WO2015037046A1 - 非接触給電システム及び非接触給電方法 - Google Patents

非接触給電システム及び非接触給電方法 Download PDF

Info

Publication number
WO2015037046A1
WO2015037046A1 PCT/JP2013/074336 JP2013074336W WO2015037046A1 WO 2015037046 A1 WO2015037046 A1 WO 2015037046A1 JP 2013074336 W JP2013074336 W JP 2013074336W WO 2015037046 A1 WO2015037046 A1 WO 2015037046A1
Authority
WO
WIPO (PCT)
Prior art keywords
power feeding
power
magnet
shielding plate
moving body
Prior art date
Application number
PCT/JP2013/074336
Other languages
English (en)
French (fr)
Inventor
大久保 典浩
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to JP2014511665A priority Critical patent/JP5547359B1/ja
Priority to US14/917,607 priority patent/US20160226313A1/en
Priority to PCT/JP2013/074336 priority patent/WO2015037046A1/ja
Priority to KR1020167004960A priority patent/KR20160037978A/ko
Priority to CN201380079460.1A priority patent/CN105555593A/zh
Priority to EP13893644.8A priority patent/EP3056380A4/en
Publication of WO2015037046A1 publication Critical patent/WO2015037046A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a non-contact power supply system and a non-contact power supply method.
  • Patent Document 1 relates to a shield technology for a power feeding system that supplies power to a vehicle from a power source outside the vehicle using a resonance method in a non-contact manner, and a shield box is disposed so that an opening surface thereof can face the power feeding unit.
  • the other five surfaces reflect the resonant electromagnetic field (near field) generated around the power reception unit when receiving power from the power supply unit, and the power reception unit is disposed in the shield box, and through the opening of the shield box. It is described that power is received from the power supply unit.
  • Patent Document 2 relates to an electric vehicle that can receive power from a power feeding device in a non-contact manner by causing a power feeding device outside the vehicle and a resonator mounted on each of the vehicles to resonate via an electromagnetic field.
  • the power receiving unit including the secondary self-resonant coil that receives power from the power transmitting unit by resonating with the primary self-resonant coil included in the power transmitting unit of the power feeding device via the electromagnetic field
  • a shielding material which is disposed on the bottom of the engine room where the driving force generator including the motor generator is stored, and shields the inside and outside of the engine room with a shielding material made of cloth or sponge having an electromagnetic shielding effect. It is described to provide.
  • Patent Document 3 relates to an electromagnetic wave shielding method in a wireless power transmission system, and suppresses unnecessary radiation of electromagnetic waves and suppresses a decrease in power transport efficiency as much as possible in a power transmission system coil on the side opposite to the power transmission side by the power transmission system coil.
  • Non-contact power feeding is a technology that transports power in space using electromagnetic waves (high-frequency electromagnetic fields).
  • electromagnetic waves When power is fed from a power feeding element to a power receiving element, electromagnetic waves always radiate into the space using the power feeding element (coil, antenna, etc.) as a wave source. Is done.
  • the electromagnetic wave radiated from the power feeding element becomes a cause of noise in the electronic device, and there is a concern about the influence on the human body.
  • the intensity of electromagnetic waves is legally regulated by the Radio Law. For this reason, when implementing non-contact electric power feeding, it is calculated
  • the present invention has been made in view of such a background, and in non-contact power feeding, power feeding from a power feeding element to a power receiving element is reliably performed while shielding unnecessary electromagnetic radiation from the power feeding element.
  • An object of the present invention is to provide a non-contact power feeding system and a non-contact power feeding method that can be used.
  • One of the present inventions for achieving the above object is a non-contact power feeding system, which is provided on a moving body that moves along a moving surface and receives power transmitted by non-contact power feeding.
  • An element a power feeding element embedded in the moving surface and transmitting the power, a shielding plate slidably provided along the moving surface to shield electromagnetic waves radiated from the power feeding element, and the shielding plate
  • a first magnet provided on the movable body, an urging mechanism for urging the shielding plate so as to slide in a direction in which the shielding effect of the power feeding element is increased, and a movable body provided at a predetermined distance from the power receiving element.
  • a second magnet that couples with the first magnet and couples the movable body and the shielding plate when the movable body approaches the power feeding element.
  • the first magnet provided on the shielding plate and the second magnet provided on the moving body at a predetermined distance from the power receiving element are coupled to each other.
  • the shielding plate is coupled to the moving body, and the shielding plate slides against the biasing force (by the kinetic energy of the moving body) as the moving body moves, and the shielding of the feeding element is automatically released.
  • unnecessary electromagnetic waves radiated from the power feeding element can be reliably shielded, and when the moving body approaches the power feeding element, shielding by a shielding plate is possible.
  • the power can be reliably released from the power feeding element to the power receiving element.
  • Another aspect of the present invention is the non-contact power feeding system, wherein the first magnet is provided in the vicinity of a periphery of the shielding plate, and the second magnet and the power receiving element are disposed between the first magnet and the power receiving element.
  • the predetermined distance is at least equal to or greater than the maximum diameter of the electromagnetic wave radiation surface of the power feeding element.
  • the predetermined distance between the second magnet and the power receiving element is at least the maximum diameter of the electromagnetic wave radiation surface of the power feeding element.
  • Another one of the present invention is the non-contact power feeding system, wherein a sliding amount of the shielding plate that slides against the urging force with the movement of the moving body exceeds a preset threshold value. It is assumed that a power supply device that supplies power to the power feeding element only when the power supply element is present.
  • Another one of the present invention is the above non-contact power feeding system, and includes a plurality of the shielding plates provided to be slidable in different directions.
  • Another one of the present invention is the above non-contact power feeding system, wherein a plurality of the first magnets are provided in the vicinity of the periphery of the shielding plate, and around the second magnet of the moving body.
  • a plurality of power receiving elements are provided, and the predetermined distance between the second magnet and each of the power receiving elements is equal to or less than a maximum diameter of an electromagnetic wave radiation surface of the power feeding element.
  • the shielding plate can be reliably slid to release the shielding, and non-contact power feeding can be reliably performed.
  • the present invention in non-contact power feeding, it is possible to reliably feed power from the power feeding element to the power receiving element while shielding unnecessary radiation of electromagnetic waves from the power feeding element.
  • FIG. 1 shows schematic structure of the non-contact electric power feeding system 1 concerning 1st Example. It is a figure explaining operation
  • FIG. 1 shows a schematic configuration of a non-contact power feeding system 1 described as a first embodiment.
  • the non-contact power feeding system 1 includes a moving body 10 that moves along a floor surface, the ground, or the like (hereinafter referred to as a moving surface 5), a power receiving facility that is mounted on the moving body 10 and receives power feeding by non-contact power feeding, and a moving surface.
  • 5 includes a power supply facility that supplies power to the power receiving facility by contactless power supply, and a shield facility that is provided on the moving surface 5 side and shields electromagnetic waves radiated from the power supply facility.
  • the moving body 10 is, for example, an electric vehicle, a luggage carrier, a vacuum cleaner, a robot, or the like.
