WO2010047296A1 - 新規ピリミジン誘導体およびHMG-CoA還元酵素阻害剤中間体の製造方法 - Google Patents

新規ピリミジン誘導体およびHMG-CoA還元酵素阻害剤中間体の製造方法 Download PDF

Info

Publication number
WO2010047296A1
WO2010047296A1 PCT/JP2009/067987 JP2009067987W WO2010047296A1 WO 2010047296 A1 WO2010047296 A1 WO 2010047296A1 JP 2009067987 W JP2009067987 W JP 2009067987W WO 2010047296 A1 WO2010047296 A1 WO 2010047296A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
methyl
following formula
Prior art date
Application number
PCT/JP2009/067987
Other languages
English (en)
French (fr)
Inventor
泰宏 坂
西山 章
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP09821993.4A priority Critical patent/EP2351762B1/en
Priority to CN2009801412985A priority patent/CN102186869A/zh
Priority to JP2010534798A priority patent/JPWO2010047296A1/ja
Publication of WO2010047296A1 publication Critical patent/WO2010047296A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/6512Six-membered rings having the nitrogen atoms in positions 1 and 3

Definitions

  • the present invention relates to a method for producing a novel pyrimidine derivative and an HMG-CoA reductase inhibitor intermediate.
  • the present invention has the following formula (1):
  • R 1 represents an optionally substituted alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms).
  • the present invention also includes a phosphonate represented by the above formula (3) and the following formula (4):
  • R 2 represents an optionally substituted alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms.
  • R 2 is the same as defined above, and relates to a method for producing an intermediate of an HMG-CoA reductase inhibitor.
  • R 1 represents an optionally substituted alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms
  • R 1 represents an optionally substituted alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms
  • tert-butyl (E)-( which is an important intermediate of a novel pyrimidine derivative and an HMG-CoA reductase inhibitor, in an industrially advantageous form using an inexpensive reagent.
  • FIG. 2 is an X-ray powder analysis spectrum for a typical sample of dimethyl [4- (4-fluorophenyl) -6-isopropyl-2- [methyl (methylsulfonyl) amino] pyrimidin-5-ylmethyl] phosphonate.
  • the vertical axis represents the X-ray intensity (cps), and the horizontal axis represents the diffraction angle (2 ⁇ ).
  • X represents a leaving group
  • examples of X include halogen atoms such as iodine atom, bromine atom and chlorine atom, and sulfonate esters such as methanesulfonate, p-toluenesulfonate and trifluoromethanesulfonate. it can.
  • Substitution from a hydroxyl group to a halogen atom includes a method using thionyl chloride (substitution to chlorine atom), a method using phosphorus tribromide (conversion to bromine atom), a method using iodine and triphenylphosphine (conversion to iodine atom)
  • a method of substituting a hydroxyl group with a halogen atom may be applied.
  • the conversion into a sulfonic acid ester can be usually performed by a method of synthesizing a sulfonic acid ester, that is, a method of allowing a sulfonic acid halide or a sulfonic acid anhydride to act in the presence of a base.
  • a method of synthesizing a sulfonic acid ester that is, a method of allowing a sulfonic acid halide or a sulfonic acid anhydride to act in the presence of a base.
  • 5-bromomethyl-4- (4-fluorophenyl) -6-isopropyl-2- [methyl (methylsulfonyl) amino] pyrimidine can be produced by the method of Reference Example 1.
  • the phosphonic acid ester represented by this is produced.
  • R 1 represents an optionally substituted alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms.
  • substituents include, but are not limited to, an alkyl group, a halogen atom, a trialkylsilyl group, a triarylsilyl group, an alkylarylsilyl group, and an alkoxy group.
  • Examples of the optionally substituted alkyl group having 1 to 18 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl
  • Examples thereof include a group, neopentyl group, hexyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group and octadecyl group.
  • Examples of the optionally substituted aryl group having 6 to 18 carbon atoms include a phenyl group, a p-methoxyphenyl group, a p-chlorophenyl group, and a naphthyl group.
  • Examples of the optionally substituted aralkyl group having 7 to 18 carbon atoms include benzyl group, p-methoxybenzyl group, naphthylmethyl group and the like.
  • the phosphite used is preferably trimethyl phosphite or triethyl phosphite, more preferably trimethyl phosphite.
  • the amount of the phosphite ester is not particularly limited, but is usually in the range of 1 to 10 times molar equivalent based on the molar equivalent of the compound represented by the formula (1), preferably The molar equivalent is 1 to 5 times, more preferably 1 to 3 times molar equivalent.
  • the molar equivalent is 1 to 5 times, more preferably 1 to 3 times molar equivalent.
  • This reaction can be performed under solvent-free conditions or in the presence of a solvent.
  • the solvent to be used is not particularly limited, but aliphatic hydrocarbons such as n-hexane, n-pentane, cyclohexane and methylcyclohexane, aromatic hydrocarbons such as toluene, ethylbenzene and o-dichlorobenzene, acetic acid Acetic esters such as methyl, ethyl acetate, isopropyl acetate and n-butyl acetate, nitriles such as acetonitrile and propionitrile, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, diethyl ether, tert -Ethers such as butyl methyl ether and tetrahydrofuran can be exemplified.
  • aromatic hydrocarbons are preferred, and toluene is particularly preferred.
  • these solvents may be used alone, or two or more kinds of solvents may be mixed and
  • the amount of the solvent to be used is not particularly limited, but is usually 1 to 50 times by volume, preferably 1 to 20 times by volume, based on the weight of the compound represented by the formula (1).
  • the volume is preferably 1 to 10 times.
  • the reaction temperature is not particularly limited, but is usually in the range of 0 ° C. to 250 ° C., preferably 25 ° C. to 200 ° C., more preferably 50 ° C. to 200 ° C.
  • the reaction time is not particularly limited, but is usually within a range of 1 to 100 hours, preferably 1 to 72 hours, and more preferably 1 to 48 hours.
  • This reaction can also be carried out in an air atmosphere, but is preferably carried out in an inert gas atmosphere.
  • an inert gas atmosphere For example, helium, nitrogen, argon and the like are preferable, and nitrogen and argon are more preferable.
  • the method of the present invention is represented by the above formula (3), which is the target product directly from the reaction solution, without performing a purification operation such as a silica gel column, which is difficult to implement industrially from an equipment or economic viewpoint.
  • the compound can be isolated and purified as crystals continuously following the reaction. That is, the reaction solvent can be used as it is as the crystallization solvent.
  • an organic solvent of a type different from the reaction solvent may be added.
  • the type of solvent to be added is not particularly limited, but aliphatic hydrocarbons such as n-hexane, n-pentane, cyclohexane and methylcyclohexane are preferable, and hexane is more preferable.
  • a different solvent may be added to the reaction mixture for crystallization.
  • a technique usually used for crystallization may be applied as appropriate, and is not particularly limited.
  • the reaction mixture solution is heated and then cooled. Cooling crystallization method to crystallize by adding seed crystals to the reaction mixture to promote crystallization, Concentrating crystallization method to crystallize after concentrating the reaction mixture solution to an appropriate concentration to make a supersaturated solution
  • the method of adding a poor solvent to lower the solubility and crystallizing may be used alone or in appropriate combination.
  • the temperature at the time of crystallization is not particularly limited, but is usually in the range of ⁇ 50 ° C. to 50 ° C., preferably in the range of ⁇ 25 to 30 ° C., more preferably ⁇ 15 ° C. to 15 ° C. Is within the range.
  • Crystallization can be carried out in an air atmosphere, but can also be carried out in an inert gas atmosphere following the reaction.
  • the inert gas in that case can illustrate the same gas as the said reaction conditions.
  • the crystallization mother liquor contains an excessively used phosphite, so this mother liquor can also be used directly in the next reaction.
  • boiling point of the phosphite ester is low (boiling point 111 to 112 ° C.), such as trimethyl phosphite, it can be reused after separation from the reaction mixture by concentration.
  • the by-product compound corresponding to R 1 -X also has a low-boiling halogenation. It becomes alkyl and can be easily separated and recovered from the reaction mixture.
  • the method for producing a phosphonate represented by the formula (3) according to the present invention merely provides a novel pyrimidine derivative and a method for producing an HMG-CoA reductase inhibitor using the same. In addition, it is an excellent production method from an industrial viewpoint and an environmental load viewpoint.
  • a method for producing an HMG-CoA reductase inhibitor intermediate represented by the formula The compound represented by the formula (3) may be obtained by the above method or may be obtained by other methods.
  • R 2 represents an optionally substituted alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms.
  • substituents include the same as those for R 1 .
  • Examples of the optionally substituted alkyl group having 1 to 18 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl
  • Examples thereof include a group, a neopentyl group, a hexyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group.
  • Examples of the optionally substituted aryl group having 6 to 18 carbon atoms include a phenyl group, a p-methoxyphenyl group, a p-chlorophenyl group, and a naphthyl group.
  • Examples of the optionally substituted aralkyl group having 7 to 18 carbon atoms include benzyl group, p-methoxybenzyl group, naphthylmethyl group and the like.
  • tert-butyl is preferred as R 2 .
  • the amount of the compound represented by the formula (4) is not particularly limited, but is usually 0.8 to 2. with respect to the molar equivalent of the phosphonic acid ester represented by the formula (3). It is in the range of 0 equivalents, preferably in the range of 1.0 to 1.5 equivalents.
  • the compound represented by the above formula (4) is, for example, tert-butyl 2-[(4R, 6S) described in Japanese Patent No. 2573919, Tetrahedron-Letters, Vol. 31, pages 2545-2548, 1990. ) -6-Hydroxymethyl-2,2-dimethyl-1,3-dioxane-4-yl) acetate is allowed to react with dimethyl sulfoxide, triethylamine, oxalyl chloride (Swan oxidation method), or described in Reference Example 2 It can manufacture with the manufacturing method of.
  • the kind of base is not particularly limited, and an inorganic base or an organic base can be used.
  • the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and cesium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide and strontium hydroxide, and lithium hydride.
  • metal hydrides such as sodium hydride and calcium hydride.
  • organic base examples include lithium diisopropylamide, lithium-2,2,6,6-tetramethylpiperazide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, and potassium hexamethyldisilazide.
  • Amide type base Grignard reagent such as isopropylmagnesium bromide, tert-butylmagnesium chloride, 1,8-diazabicyclo [4.5.0] -7-undecene, 1,4-diazabicyclo [2.2.2] octane, etc.
  • organic amine bases examples include lithium diisopropylamide, lithium-2,2,6,6-tetramethylpiperazide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, and potassium hexamethyldisilazide.
  • Amide type base Grignard reagent such as isopropylmagnesium bromide, tert-but
  • amide type bases of lithium diisopropylamide, lithium-2,2,6,6-tetramethylpiperazide, lithium hexamethyldisilazide, sodium hexamethyldisilazide and potassium hexamethyldisilazide are preferable, and more preferable.
  • This reaction is usually carried out in an inert gas atmosphere.
  • an inert gas atmosphere for example, helium, nitrogen, neon, argon and the like can be exemplified, and among these, nitrogen and argon are preferable.
  • the amount of the base used is not particularly limited, but is usually within the range of 0.8 to 2.0 equivalents relative to the molar equivalent of the phosphonic acid ester represented by the formula (3), preferably Is in the range of 1.0 to 1.5 equivalents, more preferably in the range of 1.0 to 1.3 equivalents.
  • This reaction is usually carried out in the presence of a solvent. Since the reaction is carried out in the presence of a base, it is necessary to select a solvent that does not react with the base. However, such a solvent is not particularly limited. Moreover, a solvent may be used independently or may mix and use two or more types of solvents in arbitrary ratios.
  • aliphatic hydrocarbons such as n-hexane, n-pentane, cyclohexane and methylcyclohexane
  • aromatic hydrocarbons such as toluene, ethylbenzene and o-dichlorobenzene, diethyl ether, tert-butyl methyl ether, tetrahydrofuran and the like
  • Ethers can be exemplified.
  • aromatic hydrocarbons and ethers are preferable, and toluene and tetrahydrofuran are particularly preferable.
  • the amount of the solvent used is not particularly limited, but is usually within a range of 1 to 100 times volume, preferably 5 to 60 times the dose of the phosphonate represented by the formula (3) to be used. And more preferably within the range of 5 to 50 times the capacity.
  • the reaction temperature is not particularly limited as long as it is not higher than the boiling point of the solvent used normally, but is preferably in the range of ⁇ 100 ° C. to 100 ° C., more preferably ⁇ 100 ° C. to 30 ° C. Preferably, it is within the range of ⁇ 100 ° C. to 20 ° C.
  • the HMG-CoA reductase inhibitor intermediate represented by the above formula (5) synthesized in this way can be easily isolated from the reaction mixture by a commonly used operation such as extraction, Further, it can be isolated directly from the reaction mixture by crystallization operation, and its purity can be increased.
  • R 1 may be substituted, an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a carbon number.
  • Pyrimidine derivatives having 7 to 18 aralkyl groups are novel compounds that are unknown in the literature.
  • pyrimidine derivatives (dimethyl [4- (4-fluorophenyl) -6-isopropyl-2- [methyl (methylsulfonyl) amino] pyrimidin-5-ylmethyl] phosphonate) wherein R 1 is a methyl group are HMG-CoA It is an effective compound for the synthesis of reductase inhibitor intermediates.
  • 2 ⁇ is about 9.8 o , 17.4 o , 18.0 o , 18.8 o , 20.5 o , 20.9 o , 22.1 o , 23.9 o , 24.7 o , and 29.6 o have 10 most prominent peaks in XRD.
  • the X-ray powder analysis spectrum was measured by uniformly filling a crystalline sample into a concave portion of a slide glass having a concave surface. The sample was scanned in the range of 2.000 to 60.000 o at a scan speed of 2.000 o / min.
  • the X-ray source CuK ⁇ 1 line was used, and measurement was performed at a tube voltage of 30 kV and a tube current of 15 mA.
  • FIG. 1 shows an X-ray powder analysis spectrum for the above pyrimidine derivative sample.
  • the 2 ⁇ value of the X-ray powder analysis pattern may vary slightly from instrument to instrument or from sample to sample, so the values in the drawing should not be interpreted as absolute values.
  • the X-ray powder analysis pattern is important in terms of data properties when determining the identity of the crystal.
  • reaction solution was stirred at 0 ° C. for 1 hour, and then the aqueous layer was separated.
  • the organic layer was further diluted with ethyl acetate (100 ml), washed successively with 5% aqueous sodium thiosulfate solution (75 ml) and water (40 ml ⁇ 2), and then dried over anhydrous magnesium sulfate.
  • the organic solvent was evaporated under reduced pressure, methanol (40 ml) was added, and the mixture was heated to 55 ° C. After cooling the solution to 45 ° C., crystals of the title compound prepared in advance were added as seed crystals (about 10 mg). After confirming crystallization, the solution was cooled to room temperature. The mixture was further cooled to ⁇ 10 ° C. and aged for 30 minutes. The precipitated crystals were collected by filtration, and the cake was washed with methanol ( ⁇ 10 ° C., 15 ml). Drying under reduced pressure at 40 ° C. gave 3.9 g of the title compound.
  • Example 4 The X-ray powder analysis spectrum for dimethyl [4- (4-fluorophenyl) -6-isopropyl-2- [methyl (methylsulfonyl) amino] pyrimidin-5-ylmethyl] phosphonate prepared in Example 1 is shown in FIG. .
  • 2 ⁇ is about 9.8 °, 17.4 o , 18.0 o , 18.8 o , 20.5 o , 20.9 o , 22.1 o , 23.9 o , 24.7 o , and 29
  • X-ray powder crystal analyzer MiniFlex-II manufactured by Rigaku Corporation Measurement conditions: CuK ⁇ 1- wire tube voltage 30 kV Current between 15 mA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 本願は、新規なピリミジン誘導体を、安価かつ工業的に入手容易な化合物から製造する方法、並びにHMG-CoA還元酵素阻害剤の重要中間体の製造方法を提供することを課題とする。この課題は、例えば、下記式(1)で表される化合物と(OR13Pで表される化合物を反応させて得られる下記式(3)で表されるホスホン酸エステルと、下記式(4)で表わされる化合物を塩基の存在下で反応させて下記式(5)で表わされるHMG-CoA還元酵素阻害剤中間体を得ることにより解決される。

