WO2010053022A1 - α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物 - Google Patents

α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物 Download PDF

Info

Publication number
WO2010053022A1
WO2010053022A1 PCT/JP2009/068406 JP2009068406W WO2010053022A1 WO 2010053022 A1 WO2010053022 A1 WO 2010053022A1 JP 2009068406 W JP2009068406 W JP 2009068406W WO 2010053022 A1 WO2010053022 A1 WO 2010053022A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
mass
olefin oligomer
producing
bis
Prior art date
Application number
PCT/JP2009/068406
Other languages
English (en)
French (fr)
Inventor
真治郎 藤川
清彦 横田
匡貴 岡野
深奈子 辻
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010536740A priority Critical patent/JPWO2010053022A1/ja
Priority to EP09824722A priority patent/EP2351722A1/en
Priority to US13/127,121 priority patent/US20110207977A1/en
Publication of WO2010053022A1 publication Critical patent/WO2010053022A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/10Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/02Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/08Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to a method for producing an ⁇ -olefin oligomer, an ⁇ -olefin oligomer obtained by the production method, and a lubricating oil composition containing the ⁇ -olefin oligomer.
  • ⁇ -Olefin oligomer has characteristics such as good flow characteristics at low temperature, relatively high heat and oxidation stability, low evaporation loss at high temperature, and relatively high viscosity index. Etc. have been used.
  • ⁇ -olefin oligomers are produced by an acid catalyst such as BF 3 or AlCl 3 , and usually ⁇ -olefin oligomers having a desired degree of polymerization are obtained by distillation after the reaction.
  • trimers to pentamers are used for lubricating oil applications. In these production methods, an isomerization reaction easily occurs during the oligomerization reaction, and there is a problem that the molecular structure of each oligomer obtained is not uniform, resulting in a mixture of various structures.
  • Patent Document 1 discloses a method for producing an ⁇ -olefin oligomer using a catalyst system using a metallocene compound and methylaluminoxane.
  • the ratio of aluminum to ⁇ -olefin is high, the production efficiency is low, the catalyst deashing efficiency is poor, so a large amount of acid and alkali are required, and the environmental impact is great.
  • the product quality deteriorates due to the residual elements of the product, and that a large amount of toluene is used for the reaction, so that the product quality deteriorates due to mixing in the product.
  • Patent Documents 2 and 3 disclose production examples in which the activity is improved by reducing the amount of the transition metal compound and using a large amount of methylaluminokin. However, this method has a problem in the deashing process because of the large amount of aluminum used.
  • Patent Documents 4 and 5 disclose a method for producing an ⁇ -olefin oligomer by a catalyst system using a metallocene compound and methylaluminoxane, and the amounts of the metallocene compound and methylaluminoxane used are reduced. However, in this method, the catalytic activity is low and the oligomer yield is poor. Moreover, there is no disclosure regarding the excellent catalytic activity that a specific transition metal compound exhibits in the presence of hydrogen.
  • Patent Document 6 discloses a method of adding of H 2 as a method for improving the catalytic activity, the effect is not sufficient. Moreover, the oligomer obtained by the method is almost a dimer, and the yield of the oligomer more than a trimer preferable for lubricating oil is low.
  • JP 2005-501957 A Japanese Patent Laid-Open No. 5-39229 JP 7-133234 A US2001 / 041817 Publication US2001 / 041818 Publication JP 2006-225348 A
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing an ⁇ -olefin oligomer exhibiting excellent catalytic activity. Further, it is a method for producing an ⁇ -olefin oligomer composition, which can reduce the amount of metal used in the catalyst as compared with the conventional one, and also has a high selectivity for trimer to pentamer suitable for use in lubricating oil.
  • the object of the present invention is to provide a method for producing an ⁇ -olefin oligomer composition that can be produced by
  • a method for producing an ⁇ -olefin oligomer composition comprising: A process for producing an ⁇ -olefin oligomer composition comprising a step of reacting an ⁇ -olefin in the presence of hydrogen using a catalyst comprising the following (A) and (B): (A) General formula (I) ⁇ C 5 R 1 R 2 R 3 R 4 (A 1 R a R b R c) ⁇ ⁇ C 5 R 5 R 6 R 7 R 8 (A 2 R d R e R f) ⁇ MXY ⁇ (I ) (Wherein R 1 to R 8 , (A 1 R a R b R c ) and (A 2 R d R e R f ) represent a substituent bonded to a cyclopentadienyl group
  • R 1 to R 8 Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R a to R f each independently represents a hydrocarbon group having 1 to 10 carbon atoms, selected from R a , R b and R c. Two or more groups selected from each other may be bonded to each other to form a ring, or two or more groups selected from R d , R e and R f may be bonded to each other to form a ring.
  • 1 and A 2 each independently represents an element belonging to Group 14 of the periodic table
  • M represents a transition element belonging to Group 4 of the periodic table
  • X and Y each represents a covalent bond ligand or an ion bond ligand. To express.) 1.
  • Cocatalyst containing transition metal compound (B) aluminum represented by A method for producing an ⁇ -olefin oligomer composition comprising: Using a catalyst comprising the following (A) and (B), the amount of aluminum is 1.89 ⁇ 10 ⁇ 5 to 5.67 ⁇ 10 ⁇ 2 mol per mol of ⁇ -olefin, and the hydrogen pressure is 1 to 50 kPa ( A process for producing an ⁇ -olefin oligomer composition comprising a step of reacting an ⁇ -olefin within the range of G), (A) General formula (I) ⁇ C 5 R 1 R 2 R 3 R 4 (A 1 R a R b R c) ⁇ ⁇ C 5 R 5 R 6 R 7 R 8 (A 2 R d R e R f) ⁇ MXY ⁇ (I ) (Wherein R 1 to R 8 , (A 1 R a R b R c ) and (A 2 R d R e R f ) represent a substituent
  • R 1 to R 8 Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R a to R f each independently represents a hydrocarbon group having 1 to 10 carbon atoms, selected from R a , R b and R c. Two or more groups selected from each other may be bonded to each other to form a ring, or two or more groups selected from R d , R e and R f may be bonded to each other to form a ring.
  • 1 and A 2 each independently represents an element belonging to Group 14 of the periodic table
  • M represents a transition element belonging to Group 4 of the periodic table
  • X and Y each represents a covalent bond ligand or an ion bond ligand. To express.) 2.
  • the transition metal compound of component (A) is represented by the general formula (II) ⁇ C 5 H 4 (A 3 R g R h R i) ⁇ 2 ZrCl 2 ⁇ (II) (Wherein, R g, R h and R i each independently represent a hydrocarbon group having 1 to 10 carbon atoms, the 2 or more groups may be bonded to form a ring with each other .
  • a 3 cycles (Represents Group 14 elements)
  • the transition metal compound of component (A) is represented by the general formula (III) ⁇ C 5 H 4 (CR j R k R l ) ⁇ 2 ZrCl 2 (III) (Wherein R j , R k and R l each independently represent a hydrocarbon group having 1 to 10 carbon atoms, and two or more groups may be bonded to each other to form a ring.)
  • the transition metal compound of component (A) is represented by formula (IV) ⁇ C 5 H 4 (CMe 3 ) ⁇ 2 ZrCl 2 (IV)
  • the ratio of trimer to dimer is A
  • the ratio of tetramer to trimer is B
  • the ratio of pentamer to tetramer is C
  • the method for producing an ⁇ -olefin oligomer composition according to the above 2 which is an ⁇ -olefin oligomer composition satisfying A> B and A> C, 9.
  • ⁇ -olefin oligomer composition obtained by the method described in 2 above 10.
  • a process for producing a hydrogenated ⁇ -olefin oligomer composition comprising a step of hydrotreating the ⁇ -olefin oligomer composition obtained by the method described in 2 above, 11.
  • Hydrogenated ⁇ -olefin oligomer composition obtained by the method described in 10 above, 12 A lubricating oil composition containing the ⁇ -olefin oligomer composition according to 9 and / or the hydrogenated ⁇ -olefin oligomer composition according to 11; 13.
  • Production method of olefin oligomer 14 The above 13 wherein the mixing ratio of the metallocene compound represented by the general formula (VII) and the ⁇ -olefin [metallocene compound (mmol) / ⁇ -olefin (L)] is within the range of 0.01 to 0.4. Described manufacturing method, 15. The production method according to the above 13, wherein M is zirconium in the general formula (VII), 16. The production method according to the above 13, wherein the hydrogen pressure is in the range of 0.1 to 50 kPa, 17. 14.
  • the production method according to the above 13, wherein the ⁇ -olefin having 3 to 14 carbon atoms is an ⁇ -olefin selected from 1-octene, 1-decene and 1-dodecene. 18. 14. The production method according to the above 13, wherein the ⁇ -olefin having 3 to 14 carbon atoms is 1-decene, 19. The production method according to the above 13, wherein the selectivity for trimer or higher is 50% or higher, 20. ⁇ -olefin oligomer obtained by the production method according to the above 13, 21.
  • a process for producing a purified hydrogenated ⁇ -olefin oligomer comprising a step of obtaining a fraction having a kinematic viscosity at 100 ° C. of 3 to 35 mm 2 / s, 22.
  • the present invention provides a purified hydrogenated ⁇ -olefin oligomer obtained by the production method described in 21 above.
  • a method for producing an ⁇ -olefin oligomer exhibiting excellent catalytic activity is also provided.
  • a method for producing an ⁇ -olefin oligomer composition that can reduce the amount of catalyst and that can produce trimers to pentamers with high selectivity.
  • trimers to pentamers can be produced with high selectivity, the yield of components useful for lubricating oils is high.
  • generation of the component more than a hexamer is suppressed, a viscosity does not rise too much and can reduce the energy loss in a hydrogenation process or a distillation process.
  • the method for producing an ⁇ -olefin oligomer of the present invention is a method for producing an ⁇ -olefin oligomer, comprising a step of reacting an ⁇ -olefin in the presence of hydrogen using a specific catalyst.
  • the transition metal compound represented by these is used.
  • R 1 to R 8 , (A 1 R a R b R c ) and (A 2 R d R e R f ) represent a substituent bonded to a cyclopentadienyl group.
  • R 1 to R 8 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R a to R f each independently represents a hydrocarbon group having 1 to 10 carbon atoms.
  • Two or more groups selected from R a , R b and R c may be bonded to each other to form a ring
  • two or more groups selected from R d , R e and R f may be bonded to each other.
  • a 1 and A 2 each independently represent an element belonging to Group 14 of the periodic table, and examples thereof include carbon, silicon, and germanium.
  • M represents a transition element of Group 4 of the periodic table, and examples thereof include titanium, zirconium, and hafnium.
  • X and Y each represent a covalent or ionic bond ligand, such as a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 10), 20 (preferably 1 to 10) alkoxy group, amino group, phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 12) (for example, diphenylphosphine group) or 1 to 20 carbon atoms (preferably 1-12) silicon-containing hydrocarbon groups (for example, trimethylsilyl group, etc.), C 1-20 (preferably 1-12) hydrocarbon groups, or boron-containing boron compounds (for example, B (C 6 H 5 ) 4 and BF 4 ).
  • a hydrogen atom, a halogen atom, a hydrocarbon group, and an alkoxy group are preferable.
  • X and Y may be the same as or different from each other.
  • the catalyst used in the present invention includes a bulky substituent as represented by (A 1 R a R b R c ) or (A 2 R d R e R f ). Due to the presence of the bulky substituent, when ⁇ -olefin is polymerized, trimers to pentamers suitable for lubricating oils can be produced with high selectivity.
  • the substituent represented by (A 1 R a R b R c ) or (A 2 R d R e R f ) is preferably CR 3 (C is a carbon atom, R is a hydrocarbon having 1 to 10 carbon atoms). Group, and CMe 3 is particularly preferable.
  • transition metal compound examples include those represented by the general formula (II) ⁇ C 5 H 4 (A 3 R g R h R i) ⁇ 2 ZrCl 2 ⁇ (II) (Wherein, R g, R h and R i each independently represent a hydrocarbon group having 1 to 10 carbon atoms, the 2 or more groups may be bonded to form a ring with each other .A 3 cycles (Represents Group 14 elements)
  • Examples of bis (monosubstituted cyclopentadienyl) zirconocene include bis (t-butylcyclopentadienyl) zirconium dichloride, bis (t-pentylcyclopentadienyl) zirconium dichloride, bis ((2-methylpentan-2-yl ) Cyclopentadienyl) zirconium dichloride, bis ((2,4-dimethylpentan-2-yl) cyclopentadienyl) zirconium dichloride, bis ((2,3-dimethylbutane-2-yl) cyclopentadienyl) Zirconium dichloride, bis ((2,3,3-trimethylbutane-2-yl) cyclopentadienyl) zirconium dichloride, bis ((3-methylpentan-3-yl) cyclopentadieny
  • bis (disubstituted cyclopentadienyl) zirconocene examples include bis (1-methyl-3-t-butylcyclopentadienyl) zirconium dichloride and bis (1-methyl-3-t-pentylcyclopentadienyl) zirconium dichloride.
  • bis (trisubstituted cyclopentadienyl) zirconocene examples include bis (1,2-dimethyl-3-t-butylcyclopentadienyl) zirconium dichloride, bis (1,2-dimethyl-3-t-pentylcyclopentadiene).
  • a promoter containing aluminum is used as the component (B).
  • the cocatalyst containing aluminum include an organoaluminum oxy compound and an organoaluminum compound, and these may be used alone or in combination of two or more.
  • R 15 to R 21 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • h to k are numbers from 0 to 50, respectively, and (h + i) and (j + k) are both 1 or more.
  • the alkyl group having 1 to 8 carbon atoms of R 15 to R 21 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Examples include various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups. Further, the values of h to k are preferably in the range of 1 to 20, particularly 1 to 5.
  • Specific examples of the compounds represented by the general formulas (V) and (VI) include linear or cyclic tetramethyldialumoxane, tetraisobutyldialumoxane, methylalumoxane, ethylalumoxane, butylalumoxane, And isobutylalumoxane.
  • organoaluminum compound used in the present invention examples include tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tripropylaluminum, tripentylaluminum, trihexylaluminum, trioctylaluminum, and tridecylaluminum; Triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, tritert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylbutylaluminum, tri-2-methylpentylaluminum, tri-3-methylpentylaluminum, tri-4 -Methylpentylaluminum, tri-2-methylhexylaluminum, tri-3-methylhexylaluminum, tri-2 Tri-branched alkylaluminums such as ethylhexylaluminum;
  • an ⁇ -olefin having 3 to 14 carbon atoms is usually used.
  • Specific examples thereof include propylene, 1-butene, 3-methyl-1-butene, 4-methyl. -1-butene, 4-phenyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1-pentene, 3,4-dimethyl-1 -Pentene, 4,4-dimethyl-1-pentene, 1-hexene, 4-methyl-1-hexene, 5-methyl-1-hexene, 6-phenyl-1-hexene, 1-octene, 1-decene, 1 -Dodecene, 1-tetradecene and the like.
  • ⁇ -olefins having 8 to 12 carbon atoms are preferable, and ⁇ -olefins having 10 carbon atoms are particularly preferable.
  • the above catalyst In the method for producing an ⁇ -olefin oligomer composition of the present invention, it is preferable to use the above catalyst within a specific numerical range of aluminum concentration and hydrogen pressure.
  • Preferred examples include an aluminum content of 1.89 ⁇ 10 ⁇ 5 to 5.67 ⁇ 10 ⁇ 2 mol per mol of ⁇ -olefin, and a hydrogen pressure of 1 to 50 kPa (G).
  • the amount of aluminum described above corresponds to 0.1 to 300 mmol per liter of 1-decene when 1-decene is used.
  • the following problems may occur if the aluminum concentration does not satisfy the above-mentioned regulations. That is, if it is less than 1.89 ⁇ 10 ⁇ 5 mol per mol of ⁇ -olefin, the catalytic activity may not be exhibited, and the yield of the target ⁇ -olefin oligomer may be lowered. On the other hand, if the amount exceeds 5.67 ⁇ 10 -2 mol per mol of ⁇ -olefin, a large amount of Al is used, so a large amount of hydrochloric acid, NaOH, etc. used for decalcification must be used, which is disadvantageous to the environment. And the yield of the target unsaturated hydrocarbon compound may fall.
  • it is preferably 9.45 ⁇ 10 ⁇ 5 to 3.78 ⁇ 10 ⁇ 2 mol per mol of ⁇ -olefin, more preferably 1.51 ⁇ 10 ⁇ 4 to 1.89 ⁇ per mol of ⁇ -olefin. 10 -2 mol.
  • the hydrogenation amount is less than the above range, the activity of the catalyst is lowered, and if it is too much, a saturated product of the raw ⁇ -olefin may be produced, and the yield of the target ⁇ -olefin oligomer may be lowered. From this viewpoint, it is preferably 0.5 to 30 kPa (G), and more preferably 1 to 10 kPa (G).
  • the transition metal compound is usually 1.89 ⁇ 10 ⁇ 7 to 7.56 ⁇ 10 ⁇ 5 mol, preferably 7.56 ⁇ 10 ⁇ 7 to 5.67 ⁇ 10 ⁇ 5 mol, and more preferably, per mol of ⁇ -olefin. Is 1.89 ⁇ 10 ⁇ 6 to 3.78 ⁇ 10 ⁇ 5 mol. When the amount is less than 1.89 ⁇ 10 ⁇ 7 mol, the catalytic activity may not be exhibited. On the other hand, when the amount exceeds 7.56 ⁇ 10 ⁇ 5 mol, the production of ⁇ -olefin dimer increases, which is the target. The yield of ⁇ -olefin oligomer may decrease.
  • the amount of the transition metal compound is usually 0.001 to 0.4 mmol, preferably 0.004 to 0.3 mmol, more preferably 0.01 to 0.2 mmol per liter of 1-decene. Equivalent to.
  • the reaction temperature is usually 0 to 100 ° C., preferably 20 to 80 ° C., more preferably 30 to 70 ° C. If the temperature is too low or too high, the catalytic activity may not be exhibited. If the temperature is too high, a dimer of ⁇ -olefin may be formed and the yield of the desired ⁇ -olefin oligomer may be reduced. .
  • reaction solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane, aliphatic hydrocarbons such as pentane, hexane, heptane and octane , Halogenated hydrocarbons such as chloroform and dichloromethane.
  • aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclohexane
  • aliphatic hydrocarbons such as pentane, hexane, heptane and octane
  • Halogenated hydrocarbons such as chloroform and dichloromethane.
  • an ⁇ -olefin oligomer composition suitable for a lubricating oil can be obtained, and specifically, an ⁇ -olefin oligomer composition having a high content of trimer to pentamer can be obtained.
  • the ratio of trimer to pentamer based on the total amount of the composition is usually 30% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more. .
  • the ratio of the trimer to the dimer is A
  • the ratio of the tetramer to the trimer is B
  • the ratio of the pentamer to the tetramer is C on a mass basis
  • An ⁇ -olefin oligomer composition satisfying A> C is preferred.
  • the reason for this is as follows. That is, ⁇ -olefin oligomer using a homogeneous catalyst is a co-product, and the oligomer distribution varies depending on the type of catalyst and reaction conditions.
  • the obtained ⁇ -olefin oligomer composition When used for lubricating oil, the obtained ⁇ -olefin oligomer composition may be subjected to a hydrogenation treatment to produce a hydrogenated ⁇ -olefin oligomer composition.
  • a general hydrogenation catalyst such as Pd or Ni can be used
  • the temperature is usually 50 to 300 ° C., preferably 60 to 200 ° C.
  • the hydrogen pressure is usually 0. 1 to 10 MPa, preferably 0.5 to 2 MPa.
  • the ⁇ -olefin oligomer composition and hydrogenated ⁇ -olefin oligomer composition obtained by the above production method can be preferably used for the preparation of a lubricating oil composition.
  • a lubricating oil composition There is no restriction
  • Lubricating oil compositions may contain known additives as appropriate, including detergents, dispersants, viscosity index improvers, antioxidants, corrosion inhibitors, antiwear agents, friction modifiers, pour point depressants. Agents, rust inhibitors, antifoaming agents, extreme pressure agents and the like.
  • the production method of the ⁇ -olefin oligomer of the present invention includes the following production method in addition to the above production method.
  • the invention described below is referred to as “the second invention of the present application”.
  • the second invention of the present application is a method for producing an ⁇ -olefin oligomer comprising a step of polymerizing an ⁇ -olefin in the presence of hydrogen using a specific catalyst system.
  • the “oligomer” refers to a polymer obtained by polymerization of a monomer or a composition thereof, and may be a substantially specific type of polymer, or two or more types (dimer, A mixture of trimers and the like).
  • R is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • M include titanium, zirconium, and hafnium. Among these, zirconium is preferable.
  • Specific examples of X include a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, an amino group, and 1 to 20 carbon atoms.
  • 1 to 12 phosphorus-containing hydrocarbon groups for example, diphenylphosphine group
  • 1 to 20 carbon atoms preferably 1 to 12 silicon-containing hydrocarbon groups (for example, trimethylsilyl group)
  • 1 to 20 carbon atoms are preferable Includes boron compounds containing 1 to 12 hydrocarbon groups or halogens (for example, B (C 6 H 5 ) 4 , BF 4, etc.).
  • halogens for example, B (C 6 H 5 ) 4 , BF 4, etc.
  • hydrogen atoms, halogen atoms, hydrocarbons A group selected from a group and an alkoxy group is preferred.
  • metallocene compound represented by the general formula (VII) include bis (cyclopentadienyl) zirconium dichloride, bis (methylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium dichloride, bis (Iso-propylcyclopentadienyl) zirconium dichloride, bis (n-propylcyclopentadienyl) zirconium dichloride, bis (n-butylcyclopentadienyl) zirconium dichloride, bis (t-butylcyclopentadienyl) zirconium dichloride , Bis (texylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylmethylcyclopentadienyl) di Conium dichloride, bis (cyclopent
  • methylaluminoxane is used.
  • the methylaluminoxane is not particularly limited and conventionally known methylaluminoxane can be used.
  • the general formula (VIII) and the general formula (IX) can be used.
  • p represents the degree of polymerization and is usually 3 to 50, preferably 7 to 40.
  • Examples of the method for producing methylaluminoxane include a method in which methylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited, and the reaction may be carried out according to a known method. For example, a method in which a methylaluminum compound is dissolved in an organic solvent and brought into contact with water, a method in which a methylaluminum compound is initially added at the time of polymerization, and water is added later, a crystal water contained in a metal salt, etc.
  • methylaluminum compound There are a method of reacting water adsorbed on an inorganic or organic material with a methylaluminum compound, a method of reacting tetramethyldialuminoxane with trimethylaluminum, and further reacting water.
  • methylaluminoxanes may be used alone or in combination of two or more.
  • the compounding ratio of the metallocene compound and methylaluminoxane in the catalyst system of the second invention of the present application is such that the methylaluminoxane / metallocene compound (molar ratio) is usually 15 to 150, preferably 20 to 120, more preferably 25 to 100. . If it is less than 15, the catalytic activity may not be exhibited, and an ⁇ -olefin dimer is likely to be produced, and the yield of trimer or higher may be reduced. On the other hand, if it exceeds 150, deashing and removal of the catalyst may be incomplete.
  • an ⁇ -olefin having 3 to 14 carbon atoms is used as a monomer.
  • Specific examples thereof include propylene, 1-butene, 3-methyl-1-butene, 4-methyl-1-butene.
  • ⁇ -olefins selected from 1-octene, 1-decene, and 1-dodecene are preferable, and 1-decene is particularly preferable.
  • the blending ratio of the metallocene compound represented by the general formula (VII) and the ⁇ -olefin having 3 to 14 carbon atoms is usually 0.8. It is from 01 to 0.4, preferably from 0.05 to 0.3, and more preferably from 0.1 to 0.2. If it is less than 0.01, the catalytic activity may not be exhibited. On the other hand, if it exceeds 0.4, an ⁇ -olefin dimer is likely to be produced, and the yield of oligomers of trimer or higher is reduced. In addition, catalyst decalcification may be incomplete.
  • the polymerization of the ⁇ -olefin having 3 to 14 carbon atoms is carried out in the presence of hydrogen.
  • the amount of hydrogen added is usually 0.1 to 50 kPa, preferably 0.5 to 30 kPa, and more preferably 1 to 10 kPa. If the amount of hydrogen added is less than 0.1 kPa, the catalytic activity is not improved, and if it exceeds 50 kPa, a saturated product of the raw ⁇ -olefin is likely to be produced, and the yield of the target ⁇ -olefin oligomer may be reduced. is there.
  • the reaction method is not limited, and may be performed in the absence of a solvent, in a solvent, or any method may be used.
  • a reaction solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane Halogenated hydrocarbons such as chloroform and dichloromethane.
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane
  • aliphatic hydrocarbons such as pentane, hexane, heptane,
  • the temperature of the polymerization reaction is usually 0 to 100 ° C., preferably 20 to 80 ° C., more preferably 30 to 70 ° C. If the temperature is too low or too high, catalytic activity may not be exhibited, and if it is too high, ⁇ -olefin dimers are likely to be produced, and the yield of oligomers of trimers or higher may be reduced. .
  • an ⁇ -olefin oligomer having a selectivity of trimer or higher of 50% or more can be obtained, and such ⁇ -olefin oligomer can be preferably used in lubrication applications.
  • the ⁇ -olefin oligomer may be further treated according to the purpose.
  • a hydrogenated ⁇ -olefin oligomer by hydrogenation, and further purify by distillation to produce a purified hydrogenated ⁇ -olefin oligomer.
  • the hydrogenation temperature is usually 50 to 300 ° C., preferably 60 to 250 ° C., more preferably 70 to 200 ° C.
  • the hydrogen pressure is usually 0.1 to 10 MPa, preferably 0.5 to 2 MPa, more preferably. 0.7 to 1.5 MPa.
  • a general hydrogenation catalyst containing Pd, Ni, or the like can be used.
  • the temperature in the distillation is usually 200 ° C. to 300 ° C., preferably 220 to 280 ° C., more preferably 230 to 270 ° C., and the pressure is usually 0.1 to 15 Pa, preferably 0.4 to 7 Pa, more preferably 0.8. 6-4 Pa.
  • the fraction obtained by the above-mentioned hydrogenation treatment and distillation and having a property of kinematic viscosity at 100 ° C. of 3 to 35 mm 2 / s is particularly preferably used in lubrication applications.
  • the hydrogenated ⁇ -olefin oligomer obtained in the second invention of the present application has about 1 short-chain branch per molecule (usually 0.6 to 1.2, preferably 0.7 to 1.1, more preferably (In the second invention of the present application, a methyl group, an ethyl group, and a propyl group are referred to as short-chain branches). Further, in the hydrogenated ⁇ -olefin oligomer obtained in the second invention of the present application, the short chain branch is mainly a methyl group, and the proportion of the methyl group is usually 80 mol% or more, preferably 85 mol% or more, more preferably It is 90 mol% or more.
  • the hydrogenated ⁇ -olefin oligomer having such a structure is characterized by low evaporation loss while having low viscosity.
  • the value was determined with A as the trimer / dimer, B as the tetramer / trimer, and C as the pentamer / tetramer.
  • Example 1 250 mL of 1-decene was put into a glass container having an internal volume of 300 mL that had been dried by heating in a nitrogen atmosphere, 1.2 mL of 1 mol / L methylaluminoxane (MAO) was added, and the temperature was raised to 50 ° C. Next, 4 mL of a toluene solution of bis (t-butylcyclopentadienyl) zirconium dichloride prepared to 10 mmol / L was added, and the mixture was reacted at a hydrogen pressure of 5 kPa (G) at 50 ° C. for 6 hours.
  • MAO 1 mol / L methylaluminoxane
  • the reaction was stopped with 50 mL of 1% by weight diluted hydrochloric acid, washed twice with 50 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography. Were 47% by mass of dimer, 26% by mass of trimer, 11% by mass of tetramer, 6% by mass of pentamer, and 10% by mass of hexamer or more.
  • Example 2 The same procedure as in Example 1 was performed except that bis (trimethylsilylcyclopentadienyl) zirconium dichloride was used as the transition metal compound.
  • Each selectivity of the dimer or higher was 25% by mass of the dimer, 24% by mass of the trimer, 10% by mass of the tetramer, 6% by mass of the pentamer, and 35% by mass of the hexamer or higher.
  • Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Example 37 The same procedure as in Example 1 was performed except that bis (isopropylcyclopentadienyl) zirconium dichloride was used as the transition metal compound.
  • Each selectivity of the dimer or higher was 27% by mass of the dimer, 28% by mass of the trimer, 16% by mass of the tetramer, 10% by mass of the pentamer, or 20% by mass of the hexamer or higher.
  • Cl, Al, and Zr were ⁇ 2 ppm by mass, and substantially no catalyst residue was contained.
  • Each selectivity of the dimer or higher was 54% by mass of dimer, 28% by mass of trimer, 9% by mass of tetramer, 3% by mass of pentamer, or 6% by mass of hexamer or higher.
  • Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Each selectivity of the dimer or higher was 44% by mass of the dimer, 27% by mass of the trimer, 11% by mass of the tetramer, 5% by mass of the pentamer, and 13% by mass of the hexamer or higher.
  • Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Each selectivity of the dimer or more was 42% by mass of the dimer, 24% by mass of the trimer, 11% by mass of the tetramer, 6% by mass of the pentamer, and 17% by mass of the hexamer or more.
  • An elemental analysis of this solution revealed that Cl, Al, and Zr were ⁇ 2 Wtppm, and substantially no catalyst residue was contained.
  • A> B and A> C it can be seen that the oligomer selectivity is high.
  • the procedure was the same as in Example 1 except that.
  • the procedure was the same as in Example 1 except that.
  • Each selectivity of the dimer or higher was 38% by mass of the dimer, 25% by mass of the trimer, 12% by mass of the tetramer, 7% by mass of the pentamer, or 18% by mass of the hexamer or higher.
  • Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • the reaction was stopped with 50 mL of 1% by weight diluted hydrochloric acid, washed twice with 50 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography. Were 60% by mass of dimer, 23% by mass of trimer, 9% by mass of tetramer, 3% by mass of pentamer, and 5% or more of hexamer. Further, elemental analysis of this solution revealed that Cl was 5 ppm by mass, Al was 15 ppm by mass, Zr was 6 ppm by mass, and the catalyst residue could not be completely removed.
  • Example 19 As the transition metal compound, bis ((3-methylpentan-3-yl) cyclopentadienyl) zirconium dichloride is used, and 7.55 ⁇ 10 ⁇ 6 mol per 1 mol of 1-decene and the amount of aluminum is 7.55 ⁇ 10 ⁇
  • Each selectivity of the dimer or higher was 15% by mass of the dimer, 27% by mass of the trimer, 19% by mass of the tetramer, 12% by mass of the pentamer, and 28% by mass of the hexamer or higher.
  • oligomer yield, dimer selectivity, and the like were analyzed by gas chromatography.
  • the amount of catalyst residue was determined by elemental analysis.
  • the carbon distribution was measured by gas chromatography, and the amount of each component in the whole oligomer was examined.
  • the average degree of polymerization was determined by GPC (gel permeation chromatography) measurement [average degree of polymerization: number average molecular weight / PS (polystyrene) equivalent monomer molecular weight (each molecular weight corresponding to 3, 4, pentamer, respectively) The average value divided by 3, 4 and 5)].
  • the number of short chain branches (number / 1000 carbon), the average number of short chain branches per molecule of oligomer (average degree of polymerization ⁇ number of carbon atoms of monomer ⁇ number of short chain branches / 1000), and the branching group ratio are 13 C-NMR ( Determined by CDCl 3 ) measurement.
  • the 40 ° C. kinematic viscosity and the 100 ° C. kinematic viscosity were measured according to JISK2283.
  • the viscosity index was measured according to JISK2283.
  • the pour point was measured according to JISK2269.
  • the flash point was measured according to JISK2265 (Cleveland open type).
  • the evaporation amount (Noack) was measured in accordance with ASTM D5800, and the evaporation loss of the base oil after 1 hour at 250 ° C. was measured.
  • Example 25 After adding nitrogen degassed and dehydrated 1-decene 2.5L and nitrogen degassed and dehydrated toluene 2.5L to a 5L stainless steel autoclave purged with nitrogen, the temperature was raised to 65 ° C. 40 ml of a toluene solution of methylaluminoxane adjusted to 1.0 mol / L was added. Next, 10 mL of a toluene solution of bis (cyclopentadienyl) zirconium dichloride adjusted to 40 mmol / L was added, and the reaction was carried out at 65 ° C. for 3 hours while continuously supplying 5 kPa of hydrogen and stirring.
  • the reaction was stopped with 500 mL of 1% dilute hydrochloric acid, washed twice with 100 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the yield of the oligomer was 86%,
  • the selectivity over the isomer was 49% dimer, 17% trimer, 10% tetramer, 6% pentamer, and 18% hexamer. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Example 26 After adding 2.5 L of degassed and dehydrated 1-decene by nitrogen bubbling to a 5 L stainless steel autoclave purged with nitrogen, the temperature was raised to 50 ° C. and adjusted to 1.0 mol / L of methylaluminoxane. 12 ml of toluene solution was added. Next, 10 mL of a toluene solution of bis (cyclopentadienyl) zirconium dichloride adjusted to 40 mmol / L was added, and the reaction was carried out at 50 ° C. for 7 hours while continuously supplying and stirring 5 kPa of hydrogen.
  • the reaction was stopped with 500 mL of 1% dilute hydrochloric acid, washed twice with 100 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the yield of the oligomer was 94%
  • the selectivity over the body was 42% dimer, 11% trimer, 7% tetramer, 5% pentamer, and 35% hexamer over 35%. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Example 27 Nitrogen-substituted 1 L stainless steel autoclave was degassed by nitrogen bubbling and 250 mL of dehydrated 1-decene was added, then heated to 50 ° C. and adjusted to 1.0 mol / L in toluene solution of methylaluminoxane 1 .8 ml was added. Next, 1 mL of a toluene solution of bis (cyclopentadienyl) zirconium dichloride adjusted to 40 mmol / L was added, the temperature was raised to 50 ° C., and 5 kPa of hydrogen was continuously supplied and stirred at 50 ° C. for 2 hours. Reacted.
  • the reaction was stopped with 50 mL of 1% diluted hydrochloric acid, washed twice with 10 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the oligomer yield was 87%,
  • the selectivity over the isomer was 32% dimer, 11% trimer, 7% tetramer, 5% pentamer, and 45% hexamer over 45%. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Example 28 To a 1 L stainless steel autoclave purged with nitrogen, 250 mL of degassed and dehydrated 1-decene was added by nitrogen bubbling, then heated to 50 ° C. and adjusted to 1.0 mol / L in toluene solution of methylaluminoxane 0 .6 ml was added. Next, 1 mL of a toluene solution of bis (t-butylcyclopentadienyl) zirconium dichloride adjusted to 25 mmol / L was added, and 2.5 kPa of hydrogen was continuously supplied and reacted at 50 ° C. for 5 hours while stirring. .
  • the reaction was stopped with 50 mL of 1% dilute hydrochloric acid, washed twice with 10 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the yield of the oligomer was 92%,
  • the selectivity over the body was 42% dimer, 24% trimer, 12% tetramer, 7% pentamer, and 15% hexamer over 15%. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • the reaction was stopped with 50 mL of 1% diluted hydrochloric acid, washed twice with 10 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the yield of the oligomer was 79%,
  • the selectivity over the isomer was 28% dimer, 10% trimer, 7% tetramer, 5% pentamer, and 50% hexamer or more. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Example 30 The same procedure as in Example 29 was performed except that bis (isopropylcyclopentadienyl) zirconium dichloride was used instead of bis (ethylcyclopentadienyl) zirconium dichloride.
  • the reaction was stopped with 50 mL of 1% dilute hydrochloric acid, washed twice with 10 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the yield of the oligomer was 88%, The selectivity over the isomer was 28% dimer, 12% trimer, 8% tetramer, 6% pentamer, and 46% hexamer. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • the reaction was stopped with 50 mL of 1% dilute hydrochloric acid and washed twice with 10 mL of deionized water. Compared with Examples 25 to 30, a large amount of precipitate was generated near the water / oil interface during decalcification. Elemental analysis of the solution after washing with water revealed that Cl was 5 ppm by mass, Al was 15 ppm by mass, and Zr was 6 ppm by mass, so that the catalyst residue could not be completely removed.
  • the oligomer yield was 94%, and the selectivity for dimer or higher was 60% dimer, 23% trimer, 9% tetramer, 3% pentamer, 5% hexamer or higher.
  • the reaction was stopped with 50 mL of 1% dilute hydrochloric acid, washed twice with 10 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the yield of the oligomer was 90%,
  • the selectivity over the body was 77% dimer, 15% trimer, 5% tetramer, 2% pentamer, and 1% over hexamer. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Example 6 The same operation as in Example 28 was carried out except that H 2 was not introduced.
  • the reaction was stopped with 50 mL of 1% dilute hydrochloric acid, washed twice with 10 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the oligomer yield was as high as 25%.
  • each dimer or higher was 46% dimer, 21% trimer, 9% tetramer, 5% pentamer, 19% hexamer or higher. Further, when elemental analysis of this solution was performed, it was found that Cl, Al, and Zr were all ⁇ 2 ppm by mass and substantially no catalyst residue was contained.
  • Tables 6 and 7 show main production conditions of Examples 25 to 30 and Comparative Examples 4 to 6 and analysis results of the obtained ⁇ -olefin oligomer.
  • Example 31 After removing the monomer and dimer from the decalcification liquid obtained in Example 25 under reduced pressure, 1% by mass of a palladium / alumina catalyst (5% Pd supported product) was added to a 5 L stainless steel autoclave purged with nitrogen, and hydrogenated. It was made to react at 85 degreeC for 5 hours, supplying 0.8 MPa continuously and stirring. Thereafter, the catalyst was removed by filtration, and the resulting hydrogenated liquid was subjected to fractional distillation at 1.33 Pa and 200 to 270 ° C. using a single distillation apparatus. Among the obtained fractions, fractions mainly composed of trimer were collected (trimer 90.1% by mass, tetramer 9.3% by mass, pentamer 0.5% by mass).
  • a palladium / alumina catalyst 5% Pd supported product
  • This fraction has an average degree of polymerization of 3.0, a short chain branch number of 30.1 / 1000 carbon, and an average short chain branch number of 0.90 per oligomer molecule. It was also revealed that the short-chain branching group species consisted of methyl group branching, with 98.6 mol% methyl group branching and 1.4 mol% ethyl group branching. This fraction had a kinematic viscosity of 40 ° C. of 14.45 mm 2 / s, a kinematic viscosity of 100 ° C.
  • Example 32 After hydrogenation in Example 31, fractions containing a tetramer as a main component were collected from fractions obtained by fractional distillation (10.5% by mass of trimer, 65.6% by mass of tetramer, five 20.2% by mass of the monomer, 3.7% by mass or more of the hexamer). The properties of this fraction are shown in Table 8.
  • Example 33 Of the fractions obtained by fractional distillation after hydrogenation in Example 31, fractions containing the pentamer as a main component were collected (trimer 0.3% by mass, tetramer 22.1% by mass, five (56.0% by mass of the monomer, 21.7% by mass or more of the hexamer). The properties of this fraction are shown in Table 8.
  • Example 34 After hydrogenation in Example 31, the residue after fractional distillation was examined (5.0% by mass of tetramer, 12.8% by mass of pentamer, 82.2% by mass or more of hexamer). Table 8 shows the properties of the residue.
  • Example 35 The decalcification liquid obtained in Example 26 was hydrogenated and fractionated in the same manner as in Example 31, and the residue after fractionation was examined (tetramer 9.9% by mass, pentamer 10.1% by mass). , Hexamer or more 80.0 mass%). Table 8 shows the properties of the residue.
  • This decalcified liquid was hydrogenated and fractionated in the same manner as in Example 31 to collect fractions mainly composed of trimers (trimer 88.5% by mass, tetramer 9.9% by mass, Pentamer 0.8 mass%).
  • the properties of this fraction are shown in Table 8. Comparative Example 13 was found to have insufficient properties as a lubricating oil base material with very few short chain branches and a high pour point as compared with Examples 31-35.
  • a method for producing an ⁇ -olefin oligomer composition capable of reducing the amount of catalyst and further capable of producing trimers to pentamers with high selectivity.
  • the ⁇ -olefin oligomer obtained in the present invention is preferably used as a component of a lubricating oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Abstract

 α-オレフィンオリゴマー組成物の製造方法であって、特定の触媒を使用し、水素存在下でα-オレフィンを反応させる工程を含む、α-オレフィンオリゴマー組成物の製造方法である。本発明によれば、触媒量を低減化することができ、さらに三量体~五量体を高い選択率で製造することのできるα-オレフィンオリゴマー組成物の製造方法が提供される。本発明で得られるα-オレフィンオリゴマーは潤滑油の成分として好ましく用いられる。

Description

α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物
 本発明は、α-オレフィンオリゴマーの製造方法、当該製造方法によって得られるα-オレフィンオリゴマー、および当該α-オレフィンオリゴマーを含有する潤滑油組成物に関する。
 α-オレフィンオリゴマーは、低温における流動特性が良好で、熱及び酸化安定性が比較的高く、高温での蒸発ロスが少なく、粘度指数が比較的高い等の特徴があり、これまで潤滑油基油等に用いられてきた。従来、α-オレフィンオリゴマーは、BF3やAlCl3といった酸触媒によって製造され、通常は反応後に蒸留することで目的の重合度のα-オレフィンオリゴマーを得ている。例えば、1-デセンのオリゴマーに関しては三量体~五量体が潤滑油用途に用いられている。これらの製造方法においては、オリゴマー化反応時に異性化反応も起きやすく、得られる各オリゴマーの分子構造が均一でなく、種々の構造の混合物となるという問題があった。
 α-オレフィンオリゴマーの製造方法に関しては、近年、メタロセン触媒を用いたα-オレフィンオリゴマーの製造方法が知られ、この方法により分子構造の均一性が高められている。
 メタロセン触媒を使用するα-オレフィンオリゴマーの製造例としては、例えば、特許文献1は、メタロセン化合物およびメチルアルミノキサンを用いた触媒系によるα-オレフィンオリゴマーの製造方法を開示する。しかしながら、この方法においてはα-オレフィンに対するアルミニウムの割合が高く、生産効率が低いこと、触媒の脱灰効率が悪いため多量の酸やアルカリが必要とされ、環境への悪影響が大きいこと、製品中の残留元素により製品品質が悪化すること、反応に多量のトルエンを使用するため、製品への混入により製品品質が悪化することなどの問題点がある。特許文献2、3は、遷移金属化合物量を低減化しメチルアルミノキンを多量に用いることで活性向上を図った製造例を開示する。しかしながら、この方法においては使用するアルミニウム量が多いため脱灰工程における問題がある。特許文献4、5は、メタロセン化合物およびメチルアルミノキサンを用いた触媒系によるα-オレフィンオリゴマーの製造方法を開示し、メタロセン化合物およびメチルアルミノキサンの使用量は低減化されている。しかしながら、この方法においては触媒活性が低くオリゴマー収率が悪い。また、特定の遷移金属化合物が水素存在下で示す優れた触媒活性に関する開示はない。特許文献6は、触媒活性を向上させる方法としてH2を添加する方法を開示するが、その効果は十分ではない。またその方法で得られるオリゴマーはほぼ二量体であり、潤滑油用として好ましい三量体以上のオリゴマーの得率が低い。
特表2005-501957号公報 特開平5-39229号公報 特開平7-133234号公報 US2001/041817号公開公報 US2001/041818号公開公報 特開2006-225348号公報
 本発明は上記事情に鑑みなされたもので、優れた触媒活性を示す、α-オレフィンオリゴマーの製造方法を提供することを目的とするものである。
 また、α-オレフィンオリゴマー組成物の製造方法であって、触媒に用いられる金属量を従来のものより低減化することができ、さらに潤滑油用として適する三量体~五量体を高い選択率で製造することのできるα-オレフィンオリゴマー組成物の製造方法を提供することを目的とするものである。
 本発明者らは、鋭意研究を重ねた結果、特定の遷移金属化合物を用いてなる触媒を使用することで上記課題が解決されることを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち本発明は、
1. α-オレフィンオリゴマー組成物の製造方法であって、
以下の(A)および(B)を用いてなる触媒を使用し、水素存在下でα-オレフィンを反応させる工程を含む、α-オレフィンオリゴマー組成物の製造方法、
(A)一般式(I)
{C51234(A1abc)}{C55678(A2def)}MXY・・・(I)
(式中、R1~R8、(A1abc)および(A2def)はシクロペンタジエニル基に結合する置換基を表す。R1~R8はそれぞれ独立に水素原子または炭素数1~10の炭化水素基を表し、Ra~Rfはそれぞれ独立に炭素数1~10の炭化水素基を表す。Ra、RbおよびRcから選ばれる2以上の基がお互いに結合して環を形成してもよく、またRd、ReおよびRfから選ばれる2以上の基がお互いに結合して環を形成してもよい。A1およびA2はそれぞれ独立に周期表第14族の元素を表す。Mは周期表第4族の遷移元素を表す。XおよびYはそれぞれ共有結合性配位子またはイオン結合性配位子を表す。)
で表される遷移金属化合物
(B)アルミニウムを含有する助触媒
2. α-オレフィンオリゴマー組成物の製造方法であって、
以下の(A)および(B)を用いてなる触媒を使用し、アルミニウム量がα-オレフィン1molあたり1.89×10-5~5.67×10-2mol、水素圧力が1~50kPa(G)の範囲でα-オレフィンを反応させる工程を含む、α-オレフィンオリゴマー組成物の製造方法、
(A)一般式(I)
{C51234(A1abc)}{C55678(A2def)}MXY・・・(I)
(式中、R1~R8、(A1abc)および(A2def)はシクロペンタジエニル基に結合する置換基を表す。R1~R8はそれぞれ独立に水素原子または炭素数1~10の炭化水素基を表し、Ra~Rfはそれぞれ独立に炭素数1~10の炭化水素基を表す。Ra、RbおよびRcから選ばれる2以上の基がお互いに結合して環を形成してもよく、またRd、ReおよびRfから選ばれる2以上の基がお互いに結合して環を形成してもよい。A1およびA2はそれぞれ独立に周期表第14族の元素を表す。Mは周期表第4族の遷移元素を表す。XおよびYはそれぞれ共有結合性配位子またはイオン結合性配位子を表す。)
で表される遷移金属化合物
(B)アルミニウムを含有する助触媒
3. (B)成分のアルミニウムを含有する助触媒が、有機アルミニウムオキシ化合物及び/または有機アルミニウム化合物である、上記2に記載のα-オレフィンオリゴマー組成物の製造方法、
4. (A)成分の遷移金属化合物が、一般式(II)
{C54(A3ghi)}2ZrCl2・・・(II)
(式中、Rg、RhおよびRiはそれぞれ独立に炭素数1~10の炭化水素基を表し、2以上の基がお互いに結合して環を形成してもよい。A3は周期表第14族の元素を表す。)
で表される遷移金属化合物である、上記2に記載のα-オレフィンオリゴマー組成物の製造方法、
5. (A)成分の遷移金属化合物が、一般式(III)
{C54(CRjkl)}2ZrCl2・・・(III)
(式中、Rj、RkおよびRlはそれぞれ独立に炭素数1~10の炭化水素基を表し、2以上の基がお互いに結合して環を形成してもよい。)
で表される遷移金属化合物である、上記2に記載のα-オレフィンオリゴマー組成物の製造方法、
6. (A)成分の遷移金属化合物が、式(IV)
{C54(CMe3)}2ZrCl2・・・(IV)
で表される遷移金属化合物である、上記2に記載のα-オレフィンオリゴマー組成物の製造方法、
7. α-オレフィンが1-デセンである上記2に記載のα-オレフィンオリゴマー組成物の製造方法、
8. α-オレフィンオリゴマー組成物が、質量基準で、二量体に対する三量体の割合をA、三量体に対する四量体の割合をB、四量体に対する五量体の割合をCとしたときに、A>BかつA>Cを満たすα-オレフィンオリゴマー組成物である上記2に記載のα-オレフィンオリゴマー組成物の製造方法、
9. 上記2に記載の方法で得られるα-オレフィンオリゴマー組成物、
10. 上記2に記載の方法で得られたα-オレフィンオリゴマー組成物を水素化処理する工程を含む、水素化α-オレフィンオリゴマー組成物の製造方法、
11. 上記10に記載の方法で得られる水素化α-オレフィンオリゴマー組成物、
12. 上記9に記載のα-オレフィンオリゴマー組成物および/または上記11に記載の水素化αオレフィンオリゴマー組成物を含有する潤滑油組成物、
13. 一般式(VII)
(RC542MX2   (VII)
(Rは水素原子または炭素数1~10の炭化水素基を表し、Mは周期律表第4族の遷移金属元素を表し、Xは共有結合性又はイオン結合性の配位子を表す。)
で表されるメタロセン化合物、およびメチルアルミノキサンをモル比(メチルアルミノキサン/メタロセン化合物)が15~110で使用し、水素存在下で炭素数3~14のα-オレフィンを重合する工程を含む、α-オレフィンオリゴマーの製造方法、
14. 一般式(VII)で表されるメタロセン化合物と上記α-オレフィンの配合割合〔メタロセン化合物(mmol)/α-オレフィン(L)〕が、0.01~0.4の範囲内である上記13に記載の製造方法、
15. 一般式(VII)において、Mがジルコニウムである上記13に記載の製造方法、
16. 水素圧が、0.1~50kPaの範囲内である上記13に記載の製造方法、
17. 炭素数3~14のα-オレフィンが1-オクテン、1-デセンおよび1-ドデセンから選ばれるα-オレフィンである上記13に記載の製造方法、
18. 炭素数3~14のα-オレフィンが1-デセンである上記13に記載の製造方法、
19. 三量体以上の選択率が50%以上である上記13に記載の製造方法、
20. 上記13に記載の製造方法で得られるα-オレフィンオリゴマー、
21. 上記13に記載の製造方法によりα-オレフィンオリゴマーを製造する工程、当該α-オレフィンオリゴマーを水添して、水添α-オレフィンオリゴマーを製造する工程、および当該水添α-オレフィンオリゴマーの蒸留により100℃動粘度が3~35mm2/sの留分を得る工程を含む、精製水添α-オレフィンオリゴマーの製造方法、
22. 上記21に記載の製造方法で得られる精製水添α-オレフィンオリゴマー
を提供するものである。
 本発明によれば、優れた触媒活性を示す、α-オレフィンオリゴマーの製造方法が提供される。
 また、触媒量を低減化することができ、さらに三量体~五量体を高い選択率で製造することのできるα-オレフィンオリゴマー組成物の製造方法が提供される。この方法を使用することで、触媒量の低減化により製造コストを抑制することができ、また触媒残留物による製品品質の低下が回避される。さらに、三量体~五量体を高い選択率で製造することができるため、潤滑油用として有用な成分の得率が高い。また六量体以上の成分の生成が抑えられるため、粘度が上がりすぎることがなく、水添工程や蒸留工程におけるエネルギーロスを少なくすることができる。
 本発明のα-オレフィンオリゴマーの製造方法は、特定の触媒を使用して水素存在下でα-オレフィンを反応させる工程を含む、α-オレフィンオリゴマーの製造方法である。
 本発明で使用する触媒においては、(A)成分として、一般式(I)
{C51234(A1abc)}{C55678(A2def)}MXY・・・(I)
で表される遷移金属化合物を使用する。
 一般式(I)中、R1~R8、(A1abc)および(A2def)はシクロペンタジエニル基に結合する置換基を表す。R1~R8はそれぞれ独立に水素原子または炭素数1~10の炭化水素基を表し、Ra~Rfはそれぞれ独立に炭素数1~10の炭化水素基を表す。Ra、RbおよびRcから選ばれる2以上の基がお互いに結合して環を形成してもよく、またRd、ReおよびRfから選ばれる2以上の基がお互いに結合して環を形成してもよい。A1およびA2はそれぞれ独立に周期表第14族の元素を表し、例えば、炭素、ケイ素、ゲルマニウムを挙げることができる。Mは周期表第4族の遷移元素を表し、例えば、チタニウム、ジルコニウム、ハフニウムを挙げることができ、この中でジルコニウムが好ましい。XおよびYはそれぞれ共有結合性配位子またはイオン結合性配位子を表し、例えば、水素原子、ハロゲン原子、炭素数1~20(好ましくは1~10)の炭化水素基、炭素数1~20(好ましくは1~10)のアルコキシ基、アミノ基、炭素数1~20(好ましくは1~12)のリン含有炭化水素基(例えば、ジフェニルホスフィン基など)又は炭素数1~20(好ましくは1~12)のケイ素含有炭化水素基(例えば、トリメチルシリル基など)や、炭素数1~20(好ましくは1~12)の炭化水素基あるいはハロゲンを含有するホウ素化合物(例えば、B(C654、BF4など)を示す。これらの中で、水素原子、ハロゲン原子、炭化水素基及びアルコキシ基が好ましい。X及びYは、互いに同一であっても異なっていてもよい。
 上記のように本発明で使用する触媒には、(A1abc)や(A2def)で表されるように、嵩高い置換基が含まれる。嵩高い置換基が存在することで、αオレフィンを重合すると潤滑油用として適する三量体~五量体を高い選択率で製造することができる。(A1abc)や(A2def)で表される置換基は、好ましくはCR3(Cは炭素原子、Rは、炭素数1~10の炭化水素基を表す。)であり、特にCMe3が好ましい。
 上記遷移金属化合物の例としては、一般式(II)
{C54(A3ghi)}2ZrCl2・・・(II)
(式中、Rg、RhおよびRiはそれぞれ独立に炭素数1~10の炭化水素基を表し、2以上の基がお互いに結合して環を形成してもよい。A3は周期表第14族の元素を表す。)
で表される遷移金属化合物が挙げられ、具体的には式(III)
{C54(CRjkl)}2ZrCl2・・・(III)
(式中、Rj、RkおよびRlはそれぞれ独立に炭素数1~10の炭化水素基を表し、2以上の基がお互いに結合して環を形成してもよい。)
で表される遷移金属化合物が挙げられ、さらに具体的には一般式(IV)
{C54(CMe3)}2ZrCl2 ・・・(IV)
で表される遷移金属化合物が挙げられる。一般式(IV)において、Meはメチル基を表す。
 以下に一般式(I)で表される遷移金属化合物の具体例を示す。
 ビス(一置換シクロペンタジエニル)ジルコノセンとしては、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(t-ペンチルシクロペンタジエニル)ジルコニウムジクロリド、ビス((2-メチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2,4-ジメチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2,3-ジメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2,3,3-トリメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-メチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-メチルヘキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3,5-ジメチルヘキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2,2,3-トリメチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2,3-ジメチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-エチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-エチルヘキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-エチル-5-メチルヘキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-エチル-2-メチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-エチル-2,2-ジメチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチルシクロヘキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-エチルシクロヘキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-イソプロピルシクロヘキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-t-ブチルシクロヘキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-(2,3-ジメチルブタン-2-イル)シクロヘキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-エチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-イソプロピルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-t-ブチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-(2,3-ジメチルブタン-2-イル)シクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2-フェニルプロパン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2-フェニルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-フェニルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2-(2-インデニル)プロパン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2-(2-インデニル)ブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-(2-インデニル)ペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2-(2-インデニル)プロパン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((2-インデニルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((3-インデニルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,1-ジフェニルエチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,1-ジフェニルプロピル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1,1-ジフェニルブチル)シクロペンタジエニル)ジルコニウムジクロリドなどが例示できる。
 ビス(二置換シクロペンタジエニル)ジルコノセンとしては、ビス(1-メチル-3-t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-t-ペンチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(2-メチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(2、4-ジメチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(2、3-ジメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(2,3,3-トリメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(3-メチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(3-メチルへキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(3,5-ジメチルへキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(3,4-ジメチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-(3,4,4-トリメチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-エチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-エチルへキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-(3-エチル-5-メチル)へキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-(3-エチル-4-メチル)ペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-(3-エチル-4,4-ジメチル)ペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-メチルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-エチルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-イソプロピルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-t-ブチルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(2,3-ジメチルブタン-2-イル)シクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-メチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-エチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-イソプロピルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(1-t-ブチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1-メチル-3-(2,3-ジメチルブタン-2-イル)シクロペンチル)シクロペンタジエニル)ジルコニウムジクロリドなどが例示できる。
 ビス(三置換シクロペンタジエニル)ジルコノセンとしては、ビス(1,2-ジメチル-3-t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-t-ペンチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2-メチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2,4-ジメチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2,3-ジメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2,3,4-トリメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(3-メチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(3-メチルへキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2-メチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2,4-ジメチルペンタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2,3-ジメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(2,3,4-トリメチルブタン-2-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(3-エチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(3-エチルへキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(3-エチル-5-メチルへキサン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(3-エチル-4-メチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,2-ジメチル-3-(3-エチル-4,4-ジメチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(1-メチルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(1-エチルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(1-イソプロピルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(1-t-ブチルシクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(2,3-ジメチルブタン-2-イル)シクロへキシル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(1-メチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス((1,3-ジメチル-3-(1-エチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(1-イソプロピルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(1-t-ブチルシクロペンチル)シクロペンタジエニル)ジルコニウムジクロリド、ビス(1,3-ジメチル-3-(2,3-ジメチルブタン-2-イル)シクロペンチル)シクロペンタジエニル)ジルコニウムジクロリドなどが例示できる。
 更には、上記に記載の化合物において、これらの化合物の塩素原子を臭素原子、ヨウ素原子、水素原子、メチル基、フェニル基、メトキシ基などに置き換えたもの、又、上記化合物の中心金属のジルコニウムをチタニウム、ハフニウムに置き換えたものを挙げることができる。
 本発明で使用する触媒においては、(B)成分として、アルミニウムを含有する助触媒が使用される。アルミニウムを含有する助触媒としては、有機アルミニウムオキシ化合物や有機アルミニウム化合物が挙げられ、これらは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 有機アルミニウムオキシ化合物としては、一般式(V)
Figure JPOXMLDOC01-appb-C000001
で表される鎖状アルミノキサンや、一般式(VI)
Figure JPOXMLDOC01-appb-C000002
で表される環状アルミノキサンが挙げられる。
 一般式(V)および(VI)において、R15~R21は、それぞれ独立に炭素数1~8のアルキル基を示す。h~kは、それぞれ0~50の数であり、かつ(h+i)と(j+k)は共に1以上である。
 一般式(V)及び(VI)で表わされる含酸素有機金属化合物において、R15~R21の炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基が挙げられる。
 また、h~kの値としては、1~20、特に1~5の範囲であるものが好ましい。
 一般式(V)及び(VI)で表される化合物の具体例としては、直鎖状又は環状のテトラメチルジアルモキサン、テトライソブチルジアルモキサン、メチルアルモキサン、エチルアルモキサン、ブチルアルモキサン、イソブチルアルモキサンなどが挙げられる。
 本発明で使用する有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリプロピルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリn-アルキルアルミニウム;トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルブチルアルミニウム、トリ2-メチルペンチルアルミニウム、トリ3-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキシルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキルアルミニウム;トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム;トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム;ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド、イソプレニルアルミニウムなどのアルケニルアルミニウム;イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド、イソブチルアルミニウムイソプロポキシドなどのアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;部分的にアルコキシ化されたアルキルアルミニウム;ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、エチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)、ジイソブチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、イソブチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどが挙げられる。
 本発明で使用するα-オレフィンとしては、通常、炭素数3~14のα-オレフィンが使用され、具体例としては、例えば、プロピレン、1-ブテン、3-メチル-1-ブテン、4-メチル-1-ブテン、4-フェニル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ペンテン、3,4-ジメチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-ヘキセン、4-メチル-1-ヘキセン、5-メチル-1-ヘキセン、6-フェニル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセンなどを挙げることができる。これらの中で、炭素数8~12のα-オレフィンが好ましく、特に炭素数10のα-オレフィンが好ましい。
 本発明のα-オレフィンオリゴマー組成物の製造方法においては、アルミニウム濃度および水素圧力が特定の数値範囲内で上記の触媒を使用することが好ましい。
 好ましい範囲としては、アルミニウム量が、α-オレフィン1molあたり1.89×10-5~5.67×10-2mol、水素圧力が、1~50kPa(G)が挙げられる。上記のアルミニウム量は1-デセンを使用する際は、1-デセン1Lあたり0.1~300mmolに相当する。
 アルミニウムを含有する助触媒を使用する際に、アルミニウム濃度が上記の規定を満たさない場合は以下の問題が生じる場合がある。すなわち、α-オレフィン1molあたり1.89×10-5mol未満であると触媒活性が発現しないことがあり、目的とするα-オレフィンオリゴマーの収率が低下することがある。一方、α―オレフィン1molあたり5.67×10-2molを超えると、Alの使用量が多いため、脱灰に使用する塩酸、NaOHなどを多量に用いなければならず環境上不利となることと、目的とする不飽和炭化水素化合物の収率が低下することがある。当該観点から、好ましくはα-オレフィン1molあたり9.45×10-5~3.78×10-2molであり、更に好ましくはα-オレフィン1molあたり1.51×10-4~1.89×10-2molである。
 水素添加量が、上記範囲より少ないと触媒の活性が低くなり、多すぎると原料α-オレフィンの飽和体が生成し、目的とするα-オレフィンオリゴマーの収率が低下することがある。当該観点から、好ましくは0.5~30kPa(G)であり、更に好ましくは1~10kPa(G)である。
 遷移金属化合物はα―オレフィン1molあたり通常1.89×10-7~7.56×10-5mol、好ましくは7.56×10-7~5.67×10-5molであり、更に好ましくは1.89×10-6~3.78×10-5molである。1.89×10-7mol未満であると触媒活性が発現しないことがあり、一方、7.56×10-5molを超えると、α-オレフィンの二量体の生成が増し、目的とするα-オレフィンオリゴマーの収率が低下することがある。
 上記遷移金属化合物量は、1-デセンの場合には、1-デセン1Lあたり通常0.001~0.4mmol、好ましくは0.004~0.3mmol、更に好ましくは0.01~0.2mmolに相当する。
 反応温度は通常0~100℃、好ましくは20~80℃、更に好ましくは30~70℃である。温度が低すぎる、或いは高すぎると触媒活性が発現しないことがあり、又、高すぎるとα-オレフィンの二量体が生成して目的とするα-オレフィンオリゴマーの収率が低下することがある。
 反応溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサンなどの脂環式炭化水素、ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素、クロロホルム、ジクロロメタン等のハロゲン化炭化水素などが挙げられる。
 本発明によれば、潤滑油に適するα-オレフィンオリゴマー組成物が得られ、具体的には三量体~五量体の含有量が多いα-オレフィンオリゴマー組成物が得られる。本発明のα-オレフィンオリゴマー組成物は、組成物全量基準の三量体~五量体の割合は通常30質量%以上であり、好ましくは40質量%以上、より好ましくは50質量%以上である。また、質量基準で、二量体に対する三量体の割合をA、三量体に対する四量体の割合をB、四量体に対する五量体の割合をCとしたときに、A>BかつA>Cを満たすα-オレフィンオリゴマー組成物であることが好ましい。この理由は以下のとおりである。すなわち、均一系触媒を用いたα-オレフィンオリゴマーは連産品となり、オリゴマー分布は触媒の種類や、反応条件によって異なる。本発明の反応条件の範囲で、嵩高い置換基を有しない遷移金属化合物を使用する触媒を用いて反応を行うと二量体と六量体が多く生成する傾向があり、潤滑油に有用である三量体~五量体の得率が低くなる。一方、本発明で使用する触媒を用いると、二量体に対する三量体の割合が高くなり、三量体~五量体の生成割合が高くなる。上記A>BかつA>Cの関係は、この三~五量体が多く得られる傾向を表現するものである。
 潤滑油用に用いる場合は、得られたα-オレフィンオリゴマー組成物に対して水素化処理を行い、水素化α-オレフィンオリゴマー組成物を製造してもよい。水素化処理においては、PdやNiなどの一般的な水添触媒を用いることができ、温度は、通常、50~300℃、好ましくは60~200℃であり、水素圧は、通常、0.1~10MPa、好ましくは0.5~2MPaである。
 上記の製造方法によって得られたα-オレフィンオリゴマー組成物や水素化α-オレフィンオリゴマー組成物は潤滑油組成物の調製に好ましく用いることができる。潤滑油組成物の用途としては特に制限はなく、自動車、航空機、その他の産業用機械の潤滑用に使用することができる。潤滑油組成物は、公知の添加剤を適宜配合してもよく、添加剤としては清浄分散剤、粘度指数向上剤、酸化防止剤、腐食防止剤、耐摩耗剤、摩擦調整剤、流動点降下剤、防錆剤、消泡剤および極圧剤等が挙げられる。
 本発明のα-オレフィンオリゴマーの製造方法としては、上記の製造方法のほかに以下に示す製造方法が含まれる。なお、以下に説明する発明については「本願第2発明」と記載する。
 本願第2発明は、特定の触媒系を使用し、水素共存下でα-オレフィンを重合する工程を含むα-オレフィンオリゴマーの製造方法である。なお、本願第2発明において「オリゴマー」とはモノマーの重合によって得られる重合体またはその組成物をいい、実質的に特定の一種の重合体であってもよく、二種以上(二量体、三量体等)の混合物であってもよい。
 本願第2発明で用いる触媒系においては、一般式(VII)
(RC542MX2   (VII)
で表されるメタロセン化合物が使用される。一般式(VII)中、Rは水素原子または炭素数1~10の炭化水素基を表し、Mは周期律表第4族の遷移金属元素を表し、Xは共有結合性、又はイオン結合性の配位子を表す。
 一般式(VII)において、Rは水素原子または炭素数1~4の炭化水素基が好ましい。Mの具体例としては、チタニウム、ジルコニウム、ハフニウムを挙げることができ、これらの中でジルコニウムが好ましい。Xの具体例としては、水素原子、ハロゲン原子、炭素数1~20好ましくは1~10の炭化水素基、炭素数1~20好ましくは1~10のアルコキシ基、アミノ基、炭素数1~20好ましくは1~12のリン含有炭化水素基(例えば、ジフェニルホスフィン基など)、炭素数1~20好ましくは1~12の珪素含有炭化水素基(例えば、トリメチルシリル基など)、炭素数1~20好ましくは1~12の炭化水素基あるいはハロゲンを含有するホウ素化合物(例えば、B(C654、BF4など)を挙げることができ、これらの中で、水素原子、ハロゲン原子、炭化水素基及びアルコキシ基から選ばれる基が好ましい。
 一般式(VII)で表されるメタロセン化合物の具体例としては、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(iso-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(テキシルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムクロロヒドリド、ビス(シクロペンタジエニル)メチルジルコニウムクロリド、ビス(シクロペンタジエニル)エチルジルコニウムクロリド、ビス(シクロペンタジエニル)メトキシジルコニウムクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムクロリド、ビス(シクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジフェニルジルコニウム、ビス(シクロペンタジエニル)ジネオペンチルジルコニウム、ビス(シクロペンタジエニル)ジヒドロジルコニウム、ビス(シクロペンタジエニル)ジメトキシジルコニウム、更には、上記に記載の化合物において、これらの化合物の塩素原子を臭素原子、ヨウ素原子、水素原子、メチル基、フェニル基などに置き換えたもの、又、上記化合物の中心金属のジルコニウムをチタニウム、ハフニウムに置き換えたものを挙げることができる。
 本願第2発明で用いる触媒系においてはメチルアルミノキサンが使用される。メチルアルミノキサンとしては特に制限はなく従来公知のメチルアルミノキサンを使用することができ、例えば、一般式(VIII)や一般式(IX)
Figure JPOXMLDOC01-appb-C000003
で表される鎖状または環状のメチルアルミノキサンが挙げられる。一般式(VIII)、(IX)において、pは重合度を表し、通常3~50、好ましくは7~40である。
 メチルアルミノキサンの製造法としては、メチルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。例えば、メチルアルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、重合時に当初メチルアルミニウム化合物を加えておき、後に水を添加する方法、金属塩などに含有されている結晶水、無機物や有機物への吸着水をメチルアルミニウム化合物と反応させる方法、テトラメチルジアルミノキサンにトリメチルアルミニウムを反応させ、さらに水を反応させる方法などがある。これらのメチルアルミノキサンは、一種用いてもよく、二種以上を組み合わせて用いてもよい。
 本願第2発明の触媒系におけるメタロセン化合物とメチルアルミノキサンの配合割合は、メチルアルミノキサン/メタロセン化合物(モル比)が、通常15~150、好ましくは20~120であり、更に好ましくは25~100である。15未満であると触媒活性が発現しないことがあり、又、α-オレフィンの二量体が生成しやすく、三量体以上の収率が低下することがある。一方、150を超えると、触媒の脱灰除去が不完全になることがある。
 本願第2発明においては、モノマーとして炭素数3~14のα-オレフィンが使用され、具体例としては、例えば、プロピレン、1-ブテン、3-メチル-1-ブテン、4-メチル-1-ブテン、4-フェニル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ペンテン、3,4-ジメチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-ヘキセン、4-メチル-1-ヘキセン、5-メチル-1-ヘキセン、6-フェニル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセンなどを挙げることができる。これらの中で、1-オクテン、1-デセン、1-ドデセンから選ばれるα-オレフィンが好ましく、特に1-デセンが好ましい。
 本願第2発明においては、一般式(VII)で表されるメタロセン化合物と炭素数3~14のα-オレフィンの配合割合〔メタロセン化合物(mmol)/α-オレフィン(L)〕が、通常0.01~0.4、好ましくは0.05~0.3であり、更に好ましくは0.1~0.2である。0.01未満であると触媒活性が発現しないことがあり、一方、0.4を超えると、α-オレフィンの二量体が生成しやすく、三量体以上のオリゴマーの収率が低下することや、触媒の脱灰除去が不完全になることがある。
 本願第2発明においては、上記炭素数3~14のα-オレフィンの重合を水素存在下で行う。水素の添加量は、通常0.1~50kPa、好ましくは0.5~30kPaであり、更に好ましくは1~10kPaである。水素の添加量が0.1kPaより少ないと触媒活性が向上せず、50kPaより多いと、原料α-オレフィンの飽和体が生成しやすく、目的とするα-オレフィンオリゴマーの収率が低下することがある。
 本願第2発明において、反応方法には制限はなく、溶媒の不存在下に行なってもよく、溶媒中で行ってもよく、いずれの方法を用いてもよい。反応溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタン等のハロゲン化炭化水素などが挙げられる。
 本願第2発明において、重合反応の温度は通常0~100℃、好ましくは20~80℃、更に好ましくは30~70℃である。温度が低すぎる、或いは高すぎると触媒活性が発現しないことがあり、又、高すぎるとα-オレフィンの二量体が生成しやすく、三量体以上のオリゴマーの収率が低下することがある。
 本願第2発明によれば、三量体以上の選択率が50%以上のα-オレフィンオリゴマーが得られ、このようなα-オレフィンオリゴマーは、潤滑用途において好ましく用いることができる。
 本願第2発明においては、目的に応じてα-オレフィンオリゴマーにさらに処理を加えてもよい。例えば、熱安定性や酸化安定性を向上させる場合には、水素化処理により水添α-オレフィンオリゴマーを製造し、さらに蒸留により精製し精製水添α-オレフィンオリゴマーを製造することが好ましい。水素化処理の温度は通常50~300℃、好ましくは60~250℃、更に好ましくは70~200℃であり、水素圧は通常0.1~10MPa、好ましくは0.5~2MPa、更に好ましくは0.7~1.5MPaである。水素化処理においては、PdやNiなどを含む一般的な水添触媒を用いることができる。
 蒸留における温度は通常200℃~300℃、好ましくは220~280℃、更に好ましくは230~270℃であり、圧力は通常0.1~15Pa、好ましくは0.4~7Pa、更に好ましくは0.6~4Paである。
 上記の水素化処理および蒸留によって得られる、100℃動粘度が3~35mm2/sの性質を示す留分は、潤滑用途において特に好ましく用いられる。
 本願第2発明で得られる水添α-オレフィンオリゴマーは、短鎖分岐を1分子あたり約1個(通常0.6~1.2個、好ましくは0.7~1.1個、更に好ましくは0.8~1.0個)有する(なお、本願第2発明において、メチル基、エチル基およびプロピル基を短鎖分岐と称する。)。さらに、本願第2発明で得られる水添α-オレフィンオリゴマーにおいて、当該短鎖分岐は主にメチル基であり、メチル基の割合は通常80モル%以上、好ましくは85モル%以上、更に好ましくは90モル%以上である。このような構造を有する水添α-オレフィンオリゴマーは、低粘度でありながら蒸発減量が少ないという特徴を有する。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 実施例1~24、36、37および比較例1~3において、オリゴマー分布および転化率はガスクロマトグラフィーにより分析した。以下に測定条件を示す。
カラム:HT-SIMDST(5m×0.53mm×0.17μm)
キャリア流量:40cm/秒
注入モード:クールオンカラム注入
インジェクション、ディテクション温度:440℃
カラム温度:50℃(0.1分保持)、20℃/分で昇温、430℃(15分保持)
インジェクション量:0.5μL
試料濃度:1質量%トルエン溶液(ヘキサデカン内部標準1質量%含む)
 オリゴマー選択率に関しては、三量体/二量体をA、四量体/三量体をB、五量体/四量体をCとして、その値を求めた。
〔実施例1〕
 加熱乾燥した内容積300mLのガラス製容器に窒素雰囲気下で、1-デセン250mLを投入し、1mol/Lのメチルアルミノキサン(MAO)を1.2mL加え、50℃まで昇温した。次いで、10mmol/Lに調製したビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液4mLを加え、水素圧5kPa(G)、50℃で6時間反応させた。この実験のAl量は1-デセン1molあたり9.07×10-4molであり、アルミニウム/遷移金属化合物(mol比)=30であった。
 1質量%希塩酸50mLで反応を停止し、脱イオン水50mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、二量体以上の各選択率は二量体47質量%、三量体26質量%、四量体11質量%、五量体6質量%、六量体以上10質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.55、B=0.42、C=0.36であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例2〕
 遷移金属化合物として、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリドを用いた以外、実施例1と同様に行った。二量体以上の各選択率は二量体25質量%、三量体24質量%、四量体10質量%、五量体6質量%、六量体以上35質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.96、B=0.42、C=0.60であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔比較例1〕
 遷移金属化合物として、ビスシクロペンタジエニルジルコニウムジクロリドを用いた以外、実施例1と同様に行った。二量体以上の各選択率は二量体42質量%、三量体11質量%、四量体7質量%、五量体5質量%、六量体以上35質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.26、B=0.64、C=0.71であり、A<B、A<Cとなる。
 比較例1においては、二量体と六量体が多く生成し、潤滑油に有用である三量体~五量体の得率が低い。
〔実施例36〕
 遷移金属化合物として、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリドを用いた以外、実施例1と同様に行った。二量体以上の各選択率は二量体28質量%、三量体10質量%、四量体7質量%、五量体5質量%、六量体以上50質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.36、B=0.70、C=0.71であり、A>Bかつ、A>Cという関係をみたさず、三量体~五量体の選択性が低いことがわかる。
〔実施例37〕
 遷移金属化合物として、ビス(イソプロピルシクロペンタジエニル)ジルコニウムジクロリドを用いた以外、実施例1と同様に行った。二量体以上の各選択率は二量体28質量%、三量体12質量%、四量体8質量%、五量体6質量%、六量体以上46質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.43、B=0.67、C=0.75であり、A>Bかつ、A>Cという関係をみたさず、三量体~五量体の選択性が低いことがわかる。
〔比較例2〕
 遷移金属化合物として、ビス(トリメチルシリルメチルシクロペンタジエニル)ジルコニウムジクロリドを用いた以外、実施例1と同様に行った。二量体以上の各選択率は二量体13質量%、三量体5質量%、四量体4質量%、五量体3質量%、六量体以上75質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.38、B=0.80、C=0.75であり、A>Bかつ、A>Cという関係をみたさず、三量体~五量体の選択性が低いことがわかる。
Figure JPOXMLDOC01-appb-T000004
〔実施例3〕
 アルミニウム量を1-デセン1molあたり1.81×10-2mol、アルミニウム/遷移金属化合物(mol比)=600に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体27質量%、三量体28質量%、四量体16質量%、五量体10質量%、六量体以上20質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=1.04、B=0.57、C=0.63であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例4〕
 アルミニウム量を1-デセン1molあたり9.07×10-3mol、アルミニウム/遷移金属化合物(mol比)=300に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体54質量%、三量体28質量%、四量体9質量%、五量体3質量%、六量体以上6質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.52、B=0.32、C=0.33であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例5〕
 アルミニウム量を1-デセン1molあたり3.02×10-3mol、アルミニウム/遷移金属化合物(mol比)=100に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体44質量%、三量体27質量%、四量体11質量%、五量体5質量%、六量体以上13質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.61、B=0.41、C=0.45であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例6〕
 遷移金属化合物量を1-デセン1molあたり2.27×10-5mol、アルミニウム量を9.07×10-4mol、アルミニウム/遷移金属化合物(mol比)=40に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体44質量%、三量体25質量%、四量体11質量%、五量体6質量%、六量体以上9質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.57、B=0.44、C=0.55であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例7〕
 遷移金属化合物量を1-デセン1molあたり2.27×10-5mol、アルミニウム量を4.54×10-4mol、アルミニウム/遷移金属化合物(mol比)=20に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体37質量%、三量体22質量%、四量体11質量%、五量体6質量%、六量体以上17質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.59、B=0.50、C=0.55であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
Figure JPOXMLDOC01-appb-T000005
〔実施例8〕
 遷移金属化合物量を1-デセン1molあたり2.27×10-5mol、アルミニウム量を4.54×10-4mol、アルミニウム/遷移金属化合物(mol比)=20、H2圧を3kPa(G)に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体42質量%、三量体24質量%、四量体11質量%、五量体6質量%、六量体以上17質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2Wtppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.57、B=0.46、C=0.55(C)であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例9〕
 遷移金属化合物量を1-デセン1molあたり1.89×10-5mol、アルミニウム量を4.73×10-4mol、アルミニウム/遷移金属化合物(mol比)=25に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体35質量%、三量体23質量%、四量体12質量%、五量体7質量%、六量体以上23質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.66、B=0.52、C=0.58であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例10〕
 遷移金属化合物量を1-デセン1molあたり1.89×10-5mol、アルミニウム量を4.73×10-4mol、アルミニウム/遷移金属化合物(mol比)=25、H2圧を10kPaに変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体35質量%、三量体23質量%、四量体12質量%、五量体7質量%、六量体以上23質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.66、B=0.52、C=0.58であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例11〕
 遷移金属化合物量を1-デセン1molあたり1.89×10-5mol、アルミニウム量を4.73×10-4mol、アルミニウム/遷移金属化合物(mol比)=25、H2圧を3kPaに変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体38質量%、三量体25質量%、四量体12質量%、五量体7質量%、六量体以上18質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.66、B=0.48、C=0.58であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例12〕
 遷移金属化合物量を1-デセン1molあたり1.51×10-5mol、アルミニウム量を9.07×10-4mol、アルミニウム/遷移金属化合物(mol比)=60に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体37質量%、三量体24質量%、四量体12質量%、五量体7質量%、六量体以上18質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.65、B=0.50、C=0.58であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
Figure JPOXMLDOC01-appb-T000006
〔実施例13〕
 遷移金属化合物量を1-デセン1molあたり1.51×10-5mol、アルミニウム量を6.05×10-4mol、アルミニウム/遷移金属化合物(mol比)=40に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体39質量%、三量体25質量%、四量体12質量%、五量体7質量%、六量体以上16質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.64、B=0.48、C=0.58であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例14〕
 遷移金属化合物量を1-デセン1molあたり1.51×10-5mol、アルミニウム量を3.02×10-4mol、アルミニウム/遷移金属化合物(mol比)=20に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体31質量%、三量体21質量%、四量体12質量%、五量体8質量%、六量体以上25質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.68、B=0.57、C=0.67であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例15〕
 遷移金属化合物量を1-デセン1molあたり1.51×10-5mol、アルミニウム量を3.78×10-4mol、アルミニウム/遷移金属化合物(mol比)=25に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体35質量%、三量体24質量%、四量体12質量%、五量体7質量%、六量体以上18質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.69、B=0.50、C=0.58であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例16〕
 遷移金属化合物量を1-デセン1molあたり1.13×10-5mol、アルミニウム量を3.40×10-4mol、アルミニウム/遷移金属化合物(mol比)=30に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体24質量%、三量体21質量%、四量体12質量%、五量体8質量%、六量体以上21質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.88、B=0.57、C=0.67であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例17〕
 遷移金属化合物量を1-デセン1molあたり1.13×10-5mol、アルミニウム量を3.40×10-4mol、アルミニウム/遷移金属化合物(mol比)=30、反応温度40℃に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体22質量%、三量体19質量%、四量体11質量%、五量体8質量%、六量体以上35質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.86、B=0.58、C=0.73であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例18〕
 遷移金属化合物量を1-デセン1molあたり3.78×10-6mol、アルミニウム量を4.54×10-4mol、アルミニウム/遷移金属化合物(mol比)=120、反応温度50℃に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体29質量%、三量体26質量%、四量体14質量%、五量体8質量%、六量体以上23質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=0.90、B=0.54、C=0.57であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔比較例3〕
 加熱乾燥した内容積1Lのステンレス製オートクレーブに、1-デセン100mL、トルエン100mLを投入し、3.3mol/L、MAOを20mL加え、60℃まで昇温した。次いで、6.2mmol/Lに調製したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液40mLを加え、60℃で1時間反応させた。この実験のアルミニウム量は、α-オレフィン1molあたり0.125molであり、アルミニウム/遷移金属化合物(mol比)=266であった。
 1質量%希塩酸50mLで反応を停止し、脱イオン水50mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、二量体以上の各選択率は二量体60質量%、三量体23質量%、四量体9質量%、五量体3質量%、六量体以上5%であった。またこの溶液の元素分析を行ったところ、Clが5質量ppm、Alが15質量ppm、Zrが6質量ppm、触媒残査が完全には除去できていないことが判った。
Figure JPOXMLDOC01-appb-T000007
〔実施例19〕
 遷移金属化合物として、ビス((3-メチルペンタン-3-イル)シクロペンタジエニル)ジルコニウムジクロリドを用い、1-デセン1molあたり7.55×10-6mol、アルミニウム量を7.55×10-4mol、アルミニウム/遷移金属化合物(mol比)=100、反応温度40℃に変更した以外、実施例1と同様に行った。二量体以上の各選択率は二量体15質量%、三量体27質量%、四量体19質量%、五量体12質量%、六量体以上28質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=1.8、B=0.7、C=0.63であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例20〕
 遷移金属化合物を1-デセン1molあたり1.89×10-5mol、アルミニウム量を1.89×10-3mol、アルミニウム/遷移金属化合物(mol比)=100、反応温度50℃に変更した以外、実施例19と同様に行った。二量体以上の各選択率は二量体31質量%、三量体34質量%、四量体16質量%、五量体7質量%、六量体以上12質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=1.1、B=0.47、C=0.44であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例21〕
 遷移金属化合物を1-デセン1molあたり1.89×10-5mol、アルミニウム量を5.66×10-3mol、アルミニウム/遷移金属化合物(mol比)=300、反応温度35℃に変更した以外、実施例19と同様に行った。二量体以上の各選択率は二量体20質量%、三量体29質量%、四量体17質量%、五量体10質量%、六量体以上23質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=1.4、B=0.61、C=0.59であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例22〕
 遷移金属化合物を1-デセン1molあたり7.55×10-5mol、アルミニウム量を7.55×10-3mol、アルミニウム/遷移金属化合物(mol比)=1000、反応温度30℃に変更した以外、実施例19と同様に行った。二量体以上の各選択率は二量体11質量%、三量体23質量%、四量体17質量%、五量体12質量%、六量体以上36質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=2.1、B=0.74、C=0.71であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例23〕
 遷移金属化合物を1-デセン1molあたり3.77×10-5mol、アルミニウム量を7.55×10-4mol、アルミニウム/遷移金属化合物(mol比)=20、反応温度40℃に変更した以外、実施例19と同様に行った。二量体以上の各選択率は二量体23質量%、三量体28質量%、四量体17質量%、五量体11質量%、六量体以上21質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=1.2、B=0.61、C=0.65であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
〔実施例24〕
 遷移金属化合物を1-デセン1molあたり3.77×10-6mol、アルミニウム量を1.51×10-3mol、アルミニウム/遷移金属化合物(mol比)=400、反応温度40℃に変更した以外、実施例19と同様に行った。二量体以上の各選択率は二量体27質量%、三量体28質量%、四量体17質量%、五量体10質量%、六量体以上17質量%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。また、A=1.0、B=0.61、C=0.59であり、A>Bかつ、A>Cを満たすことからオリゴマー選択率が高いことが分かる。
Figure JPOXMLDOC01-appb-T000008
 実施例25~30および比較例4~6において、オリゴマー収率および二量体選択率等はガスクロマトグラフィーにより分析した。また触媒残渣量は元素分析により求めた。
 実施例31~35および比較例7~13において、炭素分布をガスクロマトグラフィーにより行いオリゴマー全体中の各成分量を調べた。また、平均重合度はGPC(ゲルパーミエイションクロマトグラフィー)測定によって求めた〔平均重合度:数平均分子量/PS(ポリスチレン)換算モノマー分子量(3、4、5量体に相当する各分子量をそれぞれ3,4,5で割ったものの平均値)〕。また、短鎖分岐数(個/1000炭素)、オリゴマー1分子あたりの平均短鎖分岐数(平均重合度×モノマーの炭素数×短鎖分岐数/1000)および分岐基率は13C-NMR(CDCl3)測定によって求めた。40℃動粘度および100℃動粘度はJISK2283に準拠して測定した。粘度指数はJISK2283に準拠して測定した。流動点はJISK2269に準拠して測定した。引火点はJISK2265(クリーブランド開放式)に準拠して測定した。蒸発量(Noack)は、ASTM D5800に準拠し、250℃、1時間後の基油の蒸発損失を測定した。
 測定条件の詳細を以下に示す。
〔ガスクロマトクグラフィー測定〕
カラム:HT-SIMDST(5m×0.53mm×0.17μm)
キャリア流量:40cm/秒
注入モード:クールオンカラム注入
インジェクション、ディテクション温度:440℃
カラム温度:50℃(0.1分保持)、20℃/分で昇温、430℃(15分保持)
INJ量:0.5μL
試料濃度:1質量%トルエン溶液(ヘキサデカン内部標準1質量%含む)
〔GPC測定〕
GPCカラム:TOSOH TSK-GEL MULTIPORE HXL-M(2本)およびShodex KF801(1本)のカラム
溶媒:THF
温度:40℃
流速:1.0mL/min
注入濃度:0.1質量%
注入量:100μl
分子量換算:ポリスチレン(PS)換算
検出器:RI
13C-NMR測定〕
測定機:JEOL製 LAMBDA500
試料溶媒:CDCl3
測定条件:30度パルス、パルス繰り返し時間=10秒、積算1000回、26℃
解析:15~20.8ppmをメチル基、14.5~15ppmをプロピル基のメチル炭素、10.3~13.5ppmをエチル基のメチル炭素と同定。
短鎖分岐数(個/1000炭素):メチル基炭素(メチル基+エチル基+プロピル基)の面積強度計÷(10.3~46ppmの全面積強度)×1000
〔実施例25〕
 窒素置換した内容積5Lのステンレス製オートクレーブに、窒素バブリングにて脱気、脱水済み1-デセン2.5Lと、同じく脱気、脱水済みトルエン2.5Lを加えた後、65℃に昇温し、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液40mlを加えた。
 次に、40mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液10mLを加え、水素5kPaを連続的に供給し攪拌しながら、65℃で3時間反応させた。
 上記反応におけるメタロセン化合物と1-デセンの配合割合は0.16mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=100であった。1%希塩酸500mLで反応を停止し、脱イオン水100mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は86%、二量体以上の各選択率は二量体49%、三量体17%、四量体10%、五量体6%、六量体以上18%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
〔実施例26〕
 窒素置換した内容積5Lのステンレス製オートクレーブに、窒素バブリングにて脱気、脱水済み1-デセン2.5Lを加えた後、50℃に昇温し、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液12mlを加えた。
 次に、40mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液10mLを加え、水素5kPaを連続的に供給し攪拌しながら、50℃で7時間反応させた。
 上記反応におけるメタロセン化合物と1-デセンの配合割合は0.16mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=30であった。1%希塩酸500mLで反応を停止し、脱イオン水100mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は94%、二量体以上の各選択率は二量体42%、三量体11%、四量体7%、五量体5%、六量体以上35%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
〔実施例27〕
 窒素置換した内容量1Lのステンレス製オートクレーブに窒素バブリングにて脱気、脱水済み1-デセン250mLを加えた後、50℃に昇温し、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液1.8mlを加えた。
 次に、40mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液1mLを加え、50℃に昇温した後、水素5kPaを連続的に供給し攪拌しながら、50℃で2時間反応させた。
 上記反応におけるメタロセン化合物と1-デセンの配合割合は0.16mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=45であった。1%希塩酸50mLで反応を停止し、脱イオン水10mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は87%、二量体以上の各選択率は二量体32%、三量体11%、四量体7%、五量体5%、六量体以上45%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
〔実施例28〕
 窒素置換した内容量1Lのステンレス製オートクレーブに窒素バブリングにて脱気、脱水済み1-デセン250mLを加えた後、50℃に昇温し、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液0.6mlを加えた。
 次に、25mmol/Lに調整したビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液1mLを加え、水素2.5kPaを連続的に供給し攪拌しながら、50℃で5時間反応させた。
 上記反応におけるメタロセン化合物と1-デセンの配合割合は0.10mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=24であった。1%希塩酸50mLで反応を停止し、脱イオン水10mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は92%、二量体以上の各選択率は二量体42%、三量体24%、四量体12%、五量体7%、六量体以上15%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
〔実施例29〕
 ビス(シクロペンタジエニル)ジルコニウムジクロリドの代わりに、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリドを用い、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液1.2mlを用いた以外は実施例27と同様に実施した。
 この反応におけるメタロセン化合物と1-デセンの配合割合は0.16mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=30であった。1%希塩酸50mLで反応を停止し、脱イオン水10mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は79%、二量体以上の各選択率は二量体28%、三量体10%、四量体7%、五量体5%、六量体以上50%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
〔実施例30〕
 ビス(エチルシクロペンタジエニル)ジルコニウムジクロリドの代わりに、ビス(イソプロピルシクロペンタジエニル)ジルコニウムジクロリドを用いた以外は実施例29と同様に実施した。
 この反応におけるメタロセン化合物と1-デセンの配合割合は0.16mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=30であった。1%希塩酸50mLで反応を停止し、脱イオン水10mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は88%、二量体以上の各選択率は二量体28%、三量体12%、四量体8%、五量体6%、六量体以上46%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
〔比較例4〕
 窒素置換した内容量1Lのステンレス製オートクレーブに窒素バブリングにて脱気、脱水済み1-デセン100mLと、同じく脱気、脱水済みトルエン100mLを加えた後、60℃に昇温し、3.3mol/Lに調整したメチルアルミノキサンのトルエン溶液20mlを加えた。
 次に、6.2mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液40mLを加え、攪拌しながら、60℃で1時間反応させた。
 上記反応におけるメタロセン化合物と1-デセンの配合割合は2.5mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=266であった。1%希塩酸50mLで反応を停止し、脱イオン水10mLで2回洗浄した。実施例25~30と比べ、脱灰時の水/油界面付近に多量の沈殿が発生した。水洗後の溶液の元素分析を行ったところ、Clが5質量ppm、Alが15質量ppm、Zrが6質量ppmであり、触媒残査が完全には除去できていないことが判った。オリゴマー収率は94%、二量体以上の各選択率は二量体60%、三量体23%、四量体9%、五量体3%、六量体以上5%であった。
〔比較例5〕
 窒素置換した内容量1Lのステンレス製オートクレーブに窒素バブリングにて脱気、脱水済み1-デセン400mLを加えた後、50℃に昇温し、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液2mlを加えた。
 次に、40mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液5mLを加え、水素100kPaを連続的に供給し攪拌しながら、50℃で5時間反応させた。
 上記反応におけるメタロセン化合物と1-デセンの配合割合は0.5mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=10であった。1%希塩酸50mLで反応を停止し、脱イオン水10mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は90%、二量体以上の各選択率は二量体77%、三量体15%、四量体5%、五量体2%、六量体以上1%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
〔比較例6〕
 H2を導入しない以外は実施例28と同様に実施した。この反応におけるメタロセン化合物と1-デセンの配合割合は0.10mmol/(1-デセン)Lであり、メチルアルノキサン/メタロセン化合物(モル比)=24であった。1%希塩酸50mLで反応を停止し、脱イオン水10mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は25%と非常に低く、二量体以上の各選択率は二量体46%、三量体21%、四量体9%、五量体5%、六量体以上19%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Zrともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
 実施例25~30および比較例4~6の主な製造条件および得られたα-オレフィンオリゴマーの分析結果を第6表、第7表に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
〔実施例31〕
 実施例25で得た脱灰液からモノマー及び二量体を減圧除去した後、窒素置換した内容量5Lのステンレス製オートクレーブにパラジウム/アルミナ触媒(5%Pd担持品)1質量%を加え、水素0.8MPaを連続的に供給し攪拌しながら、85℃で5時間反応させた。その後、上記触媒を濾過により除去し、得られた水添液を単蒸留装置を用いて1.33Pa、200~270℃にて分留を行った。得られたフラクションのうち三量体を主成分とする留分を集めた(三量体90.1質量%、四量体9.3質量%、五量体0.5質量%)。この留分は、平均重合度は3.0であり、短鎖分岐数が30.1個/1000炭素、オリゴマー1分子あたりの平均短鎖分岐数が0.90個である。また、短鎖分岐基種はメチル基分岐98.6モル%、エチル基分岐1.4モル%と実質的にメチル基分岐からなることが明らかとなった。
 この留分は40℃動粘度14.45mm2/s、100℃動粘度3.55mm2/s、粘度指数129、流動点<-50℃、引火点240℃、蒸発量(Noack)10.7質量%であった。
〔実施例32〕
 実施例31で水添後、分留し得られたフラクションのうち四量体を主成分とする留分を集めた(三量体10.5質量%、四量体65.6質量%、五量体20.2質量%、六量体以上3.7質量%)。この留分の性状を第8表に示す。
〔実施例33〕
 実施例31で水添後、分留し得られたフラクションのうち五量体を主成分とする留分を集めた(三量体0.3質量%、四量体22.1質量%、五量体56.0質量%、六量体以上21.7質量%)。この留分の性状を第8表に示す。
〔実施例34〕
 実施例31で水添後、分留後の残渣を調べた(四量体5.0質量%、五量体12.8質量%、六量体以上82.2質量%)。この残渣の性状を第8表に示す。
〔実施例35〕
 実施例26で得た脱灰液を実施例31と同様に水添、分留し、分留後の残査を調べた(四量体9.9質量%、五量体10.1質量%、六量体以上80.0質量%)。この残渣の性状を第8表に示す。
〔比較例7~10〕
 市販のポリ-α-オレフィンの性状を調べた。結果を第8表に示す。実施例31~35と比較して1分子あたりの平均短鎖分岐数が多く、またエチル基分岐、プロピル基分岐を多く含むことがわかる。また、実施例31~35と比較して、動粘度が同等あるいは若干高いにも関わらず、蒸発量が大きく、また引火点が低くなっている。これには分岐基の種類およびその量に関する相違点が影響していると考えられる。
〔比較例11〕
 特許第3378436号を参考に、ジメチルシリル(2-インデニル)(2-メチル-5-t-ブチル-6-フェノキシ)チタニウムジクロリドを合成した。
 次に窒素置換した内容積5Lのステンレス製オートクレーブに、窒素バブリングにて脱気、脱水済み1-デセン4Lを加えた後、50℃に昇温し、2.0mol/Lに調整したトリイソブチルアルミニウムのトルエン溶液50mlを加えた。続けて20mmol/Lに調整したN,N-ジメチルアニリニウムテトラキスペンタフルオロボレートのトルエン懸濁液50mlを加えた。
 最後に、20mmol/Lに調整したジメチルシリル(2-インデニル)(2-メチル-5-t-ブチル-6-フェノキシ)チタニウムジクロリドのトルエン溶液50mLを加え、50℃で96時間反応させた。
 1%希塩酸1Lで反応を停止し、脱イオン水200mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は84%、二量体以上の各選択率は二量体17%、三量体24%、四量体14%、五量体10%、六量体以上35%であった。またこの溶液の元素分析を行ったところ、Cl、Al、Tiともに<2質量ppmであり、実質的に触媒残査が含まれないことが判った。
 この脱灰液を実施例31と同様に水添、分留し、三量体を主成分とする留分を集めた(三量体88.5質量%、四量体9.9質量%、五量体0.8質量%)。この留分の性状を第8表に示す。比較例13においては、実施例31~35と比較して短鎖分岐が極めて少なく、流動点が高いという潤滑油基材としては不十分な性状を有することが判った。
〔比較例12〕
 比較例11で水添後、分留し得られたフラクションのうち四量体を主成分とする留分を集めた(四量体84.6質量%、五量体13.2質量%、六量体以上1.7質量%)。この留分の性状を第3表に示す。実施例31~35と比較して短鎖分岐が極めて少なく、流動点が高いという潤滑油基材としては不十分な性状を有することが判った。
〔比較例13〕
 比較例11で水添後、分留後の残渣を調べた(四量体27.7質量%、五量体28.5質量%、六量体以上43.3質量%)。この残渣の性状を第3表に示す。実施例31~35と比較して短鎖分岐が極めて少なく、流動点が高いという潤滑油基材としては不十分な性状を有することが判った。
Figure JPOXMLDOC01-appb-T000011
 本発明によれば、触媒量を低減化することができ、さらに三量体~五量体を高い選択率で製造することのできるα-オレフィンオリゴマー組成物の製造方法が提供される。本発明で得られるα-オレフィンオリゴマーは潤滑油の成分として好ましく用いられる。

Claims (22)

  1.  α-オレフィンオリゴマー組成物の製造方法であって、
    以下の(A)および(B)を用いてなる触媒を使用し、水素存在下でα-オレフィンを反応させる工程を含む、α-オレフィンオリゴマー組成物の製造方法。
    (A)一般式(I)
    {C51234(A1abc)}{C55678(A2def)}MXY・・・(I)
    (式中、R1~R8、(A1abc)および(A2def)はシクロペンタジエニル基に結合する置換基を表す。R1~R8はそれぞれ独立に水素原子または炭素数1~10の炭化水素基を表し、Ra~Rfはそれぞれ独立に炭素数1~10の炭化水素基を表す。Ra、RbおよびRcから選ばれる2以上の基がお互いに結合して環を形成してもよく、またRd、ReおよびRfから選ばれる2以上の基がお互いに結合して環を形成してもよい。A1およびA2はそれぞれ独立に周期表第14族の元素を表す。Mは周期表第4族の遷移元素を表す。XおよびYはそれぞれ共有結合性配位子またはイオン結合性配位子を表す。)
    で表される遷移金属化合物
    (B)アルミニウムを含有する助触媒
  2.  α-オレフィンオリゴマー組成物の製造方法であって、
    以下の(A)および(B)を用いてなる触媒を使用し、アルミニウム量がα-オレフィン1molあたり1.89×10-5~5.67×10-2mol、水素圧力が1~50kPa(G)の範囲でα-オレフィンを反応させる工程を含む、α-オレフィンオリゴマー組成物の製造方法。
    (A)一般式(I)
    {C51234(A1abc)}{C55678(A2def)}MXY・・・(I)
    (式中、R1~R8、(A1abc)および(A2def)はシクロペンタジエニル基に結合する置換基を表す。R1~R8はそれぞれ独立に水素原子または炭素数1~10の炭化水素基を表し、Ra~Rfはそれぞれ独立に炭素数1~10の炭化水素基を表す。Ra、RbおよびRcから選ばれる2以上の基がお互いに結合して環を形成してもよく、またRd、ReおよびRfから選ばれる2以上の基がお互いに結合して環を形成してもよい。A1およびA2はそれぞれ独立に周期表第14族の元素を表す。Mは周期表第4族の遷移元素を表す。XおよびYはそれぞれ共有結合性配位子またはイオン結合性配位子を表す。)
    で表される遷移金属化合物
    (B)アルミニウムを含有する助触媒
  3.  (B)成分のアルミニウムを含有する助触媒が、有機アルミニウムオキシ化合物及び/または有機アルミニウム化合物である、請求項2に記載のα-オレフィンオリゴマー組成物の製造方法。
  4.  (A)成分の遷移金属化合物が、一般式(II)
    {C54(A3ghi)}2ZrCl2・・・(II)
    (式中、Rg、RhおよびRiはそれぞれ独立に炭素数1~10の炭化水素基を表し、2以上の基がお互いに結合して環を形成してもよい。A3は周期表第14族の元素を表す。)
    で表される遷移金属化合物である、請求項2に記載のα-オレフィンオリゴマー組成物の製造方法。
  5.  (A)成分の遷移金属化合物が、一般式(III)
    {C54(CRjkl)}2ZrCl2・・・(III)
    (式中、Rj、RkおよびRlはそれぞれ独立に炭素数1~10の炭化水素基を表し、2以上の基がお互いに結合して環を形成してもよい。)
    で表される遷移金属化合物である、請求項2に記載のα-オレフィンオリゴマー組成物の製造方法。
  6.  (A)成分の遷移金属化合物が、式(IV)
    {C54(CMe3)}2ZrCl2・・・(IV)
    で表される遷移金属化合物である、請求項2に記載のα-オレフィンオリゴマー組成物の製造方法。
  7.  α-オレフィンが1-デセンである請求項2に記載のα-オレフィンオリゴマー組成物の製造方法。
  8.  α-オレフィンオリゴマー組成物が、質量基準で、二量体に対する三量体の割合をA、三量体に対する四量体の割合をB、四量体に対する五量体の割合をCとしたときに、A>BかつA>Cを満たすα-オレフィンオリゴマー組成物である請求項2に記載のα-オレフィンオリゴマー組成物の製造方法。
  9.  請求項2に記載の方法で得られるα-オレフィンオリゴマー組成物。
  10.  請求項2に記載の方法で得られたα-オレフィンオリゴマー組成物を水素化処理する工程を含む、水素化α-オレフィンオリゴマー組成物の製造方法。
  11.  請求項10に記載の方法で得られる水素化α-オレフィンオリゴマー組成物。
  12.  請求項9に記載のα-オレフィンオリゴマー組成物および/または請求項11に記載の水素化αオレフィンオリゴマー組成物を含有する潤滑油組成物。
  13.  一般式(VII)
    (RC542MX2   (VII)
    (Rは水素原子または炭素数1~10の炭化水素基を表し、Mは周期律表第4族の遷移金属元素を表し、Xは共有結合性又はイオン結合性の配位子を表す。)
    で表されるメタロセン化合物、およびメチルアルミノキサンをモル比(メチルアルミノキサン/メタロセン化合物)が15~110で使用し、水素存在下で炭素数3~14のα-オレフィンを重合する工程を含む、α-オレフィンオリゴマーの製造方法。
  14.  一般式(VII)で表されるメタロセン化合物と上記α-オレフィンの配合割合〔メタロセン化合物(mmol)/α-オレフィン(L)〕が、0.01~0.4の範囲内である請求項13に記載の製造方法。
  15.  一般式(VII)において、Mがジルコニウムである請求項13に記載の製造方法。
  16.  水素圧が、0.1~50kPaの範囲内である請求項13に記載の製造方法。
  17.  炭素数3~14のα-オレフィンが1-オクテン、1-デセンおよび1-ドデセンから選ばれるα-オレフィンである請求項13に記載の製造方法。
  18.  炭素数3~14のα-オレフィンが1-デセンである請求項13に記載の製造方法。
  19.  三量体以上の選択率が50%以上である請求項13に記載の製造方法。
  20.  請求項13に記載の製造方法で得られるα-オレフィンオリゴマー。
  21.  請求項13に記載の製造方法によりα-オレフィンオリゴマーを製造する工程、当該α-オレフィンオリゴマーを水添して、水添α-オレフィンオリゴマーを製造する工程、および当該水添α-オレフィンオリゴマーの蒸留により100℃動粘度が3~35mm2/sの留分を得る工程を含む、精製水添α-オレフィンオリゴマーの製造方法。
  22.  請求項21に記載の製造方法で得られる精製水添α-オレフィンオリゴマー。
PCT/JP2009/068406 2008-11-04 2009-10-27 α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物 WO2010053022A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010536740A JPWO2010053022A1 (ja) 2008-11-04 2009-10-27 α−オレフィンオリゴマーの製造方法、α−オレフィンオリゴマー、および潤滑油組成物
EP09824722A EP2351722A1 (en) 2008-11-04 2009-10-27 Method for producing -olefin oligomer, -olefin oligomer, and lubricating oil composition
US13/127,121 US20110207977A1 (en) 2008-11-04 2009-10-27 Method for producing a-olefin oligomer, a-olefin oligomer, and lubricating oil composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008283340 2008-11-04
JP2008-283340 2008-11-04
JP2008-334860 2008-12-26
JP2008334860 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010053022A1 true WO2010053022A1 (ja) 2010-05-14

Family

ID=42152831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068406 WO2010053022A1 (ja) 2008-11-04 2009-10-27 α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物

Country Status (5)

Country Link
US (1) US20110207977A1 (ja)
EP (1) EP2351722A1 (ja)
JP (1) JPWO2010053022A1 (ja)
TW (1) TW201035010A (ja)
WO (1) WO2010053022A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096159A1 (ja) * 2011-01-13 2012-07-19 出光興産株式会社 オレフィンオリゴマー混合物の製造方法
WO2012096158A1 (ja) 2011-01-13 2012-07-19 出光興産株式会社 アルファオレフィン不飽和2量体の製造方法
JPWO2010117028A1 (ja) * 2009-04-10 2012-10-18 出光興産株式会社 αオレフィンオリゴマーおよびその製造方法
WO2013024701A1 (ja) 2011-08-12 2013-02-21 出光興産株式会社 α-オレフィンオリゴマーおよびその製造方法
JP2017519097A (ja) * 2014-05-30 2017-07-13 トタル マルケティン セルビスス 低粘度潤滑ポリオレフィン
JP2018519393A (ja) * 2015-06-29 2018-07-19 トータル マーケティング サービス 低粘度潤滑ポリオレフィン
JP2020109073A (ja) * 2018-12-28 2020-07-16 デリム インダストリアル カンパニー リミテッド 均一な構造を有するアルファオレフィンオリゴマーおよびその製造方法
JP2021508677A (ja) * 2018-01-02 2021-03-11 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. パラフィンを製造する方法
CN113337311A (zh) * 2021-04-16 2021-09-03 华东理工大学 一种超高粘度指数聚α-烯烃基础油及其制备方法和应用
WO2022224970A1 (ja) * 2021-04-20 2022-10-27 出光興産株式会社 潤滑油組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055480A1 (en) 2011-10-10 2013-04-18 Exxonmobil Research And Engineering Company Low viscosity engine oil compositions
FR3021665B1 (fr) * 2014-05-30 2018-02-16 Total Marketing Services Procede de preparation de polyolefines lubrifiantes de basse viscosite
RU2652118C2 (ru) * 2016-05-12 2018-04-25 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения винилиденовых олефинов
US20170335217A1 (en) * 2016-05-19 2017-11-23 Chevron U.S.A. Inc. Alkylation of metallocene-oligomer with isoalkane to make heavy base oil
US20220251461A1 (en) * 2019-07-25 2022-08-11 Idemitsu Kosan Co.,Ltd. Saturated aliphatic hydrocarbon compound composition, lubricant composition, and method for producing saturated aliphatic hydrocarbon compound composition
KR102368349B1 (ko) * 2020-05-04 2022-02-25 디엘케미칼 주식회사 적은 단쇄분지를 갖는 알파올레핀 올리고머 및 이의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207248A (ja) * 1986-11-13 1989-08-21 Idemitsu Kosan Co Ltd プロピレン低重合体の製造方法
JPH0539229A (ja) 1991-08-02 1993-02-19 Idemitsu Kosan Co Ltd α−オレフイン二量体の製造方法
JPH07133234A (ja) 1993-11-11 1995-05-23 Idemitsu Kosan Co Ltd α−オレフィンオリゴマーの製造方法
US20010041817A1 (en) 1999-09-23 2001-11-15 Vahid Bagheri Oligomer oils and their manufacture
JP3378436B2 (ja) 1995-07-14 2003-02-17 住友化学工業株式会社 遷移金属錯体からなるオレフィン重合用触媒成分、該触媒成分を含有するオレフィン重合用触媒、およびオレフィン重合体の製造方法
JP2005501957A (ja) 2001-08-31 2005-01-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ポリ−α−オレフィンの合成及びその用途
JP2006225348A (ja) 2005-02-18 2006-08-31 Idemitsu Kosan Co Ltd 不飽和炭化水素化合物の製造方法
JP2008111126A (ja) * 2006-10-27 2008-05-15 Chevron Oronite Co Llc 潤滑油添加剤組成物およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268214B1 (en) * 1986-11-13 1991-08-21 Idemitsu Kosan Company Limited Process for producing propylene oligomers
US5449850A (en) * 1991-03-12 1995-09-12 Exxon Chemical Patents Inc. Process for oligomerizing C3 and higher olefins using zirconium adducts as catalysts (CS-467)
US5453556A (en) * 1994-06-22 1995-09-26 Mobil Oil Corporation Oligomerization process for producing synthetic lubricants
DE10145619A1 (de) * 2001-09-15 2003-04-10 Basf Ag Verfahren zur Trimerisierung von alpha-Olefinen
DE10215754A1 (de) * 2002-04-10 2003-10-30 Basf Ag Verfahren zur Oligomerisierung von Olefinen
US7297832B2 (en) * 2002-12-20 2007-11-20 Sasol Technology (Pty) Limited Tetramerization of olefins
US7525009B2 (en) * 2002-12-20 2009-04-28 Sasol Technology (Pty) Limited Trimerisation of olefins
US20050187418A1 (en) * 2004-02-19 2005-08-25 Small Brooke L. Olefin oligomerization
JP4731181B2 (ja) * 2005-02-21 2011-07-20 出光興産株式会社 不飽和炭化水素化合物の製造方法
AU2006270436B2 (en) * 2005-07-19 2011-12-15 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
WO2007011462A1 (en) * 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US7378537B2 (en) * 2006-07-25 2008-05-27 Chevron Phillips Chemical Company Lp Olefin oligomerization catalysts and methods of using same
MY152879A (en) * 2007-07-04 2014-11-28 Mitsui Chemicals Inc Transition metal complex compounds, olefin oligomerization catalysts including the compounds, and processes for producing olefin oligomers using the catalysts
US8513478B2 (en) * 2007-08-01 2013-08-20 Exxonmobil Chemical Patents Inc. Process to produce polyalphaolefins
US7902415B2 (en) * 2007-12-21 2011-03-08 Chevron Phillips Chemical Company Lp Processes for dimerizing or isomerizing olefins
US8865959B2 (en) * 2008-03-18 2014-10-21 Exxonmobil Chemical Patents Inc. Process for synthetic lubricant production
US7880047B2 (en) * 2008-05-06 2011-02-01 Chemtura Corporation Polyalphaolefins and processes for forming polyalphaolefins

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207248A (ja) * 1986-11-13 1989-08-21 Idemitsu Kosan Co Ltd プロピレン低重合体の製造方法
JPH0539229A (ja) 1991-08-02 1993-02-19 Idemitsu Kosan Co Ltd α−オレフイン二量体の製造方法
JPH07133234A (ja) 1993-11-11 1995-05-23 Idemitsu Kosan Co Ltd α−オレフィンオリゴマーの製造方法
JP3378436B2 (ja) 1995-07-14 2003-02-17 住友化学工業株式会社 遷移金属錯体からなるオレフィン重合用触媒成分、該触媒成分を含有するオレフィン重合用触媒、およびオレフィン重合体の製造方法
US20010041817A1 (en) 1999-09-23 2001-11-15 Vahid Bagheri Oligomer oils and their manufacture
US20010041818A1 (en) 1999-09-23 2001-11-15 Vahid Bagheri Oligomer oils and their manufacture
JP2005501957A (ja) 2001-08-31 2005-01-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ポリ−α−オレフィンの合成及びその用途
JP2006225348A (ja) 2005-02-18 2006-08-31 Idemitsu Kosan Co Ltd 不飽和炭化水素化合物の製造方法
JP2008111126A (ja) * 2006-10-27 2008-05-15 Chevron Oronite Co Llc 潤滑油添加剤組成物およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHRISTOPH JANIAK ET AL., MACROMOL. RAPID COMMUN., vol. 16, 1995, pages 643 - 650, XP008139894 *
CHRISTOPH JANIAK ET AL., MACROMOL. SYMP., vol. 236, 2006, pages 14 - 22, XP008139891 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010117028A1 (ja) * 2009-04-10 2012-10-18 出光興産株式会社 αオレフィンオリゴマーおよびその製造方法
WO2012096158A1 (ja) 2011-01-13 2012-07-19 出光興産株式会社 アルファオレフィン不飽和2量体の製造方法
WO2012096159A1 (ja) * 2011-01-13 2012-07-19 出光興産株式会社 オレフィンオリゴマー混合物の製造方法
WO2013024701A1 (ja) 2011-08-12 2013-02-21 出光興産株式会社 α-オレフィンオリゴマーおよびその製造方法
JP2017519097A (ja) * 2014-05-30 2017-07-13 トタル マルケティン セルビスス 低粘度潤滑ポリオレフィン
JP2018519393A (ja) * 2015-06-29 2018-07-19 トータル マーケティング サービス 低粘度潤滑ポリオレフィン
JP7350742B2 (ja) 2018-01-02 2023-09-26 エスケー イノベーション カンパニー リミテッド パラフィンを製造する方法
JP2021508677A (ja) * 2018-01-02 2021-03-11 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. パラフィンを製造する方法
JP2020109073A (ja) * 2018-12-28 2020-07-16 デリム インダストリアル カンパニー リミテッド 均一な構造を有するアルファオレフィンオリゴマーおよびその製造方法
US11214531B2 (en) 2018-12-28 2022-01-04 Dl Chemical Co., Ltd. Alphaolefin oligomer having uniform structure and method of preparing same
JP2022087250A (ja) * 2018-12-28 2022-06-09 ディーエル ケミカル カンパニー リミテッド 均一な構造を有するアルファオレフィンオリゴマーおよびその製造方法
CN113337311A (zh) * 2021-04-16 2021-09-03 华东理工大学 一种超高粘度指数聚α-烯烃基础油及其制备方法和应用
WO2022224970A1 (ja) * 2021-04-20 2022-10-27 出光興産株式会社 潤滑油組成物

Also Published As

Publication number Publication date
TW201035010A (en) 2010-10-01
US20110207977A1 (en) 2011-08-25
EP2351722A1 (en) 2011-08-03
JPWO2010053022A1 (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
WO2010053022A1 (ja) α-オレフィンオリゴマーの製造方法、α-オレフィンオリゴマー、および潤滑油組成物
RU2494113C2 (ru) Способ получения поли-альфа-олефинов
RU2551850C2 (ru) Способы регулирования вязкости поли-альфа-олефинов
JP4914894B2 (ja) 低粘度ポリ−アルファ−オレフィンの生成プロセス
AU2012321290B2 (en) Poly alpha olefin compositions and process to produce poly alpha olefin compositions
JP4129433B2 (ja) 低不飽和α−オレフィンをオリゴマー化する方法、得られたポリマー、及びそれを含有する潤滑剤
NL2014894B1 (en) Use of a metallocene catalyst to produce a polyalpha-olefin.
US9469704B2 (en) Utilization of linear alpha olefins in the production of metallocene catalyzed poly-alpha olefins
JP2014015621A (ja) ポリアルファオレフィンの製造プロセス
MXPA03001289A (es) Procedimiento para producir polimero de polialfaolefina liquida, catalizador de metaloceno para el mismo y lubricantes que contienen el mismo.
JP2024069311A (ja) 均一な構造を有するアルファオレフィンオリゴマーおよびその製造方法
JP2005200450A (ja) α−オレフィン(共)重合体の製造方法
EP4010308A1 (en) Processes for producing poly alpha olefins and apparatuses therefor
RU2739446C1 (ru) Способ производства основы синтетических моторных масел
JP2005200452A (ja) α−オレフィン(共)重合体の製造方法
KR102398899B1 (ko) 낮은 점도 알파-올레핀 올리고머 및 이의 제조방법
RU2666736C1 (ru) Способ получения синтетических высоковязких полиальфаолефиновых базовых масел
WO2023017081A1 (en) Process for preparing polyalpha-olefins
US20240352159A1 (en) Process for preparing polyalpha-olefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010536740

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13127121

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009824722

Country of ref document: EP