  • the moving body 10 is equipped with electric / electronic equipment and mechanical equipment that operate using electric power fed by non-contact power feeding.
  • the non-contact power feeding method includes an electromagnetic wave method, a magnetic field resonance method, an electromagnetic induction method, and the like, but the mechanism described below can be applied to any of the non-contact power feeding methods.
  • the power receiving equipment constituting the non-contact power feeding system 1 includes a power receiving element 11, a charging circuit 12, a secondary battery 13, a load 14, and one or more magnets 18 (second magnets) (for example, permanent magnets (Alnico). Magnets, ferrite magnets, neodymium magnets, etc.)).
  • the power receiving element 11 is an element that converts energy of electromagnetic waves transmitted through space into electric energy, and is, for example, a coil or an antenna.
  • the charging circuit 12 includes, for example, a rectifier circuit that rectifies power received by the power receiving element 11, a control circuit that controls charging / discharging of the secondary battery, and the like.
  • the secondary battery 13 is, for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, or an electric double layer capacitor.
  • the load 14 is, for example, an electric / electronic circuit, a mechanical device, a motor, or the like, and is a device that operates using electric power stored in the secondary battery 13.
  • the magnet 18 is provided at a position of the moving body 10 facing the moving surface 5. When the moving body 10 approaches a power feeding element 21 described later, the magnet 18 is coupled to a magnet 33 (first magnet) provided on the shielding plate 31 described later, and the moving body 10 and the shielding plate 31 are connected. Join.
  • the above-described power supply equipment constituting the non-contact power supply system 1 includes a power supply element 21 and a power supply apparatus 22.
  • the power feeding element 21 is an element that converts electric energy into energy of electromagnetic waves that transmit through space, and is, for example, a coil, an antenna, or the like.
  • the feeding power supply device 22 supplies power (power necessary for radiating electromagnetic waves from the feeding element 21) to the feeding element 21.
  • the feed power supply device 22 includes, for example, a rectifier that rectifies an alternating current supplied from the commercial power supply 23, an inverter circuit that generates a high-frequency current to be supplied to the feed element 21 based on the direct current rectified by the rectifier. .
  • at least the power feeding element 21 among the components of the power feeding equipment is connected to the moving surface 5 so as to be surely coupled to the magnet 18 provided on the moving body 10 side. It is buried near the surface.
  • the shielding equipment constituting the non-contact power feeding system 1 includes a shielding plate 31, a slide mechanism 32, and a magnet 33.
  • the shielding plate 31 is made of a material such as an aluminum plate having a property of shielding electromagnetic waves radiated from the power feeding element 21.
  • the shielding plate 31 has a surface that is the same as the moving surface 5 so that the electromagnetic wave radiated from the feeding element 21 embedded in the moving surface 5 toward the space (the space above the moving surface 5) can be efficiently attenuated. It is provided to be parallel.
  • the slide mechanism 32 includes an urging mechanism that urges the shielding plate 31 to slide along the moving surface 5 and to slide the shielding plate 31 in a predetermined direction.
  • the slide mechanism 32 is realized by, for example, a rail structure that slidably supports both sides of the shielding plate 31.
  • the urging mechanism is realized by using an elastic body such as a spring or rubber, for example.
  • the urging force acting on the shielding plate 31 increases as the sliding amount of the shielding plate 31 increases.
  • the magnet 33 is provided at a position facing the side through which the moving body 10 passes in the vicinity of the periphery of the shielding plate 31. When the moving body 10 approaches, the magnet 33 is coupled to the magnet 18 on the moving body 10 side, and couples the shielding plate 31 and the moving body 10. Therefore, the opposing surfaces of the magnet 33 of the shielding plate 31 and the magnet 18 on the moving body 10 side have different polarities (N pole and S pole or S pole and N pole).
  • the shielding plate 31 which is a component of the shielding facility, is coupled with the movement of the moving body 10 by the magnet 18 and the magnet 33 being coupled to each other. Automatically (using the kinetic energy of the moving body 10).
  • or FIG. 2E is demonstrated.
  • 2A to 2E show only the configuration necessary for the description of the configuration of the non-contact power feeding system 1. Unless otherwise specified, it is assumed that the feeding power supply device 22 supplies power to the feeding element 21 and electromagnetic waves are radiated from the feeding element 21.
  • FIG. 2A shows a state in which the moving body 10 moves on the moving surface 5 and approaches the power feeding element 21. As shown in the figure, at this stage, the shielding plate 31 is still completely closed, and the electromagnetic wave radiated from the feeding element 21 is shielded to the maximum by the shielding plate 31.
  • a sensor for detecting that the sliding amount of the shielding plate 31 exceeds a preset threshold value is provided, and when it is detected that the sliding amount exceeds the threshold value, radiation of electromagnetic waves from the feeding element 21 (feeding power supply)
  • the power supply to the power feeding element 21 by the device 22 may be started.
  • the distance between the magnet 18 provided on the moving body 10 and the power receiving element 11 is at least the maximum diameter of the radiation surface of the electromagnetic wave of the power feeding element 21 (for example, when the radiation surface is circular, the diameter of the circle is rectangular. In this case, it is preferable that the length of the diagonal line) or more.
  • the non-contact power feeding system 1 of the first embodiment when the moving body 10 approaches the power feeding element 21 from a predetermined direction, the magnet 18 of the moving body 10 and the magnet 33 of the shielding plate 31 And the shielding plate 31 automatically slides, whereby the shielding of electromagnetic waves radiated from the power feeding element 21 is released, and non-contact power feeding from the power feeding element 21 to the power receiving element 11 is started. Further, when the moving body 10 further moves, the shielding plate 31 is automatically returned to the original position by the urging force, and the electromagnetic wave radiated from the power feeding element 21 is again shielded to the maximum by the shielding plate 31.
  • the shielding cannot always be released when the moving body 10 approaches the power feeding element 21 from a direction different from the direction in which the shielding plate 31 can slide. Therefore, in the non-contact power feeding system 1 of the second embodiment, the shielding of the power feeding element 21 is released even when the moving body 10 approaches the power feeding element 21 from various (arbitrary) directions.
  • FIG. 3 is a view of the configuration around the power feeding element 21 and the shielding plate 31 in the non-contact power feeding system 1 described as the second embodiment when viewed from above the moving surface 5.
  • each of the four shielding plates 31a to 31d can be slid in the outer peripheral direction of the whole square (direction indicated by the arrow in the figure) by a slide mechanism (not shown) provided.
  • Each of the four shielding plates 31a to 31d is urged so as to return to a direction toward the center of the entire square (a direction opposite to the direction indicated by the arrow in the same figure) by an urging mechanism (not shown).
  • a magnet 33 is embedded (or fixed on the back side).
  • magnets 33a to 33h are embedded in the four shielding plates 31a to 31d along the periphery of the entire square. Note that the number of magnets 33, the positions where the magnets 33 are provided, and the polarities of the magnets 33 on the side facing the moving body 10 are not necessarily limited to the mode shown in FIG. It is set to the optimum state.
  • FIG. 4 is a view of the configuration around the power receiving element 11 in the non-contact power feeding system 1 described as the second embodiment when viewed from above the moving body 10.
  • a plurality of magnets 18 a to 18 h are provided around one power receiving element 11.
  • the shapes and sizes of the power receiving element 11 and the power feeding element 21 are substantially the same, and the magnets 18a to 18h are arranged so that the magnet 18 is overlapped when the power receiving element 11 and the power feeding element 21 are overlapped with each other.
  • the magnet 33 are provided in the movable body 10 at positions where the magnets 33 and the magnets 33 just overlap each other (so that any one of the magnets 18a to 18h corresponds to one of the magnets 33a to 33h).
  • the non-contact power feeding system 1 having the above configuration, when the moving body 2 approaches the power feeding element 21, at least one magnet 18 on the moving body 10 side and at least one magnet 33 on the power feeding element 21 side are coupled.
  • the combined shielding plates 31a to 31d slide as the moving body 10 moves, and as a result, the shielding of the power feeding element 21 is released.
  • the coupled shielding plate 31 is further moved and finally the coupling between the magnet 18 and the magnet 33 is released, the shielding plate 31 is automatically returned to the original position by the urging force and is radiated from the feeding element 21.
  • the electromagnetic wave is shielded to the maximum by the shielding plate 31 again.
  • the shielding of the electromagnetic wave by the shielding plate 31 can be automatically released when the moving body 10 approaches the power feeding element 21 from various directions.
  • electromagnetic waves can be reliably shielded, and non-contact power feeding can be reliably performed when the moving body 10 approaches the power feeding element 21.
  • the shapes and sizes of the power receiving element 11 and the power feeding element 21 are not limited to those shown in FIG. Further, the number, shape, size, and arrangement of the magnets 18 and 33 are not limited to those shown in FIG.
  • the non-contact power feeding system 1 shown as the third embodiment is configured for the purpose of improving the power feeding efficiency when both the power feeding element 21 and the power receiving element 11 have a predetermined radiation surface or power reception surface.
  • the configuration of the non-contact power feeding system 1 of the example is basically used.
  • the power feeding element 21 has two circular shapes having the same diameter and having a diameter of about 1 ⁇ 2 of the length of one side of the entire square.
  • the feed elements 21a and 21b (at least the electromagnetic wave radiation surface is circular) are configured.
  • the power receiving element 11 receives two circular shapes (at least the electromagnetic wave receiving surface is circular) having the same diameter and having a diameter of about 1 ⁇ 2 of the length of one side of the entire square. It consists of elements 11a and 11b.
  • the power feeding element 21 and the power receiving element 11 When the power feeding element 21 and the power receiving element 11 have such a configuration, they function as shown in FIG. 7, for example. That is, as the moving body 10 moves, the power receiving elements 11a and 11b of the power receiving facility move in the direction from + X to ⁇ X so as to overlap the power feeding elements 21a and 21b of the power feeding facility in order.
  • the magnets 18d and 18e provided around the one power receiving element 11b of the moving body 10 are respectively coupled to the magnets 33d and 33e on the power feeding element 21 side (at this time, the magnets 18d and 18e, respectively). Are the same polarity as the magnets 33a and 33h, so they are not coupled to each other).
  • the shielding plate 31 starts to slide as the moving body 10 moves, and then the shielding effect of the shielding plate 31 on the electromagnetic wave of the shielding plate 31 is maximized when the other power receiving element 11a just overlaps the other feeding element 21a. Canceled. As described above, according to this configuration, it is possible to efficiently perform non-contact power feeding from the power feeding element 21 to the power receiving element 11.
  • the shapes and sizes of the power receiving element 11 and the power feeding element 21 are not limited to those shown in FIG.
  • the feeding elements 21 having the same shape and size may be provided for each of the shielding plates 31a to 31d (that is, a total of four feeding elements 21 are provided). By doing so, the same effects as described above can be obtained in both the X-axis direction and the Y-axis direction.
  • the number, shape, size, and arrangement of the magnets 18 and 33 are not limited to those shown in FIG.
  • the fourth embodiment is a non-contact power feeding system configured to release the shielding of the power feeding element 21 even when the moving body 10 approaches the power feeding element 21 from various directions.
  • 1 is another configuration.
  • FIG. 8 is a diagram showing a schematic configuration of the non-contact power feeding system 1 described as the fourth embodiment, and is a view of the configuration around the feeding element 21 and the shielding plate 31 as viewed from above the moving surface 5.
  • the shielding plate 31 in the non-contact power feeding system 1 is substantially circular, and a plurality of magnets 33 are provided along the periphery thereof.
  • a plurality of magnets 33 are provided along the periphery thereof.
  • four magnets 33a to 33d are provided at the same distance from the center of the straight line from the center of the shielding plate 31 (the center of the circle) to the four sides at the periphery of the shielding plate 31.
  • the shielding plate 31 is provided with an urging mechanism (not shown).
  • the shielding plate 31 shields the electromagnetic wave radiated from the power feeding element 21 to the maximum extent (the center of the shielding plate 31 is directed toward the center of the power feeding element 21). Direction).
  • FIG. 9 is a view of the configuration around the power receiving element 11 of the non-contact power feeding system 1 shown as the fourth embodiment as viewed from above the moving body 10.
  • a plurality of power receiving elements 11 are provided around the magnet 18 of the moving body 10.
  • four power receptions are performed at a position equidistant from the center of the magnet 18 (the center of the magnet 18 and the centers of the four power receiving elements 11a to 11d are equidistant) on a straight line from the center of the magnet 18 in all directions.
  • Elements 11a to 11d are provided.
  • the distance between the center of the magnet 18 and the centers of the four power receiving elements 11a to 11d is set to be equal to or smaller than the maximum diameter of the electromagnetic wave radiation surface of the power feeding element 21.
  • the magnet 18 provided on the moving body 10 and the magnet 33 a provided on the shielding plate 31 are coupled to form the shielding plate 31.
  • the shielding plate 31 starts to slide as the moving body 10 moves, whereby the shielding of electromagnetic waves around the power receiving element 11a is released, and non-contact power feeding is performed from the power feeding element 21 to the power receiving element 11a. Is called.
  • the power received is smaller than that of the power receiving element 11a, a part of the power receiving surface overlaps the radiation surface of the power feeding element 21, so that the power receiving elements 11b and 11d are also contactlessly fed from the power feeding element 21. Can receive.
  • the shielding of the electromagnetic wave by the shielding plate 31 can be automatically released. It can. For this reason, electromagnetic waves can be reliably shielded during normal times, and contactless power feeding can be reliably performed when the moving body 10 approaches the power feeding element 21.
  • the shapes and sizes of the power receiving element 11 and the power feeding element 21 are not limited to those shown in FIG.
  • the number, shape, size, and arrangement of the magnets 18 and 33 are not limited to those shown in FIG.
  • the shielding plate 31 may be rectangular.
  • the magnet 33 may be arranged so as to be rectangular as a whole along the periphery of the shielding plate 31 as shown in FIG.
  • a plurality of power receiving elements 11a to 11h may be arranged around the magnet 18 so as to be entirely rectangular.
  • 1 contactless power supply system 5 moving surface, 10 moving body, 11 power receiving element, 12 charging circuit, 13 secondary battery, 14 load, 18 magnet, 21 power feeding element, 22 power feeding power supply device, 31 shielding plate, 32 slide mechanism 33 magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】給電素子から不要な電磁波が放射されるのを防ぐ。 【解決手段】給電設備の給電素子21から受電設備の受電素子11に電磁波により電力を送ることより給電を行う非接触給電システムにおいて、給電素子21から放射される電磁波を遮蔽する遮蔽板31を移動体10の移動面5に沿ってスライド可能に設け、遮蔽板31に第1の磁石33を設け、遮蔽板31を給電素子21の遮蔽効果が増大する方向にスライドするように付勢する付勢機構32を設け、移動体10に受電素子11から所定距離離間させて第2の磁石18を設け、第2の磁石18を、移動体10が給電素子21に接近した際に第1の磁石33と結合させ、それにより移動体10と遮蔽板31とを結合させて移動体10の移動とともに遮蔽板31をスライドさせて遮蔽板31による遮蔽を解除するようにする。

Description

非接触給電システム及び非接触給電方法
 本発明は、非接触給電システム及び非接触給電方法に関する。
 特許文献1には、共鳴法を用いて車両外部の電源から車両へ非接触で電力を供給する給電システムのシールド技術に関し、シールドボックスをその開口面が給電ユニットと対向可能なように配設し、その他の5つの面が給電ユニットからの受電時に受電ユニットの周囲に生成される共鳴電磁場(近接場)を反射し、受電ユニットをシールドボックス内に配設し、シールドボックスの開口部分を介して給電ユニットから受電することが記載されている。
 特許文献2には、車両外部の給電装置および車両の各々に搭載される共鳴器を電磁場を介して共鳴させることにより給電装置から非接触で受電可能な電動車両に関し、受電時に発生する漏洩電磁界を遮蔽する構成を低コストで実現するため、給電装置の送電ユニットに含まれる一次自己共振コイルと電磁場を介して共鳴することにより送電ユニットから受電する二次自己共振コイルを含む受電ユニットを、エンジンおよびモータジェネレータを含む駆動力発生部が格納されるエンジンルームの底面に配設し、電磁波遮蔽効果を有する布やスポンジ等から成る遮蔽材をエンジンルームの内外を電磁気的に遮蔽するように遮蔽材を設けることが記載されている。
 特許文献3には、無線電力伝送システムにおける電磁波遮蔽方法に関し、電磁波の不要な放射を抑え、かつ電力輸送効率の低下をできるだけ抑えるため、送電系コイルにおける、当該送電系コイルによる送電側と反対側に、磁性体からなる送電側磁気遮蔽部材を配置し、送電系コイルによる送電方向と直交する側に導電体からなる電界遮蔽部材を配置し、受電系コイルにおける、当該受電系コイルによる受電側と反対側に、磁性体からなる受電側磁気遮蔽部材を配置することが記載されている。
特開2011-91999号公報 再公表特許WO2010/041320号公報 特開2011-45189号公報
 非接触給電は電磁波(高周波電磁界)を媒介として電力を空間輸送する技術であり、給電素子から受電素子に給電を行う際、給電素子(コイル、アンテナ等)を波源として必ず空間に電磁波が放射される。この給電素子から放射される電磁波は、電子機器におけるノイズの発生要因となり、人体への影響も懸念される。また電磁波の強度は電波法等によって法的に規制されている。このため、非接触給電の実施に際しては給電素子から放射される不要な電磁波を可能な限り抑制することが求められる。
 本発明はこのような背景に鑑みてなされたもので、非接触給電において、給電素子からの不要な電磁波の放射を遮蔽しつつ、給電素子から受電素子への給電が確実に行われるようにすることが可能な、非接触給電システム及び非接触給電方法を提供することを目的とする。
 上記目的を達成するための本発明のうちの一つは、非接触給電システムであって、移動面に沿って移動する移動体に設けられ、非接触給電により送られてくる電力を受電する受電素子と、前記移動面に埋設され、前記電力を送電する給電素子と、前記給電素子から放射される電磁波を遮蔽すべく、前記移動面に沿ってスライド可能に設けられる遮蔽板と、前記遮蔽板に設けられる第1の磁石と、前記遮蔽板を前記給電素子の遮蔽効果が増大する方向にスライドするように付勢する付勢機構と、前記移動体に前記受電素子から所定距離離間させて設けられ、前記移動体が前記給電素子に接近した際に前記第1の磁石と結合して前記移動体と前記遮蔽板とを結合する第2の磁石とを含むこととする。
 本発明によれば、移動体が給電素子に接近すると、遮蔽板に設けられた第1の磁石と移動体に受電素子から所定距離離間させて設けられた第2の磁石とが結合し、それにより遮蔽板が移動体に結合し、移動体の移動に伴い(移動体の運動エネルギーによって)遮蔽板が付勢力に逆らってスライドして給電素子の遮蔽が自動的に解除される。このため、移動体が給電素子から離れた場所にあるときは給電素子から放射される不要な電磁波を確実に遮蔽することができ、また移動体が給電素子に接近したときは遮蔽板による遮蔽を自動的に解除して確実に給電素子から受電素子に電力を供給することができる。
 本発明のうちの他の一つは、上記非接触給電システムであって、前記第1の磁石は前記遮蔽板の周縁近傍に設けられ、前記第2の磁石と前記受電素子との間の前記所定距離は、少なくとも前記給電素子の電磁波の放射面の最大径以上であることとする。
 遮蔽板の周縁近傍に第1の磁石を設けた場合、第2の磁石と受電素子との間の所定距離は少なくとも給電素子の電磁波の放射面の最大径以上とすることが好ましい。そのようにすれば、移動体が第2の磁石の方向から給電素子に接近した場合、第2の磁石と第1の磁石とがまず結合し、受電素子が丁度給電素子の上方を通過した際に遮蔽板による遮蔽効果が最大限に低下するので給電素子から受電素子に効率よく電力を供給することができる。
 本発明のうちの他の一つは、上記非接触給電システムであって、前記移動体の移動に伴い前記付勢力に逆らってスライドする前記遮蔽板のスライド量が予め設定された閾値を超えている場合にのみ前記給電素子への電力供給を行う電力供給装置を含むこととする。
 このように遮蔽板のスライド量が予め設定された閾値を超えている場合にのみ給電素子への電力供給を行うようにすることで、給電素子からの不要な電磁波の放射をより確実に遮蔽することができる。
 本発明のうちの他の一つは、上記非接触給電システムであって、互いに異なる方向にスライド可能に設けられた複数の前記遮蔽板を含むこととする。
 このように給電素子を互いに異なる方向にスライド可能に設けられた複数の遮蔽板で遮蔽することで、移動体が複数の方向から給電素子に接近してきた場合に対応することができ、多様な方向から給電素子に接近してくる移動体に対して確実に遮蔽を解除して確実に非接触給電を行うことができる。
 本発明のうちの他の一つは、上記非接触給電システムであって、前記遮蔽板の周縁近傍に複数の前記第1の磁石が設けられ、前記移動体の前記第2の磁石の周囲に複数の受電素子が設けられ、前記第2の磁石と前記受電素子の夫々との間の前記所定距離は、前記給電素子の電磁波の放射面の最大径以下であることとする。
 このような構成とすることで、移動体がいずれの方向から給電素子に接近してきた場合でも確実に遮蔽板をスライドさせて遮蔽を解除することができ、確実に非接触給電を行うことができる。
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
 本発明によれば、非接触給電において、給電素子からの不要な電磁波の放射を遮蔽しつつ、給電素子から受電素子への給電が確実に行われるようにすることができる。
第1実施例にかかる非接触給電システム1の概略的構成を示す図である。 遮蔽板31の動作を説明する図である。 遮蔽板31の動作を説明する図である。 遮蔽板31の動作を説明する図である。 遮蔽板31の動作を説明する図である。 遮蔽板31の動作を説明する図である。 第2実施例にかかる非接触給電システム1の給電素子21及び遮蔽板31の周辺の構成を説明する図である。 第2実施例にかかる非接触給電システム1の受電素子11周辺の構成を説明する図である。 第3実施例にかかる非接触給電システム1の給電素子21及び遮蔽板31の周辺の構成を説明する図である。 第3実施例にかかる非接触給電システム1の受電素子11の周辺の構成を説明する図である。 第3実施例にかかる非接触給電システム1の機能を説明する図である。 第4実施例にかかる非接触給電システム1の給電素子21及び遮蔽板31の周辺の構成を説明する図である。 第4実施例にかかる非接触給電システム1の受電素子11周辺の構成を説明する図である。 第4実施例にかかる非接触給電システム1の機能を説明する図である。 第4実施例にかかる非接触給電システム1の給電素子21及び遮蔽板31の周辺の他の構成を説明する図である。 第4実施例にかかる非接触給電システム1の受電素子11の周辺の他の構成を説明する図である。
 以下、実施形態について図面を参照しつつ詳細に説明する。尚、以下の説明において、同一又は類似の部分に同一の符号を付して重複する説明を省略することがある。
[第1実施例]
 図1に第1実施例として説明する非接触給電システム1の概略的な構成を示している。非接触給電システム1は、床面や地面等(以下、移動面5と称する。)に沿って移動する移動体10、移動体10に搭載され、非接触給電によって給電を受ける受電設備、移動面5側に設けられ、非接触給電によって受電設備に給電を行う給電設備、及び、移動面5側に設けられ、給電設備から放射される電磁波を遮蔽(シールド)する遮蔽設備を含む。
 移動体10は、例えば、電気自動車、荷物運搬車、電気掃除機、ロボット等である。移動体10には、非接触給電によって給電される電力を利用して動作する電気/電子設備や機械設備が搭載されている。尚、非接触給電の方式には、電磁波方式、磁界共鳴方式、電磁誘導方式等があるが、以下に説明する仕組みは非接触給電の方式がいずれである場合も適用することができる。
 非接触給電システム1を構成している上記受電設備は、受電素子11、充電回路12、二次電池13、負荷14、及び一つ以上の磁石18(第2の磁石)(例えば永久磁石(アルニコ磁石、フェライト磁石、ネオジム磁石等))を含む。受電素子11は、空間を伝達する電磁波のエネルギーを電気エネルギーに変換する素子であり、例えば、コイルやアンテナである。充電回路12は、例えば、受電素子11で受けた電力を整流する整流回路や二次電池の充放電を制御する制御回路等を含む。二次電池13は、例えば、リチウムイオン二次電池、リチウムイオンポリマー二次電池、電気二重層キャパシタ等である。負荷14は、例えば、電気/電子回路、機械装置、モータ等であり、二次電池13に蓄えられた電力を利用して動作する装置である。磁石18は、移動体10の、移動面5に面した位置に設けられる。磁石18は、移動体10が後述する給電素子21に接近した際、後述する遮蔽板31側に設けられている磁石33(第1の磁石)と結合し、移動体10と遮蔽板31とを結合する。
 非接触給電システム1を構成している上記給電設備は、給電素子21及び給電電力供給装置22を含む。給電素子21は、電気エネルギーを空間を伝達する電磁波のエネルギーに変換する素子であり、例えば、コイル、アンテナ等である。給電電力供給装置22は、給電素子21に電力(給電素子21から電磁波を放射するために必要な電力)を供給する。給電電力供給装置22は、例えば、商用電源23から供給される交流電流を整流する整流装置、整流装置によって整流された直流電流に基づき給電素子21に供給する高周波電流を生成するインバータ回路等を含む。尚、移動体10が給電素子21に接近した際、移動体10側に設けられている磁石18と確実に結合するように、給電設備の構成要素のうち少なくとも給電素子21については移動面5の表面近傍に埋設されている。
 非接触給電システム1を構成している上記遮蔽設備は、遮蔽板31、スライド機構32、及び磁石33を含む。遮蔽板31は、給電素子21から放射される電磁波を遮蔽する性質を有するアルミニウム板等の素材からなる。遮蔽板31は、移動面5に埋設された給電素子21から空間(移動面5の上方空間)に向けて放射される電磁波を効率よく減衰させることができるように、その面が移動面5と平行になるように設けられる。スライド機構32は、遮蔽板31を移動面5に沿ってスライドさせるとともに遮蔽板31を所定方向にスライドさせるように付勢する付勢機構を有する。スライド機構32は、例えば、遮蔽板31の両サイドをスライド可能に支持するレール構造によって実現される。付勢機構は、例えば、バネやゴム等の弾性体を用いて実現される。遮蔽板31に作用する付勢力は、遮蔽板31のスライド量が増えると増大する。磁石33は、遮蔽板31の周縁近傍の移動体10が通過する側に面した位置に設けられる。磁石33は、移動体10が接近した際、移動体10側の磁石18と結合し、遮蔽板31と移動体10とを結合する。従って、遮蔽板31の磁石33と移動体10側の磁石18との対向する面は異極性(N極とS極又はS極とN極)になっている。尚、磁石18及び磁石33としては、これらが結合することにより移動体10の運動エネルギーを過剰に減衰させない程度の結合力を有するものを選択することが好ましい。
 遮蔽設備の構成要素である遮蔽板31は、移動体10が給電素子21を通過する際、磁石18と磁石33とが結合して移動体10と結合することにより、移動体10の移動に伴って(移動体10の運動エネルギーを利用して)自動的にスライドする。以下、図2A乃至図2Eとともに、この遮蔽板31がスライドする動作について説明する。尚、図2A乃至図2Eには非接触給電システム1の構成のうち説明に必要な構成のみを示している。またとくに断らない限り、給電電力供給装置22は給電素子21に電力を供給しており、給電素子21から電磁波が放射されているものとする。
 図2Aは移動体10が移動面5を移動して給電素子21に接近しつつある状態を示している。同図に示すようにこの段階ではまだ遮蔽板31は完全に閉じており、給電素子21から放射される電磁波は遮蔽板31によって最大限に遮蔽されている。
 続いて図2Bに示すように、移動体10が給電素子21に接近すると、移動体10側の磁石18と給電素子21側の磁石33とが結合して遮蔽板31が移動体10と結合し、移動体10の移動とともに遮蔽板31は付勢機構の付勢力に逆らってスライドを開始する。そして図2Cに示すように、給電素子21の遮蔽は遮蔽板31のスライドに伴い徐々に解除されてゆき、給電素子21から受電素子11への電力供給が開始される。尚、遮蔽板31のスライド量が予め設定された閾値を超えたことを検知するセンサを設け、スライド量が閾値を超えたことを検知した場合に給電素子21からの電磁波の放射(給電電力供給装置22による給電素子21への電力供給)が開始されるようにしてもよい。
 続いて図2Dに示すように、移動体10の移動とともに遮蔽板31がさらにスライドすると、付勢力が磁石18と磁石33の結合力に勝ったところで磁石18と磁石33との結合が解除され、その結果、図2Eに示すように、遮蔽板31は付勢力によって元の位置に戻り、再び給電素子21から放射される電磁波は遮蔽板31によって最大限に遮蔽される。
 尚、移動体10の受電素子11が給電素子21の上方を高速で通過する場合は遮蔽板31が開放されている期間が短くなるが、遮蔽が解除される期間が短い場合でも、例えば、二次電池13として容量の小さいものを用いたり、二次電池13として電気二重層キャパシタを採用することで、給電素子21から受電素子11に必要量の電力を供給することができる。
 移動体10に設けられる磁石18と受電素子11との間の距離は、少なくとも給電素子21の電磁波の放射面の最大径(例えば、放射面が円形のときはその円の直径、放射面が矩形のときはその対角線の長さ)以上とすることが好ましい。そのようにすれば、移動体10が給電素子21に接近して磁石18と遮蔽板31とが先行して結合し、続いて受光素子11が給電素子21の直上にさしかかった際に、遮蔽板31による給電素子21の遮蔽が必ず解除されているようにすることができ、給電素子21から受電素子11に効率よく電力を供給することができる。
 以上に説明したように、第1実施例の非接触給電システム1によれば、移動体10が所定の方向から給電素子21に接近すると、移動体10の磁石18と遮蔽板31の磁石33とが結合して遮蔽板31が自動的にスライドし、それにより給電素子21から放射される電磁波の遮蔽が解除され、給電素子21から受電素子11への非接触給電が開始される。また移動体10がさらに移動することで遮蔽板31は付勢力によって自動的に元の位置に戻り、再び給電素子21から放射される電磁波は遮蔽板31によって最大限に遮蔽される。このため、通常時(移動体10が給電素子21から離れているとき)は給電素子21から放射される不要な電磁波を確実に遮蔽することができ、移動体10が給電素子21に接近した際は給電素子21から受電素子11に確実に給電を行うことができる。また遮蔽板31は、移動体10の運動エネルギーを利用してスライドさせるので、遮蔽板31をスライドさせるために煩雑な仕組みを別途設ける必要はなく、電磁波を遮蔽しつつ確実に非接触給電を行う仕組みを省エネルギーかつ簡素な構成で実現することができる。尚、以上に説明した給電設備並びにこれに併設する遮蔽設備は移動面5の移動体10が移動する領域内の複数箇所に設けてもよい。
[第2実施例]
 第1実施例の非接触給電システム1の構成では、遮蔽板31がスライド可能な方向と異なる方向から移動体10が給電素子21に接近した場合は必ずしも遮蔽を解除することができない。そこで第2実施例の非接触給電システム1では、移動体10が多様な(任意の)方向から給電素子21に接近した場合でも給電素子21の遮蔽が解除されるようにする。
 図3は第2実施例として説明する非接触給電システム1における給電素子21及び遮蔽板31の周辺の構成を移動面5の上方から眺めた図である。
 同図に示すように、第2実施例の非接触給電システム1では、一つの給電素子21の電磁波の放射面を覆うように、略正方形状(以下、この正方形を全体正方形と称する)に隣接配置した略正方形状の4つの遮蔽板31a~31dを設けている。これら4つの遮蔽板31a~31dは夫々、夫々に設けられている図示しないスライド機構によって全体正方形の外周方向(同図において矢線で示す方向)にスライド可能になっている。またこれら4つの遮蔽板31a~31dは夫々、図示しない付勢機構によって全体正方形の中心に向かう方向(同図において矢線で示す方向とは逆の方向)に戻るように付勢されている。
 4つの遮蔽板31a~31dには夫々、磁石33が埋設(もしくは裏面側に固定)されている。図3では全体正方形の周縁に沿って4つの遮蔽板31a~31dの夫々に磁石33a~33hが埋設されている。尚、磁石33の数、磁石33を設ける位置、各磁石33に移動体10に面する側の極性は必ずしも同図に示す態様に限定されず、後述する移動体10側の構成との関係で最適な状態に設定される。
 図4は第2実施例として説明する非接触給電システム1における受電素子11周辺の構成を移動体10の上方から眺めた図である。同図に示すように、一つの受電素子11の周囲に複数の磁石18a~18hを設けている。受電素子11と給電素子21の形状及び大きさは略同一であり、磁石18a~18hは、受電素子11と給電素子21を、夫々の全体形状が重なるように重ね合わせた際、磁石18の夫々と磁石33の夫々とが丁度重なる位置に(磁石18a~18hの夫々と磁石33a~33hのいずれか一つとが対応するように)、移動体10に設けられている。
 以上の構成からなる非接触給電システム1において、移動体2が給電素子21に接近すると、移動体10側の少なくともいずれかの磁石18と給電素子21側の少なくともいずれかの磁石33とが結合し、結合した遮蔽板31a~31dが移動体10の移動に伴いスライドし、その結果、給電素子21の遮蔽が解除される。また結合した遮蔽板31がさらに移動してついには磁石18と磁石33との結合が解除されると、付勢力によって遮蔽板31は自動的に元の位置に復帰し、給電素子21から放射される電磁波は再び遮蔽板31によって最大限に遮蔽される。
 このように、第2実施例の非接触給電システム1によれば、移動体10が多様な方向から給電素子21に接近した場合に遮蔽板31による電磁波の遮蔽を自動的に解除することができ、通常時においては電磁波を確実に遮蔽しつつ、移動体10が給電素子21に接近した際は確実に非接触給電を行うことができる。
 第2実施例において、受電素子11や給電素子21の形状及び大きさは同図に示したものに限られない。また磁石18や磁石33の数、形状、大きさ、及び配置は同図に示したものに限られない。
[第3実施例]
 第3実施例として示す非接触給電システム1は、給電素子21及び受電素子11がいずれも所定の放射面又は受電面を有する場合に給電効率の向上を目的として構成したものであり、第2実施例の非接触給電システム1の構成を基本としている。
 図5に示すように、第3実施例の非接触給電システム1では、給電素子21を、前述した全体正方形の一辺の長さの1/2程度の直径を有する大きさの等しい2つの円形の(少なくとも電磁波の放射面が円形の)給電素子21a,21bで構成している。また図6に示すように、受電素子11を、前述した全体正方形の一辺の長さの1/2程度の直径を有する大きさの等しい2つの円形の(少なくとも電磁波の受電面が円形の)受電素子11a,11bで構成している。
 給電素子21及び受電素子11をこのような構成とした場合、これらは例えば図7に示すように機能する。即ち移動体10が移動することにより、受電設備の受電素子11a,11bが、順に縦列して給電設備の給電素子21a,21bに重なるように+Xから-Xに向かう方向に移動して給電素子21に接近し、まず移動体10の一方の受電素子11bの周囲に設けられた磁石18d,18eが夫々、給電素子21側の磁石33d,33eの夫々と結合する(このとき磁石18d,18eの夫々は磁石33a,33hの夫々と同極性なのでこれらと結合しない)。これにより遮蔽板31は移動体10の移動に伴いスライドを開始し、その後、他方の給電素子21aの直上に他方の受電素子11aが丁度重なり合ったところで遮蔽板31の電磁波の遮蔽効果が最大限に解除される。このように本構成によれば給電素子21から受電素子11に効率よく非接触給電を行うことができる。
 尚、受電素子11や給電素子21の形状及び大きさは同図に示したものに限られない。例えば、放射面が同形同大である給電素子21を遮蔽板31a~31dごとに設けるようにしてもよい(即ち合計4つの給電素子21を設ける)。そのようにすれば、X軸方向及びY軸方向のいずれの方向についても前記と同様の作用効果を得ることができる。またこの第3実施例において、磁石18や磁石33の数、形状、大きさ、及び配置は同図に示したものに限られない。
[第4実施例]
 第4実施例は第2実施例と同様に移動体10が多様な方向から給電素子21に接近した場合でも給電素子21の遮蔽が解除されるようにすることを目的として構成した非接触給電システム1の他の構成である。
 図8は第4実施例として説明する非接触給電システム1の概略的な構成を示す図であり、給電素子21及び遮蔽板31の周辺の構成を移動面5の上方から眺めた図である。
 同図に示すように、この非接触給電システム1における遮蔽板31は略円形であり、その周縁に沿って複数の磁石33を設けている。この例では、遮蔽板31の周縁の、遮蔽板31の中心(円の中心)から四方に向かう直線上の中心から等距離の位置に4つの磁石33a~33dを設けている。遮蔽板31には、図示しない付勢機構が設けられ、遮蔽板31は、給電素子21から放射される電磁波を最大限に遮蔽する方向(遮蔽板31の中心を給電素子21の中心に向かわせる方向)に付勢されている。
 図9は第4実施例として示す非接触給電システム1の受電素子11周辺の構成を移動体10の上方から眺めた図である。
 同図に示すように、移動体10の磁石18の周囲に複数の受電素子11を設けている。この例では磁石18の中心から四方に向かう直線上の、磁石18の中心から等距離(磁石18の中心と4つの受電素子11a~11dの夫々の中心とが等距離)の位置に4つの受電素子11a~11dを設けている。また磁石18の中心と4つの受電素子11a~11dの夫々の中心との間の距離は、給電素子21の電磁波の放射面の最大径以下としている。
 図10に示すように、移動体10が給電素子21に接近すると、移動体10に設けられている磁石18と遮蔽板31に設けられている磁石33aとが結合して遮蔽板31が移動体10と結合し、その後、遮蔽板31は移動体10の移動とともにスライドを開始し、それにより受電素子11aの周辺における電磁波の遮蔽が解除され、給電素子21から受電素子11aに非接触給電が行われる。尚、受電素子11aに比較すると受電する電力は少なくなるが、その受電面の一部が給電素子21の放射面と重なっているため、受電素子11b,11dについても給電素子21から非接触給電を受けることができる。
 以上のように、第4実施例の非接触給電システム1によれば、移動体10が多様な方向から給電素子21に接近した場合に遮蔽板31による電磁波の遮蔽を自動的に解除することができる。このため、通常時は電磁波を確実に遮蔽することができ、移動体10が給電素子21に接近した際は確実に非接触給電を行うことができる。
 尚、受電素子11や給電素子21の形状及び大きさは同図に示したものに限られない。また磁石18や磁石33の数、形状、大きさ、及び配置は同図に示したものに限られない。例えば図11に示すように遮蔽板31は矩形状であってもよい。またこの場合、同図に示すように遮蔽板31の周縁に沿って全体が矩形状になるように磁石33を配置してもよい。またこの場合、例えば図12に示すように複数の受電素子11a~11hを磁石18の周囲に全体が矩形状になるように配置してもよい。 
 以上に説明した実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。
1 非接触給電システム、5 移動面、10 移動体、11 受電素子、12 充電回路、13 二次電池、14 負荷、18 磁石、21 給電素子、22 給電電力供給装置、31 遮蔽板、32 スライド機構、33 磁石

Claims (10)

  1.  移動面に沿って移動する移動体に設けられ、非接触給電により送られてくる電力を受電する受電素子と、
     前記移動面に埋設され、前記電力を送電する給電素子と、
     前記給電素子から放射される電磁波を遮蔽すべく、前記移動面に沿ってスライド可能に設けられる遮蔽板と、
     前記遮蔽板に設けられる第1の磁石と、
     前記遮蔽板を前記給電素子の遮蔽効果が増大する方向にスライドするように付勢する付勢機構と、
     前記移動体に前記受電素子から所定距離離間させて設けられ、前記移動体が前記給電素子に接近した際に前記第1の磁石と結合して前記移動体と前記遮蔽板とを結合する第2の磁石と
     を含む、非接触給電システム。
  2.  請求項1に記載の非接触給電システムであって、
     前記第1の磁石は前記遮蔽板の周縁近傍に設けられ、
     前記第2の磁石と前記受電素子との間の前記所定距離は、少なくとも前記給電素子の電磁波の放射面の最大径以上である
     非接触給電システム。
  3.  請求項1又は2に記載の非接触給電システムであって、
     前記移動体の移動に伴い前記付勢力に逆らってスライドする前記遮蔽板のスライド量が予め設定された閾値を超えている場合にのみ前記給電素子への電力供給を行う給電電力供給装置を含む
     非接触給電システム。
  4.  請求項1乃至3のいずれか一項に記載の非接触給電システムであって、
     互いに異なる方向にスライド可能に設けられた複数の前記遮蔽板を含む
     非接触給電システム。
  5.  請求項1に記載の非接触給電システムであって、
     前記遮蔽板の周縁近傍に複数の前記第1の磁石が設けられ、
     前記移動体の前記第2の磁石の周囲に複数の受電素子が設けられ、前記第2の磁石と前記受電素子の夫々との間の前記所定距離は、前記給電素子の電磁波の放射面の最大径以下である
     非接触給電システム。
  6.  移動面に沿って移動する移動体に設けられ、非接触給電により送られてくる電力を受電する受電素子と、
     前記移動面に埋設され、前記電力を送電する給電素子と、
     前記給電素子から放射される電磁波を遮蔽すべく、前記移動面に沿ってスライド可能に設けられる遮蔽板と、
     前記遮蔽板に設けられる第1の磁石と、
     前記遮蔽板を前記給電素子の遮蔽効果が増大する方向にスライドするように付勢する付勢機構と、
     前記移動体に前記受電素子から所定距離離間させて設けた第2の磁石と
     を備えて構成される非接触給電システムを用いた非接触給電方法であって、
     前記第2の磁石を、前記移動体が前記給電素子に接近した際に前記第1の磁石と結合させて前記移動体と前記遮蔽板とを結合させる、
     非接触給電方法。
  7.  請求項6に記載の非接触給電方法であって、
     前記第1の磁石は前記遮蔽板の周縁近傍に設けられ、
     前記第2の磁石と前記受電素子との間の前記所定距離は、少なくとも前記給電素子の電磁波の放射面の最大径以上である、
     非接触給電方法。
  8.  請求項6又は7に記載の非接触給電方法であって、
     前記移動体の移動に伴い前記付勢力に逆らってスライドする前記遮蔽板のスライド量が予め設定された閾値を超えている場合にのみ前記給電素子への電力供給を行う、
     非接触給電方法。
  9.  請求項6乃至8のいずれか一項に記載の非接触給電方法であって、
     互いに異なる方向にスライド可能に設けられた複数の前記遮蔽板を含む
     非接触給電方法。
  10.  請求項6に記載の非接触給電方法であって、
     前記遮蔽板の周縁近傍に複数の前記第1の磁石が設けられ、
     前記移動体の前記第2の磁石の周囲に複数の受電素子が設けられ、前記第2の磁石と前記受電素子の夫々との間の前記所定距離は、前記給電素子の電磁波の放射面の最大径以下である
     非接触給電方法。
PCT/JP2013/074336 2013-09-10 2013-09-10 非接触給電システム及び非接触給電方法 WO2015037046A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014511665A JP5547359B1 (ja) 2013-09-10 2013-09-10 非接触給電システム及び非接触給電方法
US14/917,607 US20160226313A1 (en) 2013-09-10 2013-09-10 Wireless power transfer system and wireless power transfer method
PCT/JP2013/074336 WO2015037046A1 (ja) 2013-09-10 2013-09-10 非接触給電システム及び非接触給電方法
KR1020167004960A KR20160037978A (ko) 2013-09-10 2013-09-10 비접촉 급전 시스템 및 비접촉 급전 방법
CN201380079460.1A CN105555593A (zh) 2013-09-10 2013-09-10 非接触供电系统以及非接触供电方法
EP13893644.8A EP3056380A4 (en) 2013-09-10 2013-09-10 Contactless power feeding system, and contactless power feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074336 WO2015037046A1 (ja) 2013-09-10 2013-09-10 非接触給電システム及び非接触給電方法

Publications (1)

Publication Number Publication Date
WO2015037046A1 true WO2015037046A1 (ja) 2015-03-19

Family

ID=51409606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074336 WO2015037046A1 (ja) 2013-09-10 2013-09-10 非接触給電システム及び非接触給電方法

Country Status (6)

Country Link
US (1) US20160226313A1 (ja)
EP (1) EP3056380A4 (ja)
JP (1) JP5547359B1 (ja)
KR (1) KR20160037978A (ja)
CN (1) CN105555593A (ja)
WO (1) WO2015037046A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187947A (ja) * 2017-04-28 2018-11-29 株式会社Subaru 車両
US10283998B2 (en) 2015-05-19 2019-05-07 Samsung Electronics Co., Ltd. Wireless charging pad, wireless charging device, and electronic device using the same
WO2023249085A1 (ja) * 2022-06-24 2023-12-28 パナソニックIpマネジメント株式会社 充電装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016214515A1 (de) * 2016-08-05 2018-02-08 Robert Bosch Gmbh Induktionsladevorrichtung
CN106515461B (zh) * 2016-12-29 2023-09-22 中铁二院工程集团有限责任公司 磁悬浮列车集电靴及磁悬浮列车电磁屏蔽方法
JP2019057959A (ja) * 2017-09-19 2019-04-11 日本電産株式会社 無人移動体
KR102629793B1 (ko) * 2019-02-07 2024-01-26 주식회사 아모텍 무선 전력 공급 장치
US11551644B1 (en) 2019-07-23 2023-01-10 BlueOwl, LLC Electronic ink display for smart ring
US11853030B2 (en) 2019-07-23 2023-12-26 BlueOwl, LLC Soft smart ring and method of manufacture
US11909238B1 (en) 2019-07-23 2024-02-20 BlueOwl, LLC Environment-integrated smart ring charger
US11537203B2 (en) 2019-07-23 2022-12-27 BlueOwl, LLC Projection system for smart ring visual output
US11984742B2 (en) 2019-07-23 2024-05-14 BlueOwl, LLC Smart ring power and charging
US11462107B1 (en) 2019-07-23 2022-10-04 BlueOwl, LLC Light emitting diodes and diode arrays for smart ring visual output
US11949673B1 (en) 2019-07-23 2024-04-02 BlueOwl, LLC Gesture authentication using a smart ring
US11637511B2 (en) 2019-07-23 2023-04-25 BlueOwl, LLC Harvesting energy for a smart ring via piezoelectric charging
US11594128B2 (en) 2019-07-23 2023-02-28 BlueOwl, LLC Non-visual outputs for a smart ring
US20220320899A1 (en) * 2019-07-23 2022-10-06 BlueOwl, LLC Energy harvesting circuits for a smart ring
US11479258B1 (en) 2019-07-23 2022-10-25 BlueOwl, LLC Smart ring system for monitoring UVB exposure levels and using machine learning technique to predict high risk driving behavior
CN114301186A (zh) * 2021-12-29 2022-04-08 湖南大学 一种高温超导悬浮式无线电能传输装置及其组装方法
WO2024101713A1 (ko) * 2022-11-11 2024-05-16 삼성전자주식회사 공진기 구조 및 이를 포함하는 무선 전력 송신 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112188A (ja) * 1991-10-23 1993-05-07 Murata Mach Ltd 無人搬送車への充電コネクター
JPH10336909A (ja) * 1997-05-29 1998-12-18 Harness Sogo Gijutsu Kenkyusho:Kk 電気自動車充電用コネクタ
WO2010041320A1 (ja) 2008-10-09 2010-04-15 トヨタ自動車株式会社 電動車両
JP2010098807A (ja) * 2008-10-15 2010-04-30 Toyota Motor Corp 非接触給電システム
JP2011045189A (ja) 2009-08-21 2011-03-03 Fujitsu Ltd 無線電力伝送システムにおける電磁波遮蔽方法および装置並びに無線電力送電装置
JP2011091999A (ja) 2008-09-18 2011-05-06 Toyota Motor Corp 非接触受電装置および非接触送電装置
WO2012144640A1 (ja) * 2011-04-22 2012-10-26 矢崎総業株式会社 共鳴式非接触給電システム、受電側装置及び送電側装置
WO2012169197A1 (ja) * 2011-06-08 2012-12-13 パナソニック株式会社 非接触給電装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221802A (ja) * 1986-03-20 1987-09-29 Fanuc Ltd 無人搬送車用充電装置
JPH10304583A (ja) * 1997-04-25 1998-11-13 Sumitomo Wiring Syst Ltd 電気自動車充電用コネクタ
KR100606286B1 (ko) * 2004-05-25 2006-07-31 표성호 마그네틱 슬라이드 장치 및 이를 이용한 마그네틱슬라이드방식의 윈도우 블라인딩 시스템
JP4453741B2 (ja) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
JP5843446B2 (ja) * 2011-01-14 2016-01-13 三菱重工業株式会社 電動車両の充電装置
JP2012186949A (ja) * 2011-03-07 2012-09-27 Hitachi Maxell Energy Ltd 磁界共鳴を利用した非接触電力伝送装置
US8425243B2 (en) * 2011-07-11 2013-04-23 Apple Inc. Magnetically activated connector port cover

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112188A (ja) * 1991-10-23 1993-05-07 Murata Mach Ltd 無人搬送車への充電コネクター
JPH10336909A (ja) * 1997-05-29 1998-12-18 Harness Sogo Gijutsu Kenkyusho:Kk 電気自動車充電用コネクタ
JP2011091999A (ja) 2008-09-18 2011-05-06 Toyota Motor Corp 非接触受電装置および非接触送電装置
WO2010041320A1 (ja) 2008-10-09 2010-04-15 トヨタ自動車株式会社 電動車両
JP2010098807A (ja) * 2008-10-15 2010-04-30 Toyota Motor Corp 非接触給電システム
JP2011045189A (ja) 2009-08-21 2011-03-03 Fujitsu Ltd 無線電力伝送システムにおける電磁波遮蔽方法および装置並びに無線電力送電装置
WO2012144640A1 (ja) * 2011-04-22 2012-10-26 矢崎総業株式会社 共鳴式非接触給電システム、受電側装置及び送電側装置
WO2012169197A1 (ja) * 2011-06-08 2012-12-13 パナソニック株式会社 非接触給電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3056380A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283998B2 (en) 2015-05-19 2019-05-07 Samsung Electronics Co., Ltd. Wireless charging pad, wireless charging device, and electronic device using the same
EP3096433B1 (en) * 2015-05-19 2020-02-12 Samsung Electronics Co., Ltd. Wireless charging pad, wireless charging device, and electronic device using the same
JP2018187947A (ja) * 2017-04-28 2018-11-29 株式会社Subaru 車両
US10737580B2 (en) 2017-04-28 2020-08-11 Subaru Corporation Vehicle
WO2023249085A1 (ja) * 2022-06-24 2023-12-28 パナソニックIpマネジメント株式会社 充電装置

Also Published As

Publication number Publication date
EP3056380A4 (en) 2017-04-19
JPWO2015037046A1 (ja) 2017-03-02
KR20160037978A (ko) 2016-04-06
CN105555593A (zh) 2016-05-04
US20160226313A1 (en) 2016-08-04
JP5547359B1 (ja) 2014-07-09
EP3056380A1 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5547359B1 (ja) 非接触給電システム及び非接触給電方法
EP2805340B1 (en) Vehicle
JP5759716B2 (ja) 無線電力伝送システム
KR101697418B1 (ko) 차량
US20140232331A1 (en) Vehicle wireless charging pad mounting systems
WO2013118745A1 (ja) 非接触給電システム
WO2015146889A1 (ja) 受電システム
US20160087477A1 (en) Wireless charger with uniform h-field generator and emi reduction
US9876364B2 (en) Power receiving device, vehicle, and power transmission device
JP2008137451A (ja) 無人搬送車の自動充電方法及び装置
JP2015008547A (ja) 非接触充電装置
US10090717B2 (en) Power receiving device and power feeding device
JP5966822B2 (ja) ワイヤレス電力伝送装置
JP2014217093A (ja) 漏洩電磁波制御システム、及び漏洩電磁波制御システムの制御方法
WO2014156014A1 (ja) 非接触充電装置
JP2014123999A (ja) 非接触受電装置
JP2014112573A (ja) 非接触受電装置
JP6232191B2 (ja) 給電部、受電部及び給電システム
JP2013215073A (ja) 非接触電力伝送システムの給電装置及び受電装置
JP5930182B2 (ja) アンテナ
JP6162609B2 (ja) 非接触給電装置
JP6096266B2 (ja) 電力伝送装置
JP2017107896A (ja) 非接触給電システム
JP2015104218A (ja) 車両用非接触充電ユニット
JP2013074683A (ja) アンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079460.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014511665

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004960

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013893644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE