WO2010041320A1 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
WO2010041320A1
WO2010041320A1 PCT/JP2008/068359 JP2008068359W WO2010041320A1 WO 2010041320 A1 WO2010041320 A1 WO 2010041320A1 JP 2008068359 W JP2008068359 W JP 2008068359W WO 2010041320 A1 WO2010041320 A1 WO 2010041320A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electric vehicle
receiving unit
electric
vehicle
Prior art date
Application number
PCT/JP2008/068359
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2008801314704A priority Critical patent/CN102177043A/zh
Priority to US13/122,841 priority patent/US8651208B2/en
Priority to JP2010532737A priority patent/JP4962620B2/ja
Priority to PCT/JP2008/068359 priority patent/WO2010041320A1/ja
Priority to EP08877268.6A priority patent/EP2345552B1/en
Publication of WO2010041320A1 publication Critical patent/WO2010041320A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • H02J50/502Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electric vehicle, and more particularly, to an electric vehicle that can receive power from a power supply device in a non-contact manner by resonating a power supply device outside the vehicle and a resonator mounted on each vehicle via an electromagnetic field.
  • Electric vehicles such as electric cars and hybrid cars are attracting a great deal of attention as environmentally friendly vehicles. These vehicles are equipped with an electric motor that generates driving force and a rechargeable power storage device that stores electric power supplied to the electric motor.
  • the hybrid vehicle is a vehicle in which an internal combustion engine is further mounted as a power source together with an electric motor, or a fuel cell is further mounted as a direct current power source for driving the vehicle together with a power storage device.
  • a vehicle capable of charging an in-vehicle power storage device from a power source external to the vehicle in the same manner as an electric vehicle.
  • a so-called “plug-in hybrid vehicle” that can charge a power storage device from a general household power supply by connecting a power outlet provided in a house and a charging port provided in the vehicle with a charging cable is known. Yes.
  • a power transmission method wireless power transmission that does not use a power cord or a power transmission cable has recently attracted attention.
  • this wireless power transmission technology three technologies known as power transmission using electromagnetic induction, power transmission using electromagnetic waves, and power transmission using a resonance method are known.
  • the resonance method is a non-contact power transmission technique in which a pair of resonators (for example, a pair of self-resonant coils) are resonated in an electromagnetic field (near field), and power is transmitted through the electromagnetic field. It is also possible to transmit power over a long distance (for example, several meters) (see Non-Patent Document 1). JP-A-8-237890 Andre Kurs et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, [online], July 6, 2007, Science, Vol. 317, p. 83-86, [Search September 12, 2007], Internet ⁇ URL: http://www.sciencemag.org/cgi/reprint/317/5834/83.pdf>
  • an object of the present invention is to secure a mounting position of a power receiving resonator and shield a leakage electromagnetic field generated during power reception in an electric vehicle that can receive power from a power supply device outside the vehicle by a resonance method. This is to be realized at low cost.
  • the electric vehicle is an electric vehicle capable of generating a traveling driving force by the electric motor using electric power supplied from a power supply device provided outside the vehicle, and includes a power receiving unit, a housing portion, and a shielding material.
  • the power receiving unit includes a power receiving resonator that receives power from the power transmitting resonator by resonating with a power transmitting resonator included in the power supply apparatus via an electromagnetic field.
  • the power receiving unit is accommodated in the accommodating portion.
  • the shielding material electromagnetically shields the inside and outside of the housing portion.
  • the electric vehicle further includes an internal combustion engine.
  • the internal combustion engine generates traveling energy.
  • the accommodating portion is an engine room in which the internal combustion engine is accommodated.
  • the accommodating portion is a luggage compartment for accommodating a user's luggage.
  • the accommodating portion is a chamber in which the electric motor is accommodated.
  • the electric vehicle further includes a power conversion device.
  • the power conversion device performs power conversion between a power line inside the vehicle and an electric motor.
  • a storage part is a room in which a power converter is stored.
  • the power receiving unit is disposed on the bottom surface of the housing portion.
  • the electric vehicle further includes a door for opening and closing the accommodating portion, and an interlock mechanism for stopping or prohibiting power reception from the power feeding device when the door is opened.
  • the interlock mechanism includes a detection device and a communication device.
  • the detection device detects the open / closed state of the door of the housing portion.
  • the communication device transmits a command instructing to stop or prohibit power transmission from the power feeding device to the power feeding device.
  • the shielding member is provided in the accommodating portion in which the power receiving unit is accommodated, it is not necessary to separately provide a shielding structure (for example, a dedicated shielding box) surrounding the power receiving resonator in the power receiving unit. Therefore, according to the present invention, it is possible to reduce the mounting space of the power receiving unit and to shield the leakage electromagnetic field generated during power reception at a low cost.
  • a shielding structure for example, a dedicated shielding box
  • FIG. 1 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to Embodiment 1 of the present invention. It is a figure for demonstrating the principle of the power transmission by the resonance method. It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity
  • FIG. 6 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to a second embodiment.
  • FIG. 10 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to a third embodiment.
  • FIG. 10 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to a fourth embodiment.
  • 100, 100A to 100C hybrid vehicle 110 driving force generation unit, 120 power storage device, 130 power receiving unit, 140 engine room, 150, 230 shielding material, 180, 250 open / close sensor, 190 communication device, 210 trunk room, 220 floor, 310, 510 high-frequency power supply, 320 primary coil, 330 primary self-resonant coil, 340, 450 secondary self-resonant coil, 350, 452 secondary coil, 360 load, 410 boost converter, 420, 422 inverter, 430, 432 motor generator, 434 engine 436, power split device, 438, drive wheel, 440, vehicle ECU, 460 rectifier, 500 power supply device, 520 power transmission unit, SMR1, SMR2, system main relay, PL1, L2 positive line, NL1, NL2 negative line.
  • FIG. 1 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to Embodiment 1 of the present invention.
  • hybrid vehicle 100 includes a driving force generation unit 110, a power storage device 120, a power receiving unit 130, an engine room 140, and a shielding material 150.
  • the driving force generator 110 generates a driving force of the vehicle and outputs the generated driving force to driving wheels (for example, front wheels) via a reduction gear and a driving shaft (not shown).
  • the driving force generation unit 110 includes an engine and a motor generator, and at least one of the engine and the motor generator generates a vehicle driving force.
  • Motor generator receives electric power from power storage device 120 and generates driving force.
  • driving force generator 110 performs regenerative power generation using a motor generator, and outputs the generated regenerative power to power storage device 120.
  • the driving force generator 110 is stored in the engine room 140.
  • the power storage device 120 is a rechargeable DC power source, and includes, for example, a secondary battery such as nickel metal hydride or lithium ion, a large capacity capacitor, or the like.
  • the power storage device 120 stores electric power received by a power receiving unit 130 described later, and also stores regenerative power generated by the driving force generator 110.
  • Power storage device 120 supplies the stored electric power to the motor generator of driving force generation unit 110.
  • the power storage device 120 is disposed at a substantially central portion (such as below the seat) in the vehicle front-rear direction, but may be disposed in a trunk room behind the vehicle.
  • the power receiving unit 130 receives the power supplied from the power supply device 500 provided outside the vehicle in a contactless manner. Specifically, the power receiving unit 130 receives a secondary self-resonant coil (LC) that receives power from the primary self-resonant coil by resonating with a primary self-resonant coil (LC resonant coil) included in the power transmitting unit 520 of the power supply apparatus 500 via an electromagnetic field. The secondary self-resonant coil is used to receive power from the power transmission unit 520 of the power feeding apparatus 500 in a non-contact manner.
  • the power receiving unit 130 is accommodated in the engine room 140, and more specifically, is disposed on the bottom surface of the engine room 140. Then, the power received by the power receiving unit 130 is rectified by a rectifier (not shown) and supplied to the power storage device 120.
  • a rectifier not shown
  • the shielding material 150 is provided so as to electromagnetically shield the inside and outside of the engine room 140.
  • the shielding material 150 is made of cloth, sponge, or the like having an electromagnetic wave shielding effect, and is attached to the inner surface of the engine room 140. Note that at least a place where the power receiving unit 130 is disposed is open on the bottom surface of the engine room 140, and the shielding material 150 is not provided in the opening.
  • the power supply apparatus 500 includes a high-frequency power source 510 and a power transmission unit 520.
  • High frequency power supply 510 converts the power received from the system power supply into high frequency power, and outputs the converted high frequency power to power transmission unit 520.
  • the frequency of the high-frequency power generated by the high-frequency power source 510 is, for example, 1M to several tens of MHz.
  • the power transmission unit 520 includes a primary self-resonant coil (LC resonant coil), and resonates with a secondary self-resonant coil (LC resonant coil) included in the power receiving unit 130 on the vehicle side via an electromagnetic field, thereby The received power is transmitted to the power receiving unit 130 of the hybrid vehicle 100.
  • the power receiving unit 130 is accommodated in the engine room 140 and disposed on the bottom surface of the engine room 140. Then, when receiving power from the power feeding device 500, a leakage electromagnetic field is generated from the power receiving unit 130.
  • a dedicated shielding box for storing the power receiving unit 130 is not separately provided, but the power receiving unit 130 is provided.
  • a shielding material 150 is provided on, for example, the inner surface of the engine room 140 in which is stored. Thereby, it is not necessary to separately arrange a dedicated shielding box or the like, so that the space for mounting the power receiving unit 130 can be saved.
  • the power receiving unit 130 itself has a shielding structure. Instead of providing the shielding material in the engine room 140 in which the power receiving unit 130 is accommodated, the shielding distance can be increased. As a result, a decrease in efficiency due to the provision of the shielding structure can be suppressed.
  • FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method.
  • this resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.
  • the primary coil 320 is connected to the high-frequency power source 310, and high-frequency power of 1 to 10 MHz is fed to the primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction.
  • the primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates with a secondary self-resonant coil 340 having the same resonance frequency as the primary self-resonant coil 330 via an electromagnetic field (near field). .
  • energy electrical power moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 via the electromagnetic field.
  • the energy (electric power) transferred to the secondary self-resonant coil 340 is taken out by the secondary coil 350 magnetically coupled to the secondary self-resonant coil 340 by electromagnetic induction and supplied to the load 360.
  • power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 330 and the secondary self-resonant coil 340 is greater than 100, for example.
  • the power receiving unit 130 in FIG. 1 corresponds to the secondary self-resonant coil 340 and the secondary coil 350 in FIG. 1 corresponds to the high frequency power supply 310 of FIG. 2, and the power transmission unit 520 of FIG. 1 corresponds to the primary coil 320 and the primary self-resonant coil 330 of FIG.
  • FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field.
  • the electromagnetic field includes three components.
  • the curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”.
  • the curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.
  • the resonance method energy (electric power) is transmitted using this near field (evanescent field). That is, by using a near field to resonate a pair of resonators (for example, a pair of LC resonance coils) having the same natural frequency, one resonator (primary self-resonant coil) and the other resonator (two Energy (electric power) is transmitted to the next self-resonant coil. Since this near field does not propagate energy (electric power) far away, the resonance method transmits power with less energy loss than electromagnetic waves that transmit energy (electric power) by "radiation electromagnetic field” that propagates energy far away. be able to.
  • FIG. 4 is a block diagram showing a power train configuration of hybrid vehicle 100 shown in FIG.
  • hybrid vehicle 100 includes power storage device 120, system main relay SMR1, boost converter 410, inverters 420 and 422, motor generators 430 and 432, engine 434, and power split device 436. Drive wheel 438 and vehicle ECU 440.
  • Hybrid vehicle 100 further includes a secondary self-resonant coil 450, a secondary coil 452, a rectifier 460, and a system main relay SMR2.
  • This hybrid vehicle 100 is equipped with an engine 434 and a motor generator 432 as power sources.
  • Engine 434 and motor generators 430 and 432 are coupled to power split device 436.
  • Hybrid vehicle 100 travels by driving force generated by at least one of engine 434 and motor generator 432.
  • the power generated by the engine 434 is divided into two paths by a power split device 436. That is, one is a path transmitted to the drive wheel 438 and the other is a path transmitted to the motor generator 430.
  • the motor generator 430 is an AC rotating electric machine, and includes, for example, a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor. Motor generator 430 generates electric power using the kinetic energy of engine 434 divided by power split device 436. For example, when the state of charge of power storage device 120 decreases, engine 434 is started and motor generator 430 generates power, and power storage device 120 is charged.
  • the motor generator 432 is also an AC rotating electric machine, and, like the motor generator 430, is composed of, for example, a three-phase AC synchronous motor in which a permanent magnet is embedded in a rotor. Motor generator 432 generates a driving force using at least one of the electric power stored in power storage device 120 and the electric power generated by motor generator 430. Then, the driving force of motor generator 432 is transmitted to driving wheel 438.
  • motor generator 432 when braking the vehicle or reducing acceleration on a downward slope, the mechanical energy stored in the vehicle as kinetic energy or positional energy is used for rotational driving of the motor generator 432 via the drive wheels 438, and the motor generator 432 is Operates as a generator.
  • motor generator 432 operates as a regenerative brake that converts running energy into electric power and generates braking force. Electric power generated by motor generator 432 is stored in power storage device 120.
  • the power split device 436 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be able to rotate and is coupled to the crankshaft of the engine 434.
  • the sun gear is connected to the rotation shaft of motor generator 430.
  • the ring gear is connected to the rotation shaft of motor generator 432 and drive wheel 438.
  • System main relay SMR1 is arranged between power storage device 120 and boost converter 410.
  • System main relay SMR1 is turned on / off in response to signal SE1 from vehicle ECU 440.
  • Boost converter 410 boosts the voltage output from power storage device 120 based on signal PWC from vehicle ECU 440 and outputs the boosted voltage to positive line PL2.
  • Boost converter 410 is formed of a DC chopper circuit, for example.
  • the inverters 420 and 422 are provided corresponding to the motor generators 430 and 432, respectively.
  • Inverter 420 drives motor generator 430 based on signal PWI1 from vehicle ECU 440
  • inverter 422 drives motor generator 432 based on signal PWI2.
  • Inverters 420 and 422 are each formed of, for example, a three-phase bridge circuit.
  • boost converter 410 inverters 420 and 422, motor generators 430 and 432, engine 434, and power split device 436 form driving force generator 110 in FIG.
  • the secondary self-resonant coil 450 is an LC resonant coil whose both ends are open (not connected), and is fed by resonating with the primary self-resonant coil included in the power transmission unit 520 (FIG. 1) of the power feeding device 500 via an electromagnetic field. Power is received from the device 500.
  • the capacitance component of the secondary self-resonant coil 450 may be the stray capacitance of the coil, or may be provided with capacitors connected to both ends of the coil.
  • the secondary self-resonant coil 450 is based on the distance from the primary self-resonant coil of the power feeding device 500, the resonance frequency of the primary self-resonant coil and the secondary self-resonant coil 450, and the like.
  • the number of turns is appropriately set so that the Q value (for example, Q> 100) indicating the resonance intensity with 450 and ⁇ indicating the degree of coupling increase.
  • the secondary coil 452 is disposed coaxially with the secondary self-resonant coil 450, and can be magnetically coupled to the secondary self-resonant coil 450 by electromagnetic induction.
  • the secondary coil 452 takes out the electric power received by the secondary self-resonant coil 450 by electromagnetic induction and outputs it to the rectifier 460. Note that the secondary self-resonant coil 450 and the secondary coil 452 form the power receiving unit 130 shown in FIG.
  • the rectifier 460 rectifies the AC power extracted by the secondary coil 452.
  • System main relay SMR 2 is arranged between rectifier 460 and power storage device 120.
  • System main relay SMR2 is turned on / off in response to signal SE2 from vehicle ECU 440.
  • a DC / DC converter that adjusts the voltage of the power rectified by the rectifier 460 may be provided between the rectifier 460 and the system main relay SMR2 or between the system main relay SMR2 and the power storage device 120.
  • Vehicle ECU 440 generates signals PWC, PWI1, and PWI2 for driving boost converter 410 and motor generators 430 and 432, respectively, based on the accelerator opening, vehicle speed, and other signals from the sensors, and the generated signals PWC, PWI1, and PWI2 are output to boost converter 410 and inverters 420 and 422, respectively.
  • vehicle ECU 440 turns system main relays SMR1, SMR2 on and off, respectively, when the vehicle is traveling. Note that when power can be received from power feeding device 500 (FIG. 1) while the vehicle is traveling, vehicle ECU 440 may turn on system main relays SMR1 and SMR2. On the other hand, when receiving power from power supply device 500 outside the vehicle, vehicle ECU 440 turns system main relays SMR1, SMR2 off and on, respectively.
  • the power receiving unit 130 is accommodated in the engine room 140 and disposed on the bottom surface of the engine room 140. And since the shielding material 150 is provided, for example, on the inner surface of the engine room 140 in which the power receiving unit 130 is accommodated, there is no need to separately provide a dedicated shielding box or the like for storing the power receiving unit 130. Therefore, according to the first embodiment, it is possible to reduce the mounting space of the power receiving unit 130 and to shield the leakage electromagnetic field generated during power reception at a low cost.
  • the power receiving unit 130 itself is not provided with a shielding structure, but the engine room 140 in which the power receiving unit 130 is accommodated is provided with the shielding material 150. Therefore, the power receiving unit 130, the shielding material 150, and the like.
  • the distance (shielding distance) can be increased, and the reflected power can be suppressed. Therefore, according to this Embodiment 1, the fall of the efficiency by providing a shielding structure can be suppressed.
  • FIG. 5 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to the second embodiment.
  • this hybrid vehicle 100 ⁇ / b> A further includes an open / close sensor 180 and a communication device 190 in the configuration of hybrid vehicle 100 shown in FIG. 1.
  • the open / close sensor 180 detects the open / closed state of the hood and outputs the detection result to the communication device 190.
  • the communication device 190 is a signal for instructing to stop power supply if power is being supplied from the power supply device 500 to the hybrid vehicle 100A, or power supply is prohibited if power is not being supplied. Is transmitted to the power supply apparatus 500 wirelessly.
  • the high frequency power supply 510 of the power supply apparatus 500 stops the power supply to the power transmission unit 520 when receiving a signal instructing to stop or prohibit the power supply from the communication apparatus 190 of the hybrid vehicle 100A.
  • the interlock mechanism that stops or prohibits the power supply from the power supply device 500 when the hood of the engine room 140 in which the power reception unit 130 is accommodated is opened, the power reception from the power supply device 500 is provided. It is possible to prevent leakage electromagnetic fields that are sometimes generated from being released to the outside of the engine room 140.
  • FIG. 6 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to the third embodiment.
  • power storage device 120 is disposed below floor 220 of trunk room 210.
  • the power receiving unit 130 that receives power from the power feeding device 500 is also accommodated in the trunk room 210, and more specifically, is disposed below the power storage device 120 and on the bottom surface of the trunk room 210.
  • the shielding member 230 is provided so as to electromagnetically shield the inside and outside of the trunk room 210.
  • the shielding material 230 is also made of cloth, sponge, or the like having an electromagnetic wave shielding effect, and is attached to the inner surface of the trunk room 210. Note that at least a portion where the power receiving unit 130 is disposed is open on the bottom surface of the trunk room 210, and the shielding member 230 is not provided in the opening.
  • hybrid vehicle 100B is the same as that of hybrid vehicle 100 according to Embodiment 1 shown in FIG. 1, and the configuration of power supply apparatus 500 is also the same as that of Embodiment 1.
  • the power receiving unit 130 is accommodated in the trunk room 210 and disposed on the bottom surface of the trunk room 210.
  • a shielding member 230 is provided on, for example, the inner surface of the trunk room 210 in which the power receiving unit 130 is accommodated.
  • power receiving unit 130 is accommodated in trunk room 210 instead of engine room 140 because the wiring length between power storage device 120 accommodated in trunk room 210 and power receiving unit 130 can be shortened. is there.
  • the same effect as in the first embodiment can be obtained. Furthermore, according to the third embodiment, the wiring length between power storage device 120 and power receiving unit 130 can be shortened, so that the efficiency can be further improved.
  • FIG. 7 is an overall configuration diagram showing characteristic parts of a hybrid vehicle shown as an example of an electric vehicle according to the fourth embodiment.
  • hybrid vehicle 100C further includes an open / close sensor 250 and a communication device 190 in the configuration of hybrid vehicle 100B according to the third embodiment shown in FIG.
  • the open / close sensor 250 detects the open / closed state of the trunk room 210 and outputs the detection result to the communication device 190.
  • the communication device 190 signals that the power supply device 500 stops power supply if power is being supplied from the power supply device 500 to the hybrid vehicle 100C.
  • a signal instructing prohibition is wirelessly transmitted to the power supply apparatus 500.
  • the interlock mechanism that stops or prohibits the power supply from the power supply apparatus 500 is provided.
  • the leakage electromagnetic field can be prevented from being released to the outside of the trunk room 210.
  • the primary self-resonant coil included in the power transmission unit 520 of the power feeding device 500 and the secondary self-resonant coil included in the power receiving unit 130 on the vehicle side are resonated to transmit power.
  • a pair of high dielectric disks may be used as the resonator.
  • the high dielectric disk is made of a high dielectric constant material, and for example, TiO 2 , BaTi 4 O 9 , LiTaO 3 or the like is used.
  • the power supply device 500 stops power supply by transmitting a signal instructing to stop or prohibit power supply to the power supply device 500.
  • the vehicle side may not receive power by, for example, interposing a shielding plate on the lower surface of the power receiving unit 130.
  • the present invention is also applicable to other types of hybrid vehicles.
  • the engine 434 is used only to drive the motor generator 430, and the driving power of the vehicle is generated only by the motor generator 432, or the regenerative energy only of the kinetic energy generated by the engine 434 is generated.
  • the present invention can also be applied to a hybrid vehicle that is recovered as electric energy, a motor-assisted hybrid vehicle in which a motor assists the engine as the main power if necessary.
  • the present invention can also be applied to an electric vehicle that does not include the engine 434 and travels only by electric power, and a fuel cell vehicle that further includes a fuel cell as a DC power supply in addition to the power storage device 120.
  • a fuel cell vehicle that further includes a fuel cell as a DC power supply in addition to the power storage device 120.
  • the power receiving unit 130 may be housed in a chamber (for example, provided in front of the vehicle as in the engine room) in which an inverter, a boost converter, and the like are stored, and the housing chamber may have a shielding structure.
  • the present invention is also applicable to an electric vehicle that does not include boost converter 410.
  • motor generator 432 corresponds to the “motor” in the present invention
  • engine room 140 in the first and second embodiments and trunk room 210 in the third and fourth embodiments are the “accommodating portion” in the present invention.
  • Engine 434 corresponds to “internal combustion engine” in the present invention
  • engine room 140 corresponds to “engine room” in the present invention.
  • the trunk room 210 corresponds to the “luggage room” in the present invention
  • the open / close sensors 180 and 250 correspond to the “detection device” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 受電ユニット(130)は、給電装置(500)の送電ユニット(520)に含まれる一次自己共振コイルと電磁場を介して共鳴することにより送電ユニット(520)から受電する二次自己共振コイルを含む。受電ユニット(130)は、エンジンおよびモータジェネレータを含む駆動力発生部(110)が格納されるエンジンルーム(140)に収容され、詳しくは、エンジンルーム(140)の底面に配設される。遮蔽材(150)は、エンジンルーム(140)の内外を電磁気的に遮蔽するように設けられる。たとえば、遮蔽材(150)は、電磁波遮蔽効果を有する布やスポンジ等から成り、エンジンルーム(140)の内面に配設される。

Description

電動車両
 この発明は、電動車両に関し、特に、車両外部の給電装置および車両の各々に搭載される共鳴器を電磁場を介して共鳴させることにより給電装置から非接触で受電可能な電動車両に関する。
 環境に配慮した車両として、電気自動車やハイブリッド車などの電動車両が大きく注目されている。これらの車両は、走行駆動力を発生する電動機と、その電動機に供給される電力を蓄える再充電可能な蓄電装置とを搭載する。なお、ハイブリッド車は、電動機とともに内燃機関をさらに動力源として搭載した車両や、車両駆動用の直流電源として蓄電装置とともに燃料電池をさらに搭載した車両である。
 ハイブリッド車においても、電気自動車と同様に、車両外部の電源から車載の蓄電装置を充電可能な車両が知られている。たとえば、家屋に設けられた電源コンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置を充電可能ないわゆる「プラグイン・ハイブリッド車」が知られている。
 一方、送電方法として、電源コードや送電ケーブルを用いないワイヤレス送電が近年注目されている。このワイヤレス送電技術としては、有力なものとして、電磁誘導を用いた送電、電磁波を用いた送電、および共鳴法による送電の3つの技術が知られている。
 このうち、共鳴法は、一対の共鳴器(たとえば一対の自己共振コイル)を電磁場(近接場)において共鳴させ、電磁場を介して送電する非接触の送電技術であり、数kWの大電力を比較的長距離(たとえば数m)送電することも可能である(非特許文献1参照)。
特開平8-237890号公報 Andre Kurs et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances"、[online]、2007年7月6日、Science、第317巻、p.83-86、[2007年9月12日検索]、インターネット<URL:http://www.sciencemag.org/cgi/reprint/317/5834/83.pdf>
 上記の「Wireless Power Transfer via Strongly Coupled Magnetic Resonances」に開示されるワイヤレス送電技術を車両システムに適用する場合には、車両において、受電用共鳴器の搭載位置を確保し、かつ、受電時に発生する漏洩電磁界を遮蔽する構成を低コストで実現する必要がある。上記文献では、そのような課題の提示および具体的な検討はなされていない。
 それゆえに、この発明の目的は、共鳴法により車両外部の給電装置から受電可能な電動車両において、受電用共鳴器の搭載位置を確保し、かつ、受電時に発生する漏洩電磁界を遮蔽する構成を低コストで実現することである。
 この発明によれば、電動車両は、車両外部に設けられる給電装置から供給される電力を用いて電動機により走行駆動力を発生可能な電動車両であって、受電ユニットと、収容部と、遮蔽材とを備える。受電ユニットは、給電装置に含まれる送電用共鳴器と電磁場を介して共鳴することにより送電用共鳴器から受電する受電用共鳴器を含む。受電ユニットは、収容部に収容される。そして、遮蔽材は、収容部の内外を電磁気的に遮蔽する。
 好ましくは、電動車両は、内燃機関をさらに備える。内燃機関は、走行用のエネルギーを生成する。そして、収容部は、内燃機関が収容される機関室である。
 また、好ましくは、収容部は、利用者の荷物を収容するための荷物室である。
 また、好ましくは、収容部は、電動機が収容される室である。
 また、好ましくは、電動車両は、電力変換装置をさらに備える。電力変換装置は、車両内部の電源線と電動機との間で電力変換を行なう。そして、収容部は、電力変換装置が収容される室である。
 好ましくは、受電ユニットは、収容部の底面に配設される。
 好ましくは、電動車両は、収容部を開閉するための扉と、その扉が開状態になると給電装置からの受電を中止または禁止するためのインターロック機構とをさらに備える。
 さらに好ましくは、インターロック機構は、検出装置と、通信装置とを含む。検出装置は、収容部の扉の開閉状態を検出する。通信装置は、検出装置により扉の開状態が検出されると、給電装置からの送電の中止または禁止を指示する指令を給電装置へ送信する。
 この発明においては、受電ユニットが収容される収容部に遮蔽材が設けられるので、受電ユニットにおいて受電用共鳴器を囲う遮蔽構造(たとえば専用の遮蔽箱など)を別途設ける必要がない。したがって、この発明によれば、受電ユニットの搭載スペースを小さくし、かつ、受電時に発生する漏洩電磁界の遮蔽を低コストで実現することができる。
この発明の実施の形態1による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。 共鳴法による送電の原理を説明するための図である。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 図1に示すハイブリッド車のパワートレーン構成を示すブロック図である。 実施の形態2による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。 実施の形態3による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。 実施の形態4による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。
符号の説明
 100,100A~100C ハイブリッド車、110 駆動力発生部、120 蓄電装置、130 受電ユニット、140 エンジンルーム、150,230 遮蔽材、180,250 開閉センサ、190 通信装置、210 トランクルーム、220 フロア、310,510 高周波電源、320 一次コイル、330 一次自己共振コイル、340,450 二次自己共振コイル、350,452 二次コイル、360 負荷、410 昇圧コンバータ、420,422 インバータ、430,432 モータジェネレータ、434 エンジン、436 動力分割装置、438 駆動輪、440 車両ECU、460 整流器、500 給電装置、520 送電ユニット、SMR1,SMR2 システムメインリレー、PL1,PL2 正極線、NL1,NL2 負極線。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、この発明の実施の形態1による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。図1を参照して、このハイブリッド車100は、駆動力発生部110と、蓄電装置120と、受電ユニット130と、エンジンルーム140と、遮蔽材150とを備える。
 駆動力発生部110は、車両の駆動力を発生し、その発生した駆動力を図示されない減速ギヤおよび駆動軸を介して駆動輪(たとえば前輪)へ出力する。詳しくは、駆動力発生部110は、エンジンおよびモータジェネレータを含み、エンジンおよびモータジェネレータの少なくとも一方により車両駆動力を発生する。なお、モータジェネレータは、蓄電装置120から電力を受けて駆動力を発生する。また、駆動力発生部110は、モータジェネレータにより回生発電を行ない、発生した回生電力を蓄電装置120へ出力する。そして、この駆動力発生部110は、エンジンルーム140に格納される。
 蓄電装置120は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池や、大容量のキャパシタ等から成る。蓄電装置120は、後述の受電ユニット130により受電された電力を蓄えるほか、駆動力発生部110において生成された回生電力を蓄える。そして、蓄電装置120は、その蓄えられた電力を駆動力発生部110のモータジェネレータへ供給する。なお、この図1では、蓄電装置120は、車両の前後方向における略中央部(座席シート下方など)に配設されるが、車両後方のトランクルームなどに配設されてもよい。
 受電ユニット130は、車両外部に設けられる給電装置500から供給される電力を非接触で受電する。詳しくは、受電ユニット130は、給電装置500の送電ユニット520に含まれる一次自己共振コイル(LC共振コイル)と電磁場を介して共鳴することにより一次自己共振コイルから受電する二次自己共振コイル(LC共振コイル)を含み、その二次自己共振コイルを用いて給電装置500の送電ユニット520から非接触で受電する。この受電ユニット130は、エンジンルーム140に収容され、より詳しくは、エンジンルーム140の底面に配設される。そして、受電ユニット130により受電された電力は、図示されない整流器により整流され、蓄電装置120へ供給される。
 遮蔽材150は、エンジンルーム140の内外を電磁気的に遮蔽するように設けられる。たとえば、遮蔽材150は、電磁波遮蔽効果を有する布やスポンジ等から成り、エンジンルーム140の内面に貼付される。なお、エンジンルーム140の底面において、少なくとも受電ユニット130が配設される箇所は開口しており、遮蔽材150もその開口部には設けられない。
 なお、給電装置500は、高周波電源510と、送電ユニット520とを含む。高周波電源510は、系統電源から受ける電力を高周波の電力に変換し、その変換した高周波電力を送電ユニット520へ出力する。なお、高周波電源510が生成する高周波電力の周波数は、たとえば1M~10数MHzである。送電ユニット520は、一次自己共振コイル(LC共振コイル)を含み、車両側の受電ユニット130に含まれる二次自己共振コイル(LC共振コイル)と電磁場を介して共鳴することにより、高周波電源510から受ける電力をハイブリッド車100の受電ユニット130へ送電する。
 このハイブリッド車100においては、受電ユニット130は、エンジンルーム140に収容され、エンジンルーム140の底面に配置される。そして、給電装置500からの受電時、受電ユニット130から漏洩電磁界が発生するところ、この実施の形態1では、受電ユニット130を格納する専用の遮蔽箱等を別途設けるのではなく、受電ユニット130が収容されるエンジンルーム140のたとえば内面に遮蔽材150が設けられる。これにより、専用の遮蔽箱等を別途配設する必要がないので、受電ユニット130の搭載スペースを省スペース化できる。
 また、受電ユニット(二次自己共振コイル)と遮蔽材との距離(遮蔽距離)が小さいと反射電力が大きくなり効率が低下するところ、この実施の形態1では、受電ユニット130自体に遮蔽構造を設けるのではなく、受電ユニット130が収容されるエンジンルーム140に遮蔽材を設けるので、遮蔽距離を大きくとることができる。その結果、遮蔽構造を設けることによる効率の低下を抑制できる。
 図2は、共鳴法による送電の原理を説明するための図である。図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。
 具体的には、高周波電源310に一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次自己共振コイル330へ1M~10数MHzの高周波電力を給電する。一次自己共振コイル330は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル330と同じ共振周波数を有する二次自己共振コイル340と電磁場(近接場)を介して共鳴する。そうすると、一次自己共振コイル330から二次自己共振コイル340へ電磁場を介してエネルギー(電力)が移動する。二次自己共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル340と磁気的に結合される二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次自己共振コイル330と二次自己共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。
 なお、図1との対応関係について説明すると、図1の受電ユニット130は、図2の二次自己共振コイル340および二次コイル350に対応する。また、図1の高周波電源510は、図2の高周波電源310に対応し、図1の送電ユニット520は、図2の一次コイル320および一次自己共振コイル330に対応する。
 図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。 
 この中でも波源からの距離とともに急激に電磁波の強度が減少する領域があるが、共鳴法では、この近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、近接場を利用して、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次自己共振コイル)から他方の共鳴器(二次自己共振コイル)へエネルギー(電力)を伝送する。この近接場は遠方にエネルギー(電力)を伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
 図4は、図1に示したハイブリッド車100のパワートレーン構成を示すブロック図である。図4を参照して、ハイブリッド車100は、蓄電装置120と、システムメインリレーSMR1と、昇圧コンバータ410と、インバータ420,422と、モータジェネレータ430,432と、エンジン434と、動力分割装置436と、駆動輪438と、車両ECU440とを含む。また、ハイブリッド車100は、二次自己共振コイル450と、二次コイル452と、整流器460と、システムメインリレーSMR2とをさらに含む。
 このハイブリッド車100は、エンジン434およびモータジェネレータ432を動力源として搭載する。エンジン434およびモータジェネレータ430,432は、動力分割装置436に連結される。そして、ハイブリッド車100は、エンジン434およびモータジェネレータ432の少なくとも一方が発生する駆動力によって走行する。エンジン434が発生する動力は、動力分割装置436によって2経路に分割される。すなわち、一方は駆動輪438へ伝達される経路であり、もう一方はモータジェネレータ430へ伝達される経路である。
 モータジェネレータ430は、交流回転電機であり、たとえばロータに永久磁石が埋設された三相交流同期電動機から成る。モータジェネレータ430は、動力分割装置436によって分割されたエンジン434の運動エネルギーを用いて発電する。たとえば、蓄電装置120の充電状態が低下すると、エンジン434が始動してモータジェネレータ430により発電が行なわれ、蓄電装置120が充電される。
 モータジェネレータ432も、交流回転電機であり、モータジェネレータ430と同様に、たとえばロータに永久磁石が埋設された三相交流同期電動機から成る。モータジェネレータ432は、蓄電装置120に蓄えられた電力およびモータジェネレータ430により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、モータジェネレータ432の駆動力は、駆動輪438に伝達される。
 また、車両の制動時や下り斜面での加速度低減時には、運動エネルギーや位置エネルギーとして車両に蓄えられた力学的エネルギーが駆動輪438を介してモータジェネレータ432の回転駆動に用いられ、モータジェネレータ432が発電機として作動する。これにより、モータジェネレータ432は、走行エネルギーを電力に変換して制動力を発生する回生ブレーキとして作動する。そして、モータジェネレータ432により発電された電力は、蓄電装置120に蓄えられる。
 動力分割装置436は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン434のクランクシャフトに連結される。サンギヤは、モータジェネレータ430の回転軸に連結される。リングギヤはモータジェネレータ432の回転軸および駆動輪438に連結される。
 システムメインリレーSMR1は、蓄電装置120と昇圧コンバータ410との間に配設される。システムメインリレーSMR1は、車両ECU440からの信号SE1に応じてオン/オフされる。昇圧コンバータ410は、車両ECU440からの信号PWCに基づいて、蓄電装置120から出力される電圧を昇圧して正極線PL2へ出力する。なお、この昇圧コンバータ410は、たとえば直流チョッパ回路から成る。
 インバータ420,422は、それぞれモータジェネレータ430,432に対応して設けられる。インバータ420は、車両ECU440からの信号PWI1に基づいてモータジェネレータ430を駆動し、インバータ422は、信号PWI2に基づいてモータジェネレータ432を駆動する。なお、インバータ420,422の各々は、たとえば三相ブリッジ回路から成る。
 なお、昇圧コンバータ410、インバータ420,422、モータジェネレータ430,432、エンジン434および動力分割装置436は、図1における駆動力発生部110を形成する。
 二次自己共振コイル450は、両端がオープン(非接続)のLC共振コイルであり、給電装置500の送電ユニット520(図1)に含まれる一次自己共振コイルと電磁場を介して共鳴することにより給電装置500から電力を受電する。なお、二次自己共振コイル450の容量成分には、コイルの浮遊容量を用いてもよいし、コイルの両端に接続されるコンデンサを設けてもよい。
 二次自己共振コイル450は、給電装置500の一次自己共振コイルとの距離や、一次自己共振コイルおよび二次自己共振コイル450の共鳴周波数等に基づいて、一次自己共振コイルと二次自己共振コイル450との共鳴強度を示すQ値(たとえば、Q>100)およびその結合度を示すκ等が大きくなるようにその巻数が適宜設定される。
 二次コイル452は、二次自己共振コイル450と同軸上に配設され、電磁誘導により二次自己共振コイル450と磁気的に結合可能である。この二次コイル452は、二次自己共振コイル450により受電された電力を電磁誘導により取出して整流器460へ出力する。なお、二次自己共振コイル450および二次コイル452は、図1に示した受電ユニット130を形成する。
 整流器460は、二次コイル452によって取出された交流電力を整流する。システムメインリレーSMR2は、整流器460と蓄電装置120との間に配設される。システムメインリレーSMR2は、車両ECU440からの信号SE2に応じてオン/オフされる。なお、整流器460とシステムメインリレーSMR2との間、またはシステムメインリレーSMR2と蓄電装置120との間に、整流器460によって整流された電力の電圧を調整するDC/DCコンバータを設けてもよい。
 車両ECU440は、アクセル開度や車両速度、その他各センサからの信号に基づいて、昇圧コンバータ410およびモータジェネレータ430,432をそれぞれ駆動するための信号PWC,PWI1,PWI2を生成し、その生成した信号PWC,PWI1,PWI2をそれぞれ昇圧コンバータ410およびインバータ420,422へ出力する。
 また、車両ECU440は、車両の走行時、システムメインリレーSMR1,SMR2をそれぞれオン,オフさせる。なお、車両の走行中に給電装置500(図1)から受電可能な場合には、車両ECU440は、システムメインリレーSMR1,SMR2をともにオンさせてもよい。一方、車両外部の給電装置500からの受電時、車両ECU440は、システムメインリレーSMR1,SMR2をそれぞれオフ,オンさせる。
 以上のように、この実施の形態1においては、受電ユニット130は、エンジンルーム140に収容され、エンジンルーム140の底面に配置される。そして、受電ユニット130が収容されるエンジンルーム140のたとえば内面に遮蔽材150が設けられるので、受電ユニット130を格納する専用の遮蔽箱等を別途設ける必要がない。したがって、この実施の形態1によれば、受電ユニット130の搭載スペースを小さくし、かつ、受電時に発生する漏洩電磁界の遮蔽を低コストで実現することができる。
 また、この実施の形態1においては、受電ユニット130自体に遮蔽構造を設けるのではなく、受電ユニット130が収容されるエンジンルーム140に遮蔽材150が設けられるので、受電ユニット130と遮蔽材150との距離(遮蔽距離)を大きくとることができ、反射電力が抑えられる。したがって、この実施の形態1によれば、遮蔽構造を設けることによる効率の低下を抑制することができる。
 [実施の形態2]
 実施の形態2では、受電ユニット130が収容されるエンジンルーム140のボンネットが開けられると、給電装置500から受電中であれば受電を中止し、非受電中であれば受電を禁止するためのインターロック機構が設けられる。
 図5は、実施の形態2による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。図5を参照して、このハイブリッド車100Aは、図1に示したハイブリッド車100の構成において、開閉センサ180と、通信装置190とをさらに備える。
 開閉センサ180は、ボンネットの開閉状態を検出し、その検出結果を通信装置190へ出力する。通信装置190は、開閉センサ180によりボンネットの開状態が検出されると、給電装置500からハイブリッド車100Aへ給電中であれば給電の中止を指示する信号、または非給電中であれば給電の禁止を指示する信号を給電装置500へ無線で送信する。
 そして、給電装置500の高周波電源510は、ハイブリッド車100Aの通信装置190から給電の中止または禁止を指示する信号を受けると、送電ユニット520への給電を停止する。
 この実施の形態2によれば、受電ユニット130が収容されるエンジンルーム140のボンネットが開けられると給電装置500からの給電を中止または禁止するインターロック機構が設けられるので、給電装置500からの受電時に発生する漏洩電磁界がエンジンルーム140の外部へ放出されるのを防止することができる。
 [実施の形態3]
 図6は、実施の形態3による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。図6を参照して、このハイブリッド車100Bにおいては、蓄電装置120は、トランクルーム210のフロア220下部に配設される。また、給電装置500から受電する受電ユニット130も、トランクルーム210に収容され、詳しくは、蓄電装置120の下方であってトランクルーム210の底面に配設される。
 そして、遮蔽材230が、トランクルーム210の内外を電磁気的に遮蔽するように設けられる。たとえば、遮蔽材230も、電磁波遮蔽効果を有する布やスポンジ等から成り、トランクルーム210の内面に貼付される。なお、トランクルーム210の底面において、少なくとも受電ユニット130が配設される箇所は開口しており、遮蔽材230もその開口部には設けられない。
 なお、ハイブリッド車100Bのその他の構成は、図1に示した実施の形態1によるハイブリッド車100と同じであり、給電装置500の構成も実施の形態1と同じである。
 このハイブリッド車100Bにおいては、受電ユニット130は、トランクルーム210に収容され、トランクルーム210の底面に配置される。そして、受電ユニット130が収容されるトランクルーム210のたとえば内面に遮蔽材230が設けられる。これにより、受電ユニット130を格納する専用の遮蔽箱等を別途設ける必要がないので、受電ユニット130の搭載スペースを省スペース化できる。また、実施の形態1と同様に、受電ユニット(二次自己共振コイル)と遮蔽材との距離(遮蔽距離)も大きくとることができるので、遮蔽構造を設けることによる効率の低下を抑制できる。
 なお、この実施の形態3において、受電ユニット130をエンジンルーム140ではなくトランクルーム210に収容したのは、トランクルーム210に収容される蓄電装置120と受電ユニット130との間の配線長を短くできるからである。
 以上のように、この実施の形態3によっても、上記の実施の形態1と同様の効果を得ることができる。さらに、この実施の形態3によれば、蓄電装置120と受電ユニット130との間の配線長を短くできるので、効率をさらに向上できる。
 [実施の形態4]
 この実施の形態4では、実施の形態1に対する実施の形態2と同様に、受電ユニット130が収容されるトランクルーム210が開けられると、給電装置500から受電中であれば受電を中止し、非受電中であれば受電を禁止するためのインターロック機構が設けられる。
 図7は、実施の形態4による電動車両の一例として示されるハイブリッド車の特徴的な部分を示した全体構成図である。図7を参照して、このハイブリッド車100Cは、図6に示した実施の形態3によるハイブリッド車100Bの構成において、開閉センサ250と、通信装置190とをさらに備える。
 開閉センサ250は、トランクルーム210の開閉状態を検出し、その検出結果を通信装置190へ出力する。通信装置190は、開閉センサ250によりトランクルーム210の開状態が検出されると、給電装置500からハイブリッド車100Cへ給電中であれば給電の中止を指示する信号、または非給電中であれば給電の禁止を指示する信号を給電装置500へ無線で送信する。
 この実施の形態4によれば、受電ユニット130が収容されるトランクルーム210が開けられると給電装置500からの給電を中止または禁止するインターロック機構が設けられるので、給電装置500からの受電時に発生する漏洩電磁界がトランクルーム210の外部へ放出されるのを防止できる。
 なお、上記の各実施の形態においては、給電装置500の送電ユニット520に含まれる一次自己共振コイルおよび車両側の受電ユニット130に含まれる二次自己共振コイルを共鳴させて送電するものとしたが、共鳴体として一対の高誘電体ディスクを用いてもよい。高誘電体ディスクは、高誘電率材から成り、たとえばTiO2やBaTi49、LiTaO3等が用いられる。
 また、上記の実施の形態2,4においては、ボンネットまたはトランクルームが開けられると、給電の中止または禁止を指示する信号を給電装置500へ送信することによって給電装置500から給電を停止するものとしたが、たとえば受電ユニット130の下面に遮蔽板を介在させるなどして車両側で受電しないようにしてもよい。
 また、上記においては、この発明による電動車両の一例として、動力分割装置436によりエンジン434の動力を分割して駆動輪438とモータジェネレータ430とに伝達可能なシリーズ/パラレル型のハイブリッド車について説明したが、この発明は、その他の形式のハイブリッド車にも適用可能である。たとえば、モータジェネレータ430を駆動するためにのみエンジン434を用い、モータジェネレータ432でのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車や、エンジン434が生成した運動エネルギーのうち回生エネルギーのみが電気エネルギーとして回収されるハイブリッド車、エンジンを主動力として必要に応じてモータがアシストするモータアシスト型のハイブリッド車などにもこの発明は適用可能である。
 また、この発明は、エンジン434を備えずに電力のみで走行する電気自動車や、直流電源として蓄電装置120に加えて燃料電池をさらに備える燃料電池車にも適用可能である。なお、エンジンを搭載しない電気自動車や燃料電池車においては「エンジンルーム」は存在しないが、走行駆動力を発生するモータジェネレータや、蓄電装置とモータジェネレータとの間で電力変換を行なう電力変換装置(インバータや昇圧コンバータなど)が格納される室(たとえばエンジンルームと同様に車両前方に設けられる。)に受電ユニット130を収容し、その収容室を遮蔽構造としてもよい。また、この発明は、昇圧コンバータ410を備えない電動車両にも適用可能である。
 なお、上記において、モータジェネレータ432は、この発明における「電動機」に対応し、実施の形態1,2におけるエンジンルーム140および実施の形態3,4におけるトランクルーム210は、この発明における「収容部」に対応する。また、エンジン434は、この発明における「内燃機関」に対応し、エンジンルーム140は、この発明における「機関室」に対応する。さらに、トランクルーム210は、この発明における「荷物室」に対応し、開閉センサ180,250は、この発明における「検出装置」に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (8)

  1.  車両外部に設けられる給電装置(500)から供給される電力を用いて電動機(432)により走行駆動力を発生可能な電動車両であって、
     前記給電装置に含まれる送電用共鳴器と電磁場を介して共鳴することにより前記送電用共鳴器から受電する受電用共鳴器を含む受電ユニット(130)と、
     前記受電ユニットが収容される収容部(140,210)と、
     前記収容部の内外を電磁気的に遮蔽する遮蔽材(150,230)とを備える電動車両。
  2.  走行用のエネルギーを生成する内燃機関(434)をさらに備え、
     前記収容部は、前記内燃機関が収容される機関室(140)である、請求の範囲第1項に記載の電動車両。
  3.  前記収容部は、利用者の荷物を収容するための荷物室(210)である、請求の範囲第1項に記載の電動車両。
  4.  前記収容部は、前記電動機が収容される室である、請求の範囲第1項に記載の電動車両。
  5.  車両内部の電源線と前記電動機との間で電力変換を行なう電力変換装置(410,420,422)をさらに備え、
     前記収容部は、前記電力変換装置が収容される室である、請求の範囲第1項に記載の電動車両。
  6.  前記受電ユニットは、前記収容部の底面に配設される、請求の範囲第1項から第5項のいずれかに記載の電動車両。
  7.  前記収容部を開閉するための扉と、
     前記扉が開状態になると前記給電装置からの受電を中止または禁止するためのインターロック機構(180,250,190)とをさらに備える、請求の範囲第1項から第5項のいずれかに記載の電動車両。
  8.  前記インターロック機構は、
     前記扉の開閉状態を検出する検出装置(180,250)と、
     前記検出装置により前記扉の開状態が検出されると、前記給電装置からの送電の中止または禁止を指示する指令を前記給電装置へ送信する通信装置(190)とを含む、請求の範囲第7項に記載の電動車両。
PCT/JP2008/068359 2008-10-09 2008-10-09 電動車両 WO2010041320A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2008801314704A CN102177043A (zh) 2008-10-09 2008-10-09 电动车辆
US13/122,841 US8651208B2 (en) 2008-10-09 2008-10-09 Electrical powered vehicle
JP2010532737A JP4962620B2 (ja) 2008-10-09 2008-10-09 電動車両
PCT/JP2008/068359 WO2010041320A1 (ja) 2008-10-09 2008-10-09 電動車両
EP08877268.6A EP2345552B1 (en) 2008-10-09 2008-10-09 Electrical powered vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068359 WO2010041320A1 (ja) 2008-10-09 2008-10-09 電動車両

Publications (1)

Publication Number Publication Date
WO2010041320A1 true WO2010041320A1 (ja) 2010-04-15

Family

ID=42100285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068359 WO2010041320A1 (ja) 2008-10-09 2008-10-09 電動車両

Country Status (5)

Country Link
US (1) US8651208B2 (ja)
EP (1) EP2345552B1 (ja)
JP (1) JP4962620B2 (ja)
CN (1) CN102177043A (ja)
WO (1) WO2010041320A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143919A (ja) * 2010-01-14 2011-07-28 Dr Ing Hcf Porsche Ag バッテリシステムおよび自動車
WO2012111088A1 (ja) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 車両および外部給電装置
WO2012157333A1 (ja) * 2011-05-17 2012-11-22 日産自動車株式会社 非接触充電器の取付構造
JP2012248747A (ja) * 2011-05-30 2012-12-13 Toyota Industries Corp 共鳴型非接触給電システムのシールド装置
JP2012254778A (ja) * 2011-05-17 2012-12-27 Nissan Motor Co Ltd 非接触充電器の取付構造
WO2013076870A1 (ja) * 2011-11-25 2013-05-30 トヨタ自動車株式会社 車両
JP2013112047A (ja) * 2011-11-25 2013-06-10 Toyota Motor Corp 車両
WO2014076801A1 (ja) * 2012-11-15 2014-05-22 中国電力株式会社 非接触給電システム、及び非接触給電システムの制御方法
WO2014076802A1 (ja) * 2012-11-15 2014-05-22 中国電力株式会社 非接触給電システム、及び非接触給電システムの制御方法
JP5547359B1 (ja) * 2013-09-10 2014-07-09 中国電力株式会社 非接触給電システム及び非接触給電方法
WO2015045085A1 (ja) * 2013-09-27 2015-04-02 日産自動車株式会社 非接触受電装置の車載構造
JP2018052485A (ja) * 2017-09-20 2018-04-05 トヨタ自動車株式会社 車両
JP2020102936A (ja) * 2018-12-21 2020-07-02 株式会社Subaru 電動車両
WO2021014768A1 (ja) * 2019-07-25 2021-01-28 株式会社デンソー 車両
US20220348067A1 (en) * 2021-04-30 2022-11-03 Toyota Jidosha Kabushiki Kaisha Floor structure
JP7504040B2 (ja) 2021-02-12 2024-06-21 ダイハツ工業株式会社 車載用制御装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690642B2 (ja) * 2011-04-22 2015-03-25 矢崎総業株式会社 共鳴式非接触給電システム、共鳴式非接触給電システムの送電側装置及び車載充電装置
CN103975400B (zh) * 2011-11-18 2017-07-11 丰田自动车株式会社 输电装置、受电装置及电力传输系统
JP2013112237A (ja) * 2011-11-30 2013-06-10 Honda Motor Co Ltd パワーコントロールユニット
DE102011088112A1 (de) 2011-12-09 2013-06-13 Bayerische Motoren Werke Aktiengesellschaft Kraftwagen
US9533589B2 (en) * 2013-07-16 2017-01-03 Qualcomm Incorporated Integration of electronic components in inductive power transfer systems
JP6446477B2 (ja) 2014-03-26 2018-12-26 アップル インコーポレイテッドApple Inc. 誘導充電システムのための温度管理
US10106045B2 (en) 2014-10-27 2018-10-23 At&T Intellectual Property I, L.P. Methods and apparatus to charge a vehicle and to facilitate communications with the vehicle
FR3028106B1 (fr) * 2014-11-05 2018-02-02 Whylot Procede de rechargement d'une batterie electrique de traction d'un vehicule automobile par un element integre a un moteur electrique de traction se trouvant dans le vehicule automobile
US9537321B2 (en) 2015-02-25 2017-01-03 Motorola Solutions, Inc. Method and apparatus for power transfer for a portable electronic device
US10343537B2 (en) * 2016-03-08 2019-07-09 Witricity Corporation Method and apparatus for positioning a vehicle
JP6294903B2 (ja) * 2016-03-22 2018-03-14 株式会社Subaru 車両
KR101848416B1 (ko) * 2016-05-18 2018-04-12 주식회사 아모그린텍 차량용 무선 전력 송신장치
JP6546956B2 (ja) * 2017-04-28 2019-07-17 株式会社Subaru 車両
CN112706601A (zh) * 2020-12-16 2021-04-27 浙江零跑科技有限公司 无线电池包组件、无线电池包车辆、无线电池包充电组件
CN115534709A (zh) * 2022-11-01 2022-12-30 广州大学 一种车用无线充电蓄电系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170612A (ja) * 1993-12-10 1995-07-04 Fujitsu Ten Ltd 電池充電システム
JPH089512A (ja) * 1994-06-23 1996-01-12 Toyota Autom Loom Works Ltd 電動車用電磁給電装置
JPH11273977A (ja) * 1998-03-20 1999-10-08 Toyota Autom Loom Works Ltd 電気自動車用電磁誘導型非接触給電装置
JP2001177915A (ja) * 1999-12-10 2001-06-29 Toyota Motor Corp エネルギー授受装置
JP2001294048A (ja) * 2000-04-13 2001-10-23 Toyota Motor Corp 車両用電源装置
JP2002291113A (ja) * 2001-03-27 2002-10-04 Zero Sports Co Ltd 電気自動車
JP2004229421A (ja) * 2003-01-23 2004-08-12 Toyota Motor Corp 車両
JP2007039029A (ja) * 1998-11-16 2007-02-15 Aisin Aw Co Ltd 駆動装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800328A (en) * 1986-07-18 1989-01-24 Inductran Inc. Inductive power coupling with constant voltage output
JP3101001B2 (ja) * 1991-06-20 2000-10-23 本田技研工業株式会社 バッテリの残容量警報装置
JP2996559B2 (ja) * 1992-01-29 2000-01-11 本田技研工業株式会社 電気自動車の充電状況表示システム
JP2948040B2 (ja) 1993-01-12 1999-09-13 株式会社日立製作所 発熱抵抗式空気流量計
JPH08237890A (ja) 1995-02-28 1996-09-13 Fuji Electric Co Ltd 自動車への非接触式電力供給装置
JP3891533B2 (ja) 1998-11-16 2007-03-14 アイシン・エィ・ダブリュ株式会社 駆動装置
JP3870315B2 (ja) * 2001-08-08 2007-01-17 株式会社日立製作所 移動体システム
JP2005101392A (ja) * 2003-09-26 2005-04-14 Aichi Electric Co Ltd 非接触給電装置
JP4036813B2 (ja) * 2003-09-30 2008-01-23 シャープ株式会社 非接触電力供給システム
US7451839B2 (en) * 2005-05-24 2008-11-18 Rearden, Llc System and method for powering a vehicle using radio frequency generators
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP4865451B2 (ja) * 2006-08-24 2012-02-01 三菱重工業株式会社 受電装置及び送電装置並びに車両
US7880337B2 (en) * 2006-10-25 2011-02-01 Laszlo Farkas High power wireless resonant energy transfer system
CN103633745B (zh) 2007-03-27 2015-09-09 麻省理工学院 用于无线能量传输的方法
JP2008289273A (ja) * 2007-05-17 2008-11-27 Toyota Motor Corp 給電システムおよび車両
JP4453741B2 (ja) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
US8729734B2 (en) * 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
KR101593250B1 (ko) * 2008-03-13 2016-02-18 액세스 비지니스 그룹 인터내셔날 엘엘씨 복수 코일 프라이머리를 갖는 유도 전력 공급 시스템
JP5152338B2 (ja) * 2008-09-19 2013-02-27 トヨタ自動車株式会社 非接触充電装置および非接触受電装置
WO2010038297A1 (ja) * 2008-10-02 2010-04-08 トヨタ自動車株式会社 自己共振コイル、非接触電力伝達装置および車両
US20100201309A1 (en) * 2009-02-10 2010-08-12 Meek Ivan C Systems and methods for coupling a vehicle to an external grid and/or network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170612A (ja) * 1993-12-10 1995-07-04 Fujitsu Ten Ltd 電池充電システム
JPH089512A (ja) * 1994-06-23 1996-01-12 Toyota Autom Loom Works Ltd 電動車用電磁給電装置
JPH11273977A (ja) * 1998-03-20 1999-10-08 Toyota Autom Loom Works Ltd 電気自動車用電磁誘導型非接触給電装置
JP2007039029A (ja) * 1998-11-16 2007-02-15 Aisin Aw Co Ltd 駆動装置
JP2001177915A (ja) * 1999-12-10 2001-06-29 Toyota Motor Corp エネルギー授受装置
JP2001294048A (ja) * 2000-04-13 2001-10-23 Toyota Motor Corp 車両用電源装置
JP2002291113A (ja) * 2001-03-27 2002-10-04 Zero Sports Co Ltd 電気自動車
JP2004229421A (ja) * 2003-01-23 2004-08-12 Toyota Motor Corp 車両

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDRE KURS ET AL.: "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", SCIENCE, vol. 317, 6 July 2007 (2007-07-06), pages 83 - 86, Retrieved from the Internet <URL:http://www.sciencemag. org/cgi/reprint/317/5834/83.pdf>
ANDRE KURS ET AL.: "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", SCIENCE, vol. 317, 6 July 2007 (2007-07-06), pages 83 - 86, XP002609542 *
See also references of EP2345552A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143919A (ja) * 2010-01-14 2011-07-28 Dr Ing Hcf Porsche Ag バッテリシステムおよび自動車
CN103370217A (zh) * 2011-02-15 2013-10-23 丰田自动车株式会社 车辆及外部供电装置
WO2012111088A1 (ja) * 2011-02-15 2012-08-23 トヨタ自動車株式会社 車両および外部給電装置
JP5549748B2 (ja) * 2011-02-15 2014-07-16 トヨタ自動車株式会社 車両および外部給電装置
WO2012157333A1 (ja) * 2011-05-17 2012-11-22 日産自動車株式会社 非接触充電器の取付構造
JP2012254778A (ja) * 2011-05-17 2012-12-27 Nissan Motor Co Ltd 非接触充電器の取付構造
JP2012248747A (ja) * 2011-05-30 2012-12-13 Toyota Industries Corp 共鳴型非接触給電システムのシールド装置
JPWO2013076870A1 (ja) * 2011-11-25 2015-04-27 トヨタ自動車株式会社 車両
JP2013112047A (ja) * 2011-11-25 2013-06-10 Toyota Motor Corp 車両
WO2013076870A1 (ja) * 2011-11-25 2013-05-30 トヨタ自動車株式会社 車両
US9545850B2 (en) 2011-11-25 2017-01-17 Toyota Jidosha Kabushiki Kaisha Vehicle
US9711970B2 (en) 2012-11-15 2017-07-18 The Chugoku Electric Power Co., Inc. Non-contact power supply system and control method for non-contact power supply system
WO2014076802A1 (ja) * 2012-11-15 2014-05-22 中国電力株式会社 非接触給電システム、及び非接触給電システムの制御方法
WO2014076801A1 (ja) * 2012-11-15 2014-05-22 中国電力株式会社 非接触給電システム、及び非接触給電システムの制御方法
CN104662772A (zh) * 2012-11-15 2015-05-27 中国电力株式会社 非接触供电系统以及非接触供电系统的控制方法
JPWO2014076802A1 (ja) * 2012-11-15 2016-09-08 中国電力株式会社 非接触給電システム、及び非接触給電システムの制御方法
JPWO2014076801A1 (ja) * 2012-11-15 2016-09-08 中国電力株式会社 非接触給電システム、及び非接触給電システムの制御方法
JP5547359B1 (ja) * 2013-09-10 2014-07-09 中国電力株式会社 非接触給電システム及び非接触給電方法
WO2015037046A1 (ja) 2013-09-10 2015-03-19 中国電力株式会社 非接触給電システム及び非接触給電方法
WO2015045085A1 (ja) * 2013-09-27 2015-04-02 日産自動車株式会社 非接触受電装置の車載構造
JPWO2015045085A1 (ja) * 2013-09-27 2017-03-02 日産自動車株式会社 非接触受電装置の車載構造
US9827864B2 (en) 2013-09-27 2017-11-28 Nissan Motor Co., Ltd. Vehicle mounting structure of contactless power reception device
JP2018052485A (ja) * 2017-09-20 2018-04-05 トヨタ自動車株式会社 車両
JP2020102936A (ja) * 2018-12-21 2020-07-02 株式会社Subaru 電動車両
JP7165047B2 (ja) 2018-12-21 2022-11-02 株式会社Subaru 電動車両
WO2021014768A1 (ja) * 2019-07-25 2021-01-28 株式会社デンソー 車両
JP2021020492A (ja) * 2019-07-25 2021-02-18 株式会社デンソー 車両
JP7124804B2 (ja) 2019-07-25 2022-08-24 株式会社デンソー 車両
JP7504040B2 (ja) 2021-02-12 2024-06-21 ダイハツ工業株式会社 車載用制御装置
US20220348067A1 (en) * 2021-04-30 2022-11-03 Toyota Jidosha Kabushiki Kaisha Floor structure

Also Published As

Publication number Publication date
CN102177043A (zh) 2011-09-07
US20110214926A1 (en) 2011-09-08
EP2345552A4 (en) 2014-05-07
EP2345552A1 (en) 2011-07-20
US8651208B2 (en) 2014-02-18
EP2345552B1 (en) 2019-11-20
JP4962620B2 (ja) 2012-06-27
JPWO2010041320A1 (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP4962620B2 (ja) 電動車両
JP4911262B2 (ja) 電動車両
JP5083413B2 (ja) 電動車両
JP4743244B2 (ja) 非接触受電装置
JP4962621B2 (ja) 非接触電力伝達装置および非接触電力伝達装置を備える車両
JP5825337B2 (ja) シールドおよびそれを搭載する車両
JP5146488B2 (ja) 給電システムおよび車両
JP4868077B2 (ja) 給電システムおよび電動車両
JP2011121456A (ja) 給電装置、車両および車両給電システム
JP5287115B2 (ja) 車両の受電制御装置およびそれを備える車両
CN102897040B (zh) 电动车辆
JP2015027224A (ja) 非接触受電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131470.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532737

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13122841

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008877268

Country of ref document: EP