Description

新規ピリミジン誘導体およびHMG-CoA還元酵素阻害剤中間体の製造方法
 本発明は新規ピリミジン誘導体およびHMG-CoA還元酵素阻害剤中間体の製造方法に関する。
 tert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテートは、HMG-CoA還元酵素阻害剤の重要中間体であり、以下のような製造方法が知られている。
 i)ジフェニル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスフィンオキシドと、tert-ブチル 2-[(4R,6S)-6-ホルミル-2,2-ジメチル1,3ジオキサン-4-イル]アセテートをナトリウムヘキサメチルジシラジドの存在下で反応させる方法(特許文献1)。
 ii)トリフェニル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホニウムブロミドと、tert-ブチル 2-[(4R,6S)-6-ホルミル-2,2-ジメチル-1,3-ジオキサン-4-イル)アセテートを炭酸カリウムの存在下で反応させる方法(特許文献2)。
 iii)5-ホルミル-4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジンと、tert-ブチル 2-[(4R,6S)-6-[(ジメチルホスホリル)メチル]-2,2-ジメチル-1,3-ジオキサン-4-イル)アセテートを反応させる方法(特許文献3)。
 iv)トリイソプロピル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホニウムトリフルオロアセテートと、メチル 3-ホルミル-(3S)-tert-ブチルジメチルシリルオキシプロピオネートを塩基の存在下反応させ、メチル 5-(4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル)-(3S)-tert-ブチルジメチルシリルオキシ-4(E)-ペンテノエートを一旦合成したのち、tert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテートへと誘導する方法(特許文献4)。
WO2000/049014 WO2005/054207 CN1687087 WO2007/017117
 しかしながら、i)の製造方法では、高価なエチルジフェニルホスフィナイトを使用する必要があり、安価な工業的生産が難しい。またii)の方法では、使用するトリフェニル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホニウムブロミドの固体性状が極めて不良であり、工業的使用に適していない。またiii)の方法では、不安定なtert-ブチル 2-[(4R,6S)-6-[(ジメチルホスホリル)メチル]-2,2-ジメチル-1,3-ジオキサン-4-イル]アセテートを合成する必要があり、やはり工業的に実施しがたい。更にiv)の方法では、高価なトリフルオロ酢酸を等量用いる必要があり、また増炭反応を2回繰り返すことから、安価な工業生産に適した方法とはいえない。
 かかる課題を解決するため、本発明者らは鋭意検討を行った結果、ジメチル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホネートに代表される新規なピリミジン誘導体を、安価かつ工業的に入手容易な化合物から製造できることを見出した。また本発明の方法によって合成した当該誘導体を用い、HMG-CoA還元酵素阻害剤の重要中間体である、tert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテートが製造できることを見出し、本発明を完成するに至った。
 すなわち本発明は、下記式(1):
Figure JPOXMLDOC01-appb-C000007
(式中、Xは脱離基を示す)で表される化合物に対し、下記式(2):
Figure JPOXMLDOC01-appb-C000008
(式中、Rは置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す。)で表される化合物を作用させ、下記式(3):
Figure JPOXMLDOC01-appb-C000009
(式中、Rは前記に同じ)で表されるホスホン酸エステルを製造した後、当該化合物(3)を、単離することなく、反応混合物から直接結晶として取得することを特徴とする、前記式(3)で表されるホスホン酸エステルの製造方法である。
 また本発明は、前記式(3)で表されるホスホン酸エステルと、下記式(4):
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す。)で表される化合物を、塩基の存在下で反応させることを特徴とする、下記式(5):
Figure JPOXMLDOC01-appb-C000011
(式中、Rは前記と同じである。)で表される、HMG-CoA還元酵素阻害剤中間体の製造方法に関する。
 また本発明は、下記式(3):
Figure JPOXMLDOC01-appb-C000012
(式中、Rは置換されていてもよい、炭素数1~12のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す。)で表される、ピリミジン誘導体に関するものである。
 本発明の方法によれば、安価な試剤を用い、工業的に有利な形態で、新規なピリミジン誘導体、およびHMG-CoA還元酵素阻害剤の重要中間体である、tert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテートを製造することができる。
ジメチル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホネートの典型的サンプルに対するX線粉末解析スペクトルである。縦軸はX線の強度(cps)を示し、横軸は回折角(2θ)を示す。
 以下、本発明を更に詳細に説明する。
 まず出発原料となる、一般式(1):
Figure JPOXMLDOC01-appb-C000013
で表される化合物は、5-ヒドロキシメチル-4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジンの水酸基を脱離基Xに変換することにより製造可能である。
 ここでXは脱離基を表し、Xとしては、ヨウ素原子、臭素原子、塩素原子等のハロゲン原子、メタンスルホネート、p-トルエンスルホネート、トリフルオロメタンスルホネートなどのスルホン酸エステル類等を例示することができる。
 水酸基からハロゲン原子への置換は、塩化チオニルを用いる方法(塩素原子への置換)、三臭化リンを用いる方法(臭素原子への変換)、ヨウ素およびトリフェニルホスフィンを用いる方法(ヨウ素原子への置換)など、通常水酸基をハロゲン原子に置換する方法を適用すればよい。
 またスルホン酸エステルへの変換は、通常、スルホン酸エステルを合成する方法、即ち、塩基存在下にスルホン酸ハロゲン化物またはスルホン酸無水物を作用させる方法で合成可能である。例えば、5-ブロモメチル-4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジンは、参考例1の方法にて製造することができる。
 前記式(1)で表される化合物に対し、一般式(2):
Figure JPOXMLDOC01-appb-C000014
で表される、亜リン酸エステルを作用させ、一般式(3):
Figure JPOXMLDOC01-appb-C000015
で表されるホスホン酸エステルを製造する。
 ここでRは、置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す。置換基としては、特に限定されるものではないが、アルキル基、ハロゲン原子、トリアルキルシリル基、トリアリールシリル基、アルキルアリールシリル基、アルコキシ基等が挙げられ、具体的には、メチル基、エチル基、n-プロピル基、塩素原子、臭素原子、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、tert-ブチルジフェニルシリル基、メトキシ基、エトキシ基、n-プロピルオキシ基等を例示することができる。
 置換されていてもよい炭素数1~18のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基を例示することができる。
 置換されていてもよい炭素数6~18のアリール基としては、フェニル基、p-メトキシフェニル基、p-クロロフェニル基、ナフチル基等を例示することができる。
 置換されていてもよい炭素数7~18のアラルキル基としては、ベンジル基、p-メトキシベンジル基、ナフチルメチル基等を例示できる。
 ホスホン酸エステルを安価にかつ効率的に合成するためのRとしては、メチル基、エチル基が好ましく、特にメチル基が好ましい。従って、用いられる亜リン酸エステルとしては、亜リン酸トリメチル、亜リン酸トリエチルが好ましく、より好ましくは、亜リン酸トリメチルである。
 亜リン酸エステルの使用量は特に制限されるものではないが、通常、前記式(1)で表される化合物のモル当量を基準として、1~10倍モル当量の範囲内であり、好ましくは1~5倍モル当量であり、より好ましくは1~3倍モル当量の範囲内である。収率よく前記式(3)で表されるホスホン酸エステルを合成するためには、亜リン酸エステルを1倍モル当量以上使用する必要がある。
 この反応は無溶媒条件下で実施することもできるし、溶媒存在下で実施してもよい。
 用いられる溶媒は特に制限されるものではないが、n-ヘキサン、n-ペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素類、トルエン、エチルベンゼン、o-ジクロロベンゼン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸n-ブチル等の酢酸エステル類、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン等のエーテル類を例示することができる。なかでも芳香族炭化水素類が好適であり、特にトルエンが好ましい。また、これらの溶媒は単独で用いても、2種類以上の溶媒を任意の割合で混合して用いても良い。
 用いる溶媒量は特に制限されるものではないが、通常、前記式(1)で表される化合物の重量を基準として、1~50倍容量であり、好ましくは1~20倍容量であり、更に好ましくは1~10倍容量である。
 反応の温度は、特に制限されるものではないが、通常0℃~250℃の範囲内であり、好ましくは25℃~200℃であり、更に好ましくは50℃~200℃の範囲内である。
 反応時間は特に制限されるものではないが、通常、1~100時間の範囲内であり、好ましくは1~72時間であり、より好ましくは1~48時間の範囲内である。
 また本反応は大気雰囲気下で実施することもできるが、不活性ガスの雰囲気下で実施することが好ましい。例えばヘリウム、窒素、アルゴン等が好ましく、中でも窒素、アルゴンがより好ましい。
 このように脱離基Xを持つ化合物と亜リン酸エステルから、ホスホン酸エステルを合成する反応はArbuzov反応として知られている。その反応機構は、下記スキーム1に示すように、まず式(2)で表される、亜リン酸エステルのリン原子が、式(1)で表される化合物の脱離基Xと置換反応を起こし、中間体(A)を生成したのち、脱離基Xが亜リン酸エステル上の置換基Rを攻撃し、式(3)で表されるホスホン酸エステルが生成すると同時に、副生成物R-Xが遊離するものである。
Figure JPOXMLDOC01-appb-C000016
 本発明の方法では、設備的または経済的観点から工業的な実施が困難なシリカゲルカラムのような精製操作を行わずとも、直接、反応液から目的物である、前記式(3)で表される化合物を、反応に引き続き、連続的に結晶として単離精製することができる。即ち、晶析溶媒として、反応溶媒をそのまま用いることができる。
 また、目的とするホスホン酸エステルの溶解度を低下させるために、反応溶媒とは異なる種類の有機溶媒を添加しても良い。添加する溶媒種は特に制限されるものではないが、n-ヘキサン、n-ペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素類が好ましく、より好ましくはヘキサンである。もちろん、反応溶媒を一旦濃縮したのち、更に異なる溶媒を反応混合物に添加し晶析を実施することも可能である。
 また、反応混合物からの結晶化については、通常晶析を行う際に用いられる手法を適宜適用すればよく、特に限定されるものではないが、例えば反応混合物の溶液を加温したのち、冷却することで結晶化する冷却晶析法、反応混合物に種晶を添加し結晶化を促進する方法、反応混合物の溶液を適切な濃度へと濃縮して過飽和溶液としたのち結晶化させる濃縮晶析法、貧溶媒を添加して溶解度を低下させ、結晶化させる方法等を、単独または適宜組み合わせて使用すればよい。
 晶析時の温度は特に制限されるものではないが、通常-50℃~50℃の範囲内であり、好ましくは-25~30℃の範囲内であり、より好ましくは-15℃~15℃の範囲内である。
 晶析は大気雰囲気下で実施することもできるが、反応に引き続き不活性ガスの雰囲気下で実施することもできる。その際の不活性ガスは、前記の反応条件と同一の気体を例示できる。
 また晶析の母液は、場合によっては、過剰に使用した亜リン酸エステルを含んでいるため、この母液を次の反応に直接使用することもできる。
 また、例えば、亜リン酸トリメチルのように、亜リン酸エステルの沸点が低ければ(沸点111~112℃)、これを反応混合物から濃縮により分離したのち、再利用することも可能である。
 また、亜リン酸エステルのアルキル基がメチル基またはエチル基のような低級アルキル基であり、かつXがハロゲン原子であれば、副生するR1-Xに相当する化合物も低沸点のハロゲン化アルキルとなり、反応混合物から容易に分離回収することができる。
 このように、本発明による前記式(3)で表されるホスホン酸エステルの製造方法は、単に新規なピリミジン誘導体、ならびにそれを利用したHMG-CoA還元酵素阻害剤の製造方法を提供するだけでなく、工業的観点、環境負荷の観点からも優れた製造方法である。
 次に、前記式(3)で表される化合物と一般式(4):
Figure JPOXMLDOC01-appb-C000017
で表される化合物を、塩基の存在下で反応させて、一般式(5):
Figure JPOXMLDOC01-appb-C000018
で表されるHMG-CoA還元酵素阻害剤中間体を製造する方法について記載する。なお、前記式(3)で表される化合物は、上記の方法によって得られたものでもよいし、その他の方法によって得られたものでもよい。
 ここでRは、置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す。置換基としては、R1と同様のものが挙げられる。
 置換されていてもよい炭素数1~18のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基などを例示することができる。
 置換されていてもよい炭素数6~18のアリール基としては、フェニル基、p-メトキシフェニル基、p-クロロフェニル基、ナフチル基などを例示することができる。
 置換されていてもよい炭素数7~18のアラルキル基としては、ベンジル基、p-メトキシベンジル基、ナフチルメチル基などを例示できる。
 なかでも、Rとしてはtert-ブチル基が好ましい。
 前記式(4)で表される化合物の使用量は特に制限されるものではないが、通常、前記式(3)で表されるホスホン酸エステルのモル当量に対して、0.8~2.0当量の範囲内であり、好ましくは1.0~1.5当量の範囲内である。
 なお、前記式(4)で表される化合物は、例えば、特許第2573819号や、Tetrahedron Letters、31巻、2545-2548頁、1990年に記載された、tert-ブチル 2-[(4R,6S)-6-ヒドロキシメチル-2,2-ジメチル-1,3-ジオキサン-4-イル)アセテートに、ジメチルスルホキシド、トリエチルアミン、塩化オキザリルを作用させる製造方法(スワン酸化法)や、参考例2に記載の製造方法で製造することができる。
 この反応は、塩基の存在下で実施される。塩基の種類は特に限定されるものではなく、無機塩基または有機塩基を用いることができる。無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム等のアルカリ土類金属水酸化物、水素化リチウム、水素化ナトリウム、水素化カルシウム等の金属水素化物等を例示することができる。
 また有機塩基としては、例えば、リチウムジイソプロピルアミド、リチウム-2,2,6,6-テトラメチルピペラジド、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジド等のアミド型塩基、臭化イソプロピルマグネシウム、塩化tert-ブチルマグネシウム等のグリニヤ試薬、1,8-ジアザビシクロ[4.5.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン等の有機アミン塩基等を例示することができる。
 中でもリチウムジイソプロピルアミド、リチウム-2,2,6,6-テトラメチルピペラジド、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドのアミド型塩基が好ましく、より好ましくは、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドである。
 この反応は通常不活性ガスの雰囲気下で実施される。例えばヘリウム、窒素、ネオン、アルゴン等が例示でき、中でも窒素、アルゴンが好ましい。
 用いる塩基の量は特に制限されるものではないが、通常、前記式(3)で表されるホスホン酸エステルのモル当量に対して、0.8~2.0当量の範囲内であり、好ましくは1.0~1.5当量の範囲内であり、より好ましくは、1.0~1.3当量の範囲内である。
 この反応は通常溶媒の存在下で実施される。塩基存在下で反応を行うため、塩基と反応しない溶媒を選択する必要があるが、そのような溶媒であれば、特に制限されるものではない。また溶媒は単独で用いても、2種類以上の溶媒を任意の割合で混合して用いても良い。例えば、n-ヘキサン、n-ペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素類、トルエン、エチルベンゼン、o-ジクロロベンゼン等の芳香族炭化水素類、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン等のエーテル類を例示することができる。なかでも芳香族炭化水素類、エーテル類が好適であり、特にトルエン、テトラヒドロフランが好ましい。
 溶媒の使用量も特に制限されるものではないが、通常、用いる前記式(3)で表されるホスホン酸エステルに対し、1~100倍容量の範囲内であり、好ましくは5~60倍用量の範囲内であり、更に好ましくは5~50倍容量の範囲内である。
 反応の温度も、通常用いる溶媒の沸点以下であれば特に制限されるものではないが、好ましくは-100℃~100℃の範囲内であり、より好ましくは-100℃~30℃であり、更に好ましくは-100℃~20℃の範囲内である。
 このようにして合成した前記式(5)で表される、HMG-CoA還元酵素阻害剤中間体は、抽出等の一般的に用いられる操作で、反応混合物から容易に単離することができ、更に晶析操作により、反応混合物から直接単離することも可能であるし、またその純度を高めることもできる。
 また、本発明で製造される前記式(3)で表される化合物において、Rが置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基であるピリミジン誘導体は、文献未知の新規化合物である。
 特に、Rがメチル基であるピリミジン誘導体(ジメチル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホネート)は、HMG-CoA還元酵素阻害剤中間体の合成に有効な化合物である。この化合物の結晶として、X線粉末解析スペクトルにおいて、2θが約9.8、17.4、18.0、18.8、20.5、20.9、22.1、23.9、24.7、および29.6において、XRD中に10個の最も顕著なピークを示すものがある。
 なお、X線粉末解析スペクトルは、結晶性サンプルを、凹面を有するスライドガラスのくぼみに均一に充填して測定したものである。サンプルはスキャンスピード2.000/minで2.000~60.000の範囲でスキャンした。X線源はCuKα線を使用し、管電圧30kVおよび管電流15mAで測定した。
 上記のピリミジン誘導体サンプルに対するX線粉末解析スペクトルを、図1に示す。いうまでもないことであるが、X線粉末解析パターンの2θ値は、機器によって、あるいはサンプルによって僅かに変わることがあり、従って図面の値は絶対的な値と解釈すべきではない。またX線粉末解析パターンはデータの性質上、結晶の同一性を認定する際には、全体的な回折パターンが重要である。
 以下に具体例を挙げて本発明を更に詳細に説明するが、本発明はこれらの具体例によって、限定されるものではない。
 (参考例1)5-ブロモメチル-4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン
Figure JPOXMLDOC01-appb-C000019
 5-ヒドロキシメチル-4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン15g(42.42mmol)の無水トルエン120ml並びに無水アセトニトリル60mlの混合溶液に、窒素気流下10~20℃で三臭化リン5.4g(19.44mmol)をゆっくりと滴下した。1時間反応したのち、反応液に飽和食塩水100ml、および蒸留水10mlを加え10分間撹拌した。水層を分離、廃棄したのち、有機層を飽和炭酸水素ナトリウム水溶液50ml、並びに蒸留水50mlで順次洗浄した。有機層を無水硫酸マグネシウムで乾燥したのち、減圧下溶媒を留去した。得られた粗生成物をヘキサン100mlに懸濁後ろ過することにより、表題の化合物を17.5g(99%収率)白色固体として得た。
H-NMR(CDCl):δ1.36(6H,d,J=6.6Hz)、3.48(1H,m)、3.51(3H,s)、3.56(3H,s)、4.48(2H,s)、7.20(2H,m)、7.80(2H,m)。
 (参考例2)tert-ブチル 2-[(4R,6S)-6-ホルミル-2,2-ジメチル-1,3-ジオキサン-4-イル]アセテート
Figure JPOXMLDOC01-appb-C000020
 tert-ブチル 2-[(4R,6S)-6-ヒドロキシメチル-2,2-ジメチル-1,3-ジオキサン-4-イル]アセテート(15g、57.6mmol)、炭酸水素ナトリウム(13.6g、161.3mmol)、臭化カリウム(1.37g、11.5mmol)、および4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル(248mg、1.44mol)の酢酸エチル(150ml)懸濁液に、窒素気流下、-10℃で次亜塩素酸ナトリウム水溶液(44.2g、16.7wt%、70.2mmol)を、内温が5℃を超えないように注意しながら滴下した。滴下終了後、反応液を0℃で1時間撹拌した後、水層を分離した。有機層を更に酢酸エチル(100ml)で希釈した後、5%チオ硫酸ナトリウム水溶液(75ml)、および水(40ml×2)で順次洗浄したのち、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(シリカゲル200g、展開溶媒:ヘキサン/酢酸エチル=2/1(容量比))で精製し、表題の化合物を8.0g(54%収率)白色結晶として得た。
H-NMR(CDCl):δ1.35(1H,q,J=12.7Hz)、1.45(9H,s)、1.46(3H,s)、1.49(3H,s)、1.83(1H,dt,J=2.7Hz,12.9Hz)、2.35(1H,dd,J=5.9Hz,15.4Hz)、2.46(1H,dd,J=7.1Hz、15.4Hz)、4.33(1H,m)、9.58(1H,s)。
 (実施例1)ジメチル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホネート
Figure JPOXMLDOC01-appb-C000021
 参考例1にて製造した5-ブロモメチル-4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン10.0g(24.02mmol)の無水トルエン(50ml)溶液に、窒素気流下室温で亜リン酸トリメチル7.5g(60.05mmol)を加えた。反応溶液を18時間加熱還流したのち、減圧下溶媒を留去した。濃縮残渣にトルエン50mlを加えて濃縮する操作を2回繰り返したのちトルエン20mlに溶解した。ヘキサン17mlをゆっくり滴下したのち、あらかじめ調製しておいた表題の化合物の種晶(約20mg)を添加し起晶させた。室温で30分間熟成したのち、ヘキサン13mlをゆっくりと滴下した。0℃に冷却し30分熟成したのち析出した結晶を分離した。結晶をトルエン/ヘキサン(4/1容量比)10mlで、次に、トルエン/ヘキサン(4/1容量比)15mlで、更にヘキサン20mlで連続的に洗浄したのち、減圧下40℃で乾燥し表題の化合物を10.6g(99%収率)白色固体として得た。H-NMRでは不純物は認められなかった。
H-NMR(CDCl):δ1.30(6H,d,J=6.6Hz)、3.30(2H,d,J=22.0Hz)、3.44(1H,quint,J=6.6Hz)、3.49(3H,s)、3.54(3H,s)、3.55(3H,s)、3.58(3H,s)、7.17(2H,m)、7.59(2H,m)。
 (実施例2)tert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテート
Figure JPOXMLDOC01-appb-C000022
 実施例1にて製造したジメチル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホネート5.0g(11.22mmol)の無水THF(30ml)溶液に、窒素気流下-78℃で、ナトリウムヘキサメチルジシラジド6.8ml(1.9M:テトラヒドロフラン溶液、12.91mmol)を10分かけて滴下した。-78℃で20分間熟成したのち、tert-ブチル 2-[(4R,6S)-6-ホルミル-2,2-ジメチル-1,3-ジオキサン-4-イル]アセテート3.62g(14.03mmol)の無水テトラヒドロフラン(10.9ml)溶液を20分かけて滴下した。滴下容器を無水テトラヒドロフラン(2.3ml)で洗浄し反応混合物に滴下した。反応液を2時間かけて-35℃へと昇温したのち、同温度で14時間反応した。さらに1時間で0℃へと昇温し1時間熟成した。反応混合物に飽和塩化アンモニウム水溶液(50ml)を加えて反応を停止したのち、トルエン(100ml)で抽出した。有機層を蒸留水(25ml)で2回、飽和食塩水(20ml)で2回洗浄した。有機層中のtert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテートの含有量を高速液体クロマトグラフィーで定量した結果、目的物が5.5g(85%収率)含まれていた。
 有機溶媒を減圧下留去したのち、メタノール(40ml)を加え、55℃に加温した。この溶液を45℃まで冷却したのち、あらかじめ調製した表題の化合物の結晶を種晶として添加した(約10mg)。起晶を確認したのち、溶液を室温へと冷却した。更に-10℃まで冷却し30分間熟成した。析出した結晶を濾取しケーキをメタノール(-10℃、15ml)で洗浄した。40℃で減圧乾燥を行い、表題の化合物を3.9g取得した。
H-NMR(CDCl):δ1.13(1H,q,J=12.7Hz)、1.26(3H,d,J=6.8Hz)、1.27(3H,d,J=6.8Hz)、1.40(3H,s)、1.46(9H,s)、1.49(3H,s)、1.54(1H,dt,J=2.5Hz,12.7Hz)、2.30(1H,dd,J=6.3Hz,15.4Hz)、2.45(1H,dd,J=6.8Hz,15.4Hz)、3.38(1H,sep,J=6.8Hz)、3.52(3H,s)、3.57(3H,s)、4.28(1H,m)、4.43(1H,m)、5.46(1H,dd,J=5.4Hz,16.4Hz)、6.51(1H,dd,J=1.2Hz,16.4Hz)、7.08(2H,m)、7.64(2H,m)。
 (実施例3)tert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテート
Figure JPOXMLDOC01-appb-C000023
 実施例1にて製造したジメチル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホネート1.0g(2.25mmol)の無水テトラヒドロフラン(20ml)溶液に、窒素気流下-78℃で、ナトリウムヘキサメチルジシラジド1.4ml(1.9M:テトラヒドロフラン溶液、2.58mmol)を5分かけて滴下した。-78℃で15分間熟成したのち、tert-ブチル 2-[(4R,6S)-6-ホルミル-2,2-ジメチル-1,3-ジオキサン-4-イル]アセテート0.7g(2.69mmol)の無水テトラヒドロフラン(7ml)溶液を10分かけて滴下した。滴下容器を無水テトラヒドロフラン(2ml)で洗浄し反応混合物に滴下した。反応液を3時間かけて-35℃へと昇温したのち、同温度で15時間反応した。さらに2時間で0℃へと昇温し1時間熟成した。反応混合物に飽和塩化アンモニウム水溶液(20ml)を加えて反応を停止したのち、トルエン(50ml)で抽出した。有機層を蒸留水(10ml)で2回、飽和食塩水(10ml)で2回洗浄した。有機層中のtert-ブチル(E)-(6-[2-[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イル]ビニル](4R,6S)-2,2-ジメチル[1,3]ジオキサン-4-イル)アセテートの含有量を高速液体クロマトグラフィーで定量した結果、目的物が1.2g(95%収率)含まれていた。
 (実施例4)
 実施例1にて製造したジメチル[4-(4-フルオロフェニル)-6-イソプロピル-2-[メチル(メチルスルホニル)アミノ]ピリミジン-5-イルメチル]ホスホネートに対するX線粉末解析スペクトルを図1に示す。2θが約9.8°、17.4、18.0、18.8、20.5、20.9、22.1、23.9、24.7、および29.6において、XRD中に10個の最も顕著なピークが見られる。
X線粉末結晶解析装置 : 株式会社リガク製 MiniFlex-II
測定条件       : CuKα
             管電圧30kV
             間電流15mA

Claims (8)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは脱離基を示す)で表される化合物に対し、下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す)で表される化合物を作用させ、下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは前記に同じ)で表されるホスホン酸エステルを製造した後、当該化合物(3)を、単離することなく、反応混合物から直接結晶として取得することを特徴とする、前記式(3)で表されるホスホン酸エステルの製造方法。
  2.  前記式(3)で表されるホスホン酸エステルと、下記式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す)で表される化合物を、塩基の存在下で反応させることを特徴とする、下記式(5):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは前記と同じである)で表される、HMG-CoA還元酵素阻害剤中間体の製造方法。
  3.  前記式(3)で表されるホスホン酸エステルが、請求項1に記載の方法によって製造されたものである、請求項2に記載の製造方法。
  4.  Xが塩素原子、臭素原子、またはヨウ素原子である、請求項1~3のいずれかに記載の製造方法。
  5.  Rがメチル基であり、Rがtert-ブチル基である、請求項1~4のいずれかに記載の製造方法。
  6.  下記式(3):
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは置換されていてもよい、炭素数1~18のアルキル基、炭素数6~18のアリール基、炭素数7~18のアラルキル基を表す)で表される、ピリミジン誘導体。
  7.  Rがメチル基である、請求項6に記載のピリミジン誘導体。
  8.  2θ=9.8、17.4、18.0、18.8、20.5、20.9、22.1、23.9、24.7、および29.6において特異的ピークを示すX線粉末解析パターンを有する、請求項7に記載のピリミジン誘導体。
PCT/JP2009/067987 2008-10-20 2009-10-19 新規ピリミジン誘導体およびHMG-CoA還元酵素阻害剤中間体の製造方法 WO2010047296A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09821993.4A EP2351762B1 (en) 2008-10-20 2009-10-19 NOVEL PYRIMIDINE DERIVATIVE AND METHOD FOR PRODUCING HMG-CoA REDUCTASE INHIBITOR INTERMEDIATE
CN2009801412985A CN102186869A (zh) 2008-10-20 2009-10-19 新嘧啶衍生物及HMG-CoA还原酶抑制剂中间体的制造方法
JP2010534798A JPWO2010047296A1 (ja) 2008-10-20 2009-10-19 新規ピリミジン誘導体およびHMG−CoA還元酵素阻害剤中間体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008270076 2008-10-20
JP2008-270076 2008-10-20

