WO2010052914A1 - 弾性波素子と、これを用いた電子機器 - Google Patents
弾性波素子と、これを用いた電子機器 Download PDFInfo
- Publication number
- WO2010052914A1 WO2010052914A1 PCT/JP2009/005900 JP2009005900W WO2010052914A1 WO 2010052914 A1 WO2010052914 A1 WO 2010052914A1 JP 2009005900 W JP2009005900 W JP 2009005900W WO 2010052914 A1 WO2010052914 A1 WO 2010052914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dielectric layer
- idt electrode
- convex portion
- width
- acoustic wave
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 abstract description 35
- 238000010168 coupling process Methods 0.000 abstract description 35
- 238000005859 coupling reaction Methods 0.000 abstract description 35
- 238000010586 diagram Methods 0.000 description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- -1 composed of copper Chemical compound 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/0222—Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02818—Means for compensation or elimination of undesirable effects
Definitions
- the present invention relates to an acoustic wave element and an electronic device using the same.
- FIG. 10 is a schematic sectional view of a conventional acoustic wave element.
- the conventional acoustic wave element 1 includes a piezoelectric body 2 made of lithium niobate, an IDT (Interdigital Transducer) electrode 3 disposed on the piezoelectric body 2, and a piezoelectric body 2 so as to cover the IDT electrode 3.
- Two dielectric layers 5 5.
- Patent Document 1 is known as prior art document information relating to this application.
- the conventional acoustic wave element 1 suppresses the electromechanical coupling coefficient of the Stoneley wave, which is an unnecessary wave, by designing the film thickness of the first dielectric layer 4, the film thickness of the IDT electrode 3, and the cut angle of the substrate. It was.
- the electromechanical coupling coefficient of the SH wave, which is the main wave is small, at most 0.15. For this reason, when the conventional acoustic wave device 1 is applied to a duplexer having a wide transmission / reception band gap such as band I of UMTS, it is difficult to obtain good filter characteristics.
- the present invention improves the electromechanical coupling coefficient of the main wave.
- the first dielectric layer when the thickness of the second dielectric layer is a boundary wave device structure having 1.6 times or more the pitch width p of the IDT electrode, the first dielectric layer is located above the IDT electrode.
- the first dielectric layer has a convex portion on the upper surface.
- the electromechanical coupling coefficient of the SH wave which is the main wave
- the elastic wave device is applied to a duplexer having a wide transmission / reception band gap such as UMTS band I. In this case, it is easy to obtain good filter characteristics.
- FIG. 1 is a schematic sectional view of an acoustic wave device according to Embodiment 1 of the present invention.
- FIG. 2 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 3 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 4 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 5 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 6 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 1 is a schematic sectional view of an acoustic wave device according to Embodiment 1 of the present invention.
- FIG. 2 is an explanatory diagram of the characteristics of the acoustic wave device according to
- FIG. 7 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 8 is another schematic cross-sectional view of the acoustic wave device according to Embodiment 1 of the present invention.
- FIG. 9 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention.
- FIG. 10 is a schematic sectional view of a conventional acoustic wave device.
- FIG. 1 is a schematic sectional view of an acoustic wave device according to Embodiment 1 of the present invention.
- the acoustic wave element 6 includes a piezoelectric body 7, an IDT electrode 8 disposed on the piezoelectric body 7, and silicon oxide disposed on the piezoelectric body 7 so as to cover the IDT electrode 8.
- a first dielectric layer 9; and a second dielectric layer 10 made of a medium that is disposed on the first dielectric layer 9 and that transmits a transverse wave faster than a transverse wave that propagates through the first dielectric layer 9.
- the first dielectric layer 9 has a convex portion 11 on the upper surface of the first dielectric layer 9 above the IDT electrode 8.
- L ⁇ p is satisfied.
- the piezoelectric body 7 is made of, for example, a lithium niobate, lithium tantalate, or potassium niobate piezoelectric substrate.
- the IDT electrode 8 is, for example, copper (specific gravity: 8.95) or a metal mainly composed of copper, but is not limited thereto.
- the first dielectric layer 9 is made of, for example, silicon oxide. However, any medium having a frequency temperature characteristic opposite to that of the piezoelectric body 7 may be used. Thereby, frequency temperature characteristics can be improved.
- the second dielectric layer 10 is made of a medium in which a transverse wave that is faster than the velocity of the transverse wave propagating in the first dielectric layer 9 is propagated, and is, for example, diamond, silicon, silicon nitride, aluminum nitride, or aluminum oxide.
- the film thickness of the second dielectric layer 10 is 1.6 times or more the pitch width p of the IDT electrode 8. Thereby, the energy of the SH wave that is the main wave can be confined in the acoustic wave element 6.
- the height from the boundary surface between the piezoelectric body 7 and the first dielectric layer 9 and the lower end of the convex portion 11 is t1, and the height from the upper end of the convex portion 11 to the lower end of the convex portion 11 is set.
- t2 the film thickness of the IDT electrode 8 is h, and the wavelength of the SH wave that is the main wave excited by the IDT electrode 8 is ⁇ , t1 ⁇ 0.28 ⁇ and 0 ⁇ t2 ⁇ 1.5h, or 0.28 ⁇ t1 ⁇ 0.3 ⁇ and 0 ⁇ t2 ⁇ 0.58h are satisfied.
- the elastic wave element 6 satisfies L2 ⁇ L1 when the width of the lower end of the convex portion 11 is L1 and the width of the upper end of the convex portion 11 is L2.
- L2 the width of the lower end of the convex portion 11
- L2 the width of the upper end of the convex portion 11 is L2.
- FIG. 2 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention. That is, a diagram showing a change in the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 when the height t2 of the convex portion 11 is changed when the film thickness t1 of the first dielectric layer 9 is 0.25 ⁇ . It is.
- the horizontal axis is (height t2 of the convex portion) / (film thickness h of the IDT electrode), and the vertical axis is the electromechanical coupling coefficient of the main wave.
- the piezoelectric body 7 lithium niobate of a 25-degree rotated Y plate is used, copper having a film thickness of the IDT electrode 8 is 0.1 ⁇ , and the film thickness t1 is 0.25 ⁇ as the first dielectric layer 9. Silicon nitride having a film thickness of ⁇ was used as the second dielectric layer 10.
- the width L1 of the lower end of the convex portion 11 is equal to the width p1 of the electrode finger of the IDT electrode 8.
- the direction of the electrode finger width p1 of the IDT electrode 8 is the same as the propagation direction of the main wave.
- the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 is improved by the convex portion 11.
- the height t2 of the convex portion 11 is 0.038 ⁇ or more and 0.15 ⁇ or less, that is, when the film thickness h of the IDT electrode 8 is 0.38 times or more and 1.5 times or less, the acoustic wave element 6
- the electromechanical coupling coefficient of the main wave is further improved.
- FIG. 3 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention. That is, a diagram showing a change in the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 when the height t2 of the convex portion 11 is changed when the thickness t1 of the first dielectric layer 9 is 0.28 ⁇ . It is.
- the horizontal axis represents (height t2 of the convex portion) / (film thickness h of the IDT electrode), and the vertical axis represents the electromechanical coupling coefficient of the main wave.
- the piezoelectric body 7 lithium niobate of a 25-degree rotated Y plate is used, copper having a thickness of 0.1 ⁇ of the IDT electrode 8 is used, and the first dielectric layer 9 is used. Silicon oxide having a film thickness t1 of 0.28 ⁇ was used, and silicon nitride having a film thickness of ⁇ was used as the second dielectric layer 10.
- the width L1 at the lower end of the convex portion 11 and the width L2 at the upper end of the convex portion 11 are equal to the width p1 of the electrode finger of the IDT electrode 8.
- FIG. 4 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention. That is, a diagram showing a change in the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 when the height t2 of the convex portion 11 is changed when the film thickness t1 of the first dielectric layer 9 is 0.3 ⁇ . It is.
- the horizontal axis is (height t2 of the convex portion) / (film thickness h of the IDT electrode), and the vertical axis is the electromechanical coupling coefficient of the main wave.
- the piezoelectric body 7 lithium niobate of a 25-degree rotated Y plate is used, copper having a thickness of 0.1 ⁇ of the IDT electrode 8 is used, and the first dielectric layer 9 is used. Silicon oxide with a film thickness t1 of 0.3 ⁇ was used, and silicon nitride with a film thickness of ⁇ was used as the second dielectric layer 10.
- the width L1 at the lower end of the convex portion 11 and the width L2 at the upper end of the convex portion 11 are equal to the width p1 of the electrode finger of the IDT electrode 8.
- FIG. 5 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention. That is, a diagram showing a change in the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 when the height t2 of the convex portion 11 is changed when the film thickness t1 of the first dielectric layer 9 is 0.4 ⁇ . It is.
- the horizontal axis is (height t2 of the convex portion) / (film thickness h of the IDT electrode), and the vertical axis is the electromechanical coupling coefficient of the main wave.
- the piezoelectric body 7 lithium niobate of a 25-degree rotated Y plate is used, copper having a thickness of 0.1 ⁇ of the IDT electrode 8 is used, and the first dielectric layer 9 is used. Silicon oxide with a film thickness t1 of 0.4 ⁇ was used, and silicon nitride with a film thickness of ⁇ was used as the second dielectric layer 10.
- the width L1 at the lower end of the convex portion 11 and the width L2 at the upper end of the convex portion 11 are equal to the width p1 of the electrode finger of the IDT electrode 8.
- the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 is lowered by the convex portion 11 regardless of the height t ⁇ b> 2 of the convex portion 11.
- the electromechanical coupling coefficient of the SH wave that is the main wave is improved.
- FIG. 6 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention. That is, the thickness t1 of the first dielectric layer 9 is 0.25 ⁇ , and the width L1 of the lower end of the convex portion 11 and the width L2 of the upper end of the convex portion 11 are 0. 0 of the electrode finger width p1 of the IDT electrode 8.
- FIG. In FIG. 6, the horizontal axis is (height t2 of the convex portion) / (film thickness h of the IDT electrode), and the vertical axis is the electromechanical coupling coefficient of the main wave.
- lithium niobate of a 25-degree rotated Y plate is used, copper having a thickness of 0.1 ⁇ of the IDT electrode 8 is used, and the first dielectric layer 9 is used. Silicon oxide with a film thickness t1 of 0.25 ⁇ was used, and silicon nitride with a film thickness of ⁇ was used as the second dielectric layer 10.
- FIG. 7 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention. That is, the characteristic of the acoustic wave element 6 in which the convex portion 11 becomes narrower upward when the relationship between the lower end width L1 and the upper end width L2 of the convex portion 11 satisfies L2 ⁇ L1.
- the film thickness t1 of the first dielectric layer 9 is 0.25 ⁇
- the width L1 of the lower end of the convex portion 11 is 0.6 times the width p1 of the electrode finger of the IDT electrode 8
- the convex portion 11 The width L2 of the upper end is 0.3 times the width p1 of the electrode finger of the IDT electrode 8
- the width L1 of the lower end of the convex portion 11 is one time the width p1 of the electrode finger of the IDT electrode 8
- the width L2 of the upper end of the convex portion 11 Is 0.5 times the electrode finger width p1 of the IDT electrode 8
- the lower end width L1 of the convex portion 11 is 1.4 times the electrode finger width p1 of the IDT electrode 8
- the upper end width L2 of the convex portion 11 is IDT.
- the width 8 of the electrode finger of the electrode 8 is 0.7 times the width L1 of the lower end of the projection 11 is 1.8 times the width p1 of the electrode finger of the IDT electrode 8, and the width L2 of the upper end of the projection 11 is the IDT electrode.
- the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 when the height t2 of the convex portion 11 is changed in the case of 0.9 times the width p1 of the electrode finger 8 Show a reduction.
- the horizontal axis in FIG. 7 is (height t2 of the convex portion) / (film thickness h of the IDT electrode), and the vertical axis in FIG. 7 is the electromechanical coupling coefficient of the main wave.
- lithium niobate of a 25-degree rotated Y plate is used, copper having a thickness of 0.1 ⁇ of the IDT electrode 8 is used, and the first dielectric layer 9 is used. Silicon oxide with a film thickness t1 of 0.25 ⁇ was used, and silicon nitride with a film thickness of ⁇ was used as the second dielectric layer 10.
- bias sputtering method As a method for obtaining the shape of the first dielectric layer 9, there is a so-called bias sputtering method in which a film is formed by sputtering while applying a bias to the piezoelectric body 7 in the manufacturing process of the acoustic wave element 6. Can be mentioned.
- FIG. 8 is another schematic cross-sectional view of the acoustic wave device according to Embodiment 1 of the present invention.
- the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 is further increased by making the width L2 of the upper end of the convex portion 11 smaller than the width P1 of the electrode fingers of the IDT electrode 8. Further, the reflectivity of the IDT electrode 8 due to the mass addition effect of the first dielectric layer 9 is increased, and the electrical characteristics of the acoustic wave device 6 are improved.
- the width of the upper end of the convex portion 11 is further 1 ⁇ 2 or less of the electrode finger width of the IDT electrode 8. Furthermore, it is desirable that the center position of the upper end of the convex portion 11 substantially coincides with the center position of the electrode finger of the IDT electrode 8. Thereby, the electrical characteristics of the acoustic wave device 5 are further improved.
- the thickness is larger than the film thickness h of the IDT electrode 8, it is necessary to add a new process for forming the first dielectric layer 9, and the manufacturing method becomes complicated.
- the IDT electrode 8 is described as a metal mainly composed of copper, but the IDT electrode 8 is not limited to copper.
- FIG. 9 is an explanatory diagram of the characteristics of the acoustic wave device according to the first embodiment of the present invention. That is, in the case where the IDT electrode 8 is molybdenum (specific gravity 10.22), when the film thickness t1 of the first dielectric layer 9 is 0.25 ⁇ , 0.28 ⁇ , 0.3 ⁇ , the height t2 of the convex portion 11
- FIG. 6 is a diagram showing changes in the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 when the angle is changed.
- the horizontal axis is (height t2 of the convex portion) / (film thickness h of the IDT electrode), and the vertical axis is the electromechanical coupling coefficient of the main wave.
- the piezoelectric body 7 lithium niobate of a 25-degree rotated Y plate is used, molybdenum having an IDT electrode 8 with a thickness of 0.1 ⁇ is used, and as the first dielectric layer 9, the thickness t1 is 0.28 ⁇ . Silicon nitride having a film thickness of ⁇ was used as the second dielectric layer 10.
- the width L1 at the lower end of the convex portion 11 and the width L2 at the upper end of the convex portion 11 are equal to the width p1 of the electrode finger of the IDT electrode 8.
- the IDT electrode is made of, for example, molybdenum other than copper, the electromechanical coupling coefficient of the main wave of the acoustic wave element 6 is improved.
- the elastic wave element 6 may be applied to a resonator (not shown), or may be applied to a filter (not shown) such as a ladder filter or a DMS filter. Further, the acoustic wave element 6 includes the filter, a semiconductor integrated circuit element (not shown) connected to the filter, and a reproducing device such as a speaker and a display unit connected to the semiconductor integrated circuit element (not shown). You may apply to the electronic device provided with. Thereby, the communication quality in a resonator, a filter, and an electronic device can be improved.
- the acoustic wave device has a feature that the electromechanical coupling coefficient of the main wave is large, and can be applied to an electronic device such as a mobile phone.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
図1は本発明の実施の形態1に係る弾性波素子の断面模式図である。図1において、弾性波素子6は、圧電体7と、この圧電体7の上に配置されたIDT電極8と、IDT電極8を覆うように圧電体7の上に配置された酸化ケイ素からなる第1誘電体層9と、この第1誘電体層9の上に配置されて第1誘電体層9を伝搬する横波より速い横波が伝搬する媒質からなる第2誘電体層10と、を備える。第1誘電体層9は、IDT電極8の上方における第1誘電体層9の上面に凸部11を有する。ここで、凸部11のピッチ幅をLとし、IDT電極8のピッチ幅をpとした場合、L≒pを満たしている。
7 圧電体
8 IDT電極
9 第1誘電体層
10 第2誘電体層
11 凸部
Claims (6)
- 圧電体と、
前記圧電体の上に配置されたIDT電極と、
前記IDT電極を覆うように前記圧電体の上に配置されて前記圧電体とは逆の周波数温度特性を有する媒質からなる第1誘電体層と、
前記第1誘電体層の上に配置されて前記第1誘電体層を伝搬する横波より速い横波が伝搬する媒質からなる第2誘電体層と、を備え、
前記第1誘電体層は、前記IDT電極の上方における前記第1誘電体層の上面に凸部を有する
弾性波素子。 - 前記圧電体と前記第1誘電体層との境界面と前記凸部の下端までの高さをt1とし、
前記凸部の上端から前記凸部の下端までの高さをt2とし、
前記IDT電極の膜厚をhとし、
前記IDT電極で励振される主要波の波長をλとしたとき、
0<t1≦0.28λ、かつ、0<t2≦1.5h、
又は、
0.28<t1≦0.3λ、かつ、0<t2≦0.58h
を満たす
請求項1に記載の弾性波素子。 - 前記第2誘電体層の膜厚は、IDT電極のピッチ幅pの1.6倍以上である
請求項1又は請求項2のうちいずれか一つに記載の弾性波素子。 - 前記IDT電極の電極指の幅をp1とし、前記凸部の下端の幅をL1としたとき、
0.6≦L1/p1≦1.8
を満たす
請求項1又は請求項2のうちいずれか一つに記載の弾性波素子。 - 前記凸部の上端の幅をL2としたとき、L2<L1を満たす
請求項1又は請求項2のうちいずれか一つに記載の弾性波素子。 - 請求項1に記載の弾性波素子と、
前記弾性波素子に接続された半導体集積回路素子と、
前記半導体集積回路素子に接続された再生装置と、を備えた
電子機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980144060.8A CN102204094B (zh) | 2008-11-10 | 2009-11-06 | 弹性波元件及使用了该弹性波元件的电子设备 |
US13/124,685 US8598968B2 (en) | 2008-11-10 | 2009-11-06 | Elastic wave element and electronic device using the same |
JP2010536692A JP5163748B2 (ja) | 2008-11-10 | 2009-11-06 | 弾性波素子と、これを用いた電子機器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008287325 | 2008-11-10 | ||
JP2008-287325 | 2008-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010052914A1 true WO2010052914A1 (ja) | 2010-05-14 |
Family
ID=42152727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005900 WO2010052914A1 (ja) | 2008-11-10 | 2009-11-06 | 弾性波素子と、これを用いた電子機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8598968B2 (ja) |
JP (1) | JP5163748B2 (ja) |
CN (1) | CN102204094B (ja) |
WO (1) | WO2010052914A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013138333A (ja) * | 2011-12-28 | 2013-07-11 | Panasonic Corp | 弾性波素子 |
JP2020145737A (ja) * | 2016-11-17 | 2020-09-10 | 株式会社村田製作所 | 弾性波装置 |
US20240048120A1 (en) * | 2017-04-17 | 2024-02-08 | Murata Manufacturing Co., Ltd. | Acoustic wave device, high frequency front end circuit, and communication apparatus |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9758953B2 (en) | 2012-03-21 | 2017-09-12 | Bradley Fixtures Corporation | Basin and hand drying system |
US9267736B2 (en) | 2011-04-18 | 2016-02-23 | Bradley Fixtures Corporation | Hand dryer with point of ingress dependent air delay and filter sensor |
US10100501B2 (en) | 2012-08-24 | 2018-10-16 | Bradley Fixtures Corporation | Multi-purpose hand washing station |
DE102014118000A1 (de) * | 2014-12-05 | 2016-06-09 | Epcos Ag | Anordnung mit einem DMS Filter und steiler rechter Flanke |
US10355668B2 (en) * | 2015-01-20 | 2019-07-16 | Taiyo Yuden Co., Ltd. | Acoustic wave device |
CN107251428B (zh) * | 2015-03-27 | 2020-10-23 | 株式会社村田制作所 | 弹性波装置、通信模块设备以及弹性波装置的制造方法 |
US10041236B2 (en) | 2016-06-08 | 2018-08-07 | Bradley Corporation | Multi-function fixture for a lavatory system |
US11015329B2 (en) | 2016-06-08 | 2021-05-25 | Bradley Corporation | Lavatory drain system |
CN111727564B (zh) * | 2018-12-28 | 2024-01-19 | 株式会社村田制作所 | 滤波器装置以及多工器 |
JP7454794B2 (ja) | 2020-06-30 | 2024-03-25 | パナソニックIpマネジメント株式会社 | 水栓の吐水部構造およびそれを備える水栓 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998052279A1 (fr) * | 1997-05-12 | 1998-11-19 | Hitachi, Ltd. | Dispositif a onde elastique |
JP2004207996A (ja) * | 2002-12-25 | 2004-07-22 | Matsushita Electric Ind Co Ltd | 電子部品およびこの電子部品を用いた電子機器 |
WO2006003933A1 (ja) * | 2004-06-30 | 2006-01-12 | Matsushita Electric Industrial Co., Ltd. | 電子部品およびその製造方法 |
JP2007267366A (ja) * | 2006-02-28 | 2007-10-11 | Fujitsu Media Device Kk | 弾性境界波素子、共振器およびフィルタ |
JP2008079227A (ja) * | 2006-09-25 | 2008-04-03 | Fujitsu Media Device Kk | フィルタおよび分波器 |
WO2008078481A1 (ja) * | 2006-12-25 | 2008-07-03 | Murata Manufacturing Co., Ltd. | 弾性境界波装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996004713A1 (fr) * | 1994-08-05 | 1996-02-15 | Japan Energy Corporation | Dispositif a ondes acoustiques de surface et procede de production |
EP1578015A4 (en) * | 2002-12-25 | 2008-04-23 | Matsushita Electric Ind Co Ltd | ELECTRONIC COMPONENT AND ELECTRONIC APPARATUS USING SUCH ELECTRONIC COMPONENT |
CN100517963C (zh) * | 2002-12-25 | 2009-07-22 | 松下电器产业株式会社 | 电子部件以及采用该电子部件的电子器械 |
JP4305173B2 (ja) * | 2002-12-25 | 2009-07-29 | パナソニック株式会社 | 電子部品およびこの電子部品を用いた電子機器 |
JP2004254291A (ja) * | 2003-01-27 | 2004-09-09 | Murata Mfg Co Ltd | 弾性表面波装置 |
JP2007202087A (ja) * | 2005-05-11 | 2007-08-09 | Seiko Epson Corp | ラム波型高周波デバイス |
US7619347B1 (en) * | 2005-05-24 | 2009-11-17 | Rf Micro Devices, Inc. | Layer acoustic wave device and method of making the same |
US7471171B2 (en) * | 2006-02-28 | 2008-12-30 | Fujitsu Media Devices Limited | Elastic boundary wave device, resonator, and filter |
JP4975377B2 (ja) * | 2006-06-06 | 2012-07-11 | 太陽誘電株式会社 | 弾性境界波素子、共振器およびフィルタ |
JP2008067289A (ja) * | 2006-09-11 | 2008-03-21 | Fujitsu Media Device Kk | 弾性波デバイスおよびフィルタ |
JP4943787B2 (ja) * | 2006-09-13 | 2012-05-30 | 太陽誘電株式会社 | 弾性波デバイス、共振器およびフィルタ |
JP2008109413A (ja) * | 2006-10-25 | 2008-05-08 | Fujitsu Media Device Kk | 弾性波デバイスおよびフィルタ |
JP2010011440A (ja) * | 2008-05-30 | 2010-01-14 | Hitachi Ltd | 弾性波装置及びそれを用いた高周波フィルタ |
JP2010193429A (ja) * | 2009-01-26 | 2010-09-02 | Murata Mfg Co Ltd | 弾性波装置 |
US8294330B1 (en) * | 2009-03-31 | 2012-10-23 | Triquint Semiconductor, Inc. | High coupling, low loss saw filter and associated method |
-
2009
- 2009-11-06 JP JP2010536692A patent/JP5163748B2/ja active Active
- 2009-11-06 US US13/124,685 patent/US8598968B2/en active Active
- 2009-11-06 WO PCT/JP2009/005900 patent/WO2010052914A1/ja active Application Filing
- 2009-11-06 CN CN200980144060.8A patent/CN102204094B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998052279A1 (fr) * | 1997-05-12 | 1998-11-19 | Hitachi, Ltd. | Dispositif a onde elastique |
JP2004207996A (ja) * | 2002-12-25 | 2004-07-22 | Matsushita Electric Ind Co Ltd | 電子部品およびこの電子部品を用いた電子機器 |
WO2006003933A1 (ja) * | 2004-06-30 | 2006-01-12 | Matsushita Electric Industrial Co., Ltd. | 電子部品およびその製造方法 |
JP2007267366A (ja) * | 2006-02-28 | 2007-10-11 | Fujitsu Media Device Kk | 弾性境界波素子、共振器およびフィルタ |
JP2008079227A (ja) * | 2006-09-25 | 2008-04-03 | Fujitsu Media Device Kk | フィルタおよび分波器 |
WO2008078481A1 (ja) * | 2006-12-25 | 2008-07-03 | Murata Manufacturing Co., Ltd. | 弾性境界波装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013138333A (ja) * | 2011-12-28 | 2013-07-11 | Panasonic Corp | 弾性波素子 |
JP2020145737A (ja) * | 2016-11-17 | 2020-09-10 | 株式会社村田製作所 | 弾性波装置 |
JP7042866B2 (ja) | 2016-11-17 | 2022-03-28 | 株式会社村田製作所 | 弾性波装置 |
US11595023B2 (en) | 2016-11-17 | 2023-02-28 | Murata Manufacturing Co., Ltd. | Elastic wave device |
US20240048120A1 (en) * | 2017-04-17 | 2024-02-08 | Murata Manufacturing Co., Ltd. | Acoustic wave device, high frequency front end circuit, and communication apparatus |
Also Published As
Publication number | Publication date |
---|---|
US8598968B2 (en) | 2013-12-03 |
US20110204998A1 (en) | 2011-08-25 |
CN102204094A (zh) | 2011-09-28 |
JPWO2010052914A1 (ja) | 2012-04-05 |
JP5163748B2 (ja) | 2013-03-13 |
CN102204094B (zh) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5163748B2 (ja) | 弾性波素子と、これを用いた電子機器 | |
WO2011158445A1 (ja) | 弾性波素子 | |
JP4337816B2 (ja) | 弾性境界波装置 | |
JP5187444B2 (ja) | 弾性表面波装置 | |
US20170358730A1 (en) | Elastic wave device | |
US20100320866A1 (en) | Boundary acoustic wave device | |
WO2010137279A1 (ja) | 弾性波共振器と、これを用いたアンテナ共用器 | |
US7804221B2 (en) | Surface acoustic wave device | |
WO2020204045A1 (ja) | 高次モード弾性表面波デバイス | |
JP5025963B2 (ja) | 電子部品とその製造方法及びこの電子部品を用いた電子機器 | |
WO2009139108A1 (ja) | 弾性境界波装置 | |
US8084916B2 (en) | Acoustic wave device and electronic equipment using the same | |
US7705515B2 (en) | Surface acoustic wave device | |
JPWO2007099742A1 (ja) | 弾性波装置及びその製造方法 | |
JP5213708B2 (ja) | 弾性表面波装置の製造方法 | |
JP5891198B2 (ja) | アンテナ共用器およびこれを用いた電子機器 | |
US8198781B2 (en) | Boundary acoustic wave device | |
WO2010101166A1 (ja) | 弾性表面波素子とその製造方法 | |
JP5110091B2 (ja) | 弾性表面波装置 | |
US7939988B2 (en) | Acoustic wave device | |
WO2010131607A1 (ja) | 弾性境界波装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980144060.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09824614 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010536692 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13124685 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09824614 Country of ref document: EP Kind code of ref document: A1 |