太さによって厚さが異なるが、例えば100μmから300μm程度である。また、炭素繊維のほかに、カーボンナノチューブ、アラミド繊維、またはポリ-p-フェニレンベンゾビスオキサゾール(PBO)繊維が用いられても良い。
 プリプレグ1b、1c、及び1dには、40wt%から60wt%のカーボンファイバが混合されている。半導体素子がシリコン(Si)から成る場合、その熱膨張係数は約3.5ppm/℃である。半導体素子の熱膨張係数に合わせて、プリプレグ1b、1c、及び1dの熱膨張係数を1ppm/℃から2ppm/℃とするためである。
 プリプレグ1a及び1eの硬化物の熱膨張係数は、ガラス繊維に樹脂を含浸させることによって12ppm/℃から16ppm/℃程度となる。また、プリプレグ1a及び1eの硬化物の弾性率は、10GPaから30GPaとなる。
 また、下孔2がコア基板1を貫通するように形成されている。下孔2の形成数は、配線レイアウト等に因るが、具体的には、例えば約1000個の下孔2を形成してもよい。下孔2の直径は、例えば0.3mmから1.0mmで、且つ例えば0.5mmから2.0mmの間隔で形成されることが望ましい。
 絶縁樹脂3は、下孔2の内側からスルーホール14の外側の間に形成されている。絶縁樹脂3は、例えばエポキシ樹脂であることが望ましい。絶縁樹脂3の厚みは、例えば50μmから300μmの厚みであることが望ましい。絶縁樹脂3は、導電性を有するコア基板1の下孔2の内壁面の絶縁層となるので、コア基板1と後述する第1配線層6及び第2配線層9との間を確実に絶縁することができる。
 第1中間層7は、金属板4及び第1配線層6から形成されている。金属板4には、下孔5が金属板4を貫通するように形成されている。第1配線層6は、金属板4の表面及び下孔5の内壁面を覆うように形成されている。さらに、金属板4と下孔5との間には、プリプレグ12が形成されている。
 下孔5の形成数は、配線レイアウト等に因るが、具体的には、例えば約1000個の下孔5を形成してもよい。下孔5の直径は、例えば0.3mmから1.0mmで、且つ例えば0.5mmから2.0mmの間隔で形成されることが望ましい。また、下孔5と下孔2の配置位置は、平面的に一致している。
 金属板4は、熱膨張係数が例えば0ppm/℃から5ppm/℃であることが望ましい。金属板4は、例えば50μmから200μmまでの厚みで形成されていることが望ましい。金属板4は、例えばインバー、コバール、42アロイ(Fe-42%Ni)、タングステン、又はモリブデンからなることが望ましい。
 金属板4の弾性率は、例えば130GPaから410GPaであることが望ましい。インバーの弾性率は、140GPaから160GPaである。コバールの弾性率は、130GPaから140GPaである。42アロイの弾性率は、140GPaから190GPaである。タングステンの弾性率は、403GPaである。モリブデンの弾性率は、327GPaである。
 第1配線層6は、例えば銅(Cu)により形成されていることが望ましい。第1配線層6は、例えば20μmから40μmの厚みで形成されていることが望ましい。第1配線層6は、例えばグラウンド層または電源層として使用されることが望ましい。
 第2中間層11は、ガラスエポキシ層8及び第2配線層9から形成されている。ガラスエポキシ層8は、例えば60μmから200μmまでの厚みで形成されていることが望ましい。
 第2配線層9は、ガラスエポキシ層8を上下に挟み込むように形成されている。第2配線層9は、例えば銅(Cu)により形成されていることが望ましい。第2配線層9は、例えば18μmから35μmの厚みで形成されていることが望ましい。第2配線層9は、例えばシグナル層として使用されることが望ましい。
 プリプレグ12は、コア基板1と第1中間層7との間、第1中間層7と第2中間層11との間をそれぞれ埋め込むように形成されている。プリプレグ12は、例えばガラスクロスに熱硬化型の樹脂材料を含浸して形成されることが望ましい。プリプレグ12は、例えば100μmから200μmの厚みで形成されていることが望ましい。なお、下孔5と後述する第3配線層15との間にあるプリプレグ12は、後述するコア基板1、第1中間層7、及び第2中間層11がプリプレグ12を介して積層成形される際に、加熱および加圧されたプリプレグ12が充填されたものである。プリプレグ12の熱膨張係数は10ppm/℃乃至20ppm/℃であることが望ましい。また、プリプレグ12の硬化物の弾性率は、10GPaから30GPaとなる。
 なお、コア基板1の両面には、第1中間層7及び第2中間層11がプリプレグ12を介し、この順番で繰り返し40層まで積層形成されている。配線層17は、第1中間層7、第2中間層11、及びプリプレグ12が積層形成されたものをいう。第1実施例では、例えば、コア基板1の厚みが1.2mmであるとき、コア基板1の片面に積層された第1中間層7及び第2中間層11を合わせた配線層17の厚みは、例えば6.0mm乃至7.0mmとなる。即ち、配線層17の厚みは、コア基板1の約5倍から6倍程度となる。
 スルーホール14は、コア基板1、第1中間層7、第2中間層11、及びプリプレグ12を貫通するように形成されている。スルーホール14は、コア基板1の下孔2、及び第1中間層7の下孔5と略同芯円状に形成される。スルーホール14は、下孔2及び下孔5よりも小さい直径で形成されることが望ましい。スルーホール14は、例えば0.1μmから0.4μmの直径を有するように形成することが望ましい。
 スルーホール14の内壁面の略全面と、コア基板1における絶縁樹脂3の内壁面、第1中間層7、第2中間層11、及びプリプレグ12上におけるスルーホール14の周辺には、銅(Cu)から成る第3配線層15が、めっき処理により形成されている。
 図2から図6は、第1実施例にかかる配線基板50aの製造工程を示す。
 図2Aは、コア基板1を構成する、炭素繊維に樹脂材料(高分子材料)を含浸させて形成したプリプレグ1b、1c、及び1dと、ガラス繊維に樹脂材料を含浸させて形成したプリプレグ1a及び1eと、コア基板1の両表面を被覆する不図示の銅箔を重ね合わせて位置合わせした状態を示す。
 プリプレグ1b、1c、及び1dには、40wt%から60wt%のカーボンファイバが混合されることが望ましい。半導体素子がシリコン(Si)から成る場合、その熱膨張係数は約3.5ppm/℃である。プリプレグ1b、1c、及び1dにおけるカーボンファイバの混合率が40wt%以下であると、シリコンの熱膨張係数よりもプリプレグ1b、1c、及び1dの熱膨張係数が大きくなってしまう。一方、プリプレグ1b、1c、及び1dにおけるカーボンファイバの混合率が60wt%以上であると、プリプレグ1b、1c、及び1dの成形が困難になってしまう。
 カーボン繊維材としては、例えば、カーボン繊維を束ねたカーボン繊維糸により織られ、面広がり方向に展延するように配向されたカーボン繊維クロス若しくはカーボン繊維メッシュ又はカーボン繊維不織布を用いることができる。カーボン繊維材を包容するエポキシ系樹脂組成物には、アルミナフィラー、窒化アルミニウムフィラー、シリカフィラー等の無機フィラーが混合され、熱膨張率の低減が図られている。但し、コア基板1に含まれる導電性を有する材料として、上述のカーボン繊維のほかに、カーボンナノチューブを用いてもよい。
 カーボンファイバを包容するエポキシ系樹脂組成物には、組成物全体の10wt%から45wt%のシリカフィラーが混合されることが望ましい。組成物全体におけるシリカフィラーの含有率が10wt%以下になると、エポキシ系樹脂組成物の耐燃性確保が難しくなる。一方、組成物全体におけるシリカフィラーの含有率が45wt%以上になると、エポキシ系樹脂組成物の成形性が困難になる。
 プリプレグ1a及び1eは、プリプレグ1b、1c、及び1dと不図示の銅箔との間に配置し、プリプレグ1b、1c、及び1dと銅箔との間に介在させる。本実施例では、ガラス繊維からなる織布にエポキシ樹脂を含浸させ、エポキシ樹脂を乾燥させてBステージ状態としたものを使用した。プリプレグ1a及び1eの厚さは100μmから200μm程度である。
 ガラス繊維を含むプリプレグ1a及び1eを使用する理由は、コア基板1の強度が低下しないようにすることと、コア基板1の熱膨張係数を小さく抑えるようにするためである。
 図2Bは、図2Aに示したプリプレグ1a、1b、1c、1d、及び1eと、不図示の銅箔をプリプレグ1a及び1eの表面に重ね合わせた状態から加熱および加圧するようすを示す。プリプレグ1a、1b、1c、1d、及び1eに含有された樹脂が熱硬化して、平板体状のコア基板1が形成される。コア基板1は、プリプレグ1b、1c、及び1dが一体形成されてなる積層体の両面に、プリプレグ1a及び1eを介して銅箔が一体的に被着形成されて構成されている。このようにして形成されたコア基板1は、温度範囲25℃から200℃において、面方向の平均熱膨張率が2ppm/℃、及び厚さ方向の平均熱膨張率が80ppm/℃であった。
 図2Cは、コア基板1に、ドリル加工を施して下孔2を形成するようすを示す図である。下孔2の直径は、例えば0.8mmから1.0mmであることが望ましい。又、下孔2は、例えば1.0mmから2.0mmの間隔で形成されることが望ましい。この下孔2が形成される際に、下孔2の内壁から不図示のシリカフィラーも除去されるため凹凸が発生する。
 図2Dは、コア基板1における下孔2の内壁面を不図示のめっき層によって被覆した後、下孔2に絶縁樹脂3を充填した状態を示す。下孔2に絶縁樹脂3を充填する際に、下孔2の内壁に存在する凹凸がアンカー的に作用し、絶縁樹脂3は下孔2に強固に埋め込まれるようになる。
 図3Aは、後述する第1中間層7を構成する金属板4を準備するようすを示す図である。
 図3Bは、金属板4に、ドリル加工を施して下孔5を形成するようすを示す図である。下孔5は、例えば0.8mmから1.0mmの直径で、且つ例えば1.0mmから2.0mmの間隔で形成されることが望ましい。
 図3Cは、金属板4の表面及び下孔5の内壁面に第1配線層6を形成するようすを示す図である。図3Cに示すように、金属板4に下孔5をあけた後、金属板4に無電解銅めっきおよび電解銅めっきを施し、金属板4の表面及び下孔5の内壁面を第1配線層6によって被覆する。このような工程により、第1中間層7が形成される。
 図3Dは、後述する第2中間層11を構成するガラスエポキシ層8及び導電層9aの積層体を準備するようすを示す。導電層9aは、ガラスエポキシ層8を上下に挟み込むように形成されている。
 図3Eは、導電層9aの表面に不図示のドライフィルムレジスト(フォトレジスト)をラミネートし、露光および現像するようすを示す図である。この工程によって、後述する第2配線層9が形成される部位の上にレジストパターン10が形成される。
 図3Fは、レジストパターン10をマスクとして、導電層9aをエッチングするようすを示す図である。このエッチング工程により、レジストパターン10の下に第2配線層9が形成される。
 図3Gは、図3Fに次いで、第2配線層9上からレジストパターン10を除去するようすを示す図である。このレジストパターン10を除去する工程によって、第2配線層9がガラスエポキシ層8の表面に露出して第2中間層11が形成される。
 図4Aは、金属箔13、プリプレグ12a、第2中間層11、プリプレグ12b、第1中間層7、プリプレグ12c、コア基板1、プリプレグ12d、第1中間層7、プリプレグ12e、第2中間層11、プリプレグ12f、及び金属箔13をこの順に配置した状態を示す図である。プリプレグ12a~12fは、例えばガラスクロスに、例えばエポキシ樹脂等の熱硬化型の樹脂材料を含浸して形成されることが望ましい。金属箔13は、銅(Cu)から形成されていることが望ましい。
 図4Bは、コア基板1、下孔5を備えた第1中間層7、第2中間層11、及び金属箔13がプリプレグ12を介して積層成形されるようすを示す図である。図4Aに示すプリプレグ12a、プリプレグ12b、プリプレグ12c、プリプレグ12d、プリプレグ12e、及びプリプレグ12fは、加熱処理した結果、硬化して図4Bに示すプリプレグ12となる。この工程により、コア基板1、下孔5を備えた第1中間層7、第2中間層11、及び金属箔13がプリプレグ12を介して積層成形される。第1中間層7に予め形成されている下孔5は、プリプレグ12によって埋め込まれる。
 この際に、コア基板1の下孔2、及び第1中間層7の下孔5が同芯となるように配置することが望ましい。後述する貫通孔14aを形成する際に、貫通孔14aが導通部材であるコア基板1及び第1中間層7を貫通しないようにするためである。
 各部材の加圧は不図示の真空プレスによって実施する。加圧温度は、例えば170℃から220℃であることが望ましい。プリプレグ12a~12fは未硬化状態で層間に介装して、加熱および加圧することにより、各層間を電気的に絶縁した状態でコア基板1、第1中間層7及び第2中間層11がプリプレグ12を介して積層成形される。
 図5Aは、第1中間層7、第2中間層11、及びプリプレグ12が積層形成されたコア基板1に後述するスルーホール14を形成するための貫通孔14aを形成するようすを示す図である。貫通孔14aは、ドリル加工により、コア基板1の下孔2、及び第1中間層7における下孔5と同芯に、且つ第1中間層7、第2中間層11、プリプレグ12、及びコア基板1の厚さ方向に貫通させて形成することが望ましい。貫通孔14aは、例えば0.2μmから0.4μmの直径を有するように形成されることが望ましい。貫通孔14aはコア基板1の下孔2及び第1中間層7の下孔5よりも小径に形成されることが望ましい。貫通孔14aがコア基板1を貫通する部位において、絶縁樹脂3が貫通孔14aの内壁面に露出する。また、貫通孔14aが第1中間層7を貫通する部位において、プリプレグ12が貫通孔14aの内壁面に露出する。
 図5Bは、貫通孔14aを形成した後、基板に無電解銅めっきおよび電解銅めっきを施し、貫通孔14aの内面にスルーホール14を形成した状態を示す。無電解銅めっきにより、貫通孔14aの内面および基板の表面の全面に、無電解銅めっき層が形成される。この無電解銅めっき層をめっき給電層として電解銅めっきを施すことにより、貫通孔14aの内壁面の全面と基板の表面の全面に第3メッキ層15aが被着形成される。貫通孔14aの内壁面に形成された第3メッキ層15aは基板の表裏面の配線パターンを電気的に接続するスルーホール14となる。
 図6Aは、基板表面に被着形成された第3メッキ層15aの表面上に不図示のドライフィルムレジスト(フォトレジスト)をラミネートし、ドライフィルムレジストを露光および現像するようすを示す図である。図6Aに示すように、後述する第3配線層15が形成される部位上にレジストパターン16が形成される。
 図6Bは、レジストパターン16が形成されていない箇所における第3メッキ層15aをエッチングし、レジストパターン16を剥離するようすを示す図である。図6Bに示すように、第3メッキ層15aをエッチングすることにより、第3配線層15が形成される。次いで、第3配線層15上のレジストパターン16を剥離することによって、第3配線層15が基板の表面上に露出する。以上の工程を経て、コア基板1と、第1中間層7、第2中間層11、及びプリプレグ12を積層して形成された配線層17とを備えた配線基板50aが形成される。
 図7は、第1実施例によるコア基板1と、プリプレグ12及び第1中間層7における金属板4の熱膨張係数、弾性率、熱変形量、及び応力変形量を示す表である。
 図7に示すように、コア基板1における熱膨張係数は、1ppm/℃から2ppm/℃である。プリプレグ12における熱膨張係数は、10ppm/℃から20ppm/℃である。金属板4の熱膨張係数は、0ppm/℃から5ppm/℃である。さらに、コア基板1における弾性率は、50GPaから60GPaである。プリプレグ12における弾性率は、10GPaから30GPaである。金属板4における弾性率は、130GPaから410GPaである。
 半導体素子を配線基板50a上にベアチップ実装する際に、配線基板50aにおけるコア基板1と、金属板4、及びプリプレグ12が加熱される。
 図7に示すように、コア基板1は、プリプレグ12と比較して熱膨張係数が小さいため、熱変形量が少ない。また、コア基板1は、プリプレグ12と比較して弾性率が大きいため、配線層17の伸びによる応力がコア基板1に印加されても応力変形量が少ない。
 又、プリプレグ12は、コア基板1と比較して熱膨張係数が大きいため、熱変形量が大きくなる。プリプレグ12は、コア基板1と比較して弾性率が小さいため、金属板4の伸びによる応力がプリプレグ12に印加されると応力変形量が多くなる。しかし、配線層17において、金属板4とプリプレグ12が第1配線層6を介して密着形成されている。金属板4は、プリプレグ12と比較して熱膨張係数が小さいため、熱変形量が少ない。一方、金属板4は、プリプレグ12と比較して弾性率が大きいため、応力変形量が少ない。
 上記より、金属板4の熱変形量は少ないが、プリプレグ12の熱変形量は多いことがわかる。そのため、プリプレグ12の熱膨張による変位量の変化により、第1配線層6を介して金属板4に伸び応力が印加される。しかし、金属板4の弾性率が大きいため、プリプレグ12からの伸び応力が金属板4に印加されても、金属板4の変形量は少ない。そのため、第1配線層6を介して密着形成されているプリプレグ12の変位量が抑制される。そのため、金属板4及びプリプレグ12を積層して形成された配線層17の熱膨張に起因する変位量が抑制される。そのため、炭素素材を含有するコア基板1に加えて、配線層17を積層して形成された配線基板50aの熱膨張に起因する変位量が抑制される。その結果、半導体素子を配線基板50aにベアチップ実装する際における熱応力及び熱歪みによる配線基板50aの疲労破壊及び断線を抑制できる。
 第1実施例に係る配線基板50aによれば、配線層17の総数が増加しても、第1中間層7を構成する金属板4によってプリプレグ12の熱膨張に起因する変位量が抑制される。そのため、炭素素材を含有するコア基板1に加えて、配線層17を積層して形成された配線基板50aの熱膨張に起因する変位量が抑制される。従って、半導体素子を配線基板50aにベアチップ実装する際における熱応力及び熱歪みによる配線基板50aの疲労破壊及び断線を抑制できる。
 (第2実施例)
 本発明の第2実施例において、図8から図13までの図は、配線基板50bの構造および配線基板50bの製造方法を詳細に説明するものである。なお、第2実施例において、第1実施例で説明した構成と同様の構成には同一の符号を付し、説明を省略する。
 図8に、第2実施例に係る配線基板50bの構造を示す。
 図8を参照するに、第2実施例に係る配線基板50bにおいて、コア基板は21、下孔は2、絶縁樹脂は3、金属板は4、下孔は5、第1配線層は6、第1中間層は7、ガラスエポキシ層は8、第2配線層は9、第2中間層は11、プリプレグは12、スルーホールは14、第3配線層は15、及び配線層は17により示す。
 平板状のコア基板21は、中心に金属板21cを配置し、金属板21cの上下を挟み込むように導電性を有するカーボン繊維(炭素繊維)材にエポキシ系樹脂組成物を含浸させてなるプリプレグ21b及び21dを金属板21cの上下に1枚ずつ積層形成される。プリプレグ21a及び21eは、プリプレグ21b及び21dと不図示の銅箔との間に積層配置される。コア基板21の総厚は、例えば1.0mmから2.0mmである。
 金属板21cは、熱膨張係数が例えば0ppm/℃から5ppm/℃であることが望ましい。金属板21cは、例えば500μmから2000μmまでの厚みで形成されていることが望ましい。金属板21cは、例えばインバー、コバール、42アロイ(Fe-42%Ni)、タングステン、又はモリブデンからなることが望ましい。
 金属板21cの弾性率は、例えば130GPaから410GPaであることが望ましい。インバーの弾性率は、140GPaから160GPaである。コバールの弾性率は、130GPaから140GPaである。42アロイの弾性率は、140GPaから190GPaである。タングステンの弾性率は、403GPaである。モリブデンの弾性率は、327GPaである。
 プリプレグ21b及び21dはカーボンファイバ強化コア部となるもので、図では2枚のプリプレグ21b及び21dを重ね合わせる例を示す。形成しようとするコア基板21の厚さ及び強度等に合わせて、カーボンファイバ強化コア部を形成するプリプレグの枚数は適宜選択可能である。プリプレグ21b及び21dは使用するカーボンファイバの太さによって厚さが異なるが例えば100μmから300μm程度である。プリプレグ21b及び21dには、40wt%から60wt%のカーボンファイバが混合されている。半導体素子がシリコン(Si)からなる場合、その熱膨張係数は約3.5ppm/℃である。半導体素子の熱膨張係数と合わせて、プリプレグ21b及び21dの熱膨張係数を1ppm/℃から2ppm/℃とするためである。
 また、第1実施例と同様に、下孔2がコア基板21を貫通するように形成されている。下孔2の形成数は、配線レイアウト等に因るが、具体的には、例えば約1000個の下孔2を形成してもよい。下孔2の直径は、例えば0.3mmから1.0mmで、且つ例えば0.5mmから2.0mmの間隔で形成されることが望ましい。
 なお、第1実施例と同様に、不図示の銅箔が、コア基板21の外表面上に被覆されている。銅箔は、コア基板21の表面を保護すること、コア基板21にめっきを施す際にめっき給電層として使用すること、コア基板21の両面に配線層を積層してコア基板21を形成する際にコア基板21と配線層との密着性を向上させる等の目的で設けられる。銅箔の厚さは例えば15μmから35μm程度であることが望ましい。
 図9から図13は、第2実施例にかかる配線基板50bの製造工程を示す。
 図9Aは、コア基板21を構成する、金属板21cを中心として、カーボンファイバに樹脂材料(高分子材料)を含浸させて形成したプリプレグ21b、及び21dと、ガラス繊維に樹脂材料を含浸させて形成したプリプレグ21a及び21eと、プリプレグ21a及び21eの両表面を被覆する不図示の銅箔を重ね合わせて位置合わせした状態を示す。
 本実施例で使用しているプリプレグ21b及び21dは、長繊維のカーボンファイバによって形成した織布にエポキシ樹脂を含浸させ、乾燥させてエポキシ樹脂をBステージ状態としたものである。プリプレグ21b及び21dは使用するカーボンファイバの太さによって厚さが異なるが例えば100μmから300μm程度である。
 カーボン繊維材としては、第1実施例と同様に、例えば、カーボン繊維を束ねたカーボン繊維糸により織られ、面広がり方向に展延するように配向されたカーボン繊維クロス若しくはカーボン繊維メッシュ又はカーボン繊維不織布を用いることができる。
 カーボンファイバを包容するエポキシ系樹脂組成物には、第1実施例と同様に、組成物全体の10wt%から45wt%のシリカフィラーを混合することが望ましい。
 図9Bは、図9Aに示したプリプレグ21a、21b、21d、21e、金属板21c、及び不図示の銅箔を重ね合わせた状態から加熱および加圧するようすを示す図である。図9Bに示すように、プリプレグ21a、21b、21d、及び21eに含有された樹脂を熱硬化させて、平板体状のコア基板21が形成される。コア基板21は、プリプレグ21b、21d、及び金属板21cが一体形成されてなるコア基板21の両面に、プリプレグ21a、及び21eを介して銅箔が一体的に被着形成されて構成されている。このようにして形成されたコア基板21は、温度範囲25℃から200℃において、面方向の平均熱膨張率が2ppm/℃、及び厚さ方向の平均熱膨張率が80ppm/℃であった。
 図9Cは、コア基板21に、ドリル加工を施して下孔2を形成するようすを示す図である。下孔2の直径は、例えば0.8mmから1.0mmであることが望ましい。又、下孔2は、例えば1.0mmから2.0mmの間隔で形成されることが望ましい。この下孔2が形成される際に、下孔2の内壁から不図示のシリカフィラーも除去されるため凹凸が発生する。
 図9Dは、図2Dと同様に、コア基板21における下孔2の内壁面を不図示のめっき層によって被覆した後、下孔2に絶縁樹脂3を充填した状態を示す。
 図10Aは、図3Aと同様に、後述する第1中間層7を構成する金属板4を準備するようすを示す図である。
 図10Bは、図3Bと同様に、金属板4に、ドリル加工を施して下孔5を形成するようすを示す図である。
 図10Cは、図3Cと同様に、金属板4の表面及び下孔5の内壁面に第1配線層6を形成するようすを示す図である。この工程により、第1中間層7が形成される。
 図10Dは、図3Dと同様に、後述する第2中間層11を構成するガラスエポキシ層8及び導電層9aの積層体を準備するようすを示す。
 図10Eは、図3Eと同様に、導電層9aの表面に不図示のドライフィルムレジスト(フォトレジスト)をラミネートし、露光および現像するようすを示す図である。この工程によって、第2配線層9が形成される部位上にレジストパターン10が形成される。
 図10Fは、図3Fと同様に、レジストパターン10をマスクとして、導電層9aをエッチングして、第2配線層9を形成するようすを示す図である。
 図10Gは、図3Gと同様に、図10Fに次いで第2配線層9上からレジストパターン10を除去するようすを示す図である。このレジストパターン10を除去する工程によって、第2配線層9がガラスエポキシ層8の表面に露出し、第2中間層11が形成される。
 図11Aは、金属箔13、プリプレグ12a、第2中間層11、プリプレグ12b、第1中間層7、プリプレグ12c、コア基板21、プリプレグ12d、第1中間層7、プリプレグ12e、第2中間層11、プリプレグ12f、及び金属箔13をこの順に配置した状態を示す図である。プリプレグ12a~12fは、例えばガラスクロスに熱硬化型の樹脂材料を含浸して形成されることが望ましい。金属箔13は、銅(Cu)から形成されていることが望ましい。
 図11Bは、コア基板21、下孔5を備えた第1中間層7、第2中間層11、及び金属箔13がプリプレグ12を介して積層成形されるようすを示す図である。図11Aに示すプリプレグ12a、プリプレグ12b、プリプレグ12c、プリプレグ12d、プリプレグ12e、及びプリプレグ12fは、加熱処理した結果、硬化して図11Bに示すプリプレグ12となる。この工程により、コア基板21、下孔5を備えた第1中間層7、第2中間層11、及び金属箔13がプリプレグ12を介して積層成形される。第1中間層7に予め形成されている下孔5は、プリプレグ12によって埋め込まれる。
 この際に、コア基板21の下孔2、及び第1中間層7の下孔5が同芯となるように配置することが望ましい。後述する貫通孔14aを形成する際に、貫通孔14aが導通部材であるコア基板21及び第1中間層7を貫通しないようにするためである。
 各部材の加圧は不図示の真空プレスによって実施する。加圧温度は、例えば170℃から220℃であることが望ましい。プリプレグ12a~12fは未硬化状態で層間に介装して加熱および加圧することにより、各層間を電気的に絶縁した状態でコア基板21、第1中間層7及び第2中間層11がプリプレグ12を介して積層成形される。
 図12Aは、第1中間層7、第2中間層11、及びプリプレグ12が積層形成されたコア基板21に後述するスルーホール14を形成するための貫通孔14aを形成するようすを示す図である。貫通孔14aは、ドリル加工により、コア基板21の下孔2、及び第1中間層7における下孔5と同芯に、且つ第1中間層7、第2中間層11及びコア基板21を厚さ方向に貫通させて形成することが望ましい。貫通孔14aは、例えば200μmから400μmの直径で形成されることが望ましい。貫通孔14aはコア基板21の下孔2及び第1中間層7の下孔5よりも小径に形成されることが望ましい。貫通孔14aがコア基板21を貫通する部位において、絶縁樹脂3が貫通孔14aの内壁面に露出する。又、貫通孔14aが第1中間層7を貫通する部位において、プリプレグ12が貫通孔14aの内壁面に露出する。
 図12Bは、図5Bと同様に、貫通孔14aを形成した後、基板に無電解銅めっきおよび電解銅めっきを施すようすを示す図である。図12Bに示すように、貫通孔14aの内面にスルーホール14を形成した後に、該スルーホール14の内壁面の全面と基板の表面の全面に第3メッキ層15aが形成される。
 図13Aは、図6Aと同様に、基板表面に被着形成された第3メッキ層15aの表面上に不図示のドライフィルムレジスト(フォトレジスト)をラミネートし、該ドライフィルムレジストを露光および現像するようすを示す図である。図13Aに示すように、後述する第3メッキ層15aが形成される部位の上にレジストパターン16が形成される。
 図13Bは、図6Bと同様に、レジストパターン16が形成されていない箇所における第3メッキ層15aをエッチングし、レジストパターン16を剥離するようすを示す図である。図13Bに示すように、第3メッキ層15aをエッチングすることにより、レジストパターン16の下に第3配線層15が形成される。次いで、第3配線層15上のレジストパターン16を剥離することによって、第3配線層15が基板の表面上に露出する。以上の工程を経て、コア基板21と、第1中間層7、第2中間層11、及びプリプレグ12を積層して形成された配線層17とを備えた配線基板50bが形成される。
 第2実施例に係る配線基板50bによれば、第1実施例に係る配線基板50aに加えて、コア基板21に炭素繊維及び弾性率が高い金属が適用される。そのため、第1実施例と同様に、配線層17の総数が増加しても、第1中間層7における金属板4によってプリプレグ12の熱膨張に起因する変位量が抑制される。そのため、炭素素材を含有するコア基板1に加えて、配線層17を積層して形成された配線基板50bの熱膨張に起因する変位量が抑制される。従って、半導体素子を配線基板50bにベアチップ実装する際における熱応力及び熱歪みによる配線基板50bの疲労破壊及び断線を抑制できる。

Claims (12)

  1.  炭素素材を含有する基板と、
     前記基板上に形成された第1絶縁層と、
     前記第1絶縁層上に形成され、前記第1絶縁層が有する熱膨張係数よりも小さい熱膨張係数を有し、前記第1絶縁層が有する弾性率よりも大きい弾性率を有する金属板を有する中間層と、
     前記中間層上に形成された第2絶縁層と、
    を含むことを特徴とする配線基板。
  2.  前記中間層は、前記金属板上に形成された第1導体層を更に含むことを特徴とする請求項1記載の配線基板。
  3.  前記第2絶縁層上に形成された第2導体層と、
     前記第2導体層上に形成された第3絶縁層と、
    を更に含むことを特徴とする請求項1記載の配線基板。
  4.  前記炭素素材は、カーボンファイバ又はカーボンナノチューブであることを特徴とする請求項1記載の配線基板。
  5.  前記基板は、中心にインバー(鉄-ニッケル)合金、コバール(鉄-ニッケル-コバルト)合金、42(鉄-ニッケル)合金、タングステン、又はモリブデンの少なくとも1つからなる金属板を更に有することを特徴とする請求項1記載の配線基板。
  6.  前記金属板は、インバー(鉄-ニッケル)合金、コバール(鉄-ニッケル-コバルト)合金、42(鉄-ニッケル)合金、タングステン、又はモリブデンの少なくとも1つを含むことを特徴とする請求項1記載の配線基板。
  7.  炭素素材を含有する基板を形成する工程と、
     前記基板上に第1絶縁層を形成する工程と、
     前記第1絶縁層が有する熱膨張係数よりも小さい熱膨張係数を有し、前記第1絶縁層が有する弾性率よりも大きい弾性率を有する金属板を有する中間層を前記第1絶縁層上に形成する工程と、
     前記中間層上に第2絶縁層を形成する工程と、
    を含むことを特徴とする配線基板の製造方法。
  8.  前記金属板上に第1導体層を形成する工程を更に含むことを特徴とする請求項7記載の配線基板の製造方法。
  9.  前記第2絶縁層上に第2導体層を形成する工程と、
     前記第2導体層上に第3絶縁層を形成する工程と、
    を更に含むことを特徴とする請求項7記載の配線基板の製造方法。
  10.  前記炭素素材は、カーボンファイバ又はカーボンナノチューブであることを特徴とする請求項7記載の配線基板の製造方法。
  11.  前記基板は、中心にインバー(鉄-ニッケル)合金、コバール(鉄-ニッケル-コバルト)合金、42(鉄-ニッケル)合金、タングステン、又はモリブデンの少なくとも1つからなる金属板を更に有することを特徴とする請求項7記載の配線基板の製造方法。
  12.  前記金属板は、インバー(鉄-ニッケル)合金、コバール(鉄-ニッケル-コバルト)合金、42(鉄-ニッケル)合金、タングステン、又はモリブデンの少なくとも1つを含むことを特徴とする請求項7記載の配線基板の製造方法。
PCT/JP2008/003401 2008-11-20 2008-11-20 配線基板及び配線基板の製造方法 WO2010058443A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/003401 WO2010058443A1 (ja) 2008-11-20 2008-11-20 配線基板及び配線基板の製造方法
JP2010539054A JP5170253B2 (ja) 2008-11-20 2008-11-20 配線基板及び配線基板の製造方法
KR1020117012427A KR101148628B1 (ko) 2008-11-20 2008-11-20 배선 기판 및 배선 기판의 제조 방법
US13/111,257 US20110220396A1 (en) 2008-11-20 2011-05-19 Wiring substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/003401 WO2010058443A1 (ja) 2008-11-20 2008-11-20 配線基板及び配線基板の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/111,257 Continuation US20110220396A1 (en) 2008-11-20 2011-05-19 Wiring substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2010058443A1 true WO2010058443A1 (ja) 2010-05-27

Family

ID=42197890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003401 WO2010058443A1 (ja) 2008-11-20 2008-11-20 配線基板及び配線基板の製造方法

Country Status (4)

Country Link
US (1) US20110220396A1 (ja)
JP (1) JP5170253B2 (ja)
KR (1) KR101148628B1 (ja)
WO (1) WO2010058443A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111503A1 (ja) * 2011-02-16 2012-08-23 三菱重工業株式会社 炭素繊維強化プラスチック構造体
WO2013001801A1 (ja) * 2011-06-30 2013-01-03 住友ベークライト株式会社 基板、金属膜、基板の製造方法および金属膜の製造方法
KR20160098875A (ko) 2015-02-11 2016-08-19 삼성전기주식회사 인쇄회로기판

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288909B2 (en) * 2012-02-01 2016-03-15 Marvell World Trade Ltd. Ball grid array package substrate with through holes and method of forming same
CN103635036A (zh) * 2012-08-22 2014-03-12 富葵精密组件(深圳)有限公司 柔性多层电路板及其制作方法
US9095084B2 (en) * 2013-03-29 2015-07-28 Kinsus Interconnect Technology Corp. Stacked multilayer structure
KR102493463B1 (ko) * 2016-01-18 2023-01-30 삼성전자 주식회사 인쇄회로기판, 이를 가지는 반도체 패키지, 및 인쇄회로기판의 제조 방법
CN111010797A (zh) * 2018-10-08 2020-04-14 中兴通讯股份有限公司 电路板、设备及过孔形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249876A (ja) * 1994-03-14 1995-09-26 Oki Electric Ind Co Ltd 金属芯入り多層プリント配線板
JPH07249847A (ja) * 1994-03-14 1995-09-26 Mitsubishi Electric Corp 低熱膨張プリント配線板
WO2004064467A1 (ja) * 2003-01-16 2004-07-29 Fujitsu Limited 多層配線基板、その製造方法、および、ファイバ強化樹脂基板の製造方法
JP2007288055A (ja) * 2006-04-19 2007-11-01 Mitsubishi Electric Corp プリント配線板及びプリント配線板の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609586A (en) * 1984-08-02 1986-09-02 The Boeing Company Thermally conductive printed wiring board laminate
US4921054A (en) * 1988-01-29 1990-05-01 Rockwell International Corporation Wiring board
JPH04355990A (ja) * 1990-09-18 1992-12-09 Fujitsu Ltd 回路基板およびその製造方法
US5153986A (en) * 1991-07-17 1992-10-13 International Business Machines Method for fabricating metal core layers for a multi-layer circuit board
US5156923A (en) * 1992-01-06 1992-10-20 Texas Instruments Incorporated Heat-transferring circuit substrate with limited thermal expansion and method for making
US5306571A (en) * 1992-03-06 1994-04-26 Bp Chemicals Inc., Advanced Materials Division Metal-matrix-composite
US5316803A (en) * 1992-12-10 1994-05-31 International Business Machines Corporation Method for forming electrical interconnections in laminated vias
US5847327A (en) * 1996-11-08 1998-12-08 W.L. Gore & Associates, Inc. Dimensionally stable core for use in high density chip packages
DE19756818A1 (de) * 1997-12-19 1999-06-24 Bosch Gmbh Robert Mehrlagen-Leiterplatte
US6329603B1 (en) * 1999-04-07 2001-12-11 International Business Machines Corporation Low CTE power and ground planes
US6340796B1 (en) * 1999-06-02 2002-01-22 Northrop Grumman Corporation Printed wiring board structure with integral metal matrix composite core
US6399896B1 (en) * 2000-03-15 2002-06-04 International Business Machines Corporation Circuit package having low modulus, conformal mounting pads
US7038142B2 (en) * 2002-01-24 2006-05-02 Fujitsu Limited Circuit board and method for fabricating the same, and electronic device
JP2003268567A (ja) * 2002-03-19 2003-09-25 Hitachi Cable Ltd 導電材被覆耐食性金属材料
JP4119205B2 (ja) * 2002-08-27 2008-07-16 富士通株式会社 多層配線基板
JP3822549B2 (ja) * 2002-09-26 2006-09-20 富士通株式会社 配線基板
WO2005029934A1 (ja) * 2003-09-19 2005-03-31 Fujitsu Limited プリント基板およびその製造方法
WO2006026566A1 (en) * 2004-08-27 2006-03-09 Vasoya Kalu K Printed wiring boards possessing regions with different coefficients of thermal expansion
JP4689375B2 (ja) * 2005-07-07 2011-05-25 富士通株式会社 積層基板および該積層基板を有する電子機器
JP4855753B2 (ja) * 2005-10-03 2012-01-18 富士通株式会社 多層配線基板及びその製造方法
CN103298243B (zh) * 2006-07-14 2016-05-11 斯塔布科尔技术公司 具有构成电路一部分的核心层的增层印刷线路板衬底
US20120228014A1 (en) * 2011-03-08 2012-09-13 Endicott Interconnect Technologies, Inc. Circuitized substrate with internal thin film capacitor and method of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249876A (ja) * 1994-03-14 1995-09-26 Oki Electric Ind Co Ltd 金属芯入り多層プリント配線板
JPH07249847A (ja) * 1994-03-14 1995-09-26 Mitsubishi Electric Corp 低熱膨張プリント配線板
WO2004064467A1 (ja) * 2003-01-16 2004-07-29 Fujitsu Limited 多層配線基板、その製造方法、および、ファイバ強化樹脂基板の製造方法
JP2007288055A (ja) * 2006-04-19 2007-11-01 Mitsubishi Electric Corp プリント配線板及びプリント配線板の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111503A1 (ja) * 2011-02-16 2012-08-23 三菱重工業株式会社 炭素繊維強化プラスチック構造体
JP2012169533A (ja) * 2011-02-16 2012-09-06 Mitsubishi Heavy Ind Ltd 炭素繊維強化プラスチック構造体
US10357938B2 (en) 2011-02-16 2019-07-23 Mitsubishi Heavy Industries, Ltd. Carbon-fiber-reinforced plastic structure
WO2013001801A1 (ja) * 2011-06-30 2013-01-03 住友ベークライト株式会社 基板、金属膜、基板の製造方法および金属膜の製造方法
KR20160098875A (ko) 2015-02-11 2016-08-19 삼성전기주식회사 인쇄회로기판

Also Published As

Publication number Publication date
US20110220396A1 (en) 2011-09-15
JPWO2010058443A1 (ja) 2012-04-12
KR20110081891A (ko) 2011-07-14
KR101148628B1 (ko) 2012-05-25
JP5170253B2 (ja) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5170253B2 (ja) 配線基板及び配線基板の製造方法
US5888627A (en) Printed circuit board and method for the manufacture of same
JP4119205B2 (ja) 多層配線基板
KR102107037B1 (ko) 인쇄회로기판 및 그 제조방법
WO2010007704A1 (ja) フレックスリジッド配線板及び電子デバイス
KR101441236B1 (ko) 배선판의 제조 방법, 배선판 및 비아의 구조
JP6208411B2 (ja) 配線基板及びその製造方法
JP2007149870A (ja) 回路基板及び回路基板の製造方法。
JP2016219478A (ja) 配線基板及びその製造方法
KR101233047B1 (ko) 빌드업 기판
WO2007116855A1 (ja) 多層プリント配線基板及びその製造方法
JP6293436B2 (ja) 配線基板の製造方法
JP5141084B2 (ja) 電子部品実装配線板、及び電子部品実装配線板における電子部品の剥離防止方法
US20190371717A1 (en) Interconnect substrate
JP5334544B2 (ja) 配線基板、実装構造体及び電子装置
JP4070193B2 (ja) 配線基板および電子部品実装構造体
JP3230727B2 (ja) 多層プリント配線板及びその製造方法
JP3955799B2 (ja) 配線基板の製造方法
JP2001127389A (ja) 回路基板用絶縁材と回路基板および回路基板の製造方法
JP2004128481A (ja) 配線基板およびその製造方法
JP3934499B2 (ja) 実装構造体
JP2010129942A (ja) 回路基板及びその製造方法並びに半導体装置及びその製造方法
JP2007115952A (ja) インターポーザ基板及びその製造方法
JP2005159201A (ja) 配線基板およびその製造方法
JP5258459B2 (ja) プリプレグシート、単繊維、配線基板及び実装構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010539054

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117012427

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08878240

Country of ref document: EP

Kind code of ref document: A1