WO2010053013A1 - 近接センサ装置及びそれを用いた入力補助装置 - Google Patents

近接センサ装置及びそれを用いた入力補助装置 Download PDF

Info

Publication number
WO2010053013A1
WO2010053013A1 PCT/JP2009/068236 JP2009068236W WO2010053013A1 WO 2010053013 A1 WO2010053013 A1 WO 2010053013A1 JP 2009068236 W JP2009068236 W JP 2009068236W WO 2010053013 A1 WO2010053013 A1 WO 2010053013A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
input
detection
proximity sensor
sensor device
Prior art date
Application number
PCT/JP2009/068236
Other languages
English (en)
French (fr)
Inventor
達巳 藤由
大輔 高井
宏 古池
希世 廣部
直行 波多野
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2010536737A priority Critical patent/JP5305478B2/ja
Publication of WO2010053013A1 publication Critical patent/WO2010053013A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • H03K2017/9604Touch switches characterised by the type or shape of the sensing electrodes characterised by the number of electrodes

Definitions

  • the present invention relates to a capacitive proximity sensor device and an input assist device using the proximity sensor device.
  • a capacitive proximity sensor device in which a detection electrode, a ground electrode, and a shielding electrode are arranged on an insulating substrate such as ceramics is known (see, for example, Patent Document 1).
  • FIG. 9 (a) shows a schematic diagram of the capacitive proximity sensor device described in Patent Document 1.
  • the sensor unit 90 includes a detection electrode 91 and a ground electrode 92 that are used for detecting a detection target, and a shielding electrode 93 that is used for shielding noise.
  • the terminal of the detection electrode 91 and the terminal of the shield electrode 93 are connected to the oscillation circuit 95 via the shield wire 94, and the terminal of the ground electrode 92 is grounded.
  • FIG. 9B shows the electrode arrangement of the sensor unit 90.
  • the detection electrode 91 and the ground electrode 92 are arranged on one surface of the insulating substrate 97 so as to form a capacitance.
  • a shield electrode 93 is disposed on the other surface of the insulating substrate 97 to reduce the influence of noise from the back surface of the detection electrode 91.
  • the oscillation frequency oscillated from the oscillation circuit 95 changes based on a change in electrostatic capacitance between the detection electrode 91 and the ground electrode 92.
  • the detection circuit unit 96 detects the change in the oscillation frequency as a voltage, and detects the proximity of the detected object by comparing the detected voltage with an arbitrary threshold value.
  • Such a capacitance-type proximity sensor device is required to have higher detection accuracy and to detect a minute change in capacitance.
  • a method of amplifying the reception signal is common, but there is a problem that noise mixed in the reception signal is also amplified together.
  • a shielding electrode 93 is provided on the back surface of the detection electrode 91 to remove noise from the back surface.
  • this method has a problem that noise from the front cannot be dealt with.
  • the present invention has been made in view of such a point, and an object thereof is to provide a capacitive proximity sensor device with high detection accuracy and an input assist device using the proximity sensor device.
  • the proximity sensor device of the present invention includes a drive electrode to which a drive voltage is applied, a pair of detection electrodes arranged to form capacitance between the drive electrode on both sides of the drive electrode, And a detection circuit for detecting a difference value between one output signal of the detection electrode and the other output signal.
  • one detection electrode and the other detection electrode are affected by the same noise, and the influence of the noise can be offset by detecting the difference value of the output signal of each detection electrode. , Detection accuracy can be improved.
  • the detection circuit detects a distance between the detection object and the detection electrode from the difference value.
  • the difference value is a positive value
  • the output signal on one of the detection electrodes arranged on both sides of the drive electrode varies
  • the difference value is a negative value
  • the other detection electrode side Output signal fluctuates, the direction in which the detected object approaches the detection electrode can be determined based on the difference value, and the distance between the detected object and the detection electrode is detected from the magnitude of the absolute value of the difference value. be able to.
  • the drive electrode has an annular shape, and the detection electrodes are arranged on both sides of the drive electrode. According to this configuration, the proximity of the detected object to the proximity sensor device from any direction can be detected.
  • the pair of detection electrodes have different electrode widths and / or distances from the drive electrodes, and static electrodes formed between the drive electrodes and the pair of detection electrodes, respectively.
  • the distance between the electrodes and / or the electrode width is adjusted so that the electric capacities are the same.
  • An input auxiliary device includes an input device and a device main body including the proximity sensor device, and an auxiliary device that assists an input operation based on a signal output from the proximity sensor device. To do.
  • the assist device turns on a lighting device for assisting a target input operation.
  • the auxiliary lighting device is turned on by bringing a hand close to a predetermined range of the target switch, and the input operation can be assisted. .
  • the assist device switches the assist operation to at least two steps according to the degree of proximity to the proximity sensor device.
  • the degree of approach can be fed back to the operator in stages, for example, by switching a plurality of lighting devices in stages according to the degree of approach.
  • FIG. 2 It is a figure which shows the outline of a structure of the proximity sensor apparatus which concerns on embodiment of this invention.
  • (b) It is a figure which shows the difference value of the electrostatic capacitance of the output signal in each point of Fig.4 (a).
  • FIG. 5 (a). It is a figure which shows the outline of a structure of the input auxiliary device which concerns on embodiment of this invention.
  • FIG. 8A is a diagram showing an application example using the proximity sensor device according to the embodiment of the present invention
  • FIG. 8B is a cross-sectional view taken along the line YY in FIG. It is a figure which shows the other application example using the proximity sensor apparatus of embodiment of this invention.
  • FIG. 1 shows a configuration diagram of a capacitive proximity sensor device according to an embodiment of the present invention.
  • the proximity sensor device according to the present embodiment includes a sensor unit 1 that detects an object to be detected such as a hand and a control circuit unit 2 that processes an output signal from the sensor unit 1.
  • the sensor unit 1 includes a drive electrode 3 to which a drive voltage is applied and detection electrodes 4 and 5 arranged so as to form a capacitance between the drive electrode 3 and the drive electrode 3, respectively.
  • the output signal of one detection electrode 4 is input to the negative terminal of the amplifier circuit 6 having a positive terminal and a negative terminal.
  • a reference voltage is applied from the analog processing circuit 7 to the positive terminal of the amplifier circuit 6.
  • the output signal amplified by the amplifier circuit 6 is input to the positive terminal of the differential amplifier circuit 8 having a positive terminal and a negative terminal.
  • the output signal of the other detection electrode 5 is input to the negative terminal of the amplifier circuit 9 having a positive terminal and a negative terminal.
  • a reference voltage is applied from the analog processing circuit 7 to the positive terminal of the amplifier circuit 9.
  • the output signal amplified by the amplifier circuit 9 is input to the negative terminal of the differential amplifier circuit 8.
  • the output signals of the detection electrodes 4 and 5 amplified by the differential amplifier circuit 8 are filtered and digitally converted by the analog processing circuit 7 and input to the microcomputer 10, and the difference value is detected by the microcomputer 10 as the detection circuit. Is done.
  • the approach of the detected object is detected by comparing the detected difference value with a set threshold value.
  • the difference value may be detected by the analog processing circuit 7.
  • Information on the detected object to be detected is sent to the external system via the interface 11.
  • the drive voltage amplified by the amplifier circuit 13 is applied to the drive electrode 3 from the microcomputer 10 via the timing circuit 12. Application of the drive voltage is controlled by a timing circuit 12 instructed by a microcomputer.
  • FIG. 2 (a) shows a top view of electrode arrangement in the sensor unit 1 of the present embodiment.
  • the drive electrode 3, the detection electrode 4, and the detection electrode 5 formed in an annular shape are arranged concentrically on the insulating substrate 20.
  • a detection electrode 4 is formed on the outer side of the drive electrode 3, and a detection electrode 5 is formed on the inner side.
  • FIG. 2 (b) shows a perspective view of FIG. 2 (a).
  • Capacitances are respectively formed between the drive electrode 3 formed in an annular shape and the detection electrodes 4 and 5. For this reason, if the hand 21 (hereinafter referred to as “detected object”) approaches within a predetermined range regardless of which direction it approaches, the electrostatic formed between the drive electrode 3 and each of the detection electrodes 4 and 5. The capacity changes. Based on the change of the capacitance value, the approach of the detection target 21 is detected.
  • FIG. 2 (c) shows a cross-sectional view along the line XX of the sensor unit 1 shown in FIG. 2 (a).
  • the electrode width of the detection electrode 4 is narrower than that of the detection electrode 5. This is for adjusting the capacitance formed between the drive electrode 3 and the detection electrodes 4 and 5, respectively.
  • the detection electrode 5 arranged on the inner side and the detection electrode 4 arranged on the outer side of the drive electrode 3 formed concentrically are compared, if the electrode width is the same, it is arranged inside the drive electrode 3.
  • the area of the detection electrode 5 becomes smaller. Therefore, the capacitance formed between the drive electrode 3 and the detection electrode 5 is smaller than the capacitance formed between the drive electrode 3 and the detection electrode 4. For this reason, it is formed between the drive electrode 3 and each of the detection electrodes 4 and 5 by increasing the electrode width of the inner detection electrode 5 and arranging the distance between the drive electrodes 3 to be small.
  • the capacitance is adjusted to be the same.
  • FIG. 3A shows a cross section of the drive electrode 3, the detection electrode 4, and the detection electrode 5 disposed on the insulating substrate 20, and the lines of electric force 31 and the electrostatic capacitance Ca between the drive electrode 3 and the detection electrode 4. It is shown that the lines of electric force 32 and the electrostatic capacitance Cb are formed between the drive electrode 3 and the detection electrode 5.
  • FIG. 3B shows a state in which the detected object 21 approaches between the drive electrode 3 and the detection electrode 4.
  • a part of the electric lines of force 31 are absorbed by the detection target 21, so that the capacitance Ca formed between the drive electrode 3 and the detection electrode 4 is reduced.
  • the capacitance Cb hardly decreases.
  • FIG. 3C shows a state in which the detected object 21 approaches between the drive electrode 3 and the detection electrode 5.
  • a part of the electric lines of force 32 between the drive electrode 3 and the detection electrode 5 is absorbed by the detected object 21, and thus the capacitance Cb is lowered.
  • the distance difference between the detected body 21 and the other detection electrode 4 is large, and the amount of electric lines of force 31 absorbed by the detected body 21 is small, so the capacitance Ca hardly decreases.
  • FIG. 3 (d) shows a state in which the detected object 21 is present in the vicinity of the middle between the detection electrode 4 and the detection electrode 5 in a state of approaching the upper part of the drive electrode 3. In this state, since the detected body 21 absorbs both the electric lines of force 31 and 32, both the capacitances Ca and Cb are lowered.
  • the output signals of the detection electrodes 4 and 5 of the proximity sensor device in this embodiment are proportional to the capacitance formed between the electrodes. For this reason, the change in the capacitance (Ca-Cb) between the electrodes is linked to the change in the output signal.
  • the change in the difference value of the output signal will be described as the change in the difference value of the capacitance between the electrodes (Ca ⁇ Cb).
  • the influence of noise acts on the entire sensor unit 1. Therefore, the same level of noise affects the detection electrodes 4 and 5. For this reason, the same level of noise acts on the capacitances Ca and Cb formed between the respective electrodes, and the influence of the noise is canceled by calculating the difference value.
  • ⁇ C noise acts on the entire proximity sensor device.
  • the capacitance formed between the drive electrode 3 and the detection electrode 4 is Ca + ⁇ C
  • FIG. 4A shows the positions of the detected object 21 at points A to E when the detected object 21 is moved in parallel to the sensor unit 1 while maintaining the distance h.
  • Point A and point E in the figure are distant points where the detected object 21 does not affect the capacitances Ca and Cb.
  • Point B is the point at which the capacitance Ca is reduced most
  • point C is the point at which the capacitances Ca and Cb are equal
  • point D is the point at which the capacitance Cb is reduced most.
  • the initial value C0 of the capacitance of the sensor unit 1 in the figure is adjusted so that Ca-Cb becomes zero at the point where the detected object 21 does not affect the electric force lines 31 and 32, that is, the points A and E. It will be described as being done.
  • FIG. 4B shows a change in the difference value (Ca ⁇ Cb) between the capacitances Ca and Cb corresponding to the position of the detected object 21 as a solid curve.
  • Each point A to E on the curve indicates the difference value of the electrostatic capacitance when the detected object 21 is located at each point A to E in FIG.
  • the capacitances Ca and Cb are equal, so that the capacitance difference value (Ca ⁇ Cb) is zero.
  • the amount of the electric lines of force 31 absorbed by the hand increases as the detected object 21 approaches the detection electrode 4.
  • the electrostatic capacitance Ca becomes the minimum value, and the difference value becomes the maximum value on the negative side.
  • the capacitance Ca increases from the point B to the point C, and the capacitance Cb decreases. For this reason, the difference value increases to the positive side.
  • the electrostatic capacitances Ca and Cb become equal, and the difference value becomes zero.
  • the amount of the electric force lines 32 absorbed by the detected object 21 increases, and the value of the capacitance Cb decreases.
  • the value of Cb becomes smaller than the value of Ca, the difference value becomes a positive value, and the difference value increases to the positive side.
  • the capacitance Cb is minimized and the difference value is obtained. Is the maximum.
  • the distance between the detected object 21 and the detection electrode 5 increases, and the amount of the electric lines of force 32 absorbed by the detected object 21. Decrease. For this reason, the electrostatic capacitance Cb increases and the difference value starts to decrease.
  • the detected object 21 reaches the point E, the detected object 21 does not affect the capacitances Ca and Cb, so the difference value becomes zero.
  • the difference value detected by the approach of the detection object takes a positive value and a negative value.
  • the threshold value S1 on the positive side and setting the threshold value S2 on the negative side, the proximity of the detected object 21 can be detected in multiple stages.
  • the difference value changes as shown by the curve in FIG. 4B.
  • the difference value is equal to or less than the negative threshold S2 of the curve in FIG. 4B, and is equal to or greater than the positive threshold S1 in the section indicated by D2. Therefore, it is possible to distinguish and detect at least two stages of a section where the difference value is equal to or less than the threshold value S2 and a section where the difference value is equal to or greater than the threshold value S1.
  • the distance between the detected object 21 and the detection electrodes 4 and 5 is detected using the change in the difference value of the output signal.
  • the detected object 21 exists in the section indicated by D2
  • the detected object 21 exists in the section indicated by D1.
  • the threshold values S1 and S2 are set to an arbitrary size, the interval between D1 and D2 can be arbitrarily set, and the distance between the detected object 21 and the detection electrodes 4 and 5 is detected. be able to.
  • . 5A and 5B show a sensor unit 50 in which detection electrodes 52 and 53 are arranged in a straight line with the drive electrode 51 interposed therebetween.
  • the detected object 56 is detected as the detection electrode as in FIG. 4 (a).
  • the difference value changes as shown by the curve in FIG. 4B in order to cross the drive electrode 51 and the detection electrode 53.
  • the approach of the detected object 56 is either from the detection electrode 52 side or from the detection electrode 53 side. Can be determined.
  • the distances from the detection electrodes 52 and 53 can be detected by arbitrarily setting the threshold values S1 and S2.
  • the difference value changes only in one of the positive side and the negative side.
  • the detected body 56 approaches the drive electrode 51 and the detection electrodes 52 and 53 in parallel, it is formed between one of the detection electrodes 52 or the detection electrode 53 close to the detected body 56 and the drive electrode 51.
  • the electrostatic capacitance Ca or Cb decreases more than the other electrostatic capacitance Ca or Cb. For this reason, the difference value becomes one change of the positive side or the negative side. Even in this case, since the noise acts on the entire sensor unit 50, the influence of the noise can be offset by detecting the difference value of the capacitance.
  • An input auxiliary device 60 shown in FIG. 6 includes a proximity sensor device 61 that detects the approach of the detection object 62, a control circuit 63 that lights the auxiliary illumination device 65 in response to the proximity information, and an input of the input device 64 by illumination. And an auxiliary illumination device 65 that assists the above.
  • the control circuit 63 receives the proximity information and turns on the auxiliary lighting device 65. The operator can confirm the position of the input device 64 by turning on the auxiliary lighting device 65, and the input operation becomes easy.
  • the auxiliary operation can be switched to at least two stages by using the positive side difference value and the negative side difference value of the proximity sensor device 61.
  • the proximity sensor device 61 can detect the approach of the detected object 62 as the detected object by dividing the difference value on the positive side and the difference value on the negative side.
  • Threshold values S1 and S2 are provided for the positive value and the negative value of the difference value, respectively, and the auxiliary lighting device 65 is connected via the control circuit 63 in a section where the absolute value of the difference value exceeds one threshold value S1 or S2. Lights up.
  • the auxiliary lighting device 65 is switched through the control circuit 63 in a section in which the detected object approaches and the absolute value of the difference value exceeds the other threshold value S1 or S2, so that the auxiliary operation is performed in multiple stages. You can switch to
  • the drive electrode 72 is formed in an annular shape on the insulating substrate 71 as in the sensor unit 1 shown in FIG.
  • the detection electrodes 73 and 74 are formed concentrically with the drive electrode 72 in between, and a switch 75 including an LED as auxiliary illumination is arranged inside the detection electrode 74.
  • FIG. 7 (b) shows a cross-sectional view taken along line YY in FIG. 7 (a).
  • a detected object such as an operator's hand (not shown) approaches the switch 75
  • proximity information of the detected object is detected by a control circuit 63 (not shown).
  • the control circuit 63 turns on the LED in the switch 75 based on the detected proximity information.
  • the operator can confirm the position of the switch 75 by lighting the LED.
  • the proximity sensor device can be suitably used as an input assist device from the following two points.
  • the first point is that the influence of noise can be reduced. For this reason, it can be used even in an environment where the influence of noise is particularly large as in an automobile.
  • the second point is that the working angle of the sensor is wide.
  • a device that activates auxiliary illumination based on the proximity of a detection object for example, a device using an infrared sensor is widely used.
  • the operating angle is limited, for example, the infrared sensor cannot be detected when approaching from an oblique direction.
  • the proximity sensor of the present embodiment it is possible to detect the approach of the detection object in a wide range of angles, and therefore it can be suitably used as an input auxiliary device.
  • FIG. 8 shows an application example of the input assist device.
  • the room lighting input device 80 includes a room lighting switch 81 and LEDs 82 and 83.
  • the approach of the operator is detected by a proximity sensor device 61 (not shown) built in the input assisting device 80, and the absolute value of the difference value of the capacitance is one threshold value S1 or One LED 82 lights up beyond S2.
  • the operator 84 further approaches the room illumination input device 80, the absolute value of the capacitance difference value exceeds the other threshold value S1 or S2, and the other LED 83 is lit.
  • the LED 82 when operating the room illumination input device 80 in a dark place, the LED 82 is turned on and the location of the room illumination switch 81 is clarified when approaching the room illumination input device 80 to a certain distance.
  • the operator 84 can be fed back to the operator 84 about the proximity of the indoor lighting switch 81, for example, the other auxiliary lighting 83 is turned on while the operator 84 is approaching and touching the indoor lighting switch 81.
  • the present invention is not limited to the above-described embodiment.
  • the difference value is detected by inverting the output signal of one of the two detection electrodes, and the scope of the present invention is not deviated. It is possible to carry out a modification with.
  • the present invention is applicable to a capacitive proximity sensor device and an input device using the same.

Abstract

 検出精度が高い静電容量式の近接センサ装置、及び近接センサ装置を用いた入力補助装置を提供すること。センサ部(1)は、駆動電圧を印加する駆動電極(3)と駆動電極(3)との間にそれぞれ静電容量を形成するように配置される検出電極(4)及び(5)とから構成される。検出電極(4)の出力信号は、増幅回路(6)に入力され、増幅された出力信号は正極端子と負極端子とを有する差動増幅回路(8)の正極端子へ入力される。検出電極(5)の出力信号は、増幅回路(9)に入力され、増幅された出力信号は差動増幅回路(8)の負極端子へ入力される。差動増幅回路(8)で増幅された出力信号は、アナログ処理回路(7)でフィルタリング処理及びデジタル変換され、マイクロコンピュータ(10)へ入力される。マイクロコンピュータ(10)では出力信号の差分値が検出され、検出された差分値と設定された閾値とを比較することにより、被検出体の近接を検出する。

Description

近接センサ装置及びそれを用いた入力補助装置
 本発明は、静電容量式の近接センサ装置および近接センサ装置を用いた入力補助装置に関する。
 人体などの被検出体の近接検出装置は、種々のタイプのものが提案されている。例えば、セラミックス等の絶縁基板上に検出電極、接地電極及び遮蔽電極を配置した静電容量式の近接センサ装置が知られている(例えば、特許文献1参照)。
 図9(a)に特許文献1記載の静電容量式近接センサ装置の概略図が示されている。センサ部90は被検出体の検出に用いる検出電極91及び接地電極92とノイズの遮蔽に用いる遮蔽電極93とによって構成される。検出電極91の端子と遮蔽電極93の端子とはシールド線94を介して発振回路95に接続され、接地電極92の端子は接地される。
 図9(b)にセンサ部90の電極配置が示されている。絶縁基板97の一方の面に検出電極91と接地電極92とが静電容量を形成するように配置される。絶縁基板97の他方の面には遮蔽電極93が配置され、検出電極91の背面からのノイズの影響を低減している。検出電極91に被検出体が近接した場合、被検出体により検出電極91と接地電極92との間に形成される電気力線98の一部が吸収され、検出電極91と接地電極92との間の静電容量が減少する。発振回路95から発振される発振周波数は検出電極91と接地電極92との間の静電容量の変化に基づいて変化する。検知回路部96はこの発振周波数の変化を電圧として検知し、検知された電圧と任意の閾値とを比較することにより被検出体の近接を検出する。
特開2000-48694号公報
 このような静電容量型の近接センサ装置において、より検出精度が高く、微小な静電容量の変化を検出できることが求められている。近接センサ装置の検出精度を向上させるためには、受信信号を増幅する方法が一般的であるが、受信信号に混入するノイズも一緒に増幅される問題がある。特許文献1の静電容量式近接センサ装置では、ノイズの影響を低減するため、検出電極91の背面に遮蔽電極93を設けて背面からのノイズを除去している。しかしながら、この方法では正面からのノイズには対処できない問題があった。
 本発明はかかる点に鑑みてなされたものであり、検出精度が高い静電容量式の近接センサ装置、及び近接センサ装置を用いた入力補助装置を提供することを目的とする。
 本発明の近接センサ装置は、駆動電圧が印加される駆動電極と、前記駆動電極の両側に前記駆動電極との間にそれぞれ静電容量を形成するように配置される一対の検出電極と、前記検出電極の一方の出力信号と他方の出力信号との差分値を検出する検出回路と、を具備することを特徴とする。
 この構成によれば、一方の検出電極と他方の検出電極とが同じノイズの影響下にあり、それぞれの検出電極の出力信号の差分値を検出することにより、ノイズの影響を相殺することができ、検出精度を向上させることができる。
 本発明は、近接センサ装置において、上記検出回路は、前記差分値から被検出体と前記検出電極との間の距離を検出する。この構成によれば、差分値が正側の値の場合は、駆動電極の両側に配置される一方の検出電極側の出力信号が変動し、負側の値の場合は、他方の検出電極側の出力信号が変動するので、差分値に基づいて被検出体が検出電極に近接する方向を判別でき、差分値の絶対値の大きさから被検出体と検出電極との間の距離を検出することができる。
 本発明は、近接センサ装置において、上記駆動電極は、環状をなしていて、前記検出電極が前記駆動電極の両側に配置される。この構成によれば、あらゆる方向からの近接センサ装置への被検出体の近接を検出することができる。
 本発明は、近接センサ装置において、上記一対の検出電極は、互いに電極幅及び又は前記駆動電極との距離が異なっており、前記駆動電極及び前記一対の検出電極との間にそれぞれ形成される静電容量が同一となるよう、電極間の距離及び又は電極幅を調整されたことを特徴する。
 この構成によれば、被検出体が近接しない状態での静電容量の差分値を同一に調整でき、被検出体を検出するための演算処理を簡素化することができる。
 本発明の入力補助装置は、入力装置及び前記近接センサ装置を備えた装置本体と、前記近接センサ装置から出力される信号に基づいて入力操作を補助する補助装置と、を具備することを特徴とする。
 本発明は、上記入力補助装置において、上記補助装置は、対象となる入力操作を補助するための照明装置を点灯させることとした。この構成によれば、オペレータが暗所でスイッチ等の入力操作を行う際、対象となるスイッチの所定範囲内に手を接近させることにより補助照明装置が点灯し、入力操作を補助することができる。
 また本発明は、上記入力補助装置において、補助装置は、前記近接センサ装置への近接の程度に応じて補助操作を少なくとも2段階に切り替える。この構成によれば、接近の程度に応じて、例えば複数の照明装置を段階的に切り替えるなど、オペレータへ接近の程度を段階的にフィードバックすることができる。
 本発明によれば、検出精度が高い静電容量式の近接センサ装置、及びそれを用いた入力補助装置を提供することができる。
本発明の実施の形態に係る近接センサ装置の構成の概略を示す図である。 (a)上記実施の形態における電極配置の上面図、(b)図2(a)の斜視図、(c)図2(a)のX-X間の断面図である。 上記実施の形態における被検出体の検出原理を説明する概念図である。 (a)本実施の形態における近接センサ装置と被検出体の位置の関係を示す図、(b)図4(a)の各地点での出力信号の静電容量の差分値を示す図である。 (a)本発明の変形例における電極配置の上面図、(b)図5(a)の斜視図である。 本発明の実施の形態に係る入力補助装置の構成の概略を示す図である。 (a)本発明の実施の形態の近接センサ装置を用いた応用例を示す図、(b)図7(a)のY-Y間の断面図である。 本発明の実施の形態の近接センサ装置を用いた他の応用例を示す図である。 (a)従来技術の静電容量式近接センサの構成の概略を示す図、(b)図9(a)のセンサ部の断面図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 図1に本発明の実施の形態に係る静電容量式の近接センサ装置の構成図が示されている。本実施の形態に係る近接センサ装置は、手などの被検出体を検出するセンサ部1とセンサ部1からの出力信号を処理する制御回路部2とを備えて構成される。センサ部1は、駆動電圧が印加される駆動電極3と駆動電極3との間にそれぞれ静電容量を形成するように配置される検出電極4及び5とから構成される。
 一方の検出電極4の出力信号は、正極端子と負極端子とを備える増幅回路6の負極端子に入力される。増幅回路6の正極端子には、アナログ処理回路7から基準電圧が印加される。増幅回路6で増幅された出力信号は、正極端子と負極端子とを有する差動増幅回路8の正極端子へ入力される。他方の検出電極5の出力信号は、正極端子と負極端子とを備える増幅回路9の負極端子に入力される。増幅回路9の正極端子にはアナログ処理回路7から基準電圧が印加される。増幅回路9で増幅された出力信号は、差動増幅回路8の負極端子へ入力される。差動増幅回路8で増幅された検出電極4及び5の出力信号は、アナログ処理回路7でフィルタリング処理及びデジタル変換され、マイクロコンピュータ10へ入力され、検出回路としてのマイクロコンピュータ10で差分値が検出される。検出された差分値と設定された閾値とを比較することにより、被検出体の接近を検出する。尚、差分値の検出はアナログ処理回路7で行ってもよい。検出された被検出体の情報は、インターフェース11を介して外部システムに送出される。駆動電極3には、マイクロコンピュータ10よりタイミング回路12を介して増幅回路13で増幅された駆動電圧が印加される。駆動電圧の印加はマイクロコンピュータによって指示が与えられたタイミング回路12によりタイミング制御される。
 図2(a)に本実施の形態のセンサ部1における電極配置の上面図が示されている。円環状に形成される駆動電極3、検出電極4及び検出電極5は絶縁基板20上に同心円状に配置される。駆動電極3を挟んで外側には検出電極4が形成され、内側には検出電極5が形成されている。図2(b)には図2(a)の斜視図が示されている。円環状に形成される駆動電極3と各検出電極4及び5との間にはそれぞれ静電容量が形成される。このため、手21(以下、「被検出体」という)がいずれの方向から接近しても所定範囲内に接近すると、駆動電極3と各検出電極4及び5との間に形成される静電容量が変化する。この静電容量値の変化を基に被検出体21の接近を検出する。
 図2(c)には、図2(a)に示されるセンサ部1のX-X間の断面図が示されている。図中では、検出電極5と比較して検出電極4の電極幅は狭く形成されている。これは駆動電極3と検出電極4及び5との間にそれぞれ形成される静電容量を調整するためである。同心円状に形成される駆動電極3に対して内側に配置される検出電極5と外側に配置される検出電極4とを比較した際、電極幅が同じ場合は駆動電極3の内側に配置される検出電極5の面積の方が小さくなる。したがって、駆動電極3と検出電極5の間に形成される静電容量は、駆動電極3と検出電極4との間に形成される静電容量より小さくなる。このため、内側の検出電極5の電極幅を広くとり、かつ駆動電極3との間の電極間距離を小さく配置することにより、駆動電極3と各検出電極4及び5との間に形成される静電容量を同一となるように調整している。
 図3(a)~(d)は、近接センサ装置の検出原理を示す概念図である。図3(a)は絶縁基板20上に配置された駆動電極3、検出電極4及び検出電極5の断面を示し、駆動電極3と検出電極4との間に電気力線31及び静電容量Caが形成され、駆動電極3と検出電極5との間に電気力線32及び静電容量Cbが形成されていることが示されている。
 図3(b)には、被検出体21が駆動電極3と検出電極4との間に接近した状態が示されている。この状態では、被検出体21によって電気力線31の一部が吸収されるため、駆動電極3と検出電極4との間に形成された静電容量Caが低下する。一方、被検出体21ともう一方の検出電極5との間の距離は大きく、被検出体21によって吸収される電気力線32の量は少ないので、静電容量Cbはほとんど低下しない。
 図3(c)には、被検出体21が駆動電極3と検出電極5との間に接近した状態が示されている。この状態では、被検出体21によって駆動電極3と検出電極5との間の電気力線32の一部が吸収されるため静電容量Cbが低下する。一方、被検出体21ともう一方の検出電極4との間の距離差は大きく、被検出体21によって吸収される電気力線31の量は少ないので、静電容量Caはほとんど低下しない。
 図3(d)には、被検出体21が駆動電極3の上部に接近した状態で検出電極4と検出電極5との中間付近に存在する状態が示されている。この状態では、被検出体21が電気力線31及び32の双方を共に吸収するため、静電容量Ca、Cbは共に低下する。
 本実施の形態における近接センサ装置の検出電極4及び5の出力信号は、電極間に形成された静電容量に比例する。このため、電極間の静電容量(Ca-Cb)の変化は出力信号の変化に連動する。以下、説明の便宜上、出力信号の差分値の変化を電極間の静電容量の差分値(Ca-Cb)の変化に読み替えて説明する。図3(a)の状態では、電極幅と電極間の距離とによって調整された一定容量の静電容量Ca及びCbが形成されている。この時の静電容量の差分値を(Ca-Cb)=C0とする。図3(b)の状態では、CaがCbより小さくなるので、差分値(Ca-Cb)はC0より小さくなり、図3(c)の状態では、CbがCaより小さくなるので、差分値はC0より大きくなる。また、図3(d)の状態では、CaとCbとが共に小さくなるので、差分値はC0に近い値となる。
 一方、本実施の形態の近接センサ装置では、ノイズの影響がセンサ部1全体に作用する。したがって、検出電極4及び5に同程度のノイズが影響する。このため、それぞれの電極間に形成された静電容量Ca、Cbにも同程度のノイズが作用し、その差分値を算出することで、ノイズの影響が相殺される。仮に、近接センサ装置全体にΔCのノイズが作用したとする。この場合、駆動電極3と検出電極4との間に形成される静電容量はCa+ΔCとなり、駆動電極3と検出電極5との間に形成される静電容量はCb+ΔCとなる。したがって、静電容量の差分値は(Ca+ΔC)-(Cb+ΔC)=Ca-Cbとなり、ノイズΔCの影響は相殺される。
 図4を用いて被検出体21の位置と静電容量の差分値の変化とについて、詳細に説明する。図4(a)にはセンサ部1に対して、距離hを保ちながら平行に被検出体21を動かした際の被検出体21の位置を、各A~E点に示している。図中でのA点及びE点は、被検出体21が静電容量Ca、Cbに影響を及ぼさない遠方の地点とする。またB点は静電容量Caが最も減少する点、C点は静電容量Ca、Cbが等しくなる点、D点は静電容量Cbが最も減少する点とする。また、図中のセンサ部1の静電容量の初期値C0は被検出体21が電気力線31及び32に影響しない地点、すなわちA点及びE点でCa-Cbが零となるように調整されたものとして説明する。
 図4(b)には被検出体21の位置に対応する静電容量Ca、Cbの差分値(Ca-Cb)の変化が実線の曲線として示されている。曲線上の各A点~E点は、被検出体21が図4(a)の各A~E点に位置する時の静電容量の差分値を示している。上述したように、被検出体21が検出電極4から離れたA点に位置する時は、静電容量Ca、Cbが等しいので、静電容量の差分値(Ca-Cb)は零となる。被検出体21をA点からB点に向けて動かすと、被検出体21が検出電極4に近づくにつれて手によって吸収される電気力線31の量が増大する。一方、被検出体21と検出電極5と間の距離は大きいため、電気力線32はほとんど吸収されない。このため、被検出体21がA点からB点に向かうにつれて静電容量Caは静電容量Cbより大きく減少し、差分値(Ca-Cb)が負の方向に増大する。
 被検出体21が検出電極4と駆動電極3との中間上のB点に位置する時は、被検出体21によって吸収される電気力線31の量が最大となる。このため、静電容量Caが最小値となり、差分値は負側の最大値となる。被検出体21がB点からC点に向けて移動する際には、被検出体21と検出電極4との間の距離が増大するため、被検出体21によって吸収される電気力線31の量は減少する。一方、被検出体21と検出電極5との間の距離が小さくなるため、被検出体21によって吸収される電気力線32の量が徐々に増大する。以上のようにB点からC点にかけて静電容量Caは増大し、静電容量Cbは減少する。このため、差分値は正側に増大する。
 被検出体21がC点に位置する時は、被検出体21によって吸収される電気力線31の量と電気力線32の量とが等しくなる。このため、静電容量CaとCbとが等しくなり差分値が零となる。被検出体21がC点からD点に向けて移動する際には、被検出体21によって吸収される電気力線32の量が増大し、静電容量Cbの値は減少する。一方、被検出体21と検出電極4との間の距離は増大するため、被検出体21によって吸収される電磁線31の量は減少し、静電容量Caは増大する。したがって、被検出体21がC点からD点に向けて移動する際には、Cbの値がCaの値より小さくなり、差分値は正側の値となり、差分値は正側に増大する。
 被検出体21が検出電極5と駆動電極3との中間上のD点では、被検出体21によって吸収される電気力線32の量が最大となるため、静電容量Cbが最小となり差分値が最大となる。被検出体21がD点からE点に向けて移動する際には、被検出体21と検出電極5との間の距離が大きくなり、被検出体21によって吸収される電気力線32の量が減少する。このため、静電容量Cbが増大して差分値は減少に転ずる。被検出体21がE点に到達した際には、被検出体21が静電容量Ca、Cbに影響を及ぼさなくなるため差分値は零となる。
 本実施の形態における近接センサ装置では、被検出体の接近によって検出される差分値が正側の値と負側の値とをとる。このため、正側に閾値S1を設定し、負側に閾値S2を設定することにより、被検出体21の近接を多段階に分けて検出できる。図4(a)で被検出体21がA点からE点に向かって移動する場合、差分値は図4(b)の曲線に示されるように変化する。図4(a)のD1に示される区間で差分値は図4(b)の曲線の負側の閾値S2以下となり、D2に示される区間で正側の閾値S1以上となる。したがって、差分値が閾値S2以下になる区間と閾値S1以上になる区間との少なくとも2段階を区別して検出することができる。
 出力信号の差分値の変化を利用して被検出体21と検出電極4及び5との間の距離を検出することもできる。差分値が閾値S1以上となる区間では、被検出体21がD2に示される区間に存在し、差分値が閾値S2以下となる区間では、被検出体21がD1に示される区間に存在する。このため、閾値S1、S2を任意の大きさに設定することにより、D1、D2の区間を任意に設定することができ、被検出体21と検出電極4及び5との間の距離を検出することができる。
 以上、本実施の形態の近接センサ装置のセンサ部1の電極配置として駆動電極3、検出電極4及び5を円環状に配置した例を示したが、本発明はこのような電極構成に限定されない。図5(a)、(b)に駆動電極51を挟んで検出電極52、53を直線状に配置したセンサ部50が示されている。この電極配置では、図5(b)中に示される矢印54の方向から被検出体としての被検出体56が接近する場合には、図4(a)と同様に被検出体56が検出電極52、駆動電極51及び検出電極53を横断するため、差分値は図4(b)の曲線に示されるように変化する。したがって、上述したように、差分値が正側の値か負側の値かを検出することにより、被検出体56の接近が、検出電極52側からか、検出電極53側からかの何れかを判別できる。また、図4(b)と同様に、閾値S1、S2の値を任意に設定することにより、検出電極52、53との距離を検出することもできる。
 一方、矢印55の方向からセンサ部50に被検出体56が接近した場合には、差分値の変化は正側または負側の一方の変化のみとなる。この場合、被検出体56は駆動電極51、検出電極52及び53と平行に接近するため、被検出体56に近い一方の検出電極52または検出電極53と駆動電極51との間に形成される静電容量CaまたはCbが、他方の静電容量CaまたはCbより大きく減少する。このため、差分値は正側か負側かの一方の変化となる。この場合においても、ノイズはセンサ部50の全体に作用するため、静電容量の差分値を検出することによりノイズの影響を相殺できる。
 以下、本実施の形態における近接センサ装置を用いる応用例を示す。図6に示される入力補助装置60は、被検出体62の接近を検出する近接センサ装置61と、近接情報を受けて補助照明装置65を点灯させる制御回路63と、照明によって入力デバイス64の入力を補助する補助照明装置65と、を備えて構成される。オペレータが入力デバイス64を操作しようとする際、被検出体62の接近により、近接センサ装置61によって近接情報が検出される。制御回路63は近接情報を受けて補助照明装置65を点灯させる。オペレータは補助照明装置65の点灯によって入力デバイス64の位置を確認でき、入力操作が容易となる。
 入力補助装置60では、近接センサ装置61の正側の差分値と負側の差分値とを用いることにより、補助操作を少なくとも2段階に切り替えられる。図4(b)で説明したように、近接センサ装置61では、被検出体としての被検出体62の接近を、正側の差分値と負側の差分値とに分けて検出することができる。差分値の正側の値と負側の値とにそれぞれ閾値S1、S2を設け、差分値の絶対値が一方の閾値S1またはS2を超えた区間で、制御回路63を介して補助照明装置65を点灯する。更に被検出体が接近して差分値の絶対値が他方の閾値S1またはS2を超えた区間で、制御回路63を介して補助照明装置65を切り替えるように構成することにより、補助操作を多段階に切り替えることができる。
 図7(a)、(b)には入力補助装置の具体例が示されている。図7(a)の入力スイッチ装置70は、図2に示されるセンサ部1と同様に絶縁基板71上に円環状に駆動電極72が形成される。検出電極73及び74は駆動電極72を挟んで同心円状に形成され、検出電極74の内側に補助照明としてのLEDを備えるスイッチ75が配置されて構成される。
 図7(b)には図7(a)のY-Y間の断面図が示されている。図示されないオペレータの手等の被検出体がスイッチ75に接近した場合、被検出体の近接情報が図示されない制御回路63で検知される。制御回路63は検知された近接情報を基にスイッチ75内のLEDを点灯させる。オペレータはLEDの点灯によりスイッチ75の位置が確認できる。
 本実施の形態における近接センサ装置は以下の2点から入力補助装置として好適に使用することができる。1点目はノイズの影響が低減できる点である。このため、自動車内の様に特にノイズの影響が大きい環境下でも使用することができる。2点目はセンサの作用角度が広い点である。被検出体の近接を基に補助照明を起動する装置として、例えば赤外線センサを用いたものが広く用いられている。しかし、赤外線センサは斜め方向からの近接した場合、検出することができないなど、作用角度が制限されていた。しかし本実施の形態の近接センサによれば広範な角度の被検出体の接近を検出できるため、入力補助装置として好適に使用することができる。
 図8には入力補助装置の応用例が示されている。室内照明入力装置80は、室内照明スイッチ81と、LED82、83と、を備えて構成される。オペレータ84が、入力補助装置80に近接した場合、入力補助装置80に内蔵された図示されない近接センサ装置61でオペレータの接近が検出され、静電容量の差分値の絶対値が一方の閾値S1またはS2を超えて一方のLED82が点灯する。オペレータ84が室内照明入力装置80に更に接近し、静電容量の差分値の絶対値は他方の閾値S1またはS2を超え、他方のLED83が点灯する。このように構成することにより、例えば、暗所で室内照明入力装置80を操作する際、一定の距離まで室内照明入力装置80に接近すると、LED82が点灯して室内照明スイッチ81の場所が明確となり、オペレータ84が更に接近して室内照明スイッチ81に触れた状態で他方の補助照明83が点灯されるなど、オペレータ84へ室内照明スイッチ81への近接状況をフィードバックすることができる。
 なお、本発明は上記実施の形態に限定されるものではなく、例えば2本の検出電極の一方の検出電極の出力信号を反転して差分値を検出するなど、本発明の要旨を逸脱しない範囲で変形実施可能である。
 本発明は静電容量式の近接センサ装置及びそれを用いた入力装置に適用可能である。

Claims (8)

  1.  駆動電圧が印加される駆動電極と、前記駆動電極の両側に前記駆動電極との間にそれぞれ静電容量を形成するように配置される一対の検出電極と、前記検出電極の一方の出力信号と他方の出力信号との差分値を検出する検出回路と、を具備することを特徴とする近接センサ装置。
  2.  前記検出回路は、前記差分値から被検出体と前記検出電極との間の距離を検出することを特徴とする請求項1記載の近接センサ装置。
  3.  前記駆動電極は、環状をなしていて、前記検出電極が前記駆動電極の内側及び外側に配置されることを特徴とする請求項1記載の近接センサ装置。
  4.  前記一対の検出電極は、互いに電極幅及び又は前記駆動電極との距離が異なっており、前記駆動電極及び前記一対の検出電極との間にそれぞれ形成される静電容量が同一となるよう、電極間の距離及び又は電極幅を調整されたことを特徴する請求項1記載の近接センサ装置。
  5.  入力装置及び請求項1記載の近接センサ装置を備えた装置本体と、前記近接センサ装置から出力される信号に基づいて入力操作を補助する補助装置と、を具備することを特徴とする入力補助装置。
  6.  前記補助装置は、対象となる入力操作を補助するための補助照明装置を点灯させることを特徴とする請求項5記載の入力補助装置。
  7.  前記補助装置は、前記近接センサ装置への近接の程度に応じて補助動作を少なくとも2段階に切り替えることを特徴とする請求項5記載の入力補助装置。
  8.  請求項3に記載の近接センサ装置と、前記近接センサ装置に備えられた内側の検出電極のさらに内側に入力装置を備えた装置本体と、前記近接センサ装置から出力される信号に基づいて入力操作を補助する補助装置と、を具備することを特徴とする入力補助装置。
PCT/JP2009/068236 2008-11-05 2009-10-23 近接センサ装置及びそれを用いた入力補助装置 WO2010053013A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536737A JP5305478B2 (ja) 2008-11-05 2009-10-23 近接センサ装置及びそれを用いた入力補助装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-284618 2008-11-05
JP2008284618 2008-11-05

Publications (1)

Publication Number Publication Date
WO2010053013A1 true WO2010053013A1 (ja) 2010-05-14

Family

ID=42152822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068236 WO2010053013A1 (ja) 2008-11-05 2009-10-23 近接センサ装置及びそれを用いた入力補助装置

Country Status (2)

Country Link
JP (1) JP5305478B2 (ja)
WO (1) WO2010053013A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227906A (ja) * 2011-04-21 2012-11-15 Silicon Works Co Ltd タッチ感知回路
JP2013246695A (ja) * 2012-05-28 2013-12-09 Minebea Co Ltd タッチセンサ、それを用いた電子機器用の入力装置等、及びこれらの検出方法或いは制御方法
JP2014501414A (ja) * 2010-12-30 2014-01-20 禾瑞亞科技股▲ふん▼有限公司 静電容量方式タッチスクリーン
JP2014190559A (ja) * 2013-03-26 2014-10-06 Toho Gas Co Ltd 安全装置付きコンロ
CN104536051A (zh) * 2015-01-16 2015-04-22 华南理工大学 用于蹲厕的自动冲水控制电路中的传感装置
JP2016004632A (ja) * 2014-06-13 2016-01-12 トヨタ紡織株式会社 タッチスイッチ
DE102015012598A1 (de) 2014-10-01 2016-04-07 U-Shin Ltd. Näherungssensor und schlüssellose Zugangseinrichtung, die diesen enthält
JP2016540324A (ja) * 2013-10-07 2016-12-22 サイプレス セミコンダクター コーポレーション 静電容量ボタンへの異なる大きさの導電性対象物のタッチの検出及び識別
JP2017134010A (ja) * 2016-01-29 2017-08-03 株式会社東京センサ 静電容量センサ
JP2017135099A (ja) * 2016-01-27 2017-08-03 パナソニックIpマネジメント株式会社 センサ及びそれを用いたスイッチ
CN108873080A (zh) * 2017-05-16 2018-11-23 商升特公司 单个传感器接近度检测器
JP2019095356A (ja) * 2017-11-24 2019-06-20 島根県 電極拡張型静電容量式センサ
JP2019523868A (ja) * 2016-06-03 2019-08-29 ブランデンバーグ (ユーケイ) リミテッド 物体の検知
JP2020505617A (ja) * 2017-01-13 2020-02-20 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. 難視構成を均一の電界で検出する装置及び方法
JP2020517956A (ja) * 2017-04-27 2020-06-18 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. 難視構成を検出する装置及び方法
WO2022070712A1 (ja) * 2020-10-01 2022-04-07 パナソニックIpマネジメント株式会社 近接センサ、制御システム及び機器
JP7401078B2 (ja) 2020-04-13 2023-12-19 北京他山科技有限公司 ホバーボタンセンサユニット及びホバーボタンのトリガー方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429887U (ja) * 1990-06-28 1992-03-10
JP2000048694A (ja) * 1998-07-27 2000-02-18 Omron Corp 静電容量形近接センサ
JP2001507882A (ja) * 1996-12-10 2001-06-12 タッチ センサー テクノロジーズ,エルエルシー 差動式タッチセンサーおよびそれの制御回路
JP2006120571A (ja) * 2004-10-25 2006-05-11 Fujikura Ltd 照明装置
JP2006220492A (ja) * 2005-02-09 2006-08-24 Seiko Epson Corp 静電容量検出装置及び電子機器
JP2007116684A (ja) * 2005-10-05 2007-05-10 Holtek Semiconductor Inc 近接感応センサー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429887U (ja) * 1990-06-28 1992-03-10
JP2001507882A (ja) * 1996-12-10 2001-06-12 タッチ センサー テクノロジーズ,エルエルシー 差動式タッチセンサーおよびそれの制御回路
JP2000048694A (ja) * 1998-07-27 2000-02-18 Omron Corp 静電容量形近接センサ
JP2006120571A (ja) * 2004-10-25 2006-05-11 Fujikura Ltd 照明装置
JP2006220492A (ja) * 2005-02-09 2006-08-24 Seiko Epson Corp 静電容量検出装置及び電子機器
JP2007116684A (ja) * 2005-10-05 2007-05-10 Holtek Semiconductor Inc 近接感応センサー

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501414A (ja) * 2010-12-30 2014-01-20 禾瑞亞科技股▲ふん▼有限公司 静電容量方式タッチスクリーン
JP2012227906A (ja) * 2011-04-21 2012-11-15 Silicon Works Co Ltd タッチ感知回路
JP2013246695A (ja) * 2012-05-28 2013-12-09 Minebea Co Ltd タッチセンサ、それを用いた電子機器用の入力装置等、及びこれらの検出方法或いは制御方法
JP2014190559A (ja) * 2013-03-26 2014-10-06 Toho Gas Co Ltd 安全装置付きコンロ
JP2018139436A (ja) * 2013-10-07 2018-09-06 サイプレス セミコンダクター コーポレーション 静電容量ボタンへの異なる大きさの導電性対象物のタッチの検出及び識別
JP2016540324A (ja) * 2013-10-07 2016-12-22 サイプレス セミコンダクター コーポレーション 静電容量ボタンへの異なる大きさの導電性対象物のタッチの検出及び識別
JP2016004632A (ja) * 2014-06-13 2016-01-12 トヨタ紡織株式会社 タッチスイッチ
DE102015012598A1 (de) 2014-10-01 2016-04-07 U-Shin Ltd. Näherungssensor und schlüssellose Zugangseinrichtung, die diesen enthält
US9835751B2 (en) 2014-10-01 2017-12-05 U-Shin Ltd Proximity sensor and keyless entry device including the same
CN104536051A (zh) * 2015-01-16 2015-04-22 华南理工大学 用于蹲厕的自动冲水控制电路中的传感装置
JP2017135099A (ja) * 2016-01-27 2017-08-03 パナソニックIpマネジメント株式会社 センサ及びそれを用いたスイッチ
JP2017134010A (ja) * 2016-01-29 2017-08-03 株式会社東京センサ 静電容量センサ
JP7442027B2 (ja) 2016-06-03 2024-03-04 コーカス・リミテッド 物体の検知
JP7250522B2 (ja) 2016-06-03 2023-04-03 ブランデンバーグ (ユーケイ) リミテッド 物体の検知
JP2019523868A (ja) * 2016-06-03 2019-08-29 ブランデンバーグ (ユーケイ) リミテッド 物体の検知
JP2022071167A (ja) * 2016-06-03 2022-05-13 ブランデンバーグ (ユーケイ) リミテッド 物体の検知
JP7008083B2 (ja) 2017-01-13 2022-01-25 フランクリン センサーズ インコーポレイテッド 難視構成を均一の電界で検出する装置及び方法
JP2020505617A (ja) * 2017-01-13 2020-02-20 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. 難視構成を均一の電界で検出する装置及び方法
JP2020517956A (ja) * 2017-04-27 2020-06-18 フランクリン センサーズ インコーポレイテッドFranklin Sensors Inc. 難視構成を検出する装置及び方法
CN108873080A (zh) * 2017-05-16 2018-11-23 商升特公司 单个传感器接近度检测器
JP7007640B2 (ja) 2017-11-24 2022-01-24 島根県 電極拡張型静電容量式センサ
JP2019095356A (ja) * 2017-11-24 2019-06-20 島根県 電極拡張型静電容量式センサ
JP7401078B2 (ja) 2020-04-13 2023-12-19 北京他山科技有限公司 ホバーボタンセンサユニット及びホバーボタンのトリガー方法
WO2022070712A1 (ja) * 2020-10-01 2022-04-07 パナソニックIpマネジメント株式会社 近接センサ、制御システム及び機器

Also Published As

Publication number Publication date
JP5305478B2 (ja) 2013-10-02
JPWO2010053013A1 (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5305478B2 (ja) 近接センサ装置及びそれを用いた入力補助装置
JP4358679B2 (ja) 静電容量式近接センサ
JP4897886B2 (ja) 静電容量型近接センサおよび近接検知方法
JP4463653B2 (ja) ハイブリッドセンサ
JP5340421B2 (ja) 静電容量式近接センサ装置、及びそれを用いた電子機器
US8841927B2 (en) Touch sensing circuit
US8547116B2 (en) Position detector
US9442534B2 (en) Electrode device for a capacitive sensor device for position detection
US9939956B2 (en) Capacitive sensing device comprising perforated electrodes
CN110286787B (zh) 用于触控面板的控制晶片及其运作方法
KR20150047486A (ko) 용량성 신체 근접도 센서 시스템
EP1593988A4 (en) APPROXIMATE SENSOR FOR DETERMINING ELECTROSTATIC CAPACITY
JP2013508734A5 (ja)
JP7285311B2 (ja) 検出装置
US20150123682A1 (en) Electrode Configuration for Position Detection and Method for Position Detection
JPH03225719A (ja) 非接触スイッチ
KR101649750B1 (ko) 인접 오브젝트 검출 방법 및 이를 이용한 인접 오브젝트 검출 장치, 터치 검출 방법 및 이를 이용한 터치 검출 장치
US8653836B2 (en) Coordinate detecting device
KR101763589B1 (ko) 정전용량방식 센서장치
JP2010164533A (ja) モーション検出装置及びモーション検出方法
KR101766982B1 (ko) 외부 간섭 디커플링이 가능한 정전용량형 토크센서
JP7447376B2 (ja) 操作検出装置
KR20170026069A (ko) 터치 압력 검출 장치
JP6295651B2 (ja) 有線接続された座標指示ペンを使用した静電容量結合型座標検出装置
JP2014126457A (ja) 静電容量式検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536737

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824713

Country of ref document: EP

Kind code of ref document: A1