Publications (1)

Publication Number Publication Date
WO2010047296A1 true WO2010047296A1 (ja) 2010-04-29

Family

ID=42119335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067987 WO2010047296A1 (ja) 2008-10-20 2009-10-19 新規ピリミジン誘導体およびHMG-CoA還元酵素阻害剤中間体の製造方法

Country Status (4)

Country Link
EP (1) EP2351762B1 (ja)
JP (1) JPWO2010047296A1 (ja)
CN (1) CN102186869A (ja)
WO (1) WO2010047296A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501183A (ja) * 2012-11-12 2016-01-18 ヴィクトリア リンク リミテッドVictoria Link Limited (3r,4s)−l−((4−アミノ−5h−ピロロ[3,2−d]ピリミジン−7−イル)メチル)−4−(メチルチオメチル)ピロリジン−3−オール(mtdia)の塩及び多形形態
US9695130B2 (en) 2014-02-06 2017-07-04 Api Corporation Rosuvastatin calcium and process for producing intermediate thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113356A (zh) * 2013-03-07 2013-05-22 上海现代制药股份有限公司 一种罗苏伐他汀钙的中间体的制备方法
WO2014203045A1 (en) 2013-06-20 2014-12-24 Lupin Limited A novel, green and cost effective process for synthesis of tert-butyl (3r,5s)-6-oxo-3,5-dihydroxy-3,5-o-isopropylidene-hexanoate
JP2017512183A (ja) 2014-02-13 2017-05-18 リガンド・ファーマシューティカルズ・インコーポレイテッド プロドラッグ化合物およびそれらの使用
US11970482B2 (en) 2018-01-09 2024-04-30 Ligand Pharmaceuticals Inc. Acetal compounds and therapeutic uses thereof
CN115819408A (zh) * 2022-10-21 2023-03-21 宿迁阿尔法科技有限公司 一种高选择性合成瑞舒伐他汀关键中间体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573819B2 (ja) 1987-12-08 1997-01-22 ヘキスト・アクチェンゲゼルシャフト アルデヒドおよびその製法
WO2000049014A1 (en) 1999-02-17 2000-08-24 Astrazeneca Ab Process for the production of tert-butyl (e)-(6-[2- [4-(4-fluorophenyl) -6-isopropyl-2-[ methyl (methylsulfonyl) amino] pyrimidin-5-yl] vinyl](4r, 6s)-2,2-dimethyl [1,3]dioxan-4-yl) acetate
WO2005054207A1 (en) 2003-12-04 2005-06-16 Glenmark Pharmaceuticals Limited Process for the preparation of pyrimidine derivatives
CN1687087A (zh) 2005-05-16 2005-10-26 浙江海正药业股份有限公司 瑞舒伐他汀及其中间体的制备方法
WO2007017117A1 (en) 2005-07-28 2007-02-15 Lek Pharmaceuticals D.D. Process for the synthesis of rosuvastatin calcium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310700A (ja) * 1992-05-12 1993-11-22 Sagami Chem Res Center 縮合ピリジン系メバロノラクトン中間体及びその製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573819B2 (ja) 1987-12-08 1997-01-22 ヘキスト・アクチェンゲゼルシャフト アルデヒドおよびその製法
WO2000049014A1 (en) 1999-02-17 2000-08-24 Astrazeneca Ab Process for the production of tert-butyl (e)-(6-[2- [4-(4-fluorophenyl) -6-isopropyl-2-[ methyl (methylsulfonyl) amino] pyrimidin-5-yl] vinyl](4r, 6s)-2,2-dimethyl [1,3]dioxan-4-yl) acetate
JP2003518474A (ja) * 1999-02-17 2003-06-10 アストラゼネカ アクチボラグ tert−ブチル(E)−(6−[2−[4−(4−フルオロフェニル)−6−イソプロピル−2−[メチル(メチルスルホニル)アミノ]ピリミジン−5−イル]ビニル](4R,6S)−2,2−ジメチル[1,3]ジオキサン−4−イル)アセテートの製造法
WO2005054207A1 (en) 2003-12-04 2005-06-16 Glenmark Pharmaceuticals Limited Process for the preparation of pyrimidine derivatives
CN1687087A (zh) 2005-05-16 2005-10-26 浙江海正药业股份有限公司 瑞舒伐他汀及其中间体的制备方法
WO2007017117A1 (en) 2005-07-28 2007-02-15 Lek Pharmaceuticals D.D. Process for the synthesis of rosuvastatin calcium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351762A4 *
TETRAHEDRON LETTERS, vol. 31, 1990, pages 2545 - 2548

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501183A (ja) * 2012-11-12 2016-01-18 ヴィクトリア リンク リミテッドVictoria Link Limited (3r,4s)−l−((4−アミノ−5h−ピロロ[3,2−d]ピリミジン−7−イル)メチル)−4−(メチルチオメチル)ピロリジン−3−オール(mtdia)の塩及び多形形態
US9695130B2 (en) 2014-02-06 2017-07-04 Api Corporation Rosuvastatin calcium and process for producing intermediate thereof
US10377722B2 (en) 2014-02-06 2019-08-13 Api Corporation Rosuvastatin calcium and process for producing intermediate thereof

Also Published As

Publication number Publication date
EP2351762B1 (en) 2013-10-16
EP2351762A4 (en) 2012-07-18
EP2351762A1 (en) 2011-08-03
JPWO2010047296A1 (ja) 2012-03-22
CN102186869A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2010047296A1 (ja) 新規ピリミジン誘導体およびHMG-CoA還元酵素阻害剤中間体の製造方法
JP6693859B2 (ja) プロスタグランジンアミドの新規製造方法
WO2004103977A2 (en) Process for the preparation of pyrimidine derivatives
CN107531680B (zh) 一种毒素及其中间体的制备方法
KR101728443B1 (ko) 2-아미노니코틴산벤질에스테르 유도체의 제조 방법
JP4139334B2 (ja) 新規ボロネートエステル
JP5644917B2 (ja) 3−(4−テトラヒドロピラニル)−3−オキソプロパン酸アルキル化合物及び4−アシルテトラヒドロピランの製法
JP5968900B2 (ja) ロスバスタチン塩の製法
US4937308A (en) Preparation of alkyl O,O-dialkyl-γ-phosphonotiglates
CN103804414A (zh) 用于制备瑞舒伐他汀钙的中间体化合物以及由其制备瑞舒伐他汀钙的方法
RU2402564C2 (ru) Способ получения n-пиразиноил-(l)-фенилаланил-(l)-лейцинбороновой кислоты или ее ангидрида
JP2008184419A (ja) 高純度トリアルキルインジウム及びその製法
JP3619277B2 (ja) ジヒドロポリプレニルモノホスフェートの製造方法及びその中間体化合物
JP4070608B2 (ja) 光学的に活性なジヒドロピロンの製造方法
JPS6232188B2 (ja)
JP4561635B2 (ja) 4−アルコキシカルボニルテトラヒドロピラン又はテトラヒドロピラニル−4−カルボン酸の製法
JP2006512386A (ja) ホスホロジアミダイト生産方法
JP2005075734A (ja) 光学活性ホモクエン酸の製法
JP4710698B2 (ja) シリルエーテル基を有するβ−ジケトン化合物の製造法
US20020165269A1 (en) Process for preparing optically active dihydropyrones
JP2008120759A (ja) エーテル基を有するβ−ジケトン化合物の製造法
JPH0219832B2 (ja)
EP1398312A1 (en) Beta-substituted-gamma-butyrolactones and a process for preparation thereof
KR20030077183A (ko) 심바스타틴 및 이의 중간체 화합물들의 개선된 제조방법
KR20030059724A (ko) 이미다졸 유도체의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141298.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534798

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1534/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009821993

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE