WO2010052985A1 - 固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニット - Google Patents

固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニット Download PDF

Info

Publication number
WO2010052985A1
WO2010052985A1 PCT/JP2009/067380 JP2009067380W WO2010052985A1 WO 2010052985 A1 WO2010052985 A1 WO 2010052985A1 JP 2009067380 W JP2009067380 W JP 2009067380W WO 2010052985 A1 WO2010052985 A1 WO 2010052985A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint member
track
constant velocity
velocity universal
track groove
Prior art date
Application number
PCT/JP2009/067380
Other languages
English (en)
French (fr)
Inventor
正純 小林
起佐雄 山崎
石島 実
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP09824685.3A priority Critical patent/EP2345823B1/en
Priority to US13/123,925 priority patent/US8499457B2/en
Priority to CN200980144534.9A priority patent/CN102209857B/zh
Publication of WO2010052985A1 publication Critical patent/WO2010052985A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/076Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end by clamping together two faces perpendicular to the axis of rotation, e.g. with bolted flanges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0021Hubs for driven wheels characterised by torque transmission means from drive axle
    • B60B27/0026Hubs for driven wheels characterised by torque transmission means from drive axle of the radial type, e.g. splined key
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0036Hubs for driven wheels comprising homokinetic joints
    • B60B27/0042Hubs for driven wheels comprising homokinetic joints characterised by the fixation of the homokinetic joint to the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0094Hubs one or more of the bearing races are formed by the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • F16C35/0635Fixing them on the shaft the bore of the inner ring being of special non-cylindrical shape which co-operates with a complementary shape on the shaft, e.g. teeth, polygonal sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • F16D3/2245Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22309Details of grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22326Attachments to the outer joint member, i.e. attachments to the exterior of the outer joint member or to the shaft of the outer joint member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/10Surface characteristics; Details related to material surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49679Anti-friction bearing or component thereof
    • Y10T29/4968Assembling of race, cage, and rolling anti-friction members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49696Mounting

Definitions

  • the present invention is used in, for example, power transmission systems of automobiles and various industrial machines, and is a fixed type constant velocity universal joint that allows only angular displacement between two axes of a driving side and a driven side, and a method for manufacturing the same.
  • the present invention relates to a drive wheel bearing unit using a fixed type constant velocity universal joint.
  • the drive shaft described above includes a propeller shaft that transmits rotational driving force from the transmission to the differential and a drive shaft that transmits rotational driving force from the differential to the wheels.
  • BJ Barfield type constant velocity universal joint
  • DOJ double offset type constant velocity universal joint
  • a BJ type fixed type constant velocity universal joint extends in the axial direction as a pair with an outer ring which is an outer joint member in which a plurality of track grooves extending in the axial direction are formed on the inner spherical surface, and a track groove of the outer ring.
  • An inner ring which is an inner joint member having a track groove formed on the outer spherical surface, a plurality of balls that are interposed between the track groove of the outer ring and the track groove of the inner ring, and the outer spherical surface of the outer ring and the outer ring.
  • a cage for holding the ball interposed between the spherical surfaces is provided as a main component. The plurality of balls are accommodated in pockets formed in the cage and arranged at equal intervals in the circumferential direction.
  • the outer ring and inner ring of this fixed type constant velocity universal joint are generally manufactured in the following manner. First, a cylindrical billet is formed into an approximate shape of an outer ring or an inner ring by hot forging, warm forging or cold forging, and the outer spherical surface, inner spherical surface and end surface of this material are turned. Thereafter, heat treatment is performed, and the outer spherical surface, inner spherical surface and track groove are finished by grinding or quenching steel cutting.
  • the PCD clearance and the like are selectively combined so that they are within the specified value range. Yes.
  • the outer ring 210, the inner ring 220, the ball 230, and the cage 240 are arranged so that the PCD clearance and the like are within the specified value range.
  • the outer ring 210, the inner ring 220, the ball 230, and the cage 240 are selected and combined based on the matching table (for example, see Patent Documents 1 and 2).
  • the outer ring 210 and the inner ring 220 which are the components of the conventional constant velocity universal joint described above, are manufactured by forging, turning, and heat treatment, and finally finishing the track groove such as grinding.
  • finishing the track groove after forging, turning and heat treatment the cost of equipment, tools, etc. for finishing the track groove is increased, and the finishing process takes time, There was an inconvenience that the yield of the material was poor.
  • a PCD clearance or the like from among a large number of ranked outer rings 210, inner rings 220, balls 230, and cages 240, etc. are configured to select and combine the components including the outer ring 210, the inner ring 220, the ball 230, and the cage 240 based on the matching table. This selective combination has a problem that it takes time to assemble each component and the workability is poor.
  • the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to simplify the production of the outer ring or the inner ring, to reduce the cost, and to provide a fixed type constant velocity universal joint, its manufacturing method, and its fixing. Another object is to provide a drive wheel bearing unit using a constant velocity universal joint.
  • a fixed type constant velocity universal joint includes an outer joint member in which a plurality of track grooves extending in the axial direction are formed on an inner spherical surface, and an outer joint member of the outer joint member.
  • Torque is transmitted by interposing between the track groove of the outer joint member and the track groove of the inner joint member and the inner joint member in which a plurality of track grooves extending in the axial direction in pairs with the track groove are formed on the outer spherical surface
  • One of them is formed by cold forging finish, and the components composed of an outer joint member, an inner joint member, a ball and a cage are attached to an arbitrarily selected outer joint member and inner joint member. Wherein the assembled by matching to select a ball and cage fits rank each PCD measurements of the side joint member and the inner joint member.
  • the manufacturing method of the fixed type constant velocity universal joint includes an outer joint member having a cup shape with one end opened and a plurality of axially extending track grooves formed on the inner spherical surface, and the outer joint member Between the inner joint member in which a plurality of track grooves extending in the axial direction as a pair with the track groove of the outer joint member are formed on the outer spherical surface, and between the track groove of the outer joint member and the track groove of the inner joint member.
  • Randomly selected outer joint members and inner joint members, which are formed by cold forging finish, and cages having pocket widths matching the ball outer diameter are ranked according to the ball outer diameter.
  • the outer joint member and the inner joint member are matched with each other by measuring each PCD and selecting a ball and cage having a rank suitable for each PCD measurement value of the outer joint member and the inner joint member for the outer joint member and the inner joint member.
  • a combination of components consisting of a ball and a cage consisting of a ball and a cage.
  • the PCD of the outer joint member means the pitch circle diameter of the ball in contact with the track groove of the outer joint member, and the PCD of the inner joint member is in contact with the track groove of the inner joint member. Means the pitch circle diameter
  • At least one of the track groove of the outer joint member and the track groove of the inner joint member is formed by cold forging, so that the track groove is formed only by cold forging.
  • a lot of machining such as cutting and grinding after the forging can be omitted, the yield can be improved, and the cost of the constant velocity universal joint can be reduced.
  • a simple matching that is, a ball selecting cages and ranks that match the respective PCD measurement values of the outer joint member and inner joint member, that is, the ball
  • the cages having pocket widths that match the outer diameter of each of these are ranked according to the outer diameter of the ball, and each PCD of the outer joint member and the inner joint member selected arbitrarily is measured.
  • the cross-sectional shape of the track groove of the outer joint member and the track groove of the inner joint member is preferably a Gothic arch shape that makes angular contact with the ball, and the contact angle is preferably 35 ° to 45 °.
  • the cross-sectional shape of the track groove of the outer joint member and the track groove of the inner joint member is a Gothic arch shape that makes an angular contact with the ball, and the contact angle is 35 ° to 45 °, It is possible to stabilize the contact state.
  • the contact angle is smaller than 35 °, there is a concern that the track surface pressure increases and the durability is lowered.
  • the contact angle is greater than 45 °, there is less allowance for the ball to ride up to the track shoulder at a high operating angle, causing the ball to ride on the contact ellipse under high torque loads, and the track shoulder may become chipped. Concerned.
  • At least one of the opening end of the track groove of the outer joint member or the opening end of the track groove of the inner joint member in the present invention it is desirable to provide at least a notch radius portion at a position corresponding to the ball contact point.
  • the constant velocity universal joint can be operated at a high angle. Even if the ball is located at the axial end of the track groove of the outer joint member or the inner joint member, for some reason, the angle is assumed to be in the axial direction of the outer joint member or the inner joint member. Biting into the edge can be prevented.
  • the track groove and the notch radius portion of the outer joint member and the track groove and the notch radius portion of the inner joint member are formed by simultaneous cold forging finishing, the machine by the grinding finish after turning or heat treatment after the track groove is formed There is no need to perform processing, and the formation of the track groove and the notch radius is only simultaneous cold forging. Therefore, the formation of the notch radius can be simplified, and the cost of the constant velocity universal joint can be reduced. .
  • an inlet chamfer formed along the entire circumference of the opening edge of the outer joint member, a track chamfer formed along the boundary between the inner spherical surface and the track groove, and a boundary between the track groove and the inlet chamfer It is desirable to form the track inlet chamfer formed along the outer periphery by cold forging and to form the portion excluding the boot groove formed on the outer peripheral surface of the outer end of the outer joint member by cold forging.
  • the inlet chamfer, track chamfer, and track inlet chamfer of the outer joint member are formed by cold forging as described above, the formation of the inlet chamfer, track chamfer, and track inlet chamfer is only cold forging. A lot of machining such as cutting and grinding after forging can be omitted, the yield can be further improved, and the cost of the constant velocity universal joint can be further reduced. Also, if the outer peripheral surface of the outer joint member excluding the groove for boot is formed by cold forging, the hardness of the outer peripheral surface can be increased and the torsional strength can be increased. The cost of the universal joint can be reduced.
  • the track groove and the track inlet chamfer of the outer joint member are formed by simultaneous cold forging, there is no need to perform machining by turning or grinding after heat treatment after the track groove is formed. Since the formation of the chamfer is only simultaneous cold forging, the formation of the track entrance chamfer can be simplified, and the cost of the constant velocity universal joint can be reduced.
  • the track chamfer formed along the boundary between the inner spherical surface of the outer joint member and the track groove in the present invention, and the track chamfer formed along the boundary between the outer spherical surface of the inner joint member and the track groove are R-shaped. Is desirable.
  • the track chamfer formed along the boundary between the inner spherical surface of the outer joint member and the track groove, and the track chamfer formed along the boundary between the outer spherical surface of the inner joint member and the track groove are formed into an R shape. If so, stress concentration at that portion can be avoided.
  • this R-shaped track chamfer may be formed by performing machining by cold forging or grinding by grinding after heat treatment, in addition to forming by cold forging.
  • the track groove and track chamfer of the outer joint member and the track groove and track chamfer of the inner joint member are formed by simultaneous cold forging, machining by grinding and finishing after turning and heat treatment is performed after the formation of the track groove. There is no need to perform this, and the formation of the track groove and the track chamfer is only simultaneous cold forging. Therefore, the formation of the track chamfer can be simplified, and the cost of the constant velocity universal joint can be reduced.
  • a slit groove extending in the axial direction is formed between the track grooves adjacent in the circumferential direction on the inner spherical surface of the outer joint member in the present invention, and the slit is formed with respect to the maximum width dimension of the inner spherical surface between the track grooves adjacent in the circumferential direction.
  • the width dimension of the groove is desirably 5% to 30%.
  • the outer joint member is inserted into the gap of the cold forging mold during cold forging. Therefore, the desired shape accuracy of the inner spherical surface can be obtained.
  • the width dimension of the slit groove is 5% to 30%, the outer joint member can be easily released from the mold during cold forging, and the required area of the inner spherical surface of the outer joint member can be secured. The required strength and durability can be ensured.
  • the slit groove width dimension is smaller than 5%, it is difficult to release the outer joint member from the mold during cold forging, and if the slit groove width dimension is larger than 30%, the outer It becomes difficult to secure the required area of the inner spherical surface of the joint member, which causes a decrease in strength and durability.
  • the offset angle of the ball track formed by the track groove of the outer joint member and the track groove of the inner joint member cooperating with the outer joint member be 11.0 ° to 15.0 °.
  • the offset angle means an angle formed by the center of curvature of the track groove of the outer joint member and the center of curvature of the track groove of the inner joint member with respect to the ball center.
  • the offset angle of the ball track is 11.0 ° to 15.0 °
  • the operability, durability and quasi-static torsional strength of the constant velocity universal joint can be satisfied at the same time.
  • the offset angle is smaller than 11.0 °, there are problems in all aspects of cross operation, durability, and quasi-static torsional strength. If the offset angle is larger than 15.0 °, the durability and strength are increased. Inferior in terms.
  • the spherical angle located on the joint opening side of the outer spherical surface of the inner joint member in the present invention is 12.5 ° or more.
  • the “joint opening side” means the opening side of the outer joint member.
  • the “spherical angle” means an axial angle formed by the joint opening side end of the outer spherical surface with respect to the center of curvature (joint center) of the outer spherical surface of the inner joint member.
  • the outer spherical surface of the inner joint member is moved to the inner spherical surface of the cage at a high operating angle and a high torque load. Even when a large spherical force acts, the area where the joint opening side end of the outer spherical surface of the inner joint member contacts the inner spherical surface of the cage can be ensured as a sufficient area that can withstand the spherical force. By securing this contact area, it is possible to avoid applying an excessive load to the cage, and it is possible to ensure smooth rotation.
  • an axial step is provided between the joint opening side end surface of the inner joint member and the spline end portion of the shaft hole formed in the inner joint member, and the back side of the joint opening side end surface of the inner joint member It is desirable to form a concave end surface located on the surface.
  • the “end surface on the joint opening side of the inner joint member” means an end surface located on the opening side of the outer joint member, that is, on the insertion side of the shaft member press-fitted into the shaft hole of the inner joint member. means.
  • shaft hole spline end means the end of the shaft hole spline that is located on the opening side of the outer joint member, that is, on the insertion side of the shaft member that is press-fitted into the shaft hole of the inner joint member.
  • axial step portion means a step formed by denting the joint opening side end surface of the inner joint member in the axial direction.
  • an axial step is provided between the joint opening side end surface of the inner joint member and the spline end of the shaft hole.
  • the concave end surface is formed at a site corresponding to the bottom of the track groove. If the concave end surface is formed in a portion corresponding to the bottom of the track groove in this way, the ball contact point does not protrude from the track groove when the constant velocity universal joint takes a high operating angle, and torque transmission is efficient. Well done.
  • a tapered relief portion that is recessed from the outer spherical surface is formed at the outer spherical joint end portion of the outer spherical surface, and is connected with a small curvature so as to be smoothly and continuously connected to the outer spherical surface. It is desirable.
  • a tapered relief part that is receded from the outer spherical surface is formed at the joint inner side end portion of the outer spherical surface of the inner joint member, and is connected with a small curvature so as to be connected smoothly and continuously to the outer spherical surface.
  • the center of curvature of the track groove of the outer joint member in the radial direction so as to be a position where a radius larger than the radius when located on the joint axis is drawn.
  • the center of curvature of the track groove of the outer joint member is shifted in the radial direction so as to draw a radius larger than the radius when located on the joint axis, or the track groove of the inner joint member is If the center of curvature is shifted in the radial direction so that a radius smaller than the radius at which it is located on the joint axis is drawn, the clearance in the axial center of the track groove can be reduced, and the backlash is reduced. Becomes easier and the generation of abnormal noise can be suppressed.
  • a drive wheel bearing unit including a fixed type constant velocity universal joint having the above-described configuration and a wheel bearing having a hub wheel connected to a stem portion extending in the axial direction from the outer joint member can be realized.
  • either one of the inner diameter of the hub wheel or the outer diameter of the stem portion of the outer joint member is formed with convex portions extending in the axial direction at a plurality of locations in the circumferential direction, and one of them is press-fitted into the other, If the hub wheel and the outer joint member are integrally coupled with each other with a concave-convex fitting structure that closely fits the convex portion, the integrated drive wheel consisting of a constant velocity universal joint and a wheel bearing Bearing unit can be realized.
  • convex portions extending in the axial direction are formed at either one of the inner diameter of the hub wheel or the outer diameter of the stem portion of the outer joint member at a plurality of locations in the circumferential direction, and one of them is press-fitted into the other.
  • a concave-convex fitting structure is formed which forms a concave portion closely fitting with the convex portion on the other side.
  • the shape of the convex portion formed on either the inner diameter of the hub ring or the outer diameter of the stem portion of the outer joint member is transferred to the other having a lower hardness than the convex portion. It is effective to form a concave portion that closely fits with the convex portion on the other side by elastic deformation at the time.
  • the shape of the convex portion is transferred to the mating concave portion forming surface with plastic deformation and cutting.
  • the convex part bites into the concave part forming surface on the other side, so that the concave part forming surface is slightly elastically deformed, allowing the convex part to move in the axial direction and stopping the axial movement.
  • the elastic deformation of the recess forming surface is restored.
  • the hub wheel and the outer joint member are joined by the above-described concave and convex fitting structure so as to be separable by applying an axial pulling force.
  • the hub wheel and the outer joint member are separable, the repair work of the drive wheel bearing device for replacing either the constant velocity universal joint or the wheel bearing is facilitated.
  • each PCD measurement of an outer joint member and an inner joint member is performed on a component composed of an outer joint member, an inner joint member, a ball and a cage with respect to an arbitrarily selected outer joint member and inner joint member.
  • Rank and rank all components of the outer joint member, the inner joint member, the ball and the cage by assembling with matching to select the balls and cages of the rank that match the value, and the outer joint member, the inner joint member, the ball and Since the conventional matching is not performed by selecting and combining the components consisting of cages, each component can be assembled quickly and easily, improving the yield and workability, and reducing the cost of the constant velocity universal joint. Can be planned.
  • FIG. 3 is a cross-sectional view taken along the line BOB in FIG. 2, showing the overall configuration of a Barfield type constant velocity universal joint in an embodiment of a fixed type constant velocity universal joint according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a schematic block diagram for demonstrating the point of simple matching in embodiment of this invention. It is a principal part expanded sectional view which shows the contact state of a track groove and a ball
  • FIG. 5 is a front view illustrating a state in which a joint has a maximum operating angle for explaining a spherical angle. It is a right view of FIG. It is the perspective view which took the cross section by the COC line
  • the lower half of the center line shows the inner ring of the product of the present invention, and the upper half of the center line shows the conventional inner ring.
  • FIG. 18 is a cross-sectional view showing a state in which a constant operating universal joint in which the axial width of the inner ring is simply shortened for comparison with FIG. 17 takes a high operating angle. It is a principal part expanded sectional view which shows the inner ring
  • a Barfield type constant velocity universal joint (BJ) is illustrated as one of the fixed type constant velocity universal joints.
  • the constant velocity universal joint 1 of this embodiment includes an outer ring 10 that is an outer joint member, an inner ring 20 that is an inner joint member, a ball 30 and a cage 40 as main components.
  • the inner part 50 including the ball 30 and the cage 40 is accommodated in the outer ring 10 so as to be angularly displaceable.
  • the outer ring 10 has a cup shape with one end opened, and a plurality of track grooves 12 extending in the axial direction are formed on the inner spherical surface 14 at equal intervals in the circumferential direction.
  • a plurality of track grooves 22 extending in the axial direction are formed on the outer spherical surface 24 at equal intervals in the circumferential direction, paired with the track grooves 12 of the outer ring 10.
  • the ball 30 is interposed between the track groove 12 of the outer ring 10 and the track groove 22 of the inner ring 20 to transmit torque.
  • the cage 40 is interposed between the inner spherical surface 14 of the outer ring 10 and the outer spherical surface 24 of the inner ring 20 to hold the ball 30.
  • the plurality of balls 30 are accommodated in pockets 42 formed in the cage 40 and arranged at equal intervals in the circumferential direction. In this embodiment, six balls 30 are illustrated, but the number is arbitrary.
  • the ball track formed by cooperation of the track groove 12 of the outer ring 10 and the track groove 22 of the inner ring 20 has a wedge shape whose diameter increases toward the opening side of the outer ring 10.
  • the outer ring 10 includes a cup-shaped mouth portion 16 that houses an inner part 50 including the inner ring 20, the ball 30, and the cage 40, and a stem portion 18 that integrally extends in the axial direction from the bottom of the mouth portion 16.
  • a spline 11 is formed on the outer peripheral surface of the stem portion 18 to be connected to a wheel bearing 100 (see FIGS. 22 and 26) described later.
  • a spline 28 for connecting a shaft 60 is formed in the shaft hole 26 of the inner ring 20.
  • the track groove 12 of the outer ring 10 and the track groove 22 of the inner ring 20 are formed by cold forging, and the components including the outer ring 10, the inner ring 20, the ball 30 and the cage 40 are arbitrarily selected.
  • the outer ring 10 and the inner ring 20 thus assembled are assembled by simple matching in which the balls 30 and the cage 40 having ranks that match the PCD measurement values of the outer ring 10 and the inner ring 20 are selected.
  • the track grooves 12 and 22 are formed only by cold forging, so that the conventional machining after cold forging is performed. Many machining such as grinding and grinding can be omitted, the yield can be improved, and the cost of the constant velocity universal joint 1 can be reduced.
  • the assembly of the constituent elements by the simple matching described above is performed by selecting the balls 30 and the cage 40 for the outer ring 10 and the inner ring 20 in which the track grooves 12 and 22 are formed by cold forging and finish the following procedure. It is done with it.
  • the large number of outer rings 10 and inner rings 20 are not ranked by PCD, and the cages 40 having pocket widths that match the outer diameter of the balls 30 are ranked by their outer diameters.
  • the ranks according to the outer diameters of the balls for example, the balls 30 and the cage 40 having a pocket width adapted to the outer diameter are classified into three ranks of “large”, “medium”, and “small”.
  • the PCDs of the outer ring 10 and the inner ring 20 that are arbitrarily selected are measured, and the balls 30 and the cage 40 having ranks that match the PCD measurement values of the outer ring 10 and the inner ring 20 are selected for the outer ring 10 and the inner ring 20. To do.
  • each PCD of the outer ring 10 and the inner ring 20 selected arbitrarily is measured, and if the PCD clearance obtained from each PCD measurement value of the outer ring 10 and the inner ring 20 is within an appropriate range, the “middle” rank ball 30 And cage 40 is selected. If the PCD clearance based on each PCD measurement is greater than the proper range, then select “large” rank ball 30 and cage 40; if the PCD clearance is less than the proper range, then select “small” rank ball 30 and Cage 40 is selected.
  • the components including the outer ring 10, the inner ring 20, the ball 30 and the cage 40 are combined.
  • the number of ranks of the balls 30 and the cage 40 is not limited to three ranks, and can be arbitrarily set as necessary.
  • the components composed of the outer ring 10, the inner ring 20, the ball 30 and the cage 40 are ranked with respect to the PCD measurement values of the outer ring 10 and the inner ring 20 with respect to the arbitrarily selected outer ring 10 and the inner ring 20.
  • all the components of the outer ring 210, the inner ring 220, the ball 230 and the cage 240 are ranked, and from the outer ring 210, the inner ring 220, the ball 230 and the cage 240, Since the conventional matching (see FIG. 28) for selecting and combining the constituent elements is not performed, the constituent elements can be assembled quickly and easily, the yield and workability can be improved, and the constant velocity universal joint 1 can be reduced. Cost can be easily realized.
  • the track groove of the outer ring 10 is provided. 12 and the track groove 22 of the inner ring 20 that cooperates with this, the PCD clearance of the ball track is defined as 0 to +0.2 mm.
  • the “PCD (pitch circle diameter) clearance” means the PCD (outer ring PCD) of the ball 30 in contact with the track groove 12 of the outer ring 10 and the ball in contact with the track groove 22 of the inner ring 20. It means the difference from 30 PCD (inner ring PCD).
  • the components of the outer ring 10, the inner ring 20, the ball 30 and the cage 40 are combined with the minimum necessary simple matching, so that the operation of the constant velocity universal joint 1 is achieved. It is possible to suppress the generation of abnormal noise due to rattling between the constituent elements while ensuring the performance. If the PCD clearance is smaller than 0 mm, it is difficult to ensure the operability of the constant velocity universal joint 1. On the contrary, if it is larger than +0.2 mm, the backlash between the components increases. An abnormal noise occurs.
  • the pocket clearance of the cage 40 accommodated in the pocket 42 is defined as -0.05 to 0 mm. “-” In the numerical value of the pocket clearance means that it is a margin.
  • pocket clearance means a difference between the axial width of the pocket 42 of the cage 40 (cage pocket width) and the outer diameter (ball diameter) of the ball 30.
  • the components of the outer ring 10, the inner ring 20, the ball 30 and the cage 40 are combined with the minimum required simple matching, so that the operation of the constant velocity universal joint 1 is achieved. It is possible to suppress the generation of abnormal noise due to rattling between the constituent elements while ensuring the performance. If the pocket clearance of the cage 40 is smaller than ⁇ 0.050 mm, the tightening allowance between the pocket 42 and the ball 30 is excessive, so that the durability of the constant velocity universal joint 1 is reduced, and the pocket clearance is 0 mm or more. If there is, the ball 30 rattles in the pocket 42 and an abnormal noise is generated.
  • the cross-sectional shapes of the track groove 12 of the outer ring 10 and the track groove 22 of the inner ring 20 are as follows.
  • Gothic arch shape with angular contact For example, FIG. 4 illustrates the cross-sectional shapes of the track groove 12 of the outer ring 10 and the track groove 22 of the inner ring 20.
  • the track grooves 12 and 22 having the Gothic arch shape have two ball contact points P and Q (ball contact angle ⁇ ) that make angular contact with the ball 30.
  • the ball contact angle ⁇ at the two ball contact points P and Q that are in angular contact with the ball 30 is preferably 35 to 45 °.
  • the contact state of the ball 30 with respect to the track grooves 12 and 22 can be stabilized by setting the ball contact angle ⁇ within the specified range. If the ball contact angle ⁇ is smaller than 35 °, there is a concern that the track surface pressure increases and the durability is lowered. Conversely, if the ball contact angle ⁇ is greater than 45 °, the ball riding margin to the track shoulder at a high operating angle is reduced, causing the ball to ride on the contact ellipse at the time of high torque load. There are concerns about chipping.
  • a notch radius portion 12a is provided at the ball contact point corresponding portion at the opening end of the track groove 12 of the outer ring 10.
  • a notch radius portion 22a is provided at the ball contact point corresponding portion at the opening end of the track groove 22 of the inner ring 20.
  • the ball contact point corresponding portion has two ball contact points P and Q (in the drawing, as indicated by a one-dot chain line). (Showing the locus of the contact point) is a portion that intersects the open ends of the track grooves 12 and 22.
  • the notch radius portions 12a and 22a are provided at the opening end of the track groove 12 of the outer ring 10 and the opening end of the track groove 22 of the inner ring 20, it is assumed when the constant velocity universal joint 1 is operated at a high angle, particularly during use. Even if the ball 30 is located at the axial end of the track grooves 12 and 22 of the outer ring 10 or the inner ring 20 beyond some angle, the notch R 12a and 22a cause the ball 30 to move in the axial direction. Biting into the part can be prevented.
  • the notched round portions 12a and 22a may be formed by performing machining by cold forging or grinding by grinding after heat treatment, in addition to forming by cold forging.
  • notched round portions 12a and 22a are formed only at the ball contact point corresponding portions at the opening end of the track groove 12 of the outer ring 10 and the opening end of the track groove 22 of the inner ring 20, but FIG. As shown in FIG. 6 b, notched round portions 12 a and 22 a may be provided on the entire opening end of the track groove 12 of the outer ring 10 and the entire opening end of the track groove 22 of the inner ring 20.
  • the notched round portions 12a and 22a serve as a track inlet chamfer described later.
  • the track grooves 12 and 22 are formed along the entire circumference of the opening edge of the outer ring 10.
  • a resin or rubber boot is attached to the open end of the outer ring 10 to prevent leakage of grease filled in the joint and intrusion of water and foreign matter from the outside of the joint. 10 is formed by cold forging finishing except for the groove 13 for attaching the boot formed on the outer peripheral surface of the opening end.
  • the formation of the inlet chamfer 12b, the track chamfer 12c and the track inlet chamfer 12a is only cold forging. Therefore, many machinings such as cutting and grinding after the conventional cold forging can be omitted, the yield can be further improved, and the cost of the constant velocity universal joint 1 can be further reduced. .
  • the outer peripheral surface of the outer ring 10 excluding the groove 13 for attaching the boot by cold forging the hardness of the outer peripheral surface can be increased and the torsional strength can be increased, and the number of processing steps can be reduced. The cost of the constant velocity universal joint 1 can be reduced.
  • the boundary between the outer spherical surface 24 of the inner ring 20 and the track groove 22 is formed by cold forging.
  • the track chamfer 22c and the track inlet chamfer 22a of the inner ring 20 are formed by cold forging in this way, the formation of the track chamfer 22c and the track inlet chamfer 22a is only cold forging. Thus, a lot of machining such as cutting and grinding can be omitted, the yield can be further improved, and the cost of the constant velocity universal joint 1 can be further reduced.
  • the track groove 12 and the track entrance chamfer 12a of the outer ring 10 may be formed by simultaneous cold forging.
  • a track chamfer 12c formed along the boundary between the inner spherical surface 14 of the outer ring 10 and the track groove 12 and a track chamfer 22c formed along the boundary between the outer spherical surface 24 of the inner ring 20 and the track groove 22 are: As shown in an enlarged view in FIG.
  • the R-shaped track chamfers 12 c and 22 c are continuously formed so as to be smoothly connected between the track groove 12 and the inner spherical surface 14 and between the track groove 22 and the outer spherical surface 24.
  • the track chamfers 12c and 22c may be formed by cold forging, or by machining by grinding or grinding after heat treatment after cold forging.
  • the track groove 12 and the track chamfer 12c of the outer ring 10 and the track groove 22 and the track chamfer 22c of the inner ring 20 may be formed by simultaneous cold forging.
  • the track groove 12 and the track chamfer 12c of the outer ring 10 and the track groove 22 and the track chamfer 22c of the inner ring 20 by simultaneous cold forging finishing, after the formation of the track grooves 12 and 22, after the turning and heat treatment It is not necessary to perform machining by grinding finishing, and the formation of the track grooves 12 and 22 and the track chamfers 12c and 22c is only simultaneous cold forging, so that the formation of the track chamfer can be simplified, and the constant velocity universal joint 1 The cost can be reduced.
  • slit grooves 12 d extending in the axial direction are formed between the track grooves 12 adjacent in the circumferential direction on the inner spherical surface 14 of the outer ring 10 as shown in FIGS. 7 and 8.
  • the slit groove 12d is formed so as to reach the inner spherical surface 14 from the opening end surface of the outer ring 10 through the inlet chamfer 12b.
  • six slit grooves 12d are illustrated, but the number is arbitrary.
  • the width dimension of the slit groove 12d is 5% to 30% with respect to the maximum width dimension of the inner spherical surface 14 between the track grooves 12 adjacent in the circumferential direction.
  • the outer ring 10 When the slit groove 12d extending in the axial direction is formed between the track grooves 12 adjacent in the circumferential direction on the inner spherical surface 14 of the outer ring 10 in this way, the outer ring is inserted into the gap of the cold forging mold during cold forging.
  • the surplus thickness of 10 materials does not enter, and the desired shape accuracy can be obtained for the inner spherical surface 14.
  • the width dimension of the slit groove 12d is 5% to 30%, the outer ring 10 can be easily released from the mold during cold forging, and the required area of the inner spherical surface 14 of the outer ring 10 can be secured. The required strength and durability can be ensured.
  • the width dimension of the slit groove 12d is smaller than 5%, it is difficult to release the outer ring 10 from the mold during cold forging, and when the width dimension of the slit groove 12d is larger than 30%, It becomes difficult to secure the required area of the inner spherical surface 14 of the outer ring 10, which causes a decrease in strength and durability.
  • the center of curvature O 1 of the track groove 12 of the outer ring 10 and the center of curvature O 2 of the track groove 22 of the inner ring 20 are equal in the axial direction with respect to the joint center O.
  • the distance F is offset to the opposite side (the center of curvature O 1 of the track groove 12 is the opening side of the joint, and the center of curvature O 2 of the track groove 22 is the back side of the joint). Therefore, the ball track has a wide opening side and has a wedge shape that gradually decreases toward the back side.
  • each of the center of curvature of the outer spherical surface 44 of the cage 40 and the center of curvature of the inner spherical surface 14 of the outer ring 10 slidably contacting the outer spherical surface 44 coincides with the joint center O.
  • the center of curvature of the inner spherical surface 46 of the cage 40 and the center of curvature of the outer spherical surface 24 of the inner ring 20 slidably contacting the inner spherical surface 46 also coincide with the joint center O.
  • the offset angle ⁇ is set to 11.0 ° to 15.0 °.
  • This offset angle ⁇ is smaller than the offset angle (about 16.0 °) of the conventional product, and therefore the depth of the track grooves 12 and 22 is more uniform in the axial direction than that of the conventional product.
  • the groove depth is deeper than that of the conventional product in the shallow portion of the track grooves 12 and 22, the contact ellipse due to the balls 30 is unlikely to ride on the shoulder portions of the track grooves 12 and 22 even under high load. It is possible to increase the strength of the track grooves 12 and 22 and to improve the durability. In addition, since the cage 40 can be made thicker, the cage 40 can have higher strength and longer life. Furthermore, as described above, if the offset angle ⁇ is within this range, the operability is maintained well.
  • the strength and durability of the track grooves 12 and 22 of the outer ring 10 and the inner ring 20 can be improved, so that the track groove 12 of the outer ring 10 and the track groove 22 of the inner ring 20 are formed by cold forging. It becomes easy.
  • the force (axial force) at which the ball 30 tries to jump out to the joint opening side is weaker than that of the conventional product, it is also possible to suppress the occurrence of hitting sound due to the axial force of the ball 30.
  • the present applicant confirmed whether or not the above-described prescribed range of the offset angle ⁇ was optimal by a test comparing cross operability, durability, and quasi-static torsion strength.
  • the cross operation was evaluated based on the presence or absence of catch when the shaft was bent to the maximum operating angle in the plane including the opposing ball track and then bent in the same manner in the plane perpendicular to the plane.
  • the durability was evaluated under the conditions of load torque: 834 N ⁇ m (85 kgf ⁇ m), rotation speed: 230 rpm, operating angle: 6 °, and quasi-static torsional strength was operating angle: 40 °, rotation speed:
  • the evaluation was performed under the conditions of 2.5 rpm and a load torque increase rate of 0.05 kN ⁇ m / rev.
  • the test results are shown in FIG. In FIG. 10, “X” represents “problematic”, “ ⁇ ” represents “inferior”, “ ⁇ ” represents “normal”, and “ ⁇ ”represents“ good ”(the same applies in the following description
  • the inner ring 20 of the constant velocity universal joint 1 has a spherical angle ⁇ located on the joint opening side of the outer spherical surface 24 of 12.5 ° or more.
  • the spherical angle ⁇ is an axial angle formed by the joint opening side end of the outer spherical surface 24 with respect to the center of curvature (joint center O) of the outer spherical surface 24 of the inner ring 20.
  • the reason why the spherical angle ⁇ is set to 12.5 ° or more is as follows.
  • FIG. 12 and 13 show a state where a shaft 60 (broken line in the figure) as a drive shaft that is spline-fitted to the inner ring 20 takes a maximum operating angle ⁇ .
  • a shaft 60 (broken line in the figure) as a drive shaft that is spline-fitted to the inner ring 20 takes a maximum operating angle ⁇ .
  • spherical forces are generated between the inner ring 20 and the cage 40 and between the cage 40 and the outer ring 10.
  • the shaft 60 has a maximum operating angle ⁇ in the phase angle 180 ° direction between the phase angles 0 ° to 360 ° (see FIG. 13).
  • a large spherical force is generated particularly at a phase angle of 240 ° to 340 °. This spherical force suddenly starts to have been zero until around the phase angle of 240 °.
  • FIG. 14 is a cross-sectional view taken along the line CO—C of FIG. 13, with the phase angle 240 ° side of FIG. 13 facing upward and the phase angle 60 ° side of FIG. 13 facing downward.
  • the inner ring 20 rotates in the direction of biting into the inner spherical surface 46 of the cage 40 by the above-described spherical force, so that an excessive load is applied to the cage 40, and a high operating angle, high In some cases, the cage 40 is subjected to excessive stress during torque loading.
  • the spherical angle ⁇ located on the joint opening side of the outer spherical surface 24 of the inner ring 20 is set to 12.5 ° or more against an excessive load applied to the cage 40 (see FIG. 11). Even when a large spherical force is applied from the joint opening side of the outer spherical surface 24 of the inner ring 20 to the inner spherical surface 46 of the cage 40 at a high operating angle and a high torque load, the joint opening side end portion of the outer spherical surface 24 of the inner ring 20 remains.
  • the cage 40 can be reliably contacted on the inlet side of the inner spherical surface 46, and the contact area can be sufficiently ensured so as to withstand the spherical force described above.
  • Securing this contact area can alleviate the phenomenon that the joint opening side end of the outer spherical surface 24 of the inner ring 20 bites into the inner spherical surface 46 of the cage 40. As a result, an excessive load can be avoided from being applied to the cage 40, and smooth rotation can be ensured.
  • the cage strength that can withstand a large spherical force acting on the inner spherical surface 46 of the cage 40 from the outer spherical surface 24 of the inner ring 20 is obtained.
  • the constant velocity universal joint 1 that can be ensured, rotates smoothly, has good operability, and has a high reliability and a long life can be provided.
  • the spherical angle ⁇ located on the joint opening side of the outer spherical surface 24 of the inner ring 20 is smaller than 12.5 °, the spherical force acting on the cage 40 from the inner ring 20 is compared with the cage 40 of the inner ring 20. It may be difficult to ensure a sufficient contact area, and it may be difficult to reduce an excessive load on the cage 40 and to ensure the cage strength, and the constant velocity universal joint 1 may not rotate smoothly.
  • FIG. 15 shows an inner ring 20 which is one component constituting the constant velocity universal joint 1, and the inner ring 20 of the present invention is centered for comparison with the present invention product in the lower half of the center line.
  • An inner ring 220 as a conventional product is shown in the upper half of the line.
  • a step part 25 in the axial direction is provided between the joint opening side end face 23 of the inner ring 20 and the spline end part 28 a of the shaft hole 26, and the rear side of the joint opening side end face 23.
  • the concave end surface 27 located at the position is formed.
  • the joint opening side end face 23 of the inner ring 20 and the spline end portion 28a of the shaft hole 26 are positioned on the opening side of the outer ring 10 on the insertion side of the shaft 60 press-fitted into the shaft hole 26 of the inner ring 20.
  • the thickness (N-direction radial dimension L 2 ) at the bottom of the track groove 22 on the concave end surface 27 is larger than that of the conventional product (M-part radial dimension L 1 ). It can be increased (L 2 > L 1 ).
  • the thickness of the concave end surface 27 of the inner ring 20 becomes larger than that of the conventional product, sufficient strength of the inner ring 20 can be ensured even at a high operating angle and a high torque load.
  • the constant velocity universal joint 1 can be reduced in weight and size, and the strength of the inner ring 20 can be increased.
  • Radial dimension L 2 of the concave end surface 27 than the joint opening side end face 23 of the inner ring 20 is positioned on the far side is not less than 1 mm. This and radial dimension L 2 in the concave end face 27 is 1mm smaller, high operating angle, at high torque loads, so stress concentration likely to occur at the concave end surface 27, to ensure a sufficient strength of the inner ring 20 It becomes difficult.
  • a hardened surface layer (not shown) is usually formed on the outer spherical surface 24 and the end surface of the inner ring 20 and the inner peripheral surface of the shaft hole 26 by heat treatment such as carburizing and quenching to ensure the strength of the inner ring 20. ing. If the radial dimension L 2 of the concave end face 27 as shown in FIG. 16 or more 1.5 mm, that the unhardened layer portion m remains in the joint opening side end portion of the inner ring 20 to which the concave end surface 27 is formed Thus, sufficient strength of the inner ring 20 can be stably secured at a high operating angle and a high torque load.
  • the concave end surface 27 located on the back side of the joint opening side end surface 23 of the inner ring 20 is formed at a portion corresponding to the bottom of the track groove 22.
  • the ball contact point P that is, the contact ellipse where the ball 30 contacts the track groove 22 of the inner ring 20 is tracked. Torque transmission is performed efficiently and reliably without protruding from the groove 22.
  • the above-described ball 30 means the ball 30 positioned at the innermost part of the track groove 12 of the outer ring 10 (the most entrance part of the track groove 22 of the inner ring 20).
  • FIG. 18 a comparative example with FIG. 17 is shown in FIG. In FIG. 18, the same parts as those in FIG. As shown in FIG. 18, when the outer diameter side portion (dotted line portion a in the figure) is cut away from the concave end surface formed in the portion corresponding to the bottom portion of the track groove 22 ′, that is, the axial direction of the inner ring 20 ′. When the width is simply shortened, the wall thickness at the inlet side end face 23 ′ of the inner ring 20 ′ can be ensured.
  • the ball contact point P ′ is the inner ring 20 ′. It will protrude from the track groove 22 '.
  • a tapered relief portion 24 a that is receded from the outer spherical surface 24 having a radius of curvature R is formed at the joint inner side end portion of the outer spherical surface 24 of the inner ring 20 as shown in FIG. 19. Yes.
  • the outer spherical surface 24 and the tapered relief portion 24a, as lead smoothly continuously formed, are connected by a small radius of curvature R 1 than the curvature of the outer spherical surface 24 radius R. For this reason, it retreats to the inner diameter side from the back side end portion (the range indicated by the phantom line shown in FIG. 19) when such a relief portion 24a is not provided.
  • the range H of the relief portion 24a (the range from the joint back end surface 29 of the inner ring 20 to the intersection of the tapered relief portion 24a and the outer spherical surface 24) is preferably 3 mm or less.
  • the range H of the relief portion 24a is preferably 0.5 mm or more.
  • the curvature center O 1 ′ of the track groove 12 of the outer ring 10 in the constant velocity universal joint 1 is in a radial direction so as to draw a radius larger than the radius when located on the joint axis as shown in FIG. It is staggering. Further, the center of curvature O 2 ′ of the track groove 22 of the inner ring 20 is shifted in the radial direction so as to be a position that draws a radius smaller than the radius when located on the joint axis as shown in FIG.
  • the center of curvature O 1 ′ of the track groove 12 of the outer ring 10 is shifted in the radial direction so as to be a position that draws a radius larger than the radius when positioned on the joint axis, or the track of the inner ring 20 is
  • the center of curvature O 2 ′ of the groove 22 is obtained. I can close the gap. As a result, backlashing is facilitated and the generation of abnormal noise can be suppressed.
  • the stem portion 18 that integrally extends in the axial direction from the mouth portion 16 that houses the internal component 50 including the inner ring 20, the ball 30, and the cage 40 is provided in the wheel bearing 100.
  • a drive wheel bearing unit is formed by connecting the torque transmission units.
  • FIG. 22 illustrates the structure of a drive wheel bearing unit in which the constant velocity universal joint 1 and the wheel bearing 100 of FIG. 1 are connected.
  • the drive wheel bearing unit includes the hub wheel 110 and the inner ring 120 as inner members, double-row rolling elements 130 and 140, the outer ring 150 as outer members, and the constant velocity universal joint 1 as main components.
  • the hub ring 110, the inner ring 120, the rolling elements 130 and 140, and the outer ring 150 described above constitute the wheel bearing 100.
  • the outboard side left side in the drawing
  • the side closer to the center is referred to as the inboard side (right side in the drawing).
  • the hub wheel 110 has an inner raceway surface 112 on the outboard side formed on the outer peripheral surface thereof and a wheel mounting flange 114 for mounting a wheel (not shown). Hub bolts 116 for fixing the wheel disc are implanted at equal intervals in the circumferential direction of the wheel mounting flange 114.
  • An inner ring 120 is fitted to a small-diameter step 118 formed on the inboard side outer peripheral surface of the hub wheel 110, and an inner raceway surface 122 on the inboard side is formed on the outer peripheral surface of the inner ring 120.
  • the hub wheel 110 is manufactured by turning or forging.
  • the inner ring 120 is press-fitted with an appropriate tightening allowance to prevent creep.
  • An outboard side inner raceway surface 112 formed on the outer peripheral surface of the hub wheel 110 and an inboard side inner raceway surface 122 formed on the outer peripheral surface of the inner ring 120 constitute a double row inner raceway surface.
  • the inner ring 120 is press-fitted into the small-diameter step portion 118 of the hub wheel 110, and the end portion of the small-diameter step portion 118 of the hub wheel 110 is plastically deformed radially outward by swing caulking to form a caulking portion 113.
  • the caulking portion 113 prevents the inner ring 120 from coming off and is integrated with the hub wheel 110 to apply a preload to the wheel bearing 100.
  • the outer ring 150 is formed with double row outer race surfaces 152, 154 facing the inner race surfaces 112, 122 of the hub wheel 110 and the inner ring 120 on the inner circumferential surface, and a knuckle (not shown) extending from the suspension device of the vehicle body.
  • the snap ring 151 is fitted and is prevented from coming off.
  • the wheel bearing 100 has a double-row angular contact ball bearing structure, and has inner raceway surfaces 112 and 122 formed on the outer peripheral surfaces of the hub wheel 110 and the inner ring 120, and an outer raceway surface 152 formed on the inner peripheral surface of the outer ring 150.
  • the rolling elements 130 and 140 are interposed between the rolling elements 130 and 140, and the rolling elements 130 and 140 in each row are supported by the cages 132 and 142 at equal intervals in the circumferential direction. In the wheel bearing 100, a predetermined bearing clearance is set inside.
  • a pair of seals 134 and 144 that seal the annular space between the outer ring 150, the hub ring 110, and the inner ring 120 so as to be in sliding contact with the outer peripheral surfaces of the hub ring 110 and the inner ring 120 are provided at both end openings of the wheel bearing 100. It is fitted to the inner diameters of both ends of 150 to prevent leakage of grease filled inside and intrusion of water and foreign matters from the outside.
  • this drive wheel bearing unit has a simple cylinder without a female spline in which the axial hole 115 of the hub wheel 110 is formed with a plurality of recesses extending in the axial direction on its inner peripheral surface in a plurality of circumferential directions.
  • the spline 11 has a shape (see FIG. 23), and has convex portions 11a extending in the axial direction on the outer peripheral surface of the stem portion 18 of the outer ring 10 of the constant velocity universal joint 1 (see FIG. 24). reference).
  • a concave-convex fitting structure is formed in which the concave portion 115a that fits closely to the spline 11 is formed in the shaft hole 115 of the hub wheel 110 as shown in FIG. S has a structure in which the hub wheel 110 and the outer ring 10 are firmly coupled.
  • the hub that is the concave portion forming surface on the other side is accompanied by plastic deformation and cutting.
  • the shape of the spline 11 is transferred to the shaft hole 115 of the ring 110.
  • the inner diameter of the hub wheel 110 is slightly expanded due to elastic deformation, allowing the spline 11 to move in the axial direction.
  • the inner diameter of the hub wheel 110 is reduced to return to the original diameter by the elastic restoring force.
  • the entire recess fitting portion of the spline 11 is in close contact with the corresponding recess 115a, and the outer ring 10 and the hub ring 110 can be firmly coupled and integrated.
  • Such a low-cost and highly reliable connection can eliminate rattling of the fitting portion between the stem portion 18 and the hub wheel 110, and can prevent annoying rattling noise over a long period of time.
  • the inner peripheral surface of the shaft hole 115 of the hub wheel 110 is in an uncured state, that is, a raw material, and the spline 11 of the stem portion 18 of the outer ring 10 is hardened by induction hardening.
  • the hardening process of the spline 11 of the stem portion 18 of the outer ring 10 is preferably induction hardening in which the quenching range and the quenching depth can be easily controlled, but may be other hardening processes.
  • the hub wheel 110 is basically a raw material that is not subjected to heat treatment, but may be subjected to heat treatment as long as the surface hardness of the spline 11 of the stem portion 18 is not exceeded.
  • the spline is not formed in the shaft hole 115 of the hub wheel 110 and the spline 11 is formed on the outer peripheral surface of the stem portion 18, but conversely, the spline is formed in the shaft hole 115 of the hub wheel 110.
  • the stem portion 18 can be formed into a simple columnar shape without forming a spline on the outer peripheral surface of the stem portion 18.
  • the spline is not formed in the shaft hole 115 of the hub wheel 110, and the same effect as when the spline 11 is formed on the outer peripheral surface of the stem portion 18 is obtained.
  • the structure S can be firmly bonded.
  • the caulking portion 113 of the hub wheel 110 and the shoulder portion 17 of the outer ring 10 are brought into contact with each other.
  • the positioning of the stem portion 18 of the outer ring 10 is performed, the dimensional accuracy of the bearing device is stabilized and the axial length of the concave-convex fitting structure S is stabilized to improve torque transmission. Can do.
  • the uneven fitting structure S is formed while controlling the contact surface pressure between the caulking portion 113 of the hub wheel 110 and the shoulder portion 17 of the outer ring 10, the caulking portion 113 of the hub wheel 110 and the shoulder portion of the outer ring 10 are formed. It is possible to suppress the generation of abnormal noise due to contact with the member 17.
  • the drive wheel bearing unit in which the constant velocity universal joint 1 and the wheel bearing 100 are integrated is illustrated, but the constant velocity universal joint 1 and the wheel bearing 100 are separated as shown in FIG. It is also possible to provide a drive wheel bearing unit that can be connected.
  • FIG. 26 the same parts as those in FIG.
  • the stem 18 of the outer ring 10 is press-fitted into the shaft hole 115 of the hub wheel 110, thereby forming the recess 115 that closely fits with the spline 11 in the shaft hole 115 of the hub wheel 110.
  • the fitting structure S With the fitting structure S, the hub wheel 110 and the outer ring 10 are coupled so as to be separable by applying an extraction force in the axial direction.
  • the hub that is the concave portion forming surface on the other side is accompanied by plastic deformation and cutting.
  • the shape of the male spline 11 is transferred to the shaft hole 115 of the ring 110.
  • the inner diameter of the hub wheel 110 is slightly expanded by elastic deformation, allowing the spline 11 to move in the axial direction, and the shaft If the movement in the direction stops, the inner diameter of the hub wheel 110 is reduced to return to the original diameter by the elastic restoring force.
  • the entire recessed portion fitting portion of the spline 11 is in close contact with the corresponding recessed portion 115a, and the hub wheel 110 and the outer ring 10 can be coupled so as to be separable by applying an extraction force in the axial direction.
  • the hub wheel 110 and the outer ring 10 are coupled by the bolt 80 by screwing the bolt 80 through the hub ring 110 into the screw hole 15 formed in the stem portion 18 of the outer ring 10.
  • the caulking structure in which the inner ring 120 is fixed to the hub wheel 110 since the preload is applied to the wheel bearing 100 by the caulking portion 113, the shaft acting by the tightening force of the bolt 80 is applied. It is not necessary to manage the preload of the wheel bearing 100 with force, the stem portion 18 of the outer ring 10 can be press-fitted without considering the amount of preload, and the connectivity (assembly property) between the hub wheel 110 and the outer ring 10 can be achieved. Can be improved.
  • the tightening force of the bolt 80 may be such that the hub wheel 110 and the outer ring 10 are fixed.
  • a clearance n is provided between the caulking portion 113 which is the joint side end portion of the hub wheel 110 and the shoulder portion 17 which is the hub wheel facing end portion of the outer ring 10.
  • the hub ring 110 and the outer ring 10 are coupled by the above-described concave / convex fitting structure S so as to be separable by applying an extraction force in the axial direction. Since the hub wheel 110 and the outer ring 10 are separable in this way, the repair work of the drive wheel bearing unit is facilitated. That is, in this repair work, either the wheel bearing 100 constituted by the hub wheel 110, the inner ring 120, the outer ring 150, and the rolling elements 130, 140 or the constant velocity universal joint 1 is replaced. At the time of replacement, the bolt 80 is removed as shown in FIG. 27, and a pulling force greater than the fitting force of the concave and convex fitting structure S is applied between the hub wheel 110 and the outer ring 10 in the axial direction. Both can be separated by pulling out the outer ring 10.
  • the constant velocity universal joint 1 to be newly used is assembled to the wheel bearing 100, and conversely, the constant velocity universal joint 1 is used as it is.
  • a newly used wheel bearing 100 may be assembled to the constant velocity universal joint 1.
  • one of the double-row inner raceway surfaces 112 and 122 formed on the inner member composed of the hub wheel 110 and the inner ring 120, that is, the inner raceway surface 112 on the outboard side is provided on the outer periphery of the hub wheel 110.
  • the present invention is not limited to this, and the inner raceway surface 122 on the inboard side can be freely controlled at a constant speed.
  • a type of drive wheel bearing device (referred to as a fourth generation) formed on the shoulder portion 17 of the outer ring 10 of the joint 1 or a pair of inner rings are press-fitted into the outer periphery of the hub wheel 110, and a raceway surface 112 on the outboard side. Is formed on the outer periphery of one inner ring, and the inboard side raceway surface 122 is formed on the outer periphery of the other inner ring. is there.

Abstract

 軸方向に延びる複数のトラック溝が内球面に形成された外輪10と、その外輪10のトラック溝と対をなして軸方向に延びる複数のトラック溝が外球面に形成された内輪20と、外輪10のトラック溝と内輪20のトラック溝との間に介在してトルクを伝達する複数のボール30と、外輪10の内球面と内輪20の外球面との間に介在してボール30を保持するケージ40とを備え、外輪10のトラック溝あるいは内輪20のトラック溝の少なくとも一方を冷間鍛造仕上げにより形成した固定式等速自在継手であって、任意に選択された外輪10および内輪20に対してその外輪10および内輪20の各PCD測定値に適合するランクのボール30およびケージ40を選択するマッチングで外輪10、内輪20、ボール30およびケージ40からなる構成要素を組み付ける。

Description

固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニット
 本発明は、例えば自動車や各種産業機械の動力伝達系において使用されるもので、駆動側と従動側の二軸間で、角度変位のみを許容する固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニットに関する。
 自動車や各種産業機械の動力伝達系、例えば前輪駆動車や独立懸架方式の後輪駆動車の駆動軸には、自動車のエンジンから車輪に回転力を等速で伝達する手段として、角度変位のみを許容する固定式等速自在継手と、角度変位および軸方向変位の両方を許容する摺動式等速自在継手が使用されている。
 前述の駆動軸には、トランスミッションからディファレンシャルに回転駆動力を伝達するプロペラシャフトや、ディファレンシャルから車輪に回転駆動力を伝達するドライブシャフトがある。また、固定式等速自在継手としては、バーフィールド型等速自在継手(BJ)がよく知られており、摺動式等速自在継手としては、ダブルオフセット型等速自在継手(DOJ)が広く知られている。
 例えば、BJタイプの固定式等速自在継手は、軸方向に延びる複数のトラック溝が内球面に形成された外側継手部材である外輪と、その外輪のトラック溝と対をなして軸方向に延びるトラック溝が外球面に形成された内側継手部材である内輪と、外輪のトラック溝と内輪のトラック溝との間に介在してトルクを伝達する複数のボールと、外輪の内球面と内輪の外球面との間に介在してボールを保持するケージとを主要な構成要素として備えている。複数のボールは、ケージに形成されたポケットに収容されて円周方向等間隔に配置されている。
 この固定式等速自在継手における外輪および内輪は、一般的に以下の要領でもって製作されている。まず、円柱状ビレットを熱間鍛造、温間鍛造または冷間鍛造で外輪あるいは内輪の概略形状に形成し、この素材の外球面、内球面および端面を旋削する。その後、熱処理を行い、外球面、内球面とトラック溝を研削や焼入れ鋼切削などで仕上げ加工することにより製作している。
 このようにして製作された外輪および内輪については、その内輪にボールやケージを含めた内部部品を外輪に組み込むに際して、PCDすきま等が規定値の範囲内となるように選択的に組み合わせるようにしている。
 つまり、図28に示すように多数個の外輪210および内輪220をPCD別にランク分けすると共に、ボール230に合致したポケット幅を有するケージ240をそのポケット幅別にランク分けする。
 このように複数にランク分けされた外輪210、内輪220、ボール230およびケージ240の中から、PCDすきま等が規定値の範囲内に収まるように、それら外輪210、内輪220、ボール230およびケージ240からなる構成要素の組み合わせを考慮し、マッチング表に基づいてそれら外輪210、内輪220、ボール230およびケージ240を選択して組み合わせるようにしている(例えば、特許文献1,2参照)。
特公平1-55688号公報 特開昭63-34323号公報
 ところで、前述した従来の等速自在継手の構成要素である外輪210や内輪220は、鍛造、旋削および熱処理を経て、最終的にトラック溝に研削などの仕上げ加工を施すことにより製作されている。このように、鍛造、旋削および熱処理の後、トラック溝の仕上げ加工を行っていると、トラック溝を仕上げ加工するための設備、工具などの費用が嵩むと共に、仕上げ加工に時間を要することや、材料の歩留まりも悪いという不都合があった。
 また、従来では、内輪220、ボール230およびケージ240からなる内部部品を外輪210に組み込むに際しては、ランク分けされた多数個の外輪210、内輪220、ボール230およびケージ240の中から、PCDすきま等が規定値の範囲内に収まるように、マッチング表に基づいてそれら外輪210、内輪220、ボール230およびケージ240からなる構成要素を選択して組み合わせるようにしている。この選択組合せにより、各構成要素の組み付けに手間がかかり、作業性が悪いという問題もあった。
 そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、外輪あるいは内輪の製作を簡素化し、低コストな固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニットを提供することにある。
 前述の目的を達成するための技術的手段として、本発明に係る固定式等速自在継手は、軸方向に延びる複数のトラック溝が内球面に形成された外側継手部材と、その外側継手部材のトラック溝と対をなして軸方向に延びる複数のトラック溝が外球面に形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを備え、外側継手部材のトラック溝あるいは内側継手部材のトラック溝の少なくとも一方を冷間鍛造仕上げにより形成し、外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を、任意に選択された外側継手部材および内側継手部材に対してその外側継手部材および内側継手部材の各PCD測定値に適合するランクのボールおよびケージを選択するマッチングで組み付けたことを特徴とする。
 また、本発明に係る固定式等速自在継手の製造方法は、一端が開口したカップ状をなし、軸方向に延びる複数のトラック溝が内球面に形成された外側継手部材と、その外側継手部材のトラック溝と対をなして軸方向に延びる複数のトラック溝が外球面に形成された内側継手部材と、外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを備え、外側継手部材のトラック溝あるいは内側継手部材のトラック溝の少なくとも一方を冷間鍛造仕上げにより形成し、ボールの外径に合致したポケット幅を有するケージをボール外径別にランク分けし、任意に選択された外側継手部材および内側継手部材の各PCDを測定し、それら外側継手部材および内側継手部材に対してその外側継手部材および内側継手部材の各PCD測定値に適合したランクのボールおよびケージを選択するマッチングで外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を組み合わせることを特徴とする。なお、外側継手部材のPCDとは、外側継手部材のトラック溝に接触した状態でのボールのピッチ円径を意味し、内側継手部材のPCDとは、内側継手部材のトラック溝に接触した状態でのボールのピッチ円径を意味する。
 本発明では、外側継手部材のトラック溝あるいは内側継手部材のトラック溝の少なくともいずれか一方を冷間鍛造仕上げにより形成したことにより、トラック溝の形成が冷間鍛造仕上げのみとなるので、従来の冷間鍛造後の切削加工や研削加工などの多くの機械加工を省略することができ、歩留まりが向上し、等速自在継手の低コスト化を図ることができる。
 このように、任意に選択された外側継手部材および内側継手部材に対してその外側継手部材および内側継手部材の各PCD測定値に適合するランクのボールおよびケージを選択する簡易なマッチング、つまり、ボールの外径に合致したポケット幅を有するケージをボール外径別にランク分けし、任意に選択された外側継手部材および内側継手部材の各PCDを測定し、それら外側継手部材および内側継手部材に対してその外側継手部材および内側継手部材の各PCD測定値に適合したランクのボールおよびケージを選択するマッチングで外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を組み付けることにより、外側継手部材、内側継手部材、ボールおよびケージの全ての構成要素についてランク分けし、それら外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を選択して組み合わせる従来のようなマッチングを行わないことから、各構成要素の組み付けを迅速かつ容易に行え、歩留まりおよび作業性の向上が図れる。
 本発明における外側継手部材のトラック溝および内側継手部材のトラック溝の横断面形状を、ボールとアンギュラ接触するゴシックアーチ形状とし、その接触角を35°~45°とすることが望ましい。
 このように外側継手部材のトラック溝および内側継手部材のトラック溝の横断面形状を、ボールとアンギュラ接触するゴシックアーチ形状とし、その接触角を35°~45°とすれば、トラック溝に対するボールの接触状態を安定化させることが可能となる。ここで、前述の接触角が35°よりも小さいと、トラック面圧が増大し耐久性の低下が懸念される。また、接触角が45°よりも大きいと、高作動角におけるトラック肩部までのボールの乗り上げ余裕が小さくなり、高トルク負荷時のボールによる接触楕円の乗り上げが生じ、トラック肩部の欠け等が懸念される。
 本発明における外側継手部材のトラック溝の開口端あるいは内側継手部材のトラック溝の開口端の少なくとも一方において、少なくともボール接触点対応部位に切欠アール部を設けることが望ましい。
 このように外側継手部材のトラック溝の開口端あるいは内側継手部材のトラック溝の開口端の少なくとも一方において、少なくともボール接触点対応部位に切欠アール部を設ければ、等速自在継手の高角作動時、特に使用時において想定されている角度をなんらかの理由で超えて、ボールが外側継手部材あるいは内側継手部材のトラック溝の軸方向端部に位置したとしても、切欠アール部によって、ボールがこの軸方向端部に食い込むことを防止できる。
 本発明における外側継手部材のトラック溝と切欠アール部、および内側継手部材のトラック溝と切欠アール部を同時冷間鍛造仕上げにより形成することが望ましい。
 このように外側継手部材のトラック溝と切欠アール部、および内側継手部材のトラック溝と切欠アール部を同時冷間鍛造仕上げにより形成すれば、トラック溝の形成後に旋削や熱処理後の研削仕上げによる機械加工を行う必要がなく、トラック溝と切欠アール部の形成が同時冷間鍛造仕上げのみとなるので、切欠アール部形成の簡略化が実現でき、等速自在継手の低コスト化を図ることができる。
 本発明における外側継手部材の開口縁全周に沿って形成された入口チャンファと、内球面とトラック溝との境界部に沿って形成されたトラックチャンファと、トラック溝と入口チャンファとの境界部に沿って形成されたトラック入口チャンファとを冷間鍛造仕上げにより形成すると共に、外側継手部材の開口端外周面に形成されたブーツ用凹溝を除く部位を冷間鍛造仕上げにより形成することが望ましい。
 このように外側継手部材の入口チャンファ、トラックチャンファおよびトラック入口チャンファを冷間鍛造仕上げにより形成すれば、入口チャンファ、トラックチャンファおよびトラック入口チャンファの形成が冷間鍛造のみとなるので、従来の冷間鍛造後の切削加工や研削加工などの多くの機械加工を省略することができ、歩留まりがより一層向上し、更なる等速自在継手の低コスト化を図ることができる。また、外側継手部材のブーツ用凹溝を除く外周面を冷間鍛造仕上げにより形成すれば、その外周面の硬度を高め、ねじり強度を高くすることができる上、加工工数を低減して等速自在継手の低コスト化が図れる。
 本発明における外側継手部材のトラック溝とトラック入口チャンファとを同時冷間鍛造仕上げにより形成することが望ましい。
 このように外側継手部材のトラック溝とトラック入口チャンファを同時冷間鍛造仕上げにより形成すれば、トラック溝の形成後に旋削や熱処理後の研削仕上げによる機械加工を行う必要がなく、トラック溝とトラック入口チャンファの形成が同時冷間鍛造仕上げのみとなるので、トラック入口チャンファ形成の簡略化が実現でき、等速自在継手の低コスト化を図ることができる。
 本発明における外側継手部材の内球面とトラック溝との境界部に沿って形成されたトラックチャンファ、および内側継手部材の外球面とトラック溝との境界部に沿って形成されたトラックチャンファをR形状とすることが望ましい。
 このように外側継手部材の内球面とトラック溝との境界部に沿って形成されたトラックチャンファ、および内側継手部材の外球面とトラック溝との境界部に沿って形成されたトラックチャンファをR形状とすれば、その部分での応力集中を回避することができる。なお、このR形状のトラックチャンファは、冷間鍛造仕上げにより形成する以外に、冷間鍛造後に旋削や熱処理後の研削仕上げによる機械加工を行うことにより形成してもよい。
 本発明における外側継手部材のトラック溝とトラックチャンファ、および内側継手部材のトラック溝とトラックチャンファを同時冷間鍛造仕上げにより形成することが望ましい。
 このように外側継手部材のトラック溝とトラックチャンファ、および内側継手部材のトラック溝とトラックチャンファを同時冷間鍛造仕上げにより形成すれば、トラック溝の形成後に旋削や熱処理後の研削仕上げによる機械加工を行う必要がなく、トラック溝とトラックチャンファの形成が同時冷間鍛造仕上げのみとなるので、トラックチャンファ形成の簡略化が実現でき、等速自在継手の低コスト化を図ることができる。
 本発明における外側継手部材の内球面で周方向に隣接するトラック溝間に軸方向に延びるスリット溝を形成し、その周方向に隣接するトラック溝間における内球面の最大幅寸法に対して、スリット溝の幅寸法を5%~30%とすることが望ましい。
 このように外側継手部材の内球面で周方向に隣接するトラック溝間に軸方向に延びるスリット溝を形成すれば、冷間鍛造の際、冷間鍛造用の成形型の隙間に、外側継手部材の素材の余肉が入り込まず、内球面について所望の形状精度を得ることができる。特に、スリット溝の幅寸法を5%~30%とすれば、冷間鍛造時に外側継手部材を成形型から離型させることが容易となり、かつ、外側継手部材の内球面の必要面積が確保できて、必要な強度、耐久性を確保することができる。なお、スリット溝の幅寸法が5%よりも小さいと、冷間鍛造時に外側継手部材を成形型から離型させることが困難となり、かつ、スリット溝の幅寸法が30%よりも大きいと、外側継手部材の内球面の必要面積を確保することが困難となって強度、耐久性の低下を招くことになる。
 本発明における外側継手部材のトラック溝とこれに協働する内側継手部材のトラック溝とで形成されたボールトラックのオフセット角を11.0°~15.0°とすることが望ましい。ここでオフセット角とは、ボール中心に対して外側継手部材のトラック溝の曲率中心と内側継手部材のトラック溝の曲率中心とがなす角度を意味する。
 このようにボールトラックのオフセット角を11.0°~15.0°とすれば、等速自在継手の作動性、耐久性、および準静捩り強度を同時に満足できる。ここで、オフセット角が11.0°より小さいと、十字作動性、耐久性、および準静捩り強度の全ての面で問題があり、オフセット角が15.0°よりも大きいと耐久性および強度面で劣る。
 本発明における内側継手部材の外球面の継手開口側に位置する球面角を12.5°以上とすることが望ましい。ここで、「継手開口側」とは、外側継手部材の開口側を意味する。さらに、「球面角」とは、内側継手部材の外球面の曲率中心(継手中心)に対してその外球面の継手開口側端部がなす軸方向角度を意味する。
 このように内側継手部材の外球面の継手開口側に位置する球面角を12.5°以上とすれば、高作動角、高トルク負荷時において、内側継手部材の外球面からケージの内球面へ大きな球面力が作用しても、内側継手部材の外球面の継手開口側端部がケージの内球面に接触する面積を前述の球面力に耐え得る十分な面積として確保することができる。この接触面積の確保により、ケージに過大な負荷が加わることを回避することができ、円滑な回転を確保することができる。
 本発明における内側継手部材の継手開口側端面と、内側継手部材に形成された軸孔のスプライン端部との間に軸方向の段差部を設け、内側継手部材の継手開口側端面よりも奥側に位置する凹端面を形成することが望ましい。ここで、「内側継手部材の継手開口側端面」とは、内側継手部材において、外側継手部材の開口側、つまり、内側継手部材の軸孔に圧入される軸部材の挿入側に位置する端面を意味する。また、「軸孔のスプライン端部」とは、軸孔のスプラインにおいて、外側継手部材の開口側、つまり、内側継手部材の軸孔に圧入される軸部材の挿入側に位置する端部を意味する。さらに、「軸方向の段差部」とは、内側継手部材の継手開口側端面を軸方向に凹ませることにより形成された段差を意味する。
 等速自在継手の軽量、コンパクト化を図る上で内側継手部材の肉厚が薄くなっても、内側継手部材の継手開口側端面と軸孔のスプライン端部との間に軸方向の段差部を設け、その継手開口側端面よりも奥側に位置する凹端面を形成したことにより、その凹端面、つまり、トラック溝の底部での肉厚(図15の本発明品のN部参照:径方向寸法L)を従来品(図15の従来品のM部参照:径方向寸法L)よりも大きくすることができるので、高作動角、高トルク負荷時でも、内側継手部材の十分な強度を確保することができる。
 なお、凹端面は、トラック溝の底部と対応する部位に形成されていることが望ましい。このように凹端面をトラック溝の底部と対応する部位に形成すれば、等速自在継手が高作動角をとった時、ボール接触点がトラック溝から食み出すことがなく、トルク伝達が効率よく確実に行われる。
 本発明における内側継手部材の外球面の継手奥側端部に、その外球面よりも後退したテーパ状の逃がし部が形成され、外球面と滑らかに連続してつながる様に小さい曲率で繋がっていることが望ましい。
 このように内側継手部材の外球面の継手奥側端部に、その外球面よりも後退したテーパ状の逃がし部が形成され、外球面と滑らかに連続してつながる様に小さい曲率で繋がっているようにすれば、内側継手部材の継手奥側端部のケージ内径面への食い込みを無くすことができる。
 本発明における外側継手部材のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも大きい半径を描く位置となるように径方向にずらすことが望ましい。また、内側継手部材のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも小さい半径を描く位置となるように径方向にずらすことが望ましい。
 このように外側継手部材のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも大きい半径を描く位置となるように径方向にずらしたり、また、内側継手部材のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも小さい半径を描く位置となるように径方向にずらしたりすれば、トラック溝の軸方向中央部ですきまを詰めることができ、ガタ詰めが容易となって異音の発生を抑制することができる。
 以上の構成を具備した固定式等速自在継手と、その外側継手部材から軸方向に延びるステム部に連結されたハブ輪を有する車輪用軸受とを備えた駆動車輪用軸受ユニットを実現できる。
 その場合、ハブ輪の内径あるいは外側継手部材のステム部の外径のいずれか一方に軸方向に延びる凸部を円周方向の複数箇所に形成し、その一方を他方に圧入することにより、その他方に凸部と密着嵌合する凹部を形成する凹凸嵌合構造でもって、ハブ輪と外側継手部材を一体的に結合させれば、等速自在継手と車輪用軸受からなる一体型の駆動車輪用軸受ユニットが実現できる。
 また、ハブ輪の内径あるいは外側継手部材のステム部の外径のいずれか一方に軸方向に延びる凸部を円周方向の複数箇所に形成し、その一方を他方に圧入することにより、その他方に前記凸部と密着嵌合する凹部を形成する凹凸嵌合構造でもって、ハブ輪と外側継手部材を軸方向の引き抜き力付与による分離が可能なように結合させれば、等速自在継手と車輪用軸受からなる分離型の駆動車輪用軸受ユニットを実現できる。
 この駆動車輪用軸受ユニットでは、ハブ輪の内径あるいは外側継手部材のステム部の外径のいずれか一方に軸方向に延びる凸部を円周方向の複数箇所に形成し、その一方を他方に圧入することにより、その他方に凸部と密着嵌合する凹部を形成する凹凸嵌合構造を構成する。この凹凸嵌合構造としては、ハブ輪の内径あるいは外側継手部材のステム部の外径のいずれか一方に形成された凸部の形状をその凸部よりも硬度が低い他方に転写することにより圧入時の弾性変形でもって他方に凸部と密着嵌合する凹部を形成することが有効である。
 つまり、塑性変形および切削を伴いながら、相手側の凹部形成面に凸部の形状を転写することになる。この際、凸部が相手側の凹部形成面に食い込んでいくことによってその凹部形成面が僅かに弾性変形した状態となって、凸部の軸方向の移動を許容し、軸方向の移動が停止すれば、凹部形成面の弾性変形が復元することになる。これによって、凸部の凹部嵌合部位の全体がその対応する凹部に対して密着し、外側継手部材とハブ輪を強固に結合一体化させることができる。
 一方、本発明では、前述の凹凸嵌合構造により、ハブ輪と外側継手部材を軸方向の引き抜き力付与による分離が可能なように結合させる。このようにハブ輪と外側継手部材とが分離可能であることから、等速自在継手あるいは車輪用軸受のいずれか一方を交換する駆動車輪用軸受装置の補修作業が容易となる。
 本発明によれば、外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を、任意に選択された外側継手部材および内側継手部材に対してその外側継手部材および内側継手部材の各PCD測定値に適合するランクのボールおよびケージを選択するマッチングで組み付けることにより、外側継手部材、内側継手部材、ボールおよびケージの全ての構成要素についてランク分けし、それら外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を選択して組み合わせる従来のようなマッチングを行わないことから、各構成要素の組み付けを迅速かつ容易に行え、歩留まりおよび作業性の向上が図れ、等速自在継手の低コスト化が図れる。
本発明に係る固定式等速自在継手の実施形態で、バーフィールド型等速自在継手の全体構成を示し、図2のB-O-B線に沿う断面図である。 図1のA-A線に沿う断面図である。 本発明の実施形態で、簡易マッチングの要領を説明するための概略構成図である。 トラック溝とボールの接触状態を示す要部拡大断面図である。 外輪の開口端部を示す部分拡大斜視図で、切欠アール部の一例を示す。 外輪の開口端部を示す部分拡大斜視図で、切欠アール部の他例を示す。 内輪の端部を示す部分拡大斜視図で、切欠アール部の一例を示す。 内輪の端部を示す部分拡大斜視図で、切欠アール部の他例を示す。 入口チャンファ、トラックチャンファおよびトラック入口チャンファとスリット溝を設けた外輪を示す部分斜視図である。 図7の外輪をその開口端側から見た状態を示す側面図である。 トラックチャンファおよびトラック入口チャンファを設けた内輪を示す斜視図である。 オフセット角に関する十字作動性、耐久性および強度の試験結果を示す表である。 球面角を説明するためのもので、内輪を示す部分断面図である。 球面角を説明するためのもので、継手が最大作動角をとった状態を示す正面図である。 図12の右側面図である。 図13のC-O-C線で断面をとった斜視図である。 中心線より下半分が本発明品の内輪を示し、中心線より上半分が従来品の内輪を示す断面図である。 凹端面が形成された内輪端部に非硬化層部分が内在した形態を示す部分断面図である。 本発明の等速自在継手が高作動角をとった状態を示す断面図である。 図17と比較するために内輪の軸方向幅を単に短くした等速自在継手で、高作動角をとった状態を示す断面図である。 テーパ状の逃がし部を設けた内輪を示す要部拡大断面図である。 外輪のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも大きい半径を描く位置となるように径方向にずらした等速自在継手を示す部分断面図である。 内輪のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも小さい半径を描く位置となるように径方向にずらした等速自在継手を示す部分断面図である。 図1の等速自在継手を車輪用軸受に連結した一体型の駆動車輪用軸受ユニットの全体構成を示す断面図である。 図22のハブ輪の軸孔を示す断面図である。 図22のステム部を示す断面図である。 ハブ輪の軸孔にステム部を圧入した凹凸嵌合構造を示す断面図である。 図1の等速自在継手を車輪用軸受に連結した分離型の駆動車輪用軸受ユニットの全体構成を示す断面図である。 図26の駆動車輪用軸受ユニットで、等速自在継手と車輪用軸受とを分離した状態を示す断面図である。 従来の等速自在継手の製造における構成要素のマッチングを説明するための概略構成図である。
 本発明に係る固定式等速自在継手及びこれを用いた駆動車輪用軸受ユニットの実施形態を詳述する。以下の実施形態では、固定式等速自在継手の一つとして、バーフィールド型等速自在継手(BJ)を例示する。
 この実施形態の等速自在継手1は、図1および図2に示すように外側継手部材である外輪10、内側継手部材である内輪20、ボール30およびケージ40を主要な構成要素とし、内輪20、ボール30およびケージ40からなる内部部品50を外輪10に角度変位可能に収容した構造を具備する。
 外輪10は、一端が開口したカップ状をなし、軸方向に延びる複数のトラック溝12が内球面14に円周方向等間隔に形成されている。内輪20は、軸方向に延びる複数のトラック溝22が外輪10のトラック溝12と対をなして外球面24に円周方向等間隔に形成されている。ボール30は、外輪10のトラック溝12と内輪20のトラック溝22との間に介在してトルクを伝達する。ケージ40は、外輪10の内球面14と内輪20の外球面24との間に介在してボール30を保持する。
 複数のボール30は、ケージ40に形成されたポケット42に収容されて円周方向等間隔に配置されている。この実施形態では6個のボール30を例示しているが、その個数については任意である。外輪10のトラック溝12と内輪20のトラック溝22とが協働して形成するボールトラックは外輪10の開口側へ向けて拡径する楔形状をなす。
 なお、外輪10は、内輪20、ボール30およびケージ40からなる内部部品50を収容したカップ状のマウス部16と、そのマウス部16の底部から一体的に軸方向に延びるステム部18とで構成され、そのステム部18の外周面には後述する車輪用軸受100(図22および図26参照)に連結するためのスプライン11が形成されている。また、内輪20の軸孔26には、シャフト60(図12および図17参照)を連結するためのスプライン28が形成されている。
 この等速自在継手1では、外輪10のトラック溝12および内輪20のトラック溝22を冷間鍛造仕上げにより形成し、外輪10、内輪20、ボール30およびケージ40からなる構成要素を、任意に選択された外輪10および内輪20に対してその外輪10および内輪20の各PCD測定値に適合するランクのボール30およびケージ40を選択する簡易なマッチングで組み付ける。
 外輪10のトラック溝12および内輪20のトラック溝22を冷間鍛造仕上げにより形成することにより、トラック溝12,22の形成が冷間鍛造仕上げのみとなるので、従来の冷間鍛造後の切削加工や研削加工などの多くの機械加工を省略することができ、歩留まりが向上し、等速自在継手1の低コスト化を図ることができる。
 一方、前述した簡易なマッチングによる構成要素の組み付けは、トラック溝12,22が冷間鍛造仕上げにより形成された外輪10および内輪20に対して、ボール30およびケージ40を選択することにより以下の要領でもって行われる。
 まず、図3に示すように多数個の外輪10および内輪20をPCD別にランク分けせず、ボール30の外径に合致したポケット幅を有するケージ40をそのボール外径別にランク分けする。このボール外径別のランクとしては、ボール30およびその外径に適合したポケット幅を有するケージ40について、例えば、「大」「中」「小」の3ランクにランク分けする。そして、任意に選択された外輪10および内輪20の各PCDを測定し、それら外輪10および内輪20に対して外輪10および内輪20の各PCD測定値に適合するランクのボール30およびケージ40を選択する。例えば、任意に選択した外輪10および内輪20の各PCDを測定し、その外輪10および内輪20の各PCD測定値から得られるPCDすきまが適正範囲内であれば、その「中」ランクのボール30およびケージ40を選択する。その各PCD測定値に基づくPCDすきまが適正範囲よりも大きければ、「大」ランクのボール30およびケージ40を選択し、そのPCDすきまが適正範囲よりも小さければ、「小」ランクのボール30およびケージ40を選択する。このような選択により、外輪10、内輪20、ボール30およびケージ40からなる構成要素を組み合わせる。なお、ボール30およびケージ40のランク分け数については、3ランクに限らず、必要に応じて任意に設定可能である。
 このように、外輪10、内輪20、ボール30およびケージ40からなる構成要素を、任意に選択された外輪10および内輪20に対してその外輪10および内輪20の各PCD測定値に適合するランクのボール30およびケージ40を選択する簡易なマッチングで組み付けることにより、外輪210、内輪220、ボール230およびケージ240の全ての構成要素についてランク分けし、それら外輪210、内輪220、ボール230およびケージ240からなる構成要素を選択して組み合わせる従来のマッチング(図28参照)を行わないことから、各構成要素の組み付けを迅速かつ容易に行え、歩留まりおよび作業性の向上が図れ、等速自在継手1の低コスト化が実現容易となる。
 トラック溝12,22が冷間鍛造仕上げにより形成された外輪10および内輪20に対して、ボール30およびケージ40を選択する簡易マッチングにより組み付けられた等速自在継手1においては、外輪10のトラック溝12とこれに協働する内輪20のトラック溝22とで形成されたボールトラックのPCDすきまを0~+0.2mmに規定する。ここで、「PCD(ピッチ円直径)すきま」とは、外輪10のトラック溝12に接触した状態でのボール30のPCD(外輪PCD)と、内輪20のトラック溝22に接触した状態でのボール30のPCD(内輪PCD)との差を意味する。
 このようにPCDすきまを前述の規定範囲としたことにより、外輪10、内輪20、ボール30およびケージ40からなる各構成要素を必要最低限の簡易マッチングで組み合わせることで、等速自在継手1の作動性を確保しながら、各構成要素間でのガタツキによる異音の発生を必要最小限に抑制することが可能となる。なお、このPCDすきまが0mmよりも小さいと、等速自在継手1の作動性を確保することが困難となり、逆に、+0.2mmよりも大きいと、各構成要素間でのガタツキが大きくなって異音が発生する。
 また、トラック溝12,22が冷間鍛造仕上げにより形成された外輪10および内輪20に対して、ボール30およびケージ40を選択する簡易マッチングにより組み付けられた等速自在継手1においては、ボール30をポケット42に収容したケージ40のポケットすきまを-0.05~0mmに規定する。このポケットすきまの数値における「-」は締め代となっていることを意味する。ここで、「ポケットすきま」とは、ケージ40のポケット42の軸方向幅(ケージポケット幅)とボール30の外径(ボール径)との差を意味する。
 このようにポケットすきまを前述の規定範囲としたことにより、外輪10、内輪20、ボール30およびケージ40からなる各構成要素を必要最低限の簡易マッチングで組み合わせることで、等速自在継手1の作動性を確保しながら、各構成要素間でのガタツキによる異音の発生を必要最小限に抑制することが可能となる。なお、ケージ40のポケットすきまが-0.050mmよりも小さいと、ポケット42とボール30間の締め代が過大となって等速自在継手1の耐久性が低下し、そのポケットすきまが0mm以上であると、ポケット42内でボール30のガタツキが発生して異音が発生する。
 トラック溝12,22が冷間鍛造仕上げにより形成された外輪10および内輪20を有する等速自在継手1において、外輪10のトラック溝12および内輪20のトラック溝22の横断面形状は、ボール30とアンギュラ接触するゴシックアーチ形状としている。例えば、図4は外輪10のトラック溝12および内輪20のトラック溝22の横断面形状を例示する。このゴシックアーチ形状を有するトラック溝12,22では、ボール30とアンギュラ接触する二つのボール接触点P,Q(ボール接触角α)を持っている。
 このボール30とアンギュラ接触する二つのボール接触点P,Qにおけるボール接触角αは、35~45°が好ましい。ボール接触角αを前述の規定範囲とすることにより、トラック溝12,22に対するボール30の接触状態を安定化させることができる。なお、ボール接触角αが35°よりも小さいと、トラック面圧が増大し耐久性の低下が懸念される。逆に、ボール接触角αが45°よりも大きいと、高作動角におけるトラック肩部までのボールの乗り上げ余裕が小さくなり、高トルク負荷時のボールによる接触楕円の乗り上げが生じ、トラック肩部の欠け等が懸念される。
 図5aに示すように外輪10のトラック溝12の開口端において、ボール接触点対応部位に切欠アール部12aを設けている。また、図6aに示すように内輪20のトラック溝22の開口端において、ボール接触点対応部位に切欠アール部22aを設けている。前述のボール接触点対応部位は、前述したようにトラック溝12,22とボール30とがアンギュラ接触することから、図中の一点鎖線で示すように二つのボール接触点P,Q(図中では接触点の軌跡を示す)がトラック溝12,22の開口端と交わる部位となる。
 このように外輪10のトラック溝12の開口端および内輪20のトラック溝22の開口端に切欠アール部12a,22aを設けることにより、等速自在継手1の高角作動時、特に使用時において想定されている角度をなんらかの理由で超えて、ボール30が外輪10あるいは内輪20のトラック溝12,22の軸方向端部に位置したとしても、切欠アール部12a,22aによって、ボール30がこの軸方向端部に食い込むことを防止できる。なお、この切欠アール部12a,22aは、冷間鍛造仕上げにより形成する以外に、冷間鍛造後に旋削や熱処理後の研削仕上げによる機械加工を行うことにより形成してもよい。
 また、これら切欠アール部12a,22aを冷間鍛造仕上げにより形成する場合には、外輪10のトラック溝12と切欠アール部12a、および内輪20のトラック溝22と切欠アール部22aを同時冷間鍛造仕上げにより形成すればよい。
 このように外輪10のトラック溝12と切欠アール部12a、および内輪20のトラック溝22と切欠アール部22aを同時冷間鍛造仕上げにより形成することにより、トラック溝12,22の形成後に旋削や熱処理後の研削仕上げによる機械加工を行う必要がなく、トラック溝12,22と切欠アール部12a,22aの形成が同時冷間鍛造仕上げのみとなるので、切欠アール部形成の簡略化が実現でき、等速自在継手1の低コスト化を図ることができる。
 なお、前述の場合、切欠アール部12a,22aを外輪10のトラック溝12の開口端および内輪20のトラック溝22の開口端においてボール接触点対応部位のみに形成しているが、図5bおよび図6bに示すように、外輪10のトラック溝12の開口端全体および内輪20のトラック溝22の開口端全体に切欠アール部12a,22aを設けてもよい。このように外輪10のトラック溝12の開口端全体および内輪20のトラック溝22の開口端全体に設けた場合には、その切欠アール部12a,22aは後述のトラック入口チャンファとなる。
 トラック溝12,22が冷間鍛造仕上げにより形成された外輪10および内輪20を有する等速自在継手1において、図7および図8に示すように、外輪10の開口縁全周に沿って形成された入口チャンファ12bと、内球面14とトラック溝12との境界部に沿って形成されたトラックチャンファ12cと、トラック溝12と入口チャンファ12bとの境界部に沿って形成されたトラック入口チャンファ12aとが冷間鍛造仕上げにより形成されている。また、外輪10の開口端部には、継手内部に充填されたグリースの漏洩ならびに継手外部からの水や異物の侵入を防止するためのに樹脂またはゴム製のブーツが装着されるが、その外輪10の開口端外周面に形成されたブーツ取り付け用凹溝13を除く部位が冷間鍛造仕上げにより形成されている。
 このように外輪10の入口チャンファ12b、トラックチャンファ12cおよびトラック入口チャンファ12aを冷間鍛造仕上げにより形成することにより、入口チャンファ12b、トラックチャンファ12cおよびトラック入口チャンファ12aの形成が冷間鍛造のみとなるので、従来の冷間鍛造後の切削加工や研削加工などの多くの機械加工を省略することができ、歩留まりがより一層向上し、更なる等速自在継手1の低コスト化を図ることができる。また、外輪10のブーツ取り付け用凹溝13を除く外周面を冷間鍛造仕上げにより形成することにより、その外周面の硬度を高め、ねじり強度を高くすることができる上、加工工数を低減して等速自在継手1の低コスト化が図れる。
 また、トラック溝12,22が冷間鍛造仕上げにより形成された外輪10および内輪20を有する等速自在継手1において、図9に示すように、内輪20の外球面24とトラック溝22との境界部に沿って形成されたトラックチャンファ22cと、内輪20の両端面とトラック溝22との境界部に沿って形成されたトラック入口チャンファ22aとが冷間鍛造仕上げにより形成されている。
 このように内輪20のトラックチャンファ22cおよびトラック入口チャンファ22aを冷間鍛造仕上げにより形成することにより、トラックチャンファ22cおよびトラック入口チャンファ22aの形成が冷間鍛造のみとなるので、従来の冷間鍛造後の切削加工や研削加工などの多くの機械加工を省略することができ、歩留まりがより一層向上し、更なる等速自在継手1の低コスト化を図ることができる。
 外輪10のトラック入口チャンファ12aを冷間鍛造仕上げにより形成する場合、外輪10のトラック溝12とトラック入口チャンファ12aを同時冷間鍛造仕上げに形成すればよい。
 このように外輪10のトラック溝12とトラック入口チャンファ12aを同時冷間鍛造仕上げにより形成することにより、トラック溝12の形成後に旋削や熱処理後の研削仕上げによる機械加工を行う必要がなく、トラック溝12とトラック入口チャンファ12aの形成が同時冷間鍛造仕上げのみとなるので、トラック入口チャンファ形成の簡略化が実現でき、等速自在継手1の低コスト化を図ることができる。
 外輪10の内球面14とトラック溝12との境界部に沿って形成されたトラックチャンファ12c、および内輪20の外球面24とトラック溝22との境界部に沿って形成されたトラックチャンファ22cは、図2で拡大して示すようにR形状としている。このR形状のトラックチャンファ12c,22cは、トラック溝12と内球面14との間およびトラック溝22と外球面24との間で滑らかに繋がるように連続的に形成されている。
 このように外輪10の内球面14とトラック溝12との境界部に沿って形成されたトラックチャンファ12c、および内輪20の外球面24とトラック溝22との境界部に沿って形成されたトラックチャンファ22cをR形状としたことにより、その部分での応力集中を回避することができる。なお、このトラックチャンファ12c,22cは、冷間鍛造仕上げにより形成する以外に、冷間鍛造後に旋削や熱処理後の研削仕上げによる機械加工を行うことにより形成してもよい。
 これらトラックチャンファ12c,22cを冷間鍛造仕上げにより形成する場合、外輪10のトラック溝12とトラックチャンファ12c、および内輪20のトラック溝22とトラックチャンファ22cを同時冷間鍛造仕上げにより形成すればよい。
 このように外輪10のトラック溝12とトラックチャンファ12c、および内輪20のトラック溝22とトラックチャンファ22cを同時冷間鍛造仕上げにより形成することにより、トラック溝12,22の形成後に旋削や熱処理後の研削仕上げによる機械加工を行う必要がなく、トラック溝12,22とトラックチャンファ12c,22cの形成が同時冷間鍛造仕上げのみとなるので、トラックチャンファ形成の簡略化が実現でき、等速自在継手1の低コスト化を図ることができる。
 この等速自在継手1では、図7および図8に示すように外輪10の内球面14で周方向に隣接するトラック溝12間に軸方向に延びるスリット溝12dを形成する。このスリット溝12dは、外輪10の開口端面から入口チャンファ12bを経て内球面14へ至るように形成されている。なお、この実施形態では、6本のスリット溝12dを例示しているが、その本数については任意である。この場合、周方向に隣接するトラック溝12間における内球面14の最大幅寸法に対して、スリット溝12dの幅寸法を5%~30%としている。
 このように外輪10の内球面14で周方向に隣接するトラック溝12間に軸方向に延びるスリット溝12dを形成すれば、冷間鍛造の際、冷間鍛造用の成形型の隙間に、外輪10の素材の余肉が入り込まず、内球面14について所望の形状精度を得ることができる。特に、スリット溝12dの幅寸法を5%~30%とすれば、冷間鍛造時に外輪10を成形型から離型させることが容易となり、かつ、外輪10の内球面14の必要面積が確保できて、必要な強度、耐久性を確保することができる。なお、スリット溝12dの幅寸法が5%よりも小さいと、冷間鍛造時に外輪10を成形型から離型させることが困難となり、かつ、スリット溝12dの幅寸法が30%よりも大きいと、外輪10の内球面14の必要面積を確保することが困難となって強度、耐久性の低下を招くことになる。
 この等速自在継手1において、図1に示すように外輪10のトラック溝12の曲率中心Oと内輪20のトラック溝22の曲率中心Oとは、継手中心Oに対して軸方向に等距離Fだけ反対側(トラック溝12の曲率中心Oは継手の開口側、トラック溝22の曲率中心Oは継手の奥部側)にオフセットされている。そのため、ボールトラックは開口側が広く、奥部側に向かって漸次縮小した楔形状になっている。
 また、ケージ40の外球面44の曲率中心、およびその外球面44に摺接する外輪10の内球面14の曲率中心のそれぞれは継手中心Oに一致する。また、ケージ40の内球面46の曲率中心、およびその内球面46に摺接する内輪20の外球面24の曲率中心のそれぞれも継手中心Oに一致する。外輪10と内輪20とが角度変位すると、ケージ40に保持されたボール30は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。
 この等速自在継手1では、図1に示すように、ボール中心Oに対して外輪10のトラック溝12の曲率中心Oと内輪20のトラック溝22の曲率中心Oとがなす角度、つまり、オフセット角φを11.0°~15.0°に設定している。このオフセット角φは従来品のオフセット角(16.0°程度)よりも小さく、それゆえトラック溝12,22の深さは従来品に比べて軸方向でより均一に近くなる。
 この場合、トラック溝12,22の浅い所では従来品よりも溝深さが深くなるので、高負荷下においてもトラック溝12,22の肩部にボール30による接触楕円が乗り上げにくくなり、肩部の欠け等を防止してトラック溝12,22の高強度化、耐久性の向上を図ることができる。また、ケージ40の肉厚を厚くすることもできるので、ケージ40の高強度化や長寿命化も達成される。さらに、前述した通り、この範囲内のオフセット角φであれば、作動性も良好に維持される。
 その結果、外輪10および内輪20のトラック溝12,22の高強度化、耐久性の向上が図れることから、それら外輪10のトラック溝12および内輪20のトラック溝22を冷間鍛造仕上げにより形成することが容易となる。また、ボール30が継手開口側に飛び出そうとする力(軸力)も従来品に比べて弱くなるため、ボール30の軸力に起因した打音の発生を抑制することも可能となる。
 その一方、オフセット角φが小さすぎると、逆に耐久性や強度が低下したり、あるいは作動性に問題を生じることが懸念される。
 本出願人は、前述したオフセット角φの規定範囲が最適であるか否かを十字作動性、耐久性、および準静捩り強度を比較する試験で確認した。十字作動性は、対向するボールトラックを含む平面内でシャフトを最大作動角まで折り曲げ、次に当該平面と垂直な平面内で同様にシャフトを折り曲げた際の引っ掛かりの有無で評価した。また、耐久性は、負荷トルク:834N・m(85kgf・m)、回転数:230rpm、作動角:6°の条件下で評価し、準静捩り強度は、作動角:40°、回転数:2.5rpm、負荷トルクの増加率0.05kN・m/revの条件下で評価した。試験結果を図10に示す。なお、図10中の×は「問題あり」を、△は「劣る」を、○は「普通」を、◎は「良」をそれぞれ表わす(以下の説明において同じ)。
 図10より、オフセット角φが11.0°より小さいと、十字作動性、耐久性、および準静捩り強度の全ての面で問題があり、オフセット角φが15.0°よりも大きいと耐久性および強度面で劣ることが理解できる。従って、等速自在継手1の作動性、耐久性、および強度を同時に満足するためには、オフセット角φを11.0°~15.0°に設定するのがよい。
 この等速自在継手1における内輪20は、図11に示すようにその外球面24の継手開口側に位置する球面角βを12.5°以上としている。ここで、球面角βは、内輪20の外球面24の曲率中心(継手中心O)に対してその外球面24の継手開口側端部がなす軸方向角度である。この球面角βを12.5°以上としたのは、以下の理由に基づく。
 図12および図13は、内輪20にスプライン嵌合された駆動軸としてのシャフト60(図中破線)が最大作動角θをとった状態を示す。このシャフト60にトルクを負荷すると、内輪20とケージ40間、およびケージ40と外輪10間に球面力が発生する。この最大作動角時における内輪20とケージ40間に作用する球面力については、位相角0°~360°(図13参照)の間で、位相角180°方向にシャフト60が最大作動角θをとった状態の場合、特に位相角240°~340°間で大きな球面力が発生する。この球面力は、位相角240°近辺でそれまで0の状態であったのが急激に発生し出す。
 そこで、等速自在継手1が最大作動角θをとった時において、位相角240°状態での内輪20とケージ40との接触状態に着目し、その内輪20とケージ40との接触状態を図14に示す。図14は、図13のC-O-C線に沿う断面図で、図13の位相角240°側を上方に、かつ、図13の位相角60°側を下方にした図である。
 図14に示すように、位相角180°方向にシャフト60が最大作動角θをとった状態の場合、図13の位相角240°側では、内輪20の外球面24の継手開口側端部がケージ40の内球面46の曲率中心よりも奥側で接触する場合には、内輪20からの球面力は、ケージ40の内球面46の奥側のみで受けることになる。この状態からシャフト60がさらに回転すると、内輪20は前述の球面力によってケージ40の内球面46に食い込む方向に回転するため、そのケージ40に過大な負荷が加わることになり、高作動角、高トルク負荷時にケージ40が過大応力を受ける場合がある。
 このケージ40に加わる過大な負荷に対して、内輪20の外球面24の継手開口側に位置する球面角βを12.5°以上とする(図11参照)。高作動角、高トルク負荷時において、内輪20の外球面24の継手開口側からケージ40の内球面46へ大きな球面力が作用しても、内輪20の外球面24の継手開口側端部がケージ40の内球面46の入口側で確実に接触し、接触する面積を前述の球面力に耐え得るように十分に確保することができる。
 この接触面積の確保により、内輪20の外球面24の継手開口側端部がケージ40の内球面46に食い込む現象を緩和できる。その結果、ケージ40に過大な負荷が加わることを回避することができ、円滑な回転を確保することができる。
 このように、接触面積の確保により、ケージ40への過大な負荷を軽減することができるので、内輪20の外球面24からケージ40の内球面46へ作用する大きな球面力に耐え得るケージ強度を確保することができ、円滑に回転して作動性が良好で、信頼性の高い長寿命の等速自在継手1を提供できる。
 なお、内輪20の外球面24の継手開口側に位置する球面角βが12.5°よりも小さいと、内輪20からケージ40に作用する球面力に対して、その内輪20のケージ40との接触面積を十分に確保することが困難となり、ケージ40への過大な負荷の軽減およびケージ強度の確保が難しくなって等速自在継手1が円滑に回転しない可能性がある。
 この等速自在継手1のコンパクト化を図る上で、例えば高作動角時の内輪20の強度を確保する必要がある。ここで、図15は、等速自在継手1を構成する一つの構成要素である内輪20を示し、中心線より下半分に本発明品の内輪20を、その本発明品と比較するために中心線より上半分に従来品としての内輪220を示す。
 この実施形態における等速自在継手1では、内輪20の継手開口側端面23と軸孔26のスプライン端部28aとの間に軸方向の段差部25を設け、継手開口側端面23よりも奥側に位置する凹端面27を形成する。これら内輪20の継手開口側端面23および軸孔26のスプライン端部28aは、内輪20の軸孔26に圧入されるシャフト60の挿入側で外輪10の開口側に位置する。
 等速自在継手1の軽量、コンパクト化を図るため、内輪20の肉厚が薄くなると、図15に示すように、従来品の場合、内輪220の継手開口側端面223におけるトラック溝222の底部での肉厚が薄くなる(M部の径方向寸法L)。これに対して、本発明品の場合、内輪20の継手開口側端面23と軸孔26のスプライン端部28aとの間に軸方向の段差部25を設け、継手開口側端面23よりも奥側に位置する凹端面27を形成したことにより、凹端面27におけるトラック溝22の底部での肉厚(N部の径方向寸法L)を従来品(M部の径方向寸法L)よりも大きくすることができる(L>L)。
 このようにして内輪20の凹端面27での肉厚が従来品よりも大きくなることから、高作動角、高トルク負荷時でも、内輪20の十分な強度を確保することができる。その結果、等速自在継手1の軽量、コンパクト化が図れると共に内輪20の高強度化も図れる。
 内輪20の継手開口側端面23よりも奥側に位置する凹端面27の径方向寸法Lは1mm以上とする。この凹端面27の径方向寸法Lが1mmより小さいと、高作動角、高トルク負荷時、凹端面27での応力集中が発生し易くなって、内輪20の十分な強度を確保することが困難となる。
 なお、内輪20の外球面24および端面と軸孔26の内周面には、通常、内輪20の強度を確保するために浸炭焼入れ等による熱処理でもって表面硬化層(図示せず)が形成されている。図16に示すように凹端面27の径方向寸法Lを1.5mm以上とすれば、その凹端面27が形成された内輪20の継手開口側端部に非硬化層部分mが残ることになり、高作動角、高トルク負荷時に内輪20の十分な強度を安定して確保することができる。
 この内輪20の継手開口側端面23よりも奥側に位置する凹端面27は、トラック溝22の底部と対応する部位に形成されている。このようにすれば、図17に示すように、等速自在継手1が高作動角をとった時、ボール接触点P、つまり、ボール30が内輪20のトラック溝22と接触する接触楕円がトラック溝22から食み出すことがなく、トルク伝達が効率よく確実に行われる。なお、前述したボール30は、外輪10のトラック溝12の最奥部(内輪20のトラック溝22の最入口部)に位置するボール30を意味する。
 なお、これに対して、図17との比較例を図18に示す。図18では、図17と同一部分には同一参照符号を付してその符号にダッシュを付して重複説明は省略する。図18に示すように、トラック溝22’の底部と対応する部位に形成された凹端面よりも外径側部分(図中の点線部分a)を切除した場合、つまり、内輪20’の軸方向幅を単に短くした場合、内輪20’の入口側端面23’での肉厚を確保することができる。
 しかしながら、この場合、前述の凹端面よりも外径側部分のトラック溝22’における底部からの立ち上がり部分(図中の点線部分)が切除されることから、ボール接触点P’が内輪20’のトラック溝22’から食み出すことになる。
 従って、図18に示すように、内輪20’の軸方向幅を単に短くすることにより、内輪20’の入口側端面23’での肉厚を確保しようとしても、ボール接触点P’が内輪20’のトラック溝22’が食み出すことから、トルク伝達が効率よく行われず、等速自在継手の機能を満足することが困難となる。
 このことから、図15および図16に示すように内輪20の継手開口側端面23よりも奥側に位置する凹端面27を、トラック溝24の底部と対応する部位に形成することが有効となる。
 この等速自在継手1において、内輪20の外球面24の継手奥側端部に、図19に示すように、曲率半径Rの外球面24よりも後退したテーパ状の逃がし部24aを形成している。外球面24とテーパ状の逃がし部24aとは、滑らかに連続してつながる様に、外球面24の曲率半径Rよりも小さな曲率半径Rで繋がっている。このため、このような逃がし部24aを設けない場合の奥側端部(図19に示す仮想線で示す範囲)よりも内径側に後退している。また、この逃がし部24aの範囲H(内輪20の継手奥側端面29からテーパ状の逃がし部24aと外球面24との交点までの範囲)としては、3mm以下とするのが好ましい。
 このように内輪20の外球面24の継手奥側端部に逃がし部24aを設けたことによって、内輪20の継手奥側端部のケージ40の内球面46への食い込みを無くすことができる。これによって、円滑な回転が可能となって、ケージ40への過大負荷を低減でき、ケージ40の高強度化を図ることができる。
 逃がし部24aの範囲Hを、内輪20の継手奥側端面29から3mm以下に設定することによって、内輪20とケージ40との接触面積を有効に確保でき、内輪20とケージ40間の面圧を押えることができ、発熱の発生を抑えることができて高寿命化を達成できる。逃がし部24aが大きすぎると、内輪20とケージ40との接触面積が小さくなって、内輪20とケージ40間で高面圧となり、発熱が大きくなって等速自在継手1の寿命の低下を招くおそれがある。なお、逃がし部24aが小さすぎると、逃がし部24aとしての機能を発揮することができないので、逃がし部24aの範囲Hとしては、0.5mm以上とするのが好ましい。
 この等速自在継手1における外輪10のトラック溝12の曲率中心O’を、図20に示すように継手軸心上に位置するときの半径よりも大きい半径を描く位置となるように径方向にずらしている。また、内輪20のトラック溝22の曲率中心O’を、図21に示すように継手軸心上に位置するときの半径よりも小さい半径を描く位置となるように径方向にずらしている。
 このように外輪10のトラック溝12の曲率中心O’を、継手軸心上に位置するときの半径よりも大きい半径を描く位置となるように径方向にずらしたり、あるいは、内輪20のトラック溝22の曲率中心O’を、継手軸心上に位置するときの半径よりも小さい半径を描く位置となるように径方向にずらしたりすることにより、トラック溝12,22の軸方向中央部ですきまを詰めることができる。その結果、ガタ詰めが容易となって異音の発生を抑制することができる。
 以上の実施形態で説明した等速自在継手1は、内輪20、ボール30およびケージ40からなる内部部品50を収容したマウス部16から軸方向に一体的に延びるステム部18を車輪用軸受100にトルク伝達可能に連結させることにより、駆動車輪用軸受ユニットを構成する。
 図22は図1の等速自在継手1と車輪用軸受100とを連結した駆動車輪用軸受ユニットの構造を例示する。この駆動車輪用軸受ユニットは、内方部材であるハブ輪110および内輪120、複列の転動体130,140、外方部材である外輪150、等速自在継手1を主要な構成要素としている。前述のハブ輪110、内輪120、転動体130,140および外輪150で車輪用軸受100を構成している。なお、以下の説明では、車両に組み付けた状態で、車両の外側寄りとなる側をアウトボード側(図面左側)と呼び、中央寄りとなる側をインボード側(図面右側)と呼ぶ。
 ハブ輪110は、その外周面にアウトボード側の内側軌道面112が形成されると共に、車輪(図示せず)を取り付けるための車輪取付フランジ114を備えている。この車輪取付フランジ114の円周方向等間隔に、ホイールディスクを固定するためのハブボルト116が植設されている。このハブ輪110のインボード側外周面に形成された小径段部118に内輪120を嵌合させ、この内輪120の外周面にインボード側の内側軌道面122が形成されている。ハブ輪110は、旋削あるいは鍛造によって製作される。
 内輪120は、クリープを防ぐために適当な締め代をもって圧入されている。ハブ輪110の外周面に形成されたアウトボード側の内側軌道面112と、内輪120の外周面に形成されたインボード側の内側軌道面122とで複列の内側軌道面を構成する。この内輪120をハブ輪110の小径段部118に圧入し、ハブ輪110の小径段部118の端部を揺動加締めにより径方向外方へ塑性変形させることで加締め部113を形成し、その加締め部113でもって内輪120を抜け止めしてハブ輪110と一体化し、車輪用軸受100に予圧を付与している。
 外輪150は、内周面にハブ輪110および内輪120の内側軌道面112,122と対向する複列の外側軌道面152,154が形成され、車体の懸架装置から延びるナックル(図示せず)に嵌合されてスナップリング151により抜け止めされる。
 車輪用軸受100は、複列のアンギュラ玉軸受構造で、ハブ輪110および内輪120の外周面に形成された内側軌道面112,122と外輪150の内周面に形成された外側軌道面152,154との間に転動体130,140を介在させ、各列の転動体130,140を保持器132,142により円周方向等間隔に支持した構造を有する。なお、この車輪用軸受100では、その内部に所定の軸受すきまが設定されている。
 車輪用軸受100の両端開口部には、ハブ輪110と内輪120の外周面に摺接するように、外輪150とハブ輪110および内輪120との環状空間を密封する一対のシール134,144が外輪150の両端部内径に嵌合され、内部に充填されたグリースの漏洩ならびに外部からの水や異物の侵入を防止するようになっている。
 この駆動車輪用軸受ユニットは、図22に示すようにハブ輪110の軸孔115を、その内周面に軸方向に延びる凹部が円周方向の複数箇所に形成された雌スプラインがない単純円筒形状とし(図23参照)、かつ、等速自在継手1の外輪10のステム部18の外周面に軸方向に延びる凸部11aを円周方向の複数箇所に形成したスプライン11を有する(図24参照)。
 外輪10のステム部18をハブ輪110の軸孔115に圧入することによって、図25に示すようにハブ輪110の軸孔115にスプライン11と密着嵌合する凹部115aを形成する凹凸嵌合構造Sでもって、ハブ輪110と外輪10とを強固に結合させた構造を具備する。
 つまり、ハブ輪110の軸孔115にスプライン11の凸部11aと密着嵌合する凹部115aを形成する凹凸嵌合構造Sでは、塑性変形および切削を伴いながら、相手側の凹部形成面であるハブ輪110の軸孔115にスプライン11の形状を転写することになる。この際、スプライン11がハブ輪110の軸孔115に食い込んでいくことによってハブ輪110の内径が弾性変形により僅かに拡径した状態となって、スプライン11の軸方向の移動を許容し、その軸方向の移動が停止すれば、ハブ輪110の内径が弾性復元力により元の径に戻ろうとして縮径することになる。
 これによって、スプライン11の凹部嵌合部位の全体がその対応する凹部115aに対して密着し、外輪10とハブ輪110を強固に結合一体化することができる。このような低コストで信頼性の高い結合により、ステム部18とハブ輪110の嵌合部分のガタツキをなくすことができ、耳障りな歯打ち音を長期に亘って防止できる。
 なお、ハブ輪110の軸孔115の内周面は未硬化処理状態、つまり、生材のままであり、かつ、外輪10のステム部18のスプライン11は高周波焼入れにより硬化処理されている。これにより、ステム部18をハブ輪110の軸孔115に圧入する作業が容易となる。外輪10のステム部18のスプライン11の硬化処理は、焼入れ範囲および焼入れ深さのコントロールが容易な高周波焼入れが好適であるが、他の硬化処理であってもよい。ハブ輪110は、基本的に熱処理を加えない生材とするが、ステム部18のスプライン11の表面硬度を超えなければ熱処理を施しても構わない。
 以上の実施形態では、ハブ輪110の軸孔115にスプラインを形成せず、ステム部18の外周面にスプライン11を形成しているが、逆に、ハブ輪110の軸孔115にスプラインを形成し、ステム部18の外周面にスプラインを形成せずにそのステム部18を単純円柱形状とすることも可能である。この場合、ハブ輪110の軸孔115にスプラインを形成せず、ステム部18の外周面にスプライン11を形成した場合と同様の作用効果が得られ、ハブ輪110と外輪10とを凹凸嵌合構造Sにより強固に結合させることができる。
 なお、この実施形態では、ハブ輪110の加締め部113と外輪10の肩部17とを接触させている。この場合、外輪10のステム部18の位置決めが行われるので、軸受装置の寸法精度が安定すると共に、凹凸嵌合構造Sの軸方向長さを安定化させて、トルク伝達性の向上を図ることができる。
 ここで、ハブ輪110の加締め部113と外輪10の肩部17とを接触させると、車両発進時、静止状態にあるハブ輪110に対して外輪10のステム部18から回転トルクが負荷されると、外輪10のねじれによりハブ輪110の加締め部113と外輪10の肩部17との間で発生する急激な滑りが原因となって異音が発生する可能性がある。
 しかしながら、ハブ輪110の加締め部113と外輪10の肩部17との接触面圧を制御しながら凹凸嵌合構造Sを形成すれば、ハブ輪110の加締め部113と外輪10の肩部17との接触による異音の発生を抑制することが可能となる。
 以上の実施形態では、等速自在継手1と車輪用軸受100とを一体化した駆動車輪用軸受ユニットを例示したが、図26に示すように等速自在継手1と車輪用軸受100とを分離可能に連結した駆動車輪用軸受ユニットとすることも可能である。なお、図26において図22と同一部分には同一参照符号を付して重複説明は省略する。
 この駆動車輪用軸受ユニットにおいては、外輪10のステム部18をハブ輪110の軸孔115に圧入することによって、ハブ輪110の軸孔115にスプライン11と密着嵌合する凹部115を形成する凹凸嵌合構造Sでもって、ハブ輪110と外輪10とを軸方向の引き抜き力付与による分離が可能なように結合させる。
 つまり、ハブ輪110の軸孔115にスプライン11の凸部11aと密着嵌合する凹部115aを形成する凹凸嵌合構造Sでは、塑性変形および切削を伴いながら、相手側の凹部形成面であるハブ輪110の軸孔115に雄スプライン11の形状を転写することになる。この際、スプライン11がハブ輪110の軸孔に食い込んでいくことによってハブ輪110の内径が弾性変形により僅かに拡径した状態となって、スプライン11の軸方向の移動を許容し、その軸方向の移動が停止すれば、ハブ輪110の内径が弾性復元力により元の径に戻ろうとして縮径することになる。
 これによって、スプライン11の凹部嵌合部位の全体がその対応する凹部115aに対して密着し、ハブ輪110と外輪10とを軸方向の引き抜き力付与による分離が可能なように結合させることができる。一方、外輪10のステム部18に形成されたねじ孔15にハブ輪110を介してボルト80を螺着することによりハブ輪110と外輪10とをボルト80で結合させている。
 前述したように内輪120をハブ輪110に固定した加締め構造を採用した場合、その加締め部113により車輪用軸受100に予圧を付与していることから、ボルト80の締め付け力により作用する軸力でもって車輪用軸受100の予圧を管理する必要がなく、予圧量を考慮せずに外輪10のステム部18を圧入することができ、ハブ輪110と外輪10との連結性(組み付け性)の向上を図ることができる。なお、ボルト80の締め付け力は、ハブ輪110と外輪10とを固定させる程度でよい。
 この実施形態では、ハブ輪110の継手側端部である加締め部113と外輪10のハブ輪対向端部である肩部17との間にすきまnを設けている。このようにハブ輪110の加締め部113と外輪10の肩部17との間にすきまnを設けることにより、ハブ輪110の加締め部113と外輪10の肩部17とが非接触状態となる。ハブ輪110の加締め部113と外輪10の肩部17とが非接触状態となることから、ハブ輪110の加締め部113と外輪10の肩部17との接触による異音の発生を防止することができる。
 前述の凹凸嵌合構造Sにより、ハブ輪110と外輪10を軸方向の引き抜き力付与による分離が可能なように結合させている。このようにハブ輪110と外輪10とが分離可能であることから、駆動車輪用軸受ユニットの補修作業が容易となる。つまり、この補修作業では、ハブ輪110、内輪120、外輪150および転動体130,140で構成される車輪用軸受100、あるいは、等速自在継手1のいずれか一方を交換することになる。その交換時には、図27に示すようにボルト80を取り外した上で、ハブ輪110と外輪10と間に凹凸嵌合構造Sの嵌合力以上の引き抜き力を軸方向に付与してハブ輪110から外輪10を引き抜くことにより両者を分離することができる。
 この分離後、車輪用軸受100をそのまま使用するのであれば、その車輪用軸受100に対して新たに使用する等速自在継手1を組み付け、逆に、等速自在継手1をそのまま使用するのであれば、その等速自在継手1に対して新たに使用する車輪用軸受100を組み付ければよい。
 以上の実施形態では、ハブ輪110および内輪120からなる内方部材に形成された複列の内側軌道面112,122の一方、つまり、アウトボード側の内側軌道面112をハブ輪110の外周に形成した(第三世代と称される)タイプの駆動車輪用軸受装置に適用した場合を例示したが、本発明はこれに限定されることなく、インボード側の内側軌道面122を等速自在継手1の外輪10の肩部17に形成した(第四世代と称される)タイプの駆動車輪用軸受装置や、ハブ輪110の外周に一対の内輪を圧入し、アウトボード側の軌道面112を一方の内輪の外周に形成すると共にインボード側の軌道面122を他方の内輪の外周に形成した(第一、第二世代と称される)タイプの駆動車輪用軸受装置にも適用可能である。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。

Claims (19)

  1.  一端が開口したカップ状をなし、軸方向に延びる複数のトラック溝が内球面に形成された外側継手部材と、その外側継手部材の前記トラック溝と対をなして軸方向に延びる複数のトラック溝が外球面に形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、前記外側継手部材の内球面と前記内側継手部材の外球面との間に介在して前記ボールを保持するケージとを備え、前記外側継手部材のトラック溝あるいは前記内側継手部材のトラック溝の少なくとも一方を冷間鍛造仕上げにより形成した固定式等速自在継手であって、
     前記外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を、任意に選択された前記外側継手部材および内側継手部材に対してその外側継手部材および内側継手部材の各PCD測定値に適合するランクのボールおよびケージを選択するマッチングで組み付けたことを特徴とする固定式等速自在継手。
  2.  前記外側継手部材のトラック溝および前記内側継手部材のトラック溝の横断面形状を、前記ボールとアンギュラ接触するゴシックアーチ形状とし、その接触角を35°~45°とした請求項1に記載の固定式等速自在継手。
  3.  前記外側継手部材のトラック溝の開口端あるいは前記内側継手部材のトラック溝の開口端の少なくとも一方において、少なくともボール接触点対応部位に切欠アール部を設けた請求項1又は2に記載の固定式等速自在継手。
  4.  前記外側継手部材のトラック溝と前記切欠アール部とを同時冷間鍛造仕上げにより形成した請求項1~3のいずれか一項に記載の固定式等速自在継手。
  5.  前記外側継手部材の開口縁全周に沿って形成された入口チャンファと、内球面と前記トラック溝との境界部に沿って形成されたトラックチャンファと、前記トラック溝と入口チャンファとの境界部に沿って形成されたトラック入口チャンファとを冷間鍛造仕上げにより形成すると共に、前記外側継手部材の開口端外周面に形成されたブーツ取り付け用凹溝を除く部位を冷間鍛造仕上げにより形成した請求項1~4のいずれか一項に記載の固定式等速自在継手。
  6.  前記外側継手部材のトラック溝と前記トラック入口チャンファとを同時冷間鍛造仕上げにより形成した請求項1~5のいずれか一項に記載の固定式等速自在継手。
  7.  前記外側継手部材の内球面とトラック溝との境界部に沿って形成されたトラックチャンファ、および前記内側継手部材の外球面とトラック溝との境界部に沿って形成されたトラックチャンファをR形状とした請求項1~6のいずれか一項に記載の固定式等速自在継手。
  8.  前記外側継手部材のトラック溝と前記トラックチャンファ、および前記内側継手部材のトラック溝と前記トラックチャンファを同時冷間鍛造仕上げにより形成した請求項1~7のいずれか一項に記載の固定式等速自在継手。
  9.  前記外側継手部材の内球面で周方向に隣接するトラック溝間に軸方向に延びるスリット溝を形成し、その周方向に隣接するトラック溝間における内球面の最大幅寸法に対して、前記スリット溝の幅寸法を5%~30%とした請求項1~8のいずれか一項に記載の固定式等速自在継手。
  10.  前記外側継手部材のトラック溝とこれに協働する前記内側継手部材のトラック溝とで形成されたボールトラックのオフセット角を11.0°~15.0°とした請求項1~9のいずれか一項に記載の固定式等速自在継手。
  11.  前記内側継手部材の外球面の継手開口側に位置する球面角を12.5°以上とした請求項1~10のいずれか一項に記載の固定式等速自在継手。
  12.  前記内側継手部材の継手開口側端面と、内側継手部材に形成された軸孔のスプライン端部との間に軸方向の段差部を設け、前記内側継手部材の継手開口側端面よりも奥側に位置する凹端面を形成した請求項1~11のいずれか一項に記載の固定式等速自在継手。
  13.  前記凹端面は、トラック溝の底部と対応する部位に形成されている請求項12に記載の固定式等速自在継手。
  14.  前記内側継手部材の外球面の継手奥側端部に、その外球面よりも後退したテーパ状の逃がし部が形成され、前記外球面と滑らかに連続してつながる様に小さい曲率で繋がっている請求項1~13のいずれか一項に記載の固定式等速自在継手。
  15.  前記外側継手部材のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも大きい半径を描く位置となるように径方向にずらした請求項1~14のいずれか一項に記載の固定式等速自在継手。
  16.  前記内側継手部材のトラック溝の曲率中心を、継手軸心上に位置するときの半径よりも小さい半径を描く位置となるように径方向にずらした請求項1~15のいずれか一項に記載の固定式等速自在継手。
  17.  請求項1~16のいずれか一項に記載の固定式等速自在継手と、前記外側継手部材から軸方向に延びるステム部に連結されたハブ輪を有する車輪用軸受とを備え、前記ハブ輪の内径あるいは前記外側継手部材のステム部の外径のいずれか一方に軸方向に延びる凸部を円周方向の複数箇所に形成し、その一方を他方に圧入することにより、その他方に前記凸部と密着嵌合する凹部を形成する凹凸嵌合構造でもって、ハブ輪と外側継手部材を一体的に結合させた駆動車輪用軸受ユニット。
  18.  請求項1~16のいずれか一項に記載の固定式等速自在継手と、前記外側継手部材から軸方向に延びるステム部に連結されたハブ輪を有する車輪用軸受とを備え、前記ハブ輪の内径あるいは前記外側継手部材のステム部の外径のいずれか一方に軸方向に延びる凸部を円周方向の複数箇所に形成し、その一方を他方に圧入することにより、その他方に前記凸部と密着嵌合する凹部を形成する凹凸嵌合構造でもって、ハブ輪と外側継手部材を軸方向の引き抜き力付与による分離が可能なように結合させた駆動車輪用軸受ユニット。
  19.  一端が開口したカップ状をなし、軸方向に延びる複数のトラック溝が内球面に形成された外側継手部材と、その外側継手部材の前記トラック溝と対をなして軸方向に延びる複数のトラック溝が外球面に形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝との間に介在してトルクを伝達する複数のボールと、前記外側継手部材の内球面と前記内側継手部材の外球面との間に介在して前記ボールを保持するケージとを備え、前記外側継手部材のトラック溝あるいは前記内側継手部材のトラック溝の少なくとも一方を冷間鍛造仕上げにより形成した固定式等速自在継手の製造方法であって、
     前記ボールの外径に合致したポケット幅を有するケージをボール外径別にランク分けし、任意に選択された外側継手部材および内側継手部材の各PCDを測定し、それら外側継手部材および内側継手部材に対してその外側継手部材および内側継手部材の各PCD測定値に適合したランクのボールおよびケージを選択するマッチングで外側継手部材、内側継手部材、ボールおよびケージからなる構成要素を組み合わせることを特徴とする固定式等速自在継手の製造方法。
PCT/JP2009/067380 2008-11-06 2009-10-06 固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニット WO2010052985A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09824685.3A EP2345823B1 (en) 2008-11-06 2009-10-06 Method of manufacturing a fixed constant velocity universal joint
US13/123,925 US8499457B2 (en) 2008-11-06 2009-10-06 Fixed constant velocity universal joint, method of manufacturing fixed constant velocity universal joint, and bearing device adapted for use in driving wheel and using fixed constant velocity universal joint
CN200980144534.9A CN102209857B (zh) 2008-11-06 2009-10-06 固定式等速万向接头及其制造方法、以及使用了该固定式等速万向接头的驱动车轮用轴承单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008285562A JP5318535B2 (ja) 2008-11-06 2008-11-06 固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニット
JP2008-285562 2008-11-06

Publications (1)

Publication Number Publication Date
WO2010052985A1 true WO2010052985A1 (ja) 2010-05-14

Family

ID=42152795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067380 WO2010052985A1 (ja) 2008-11-06 2009-10-06 固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニット

Country Status (5)

Country Link
US (1) US8499457B2 (ja)
EP (1) EP2345823B1 (ja)
JP (1) JP5318535B2 (ja)
CN (1) CN102209857B (ja)
WO (1) WO2010052985A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072865A (ja) * 2010-09-29 2012-04-12 Ntn Corp 固定式等速自在継手

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394078B2 (ja) * 2009-01-14 2014-01-22 Ntn株式会社 固定式等速自在継手の外側継手部材
KR101371457B1 (ko) * 2012-06-04 2014-03-10 현대자동차주식회사 차량용 등속 조인트
CN103831659B (zh) * 2014-01-24 2016-05-25 南通国盛精密机械有限公司 一种相对运动的联动条齿链
US10378590B2 (en) * 2015-09-17 2019-08-13 J. E. Reel Truck Parts, Inc. Modular driveline yoke
JP6832629B2 (ja) * 2016-03-25 2021-02-24 Ntn株式会社 固定式等速自在継手
US10801546B2 (en) 2017-06-07 2020-10-13 Roller Bearing Company Of America, Inc. Ball bearing cam follower for an adjustable aircraft seat
US11125277B2 (en) 2017-07-19 2021-09-21 Zhejiang CFMOTO Power Co., Ltd. Type of constant velocity universal joint with the spline slip structure
US11242896B2 (en) 2017-07-19 2022-02-08 Zhejiang Cfmoto Power Co. Ltd. Spline slip constant velocity joint
US10767700B2 (en) * 2017-11-14 2020-09-08 Aktiebolaget Skf Flanged inner ring for wheel hub bearings
US11073180B2 (en) * 2017-12-07 2021-07-27 Neapco Intellectual Property Holdings, Llc Constant velocity joint with cooperating boot and shaft vent channels
CN108083617B (zh) * 2018-01-31 2023-11-21 蚌埠凯盛工程技术有限公司 一种多自由度旋转的拉边头组件
CN108117246B (zh) * 2018-01-31 2023-07-25 蚌埠凯盛工程技术有限公司 一种多自由度旋转装置
US10378593B1 (en) * 2018-04-27 2019-08-13 Gkn Driveline North America, Inc. Boot assembly for a joint member
WO2023237215A1 (en) 2022-06-10 2023-12-14 Gkn Driveline International Gmbh Method for producing a counter track joint
CN115229453B (zh) * 2022-09-23 2022-12-06 万向钱潮股份公司 三柱槽壳加工方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830030U (ja) * 1981-08-24 1983-02-26 トヨタ自動車株式会社 バ−フイ−ルドジヨイント
JPS6334323A (ja) 1986-07-25 1988-02-15 Toyota Motor Corp ボ−ルジヨイントの組付方法
JPH0155688B2 (ja) 1983-01-18 1989-11-27 Toyota Motor Co Ltd
JP2000145805A (ja) * 1998-11-11 2000-05-26 Nsk Ltd 等速ジョイント及び等速ジョイント付自動車用ハブユニット
JP2000230568A (ja) * 1999-02-15 2000-08-22 Toyoda Mach Works Ltd ボール型等速ジョイント
JP2006144814A (ja) * 2004-11-16 2006-06-08 Honda Motor Co Ltd 有内歯部材及びその製造方法
JP2006258207A (ja) * 2005-03-17 2006-09-28 Ntn Corp 固定式等速自在継手
JP2008008474A (ja) * 2006-06-30 2008-01-17 Ntn Corp 固定式等速自在継手
JP2008025641A (ja) * 2006-07-19 2008-02-07 Ntn Corp 等速自在継手
JP2008111469A (ja) * 2006-10-30 2008-05-15 Honda Motor Co Ltd 等速ジョイント用外輪部材の製造方法
JP2008121791A (ja) * 2006-11-13 2008-05-29 Jtekt Corp ボール形等速ジョイント
JP2008190589A (ja) * 2007-02-02 2008-08-21 Ntn Corp 固定式等速自在継手
JP2008230487A (ja) * 2007-03-22 2008-10-02 Ntn Corp 駆動車輪用軸受装置
JP2008232293A (ja) * 2007-03-20 2008-10-02 Ntn Corp 等速自在継手
JP2008256022A (ja) * 2007-04-02 2008-10-23 Ntn Corp 等速自在継手
JP2008260435A (ja) * 2007-04-12 2008-10-30 Ntn Corp 後輪用アクスルモジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830030A (ja) 1981-08-14 1983-02-22 株式会社日立製作所 開閉器のばね受装置
JPS6455688A (en) 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Card device
JP2813365B2 (ja) * 1989-04-10 1998-10-22 豊田工機株式会社 等速ジョイント
DE69623439T3 (de) * 1995-12-26 2010-09-30 Ntn Corp. Homokinetisches kreuzgelenk
JPH11101256A (ja) * 1997-09-29 1999-04-13 Ntn Corp 等速ジョイント
JPH11247877A (ja) * 1998-02-27 1999-09-14 Ntn Corp 等速ジョイントおよびその外輪の成形方法
JP3909992B2 (ja) * 1999-11-30 2007-04-25 Ntn株式会社 固定式等速自在継手のケージおよびその製造方法並びに固定式等速自在継手
US6780114B2 (en) * 1999-12-15 2004-08-24 Ntn Corporation Drive wheel bearing assembly
BRPI0713497A2 (pt) * 2006-06-23 2012-01-24 Ntn Toyo Bearing Co Ltd junta universal de velocidade constante, eixo de acionamento usando junta universal de velocidade constante, e unidade de mancal para roda motriz
EP2119929B1 (en) 2007-01-17 2016-08-17 NTN Corporation Constant velocity universal joint
WO2008114698A1 (ja) 2007-03-22 2008-09-25 Ntn Corporation 車輪用軸受装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830030U (ja) * 1981-08-24 1983-02-26 トヨタ自動車株式会社 バ−フイ−ルドジヨイント
JPH0155688B2 (ja) 1983-01-18 1989-11-27 Toyota Motor Co Ltd
JPS6334323A (ja) 1986-07-25 1988-02-15 Toyota Motor Corp ボ−ルジヨイントの組付方法
JP2000145805A (ja) * 1998-11-11 2000-05-26 Nsk Ltd 等速ジョイント及び等速ジョイント付自動車用ハブユニット
JP2000230568A (ja) * 1999-02-15 2000-08-22 Toyoda Mach Works Ltd ボール型等速ジョイント
JP2006144814A (ja) * 2004-11-16 2006-06-08 Honda Motor Co Ltd 有内歯部材及びその製造方法
JP2006258207A (ja) * 2005-03-17 2006-09-28 Ntn Corp 固定式等速自在継手
JP2008008474A (ja) * 2006-06-30 2008-01-17 Ntn Corp 固定式等速自在継手
JP2008025641A (ja) * 2006-07-19 2008-02-07 Ntn Corp 等速自在継手
JP2008111469A (ja) * 2006-10-30 2008-05-15 Honda Motor Co Ltd 等速ジョイント用外輪部材の製造方法
JP2008121791A (ja) * 2006-11-13 2008-05-29 Jtekt Corp ボール形等速ジョイント
JP2008190589A (ja) * 2007-02-02 2008-08-21 Ntn Corp 固定式等速自在継手
JP2008232293A (ja) * 2007-03-20 2008-10-02 Ntn Corp 等速自在継手
JP2008230487A (ja) * 2007-03-22 2008-10-02 Ntn Corp 駆動車輪用軸受装置
JP2008256022A (ja) * 2007-04-02 2008-10-23 Ntn Corp 等速自在継手
JP2008260435A (ja) * 2007-04-12 2008-10-30 Ntn Corp 後輪用アクスルモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2345823A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072865A (ja) * 2010-09-29 2012-04-12 Ntn Corp 固定式等速自在継手

Also Published As

Publication number Publication date
CN102209857A (zh) 2011-10-05
EP2345823A1 (en) 2011-07-20
EP2345823A4 (en) 2012-05-02
CN102209857B (zh) 2014-07-16
JP5318535B2 (ja) 2013-10-16
EP2345823B1 (en) 2015-09-09
US8499457B2 (en) 2013-08-06
US20110212788A1 (en) 2011-09-01
JP2010112469A (ja) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5318535B2 (ja) 固定式等速自在継手及びその製造方法並びにこの固定式等速自在継手を用いた駆動車輪用軸受ユニット
US9505266B2 (en) Wheel bearing apparatus and axle module
EP1311771B1 (en) Wheel drive unit
EP2738404B1 (en) Bearing device for wheel
WO2010147135A1 (ja) 車輪用軸受
JP5826788B2 (ja) 車輪用軸受装置の製造方法
JP2010047059A (ja) 車輪用軸受装置およびアクスルモジュール
JP5683773B2 (ja) 車輪用軸受装置
JP5160358B2 (ja) 車輪用軸受装置
JP2009270629A (ja) 車輪用軸受装置およびアクスルモジュール
JP2009255725A (ja) 車輪用軸受装置
JP2010042785A (ja) 車輪用軸受装置
JP2007069704A (ja) 駆動車輪用軸受装置
JP4021293B2 (ja) 車輪軸受装置
JP2010047057A (ja) 車輪用軸受装置およびアクスルモジュール
JP2010116144A (ja) 車輪用軸受装置
EP2133582B1 (en) Constant velocity universal joint
JP2008051222A (ja) 二部材の連結構造
JP5295644B2 (ja) 車輪用軸受装置およびアクスルモジュール
JP5301175B2 (ja) 駆動車輪用軸受装置
JP2010023800A (ja) 車輪用軸受装置
JP2008051221A (ja) 二部材の連結構造
WO2010021225A1 (ja) 車輪用軸受装置およびアクスルモジュール
JP2017047716A (ja) 車輪用軸受装置
JP2010095073A (ja) 駆動車輪用軸受装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144534.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13123925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009824685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3784/CHENP/2011

Country of ref document: IN