WO2012144640A1 - 共鳴式非接触給電システム、受電側装置及び送電側装置 - Google Patents

共鳴式非接触給電システム、受電側装置及び送電側装置 Download PDF

Info

Publication number
WO2012144640A1
WO2012144640A1 PCT/JP2012/060797 JP2012060797W WO2012144640A1 WO 2012144640 A1 WO2012144640 A1 WO 2012144640A1 JP 2012060797 W JP2012060797 W JP 2012060797W WO 2012144640 A1 WO2012144640 A1 WO 2012144640A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
resonance
transmission side
contact
Prior art date
Application number
PCT/JP2012/060797
Other languages
English (en)
French (fr)
Inventor
貴弘 中原
曜 ▲柳▼田
アントニー ガフ
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP12774391.2A priority Critical patent/EP2701284B1/en
Priority to KR1020137027834A priority patent/KR101469407B1/ko
Priority to CN201280019805.XA priority patent/CN103493335A/zh
Publication of WO2012144640A1 publication Critical patent/WO2012144640A1/ja
Priority to US14/046,563 priority patent/US9299492B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a resonance type non-contact power feeding system, a power receiving side device and a power transmission side device used in the resonance type non-contact power feeding system.
  • a technology for supplying power to a load device by a non-contact system is known.
  • a non-contact power supply system has entered a stage of practical use, and various standards have been established, and safety for general use has been considered.
  • Non-contact power supply systems There are various types of non-contact power supply systems.
  • One of the types that attracts a great deal of attention as a power supply system for electric vehicles is the resonance-type non-contact power supply system shown in FIG. 1 (a).
  • the basic principle was developed and verified by MIT (Massachusetts Institute of Technology). (See Patent Document 1).
  • a high-frequency power source, resonance coils (primary and secondary resonance coils), and a load constitute a resonance system that transmits power in a non-contact manner.
  • the power transmission side (primary side) device includes a high-frequency power source, a primary coil, and a primary resonance coil.
  • the power receiving side (secondary side) device includes a secondary resonance coil, a secondary coil, and a load.
  • the power transmitting device and the power receiving device are magnetically coupled (electromagnetically coupled) by resonance, so that power can be supplied to a place several meters away with high transmission efficiency (sometimes around 50%). There is.
  • FIG. 1A shows a resonance system.
  • power supply unit high frequency power supply and primary coil
  • resonance unit primary resonance coil, secondary resonance coil
  • load unit secondary coil and load
  • FIG. 1B shows a system configuration example when the system of FIG. 1A is mounted on an actual system. As shown in the figure, in an actual system, a transmission path between the power source and the primary resonance coil section and a transmission path between the secondary resonance coil section and the load are required.
  • FIG. 2 shows a resonant non-contact power feeding system 510 with FIG. 1B as a more specific configuration.
  • coaxial cables power transmission side and power reception side coaxial cables 60 and 70
  • problems (1) When a coaxial cable is used for the transmission path, the current flows not only inside the coaxial cable outer conductor 64 of the primary side coaxial cable (power transmission side coaxial cable 60) but also outside, and a radiated electromagnetic field is generated. .
  • a part of the electromagnetic field from the primary coil 30 is coupled to the coaxial cable outer conductor 64, and an induced current flows to generate a radiated electromagnetic field.
  • FIGS. 3A and 3B show an example in which the above-described resonance-type non-contact power feeding system 510 is applied to a charging system for an electric vehicle or the like.
  • Devices (20, 30, 35) on the power transmission side (primary side) are disposed in the ground.
  • the vehicle 1 provided with the power receiving side (secondary side) device (50, 40, 45) is arrange
  • a charging system for an electric vehicle it is considered that high power transmission exceeding 1 kW, for example, is required from the necessity of transmitting power in a short period.
  • the reference value (DA) of the ICNIRP human body protection guideline is determined between the primary resonance coil 35 and the secondary resonance coil 45, that is, between the vehicle and the road surface. ) May be generated. If this radiated electromagnetic field leaks over a wide range, the human body M1 and electronic equipment may be adversely affected. Therefore, as shown in FIG. 3B, a fence 2 or the like is placed around the area where the power is transmitted (dangerous area) so that the electromagnetic field strength cannot enter a dangerous area where the standard value of the ICNIRP human body protection guidelines is exceeded. Measures to enclose with a shield are being studied.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for solving the above-described problems.
  • An aspect of the present invention includes a resonance-type resonance coil unit that includes a power-transmission-side resonance coil unit connected to a high-frequency power source through a coaxial cable, and transmits power by non-contact resonance action from the power-transmission-side resonance coil unit to the power-receiving-side resonance coil unit.
  • a power transmission side device used in a non-contact power feeding system wherein the power transmission side resonance coil portion is covered and accommodated from the outside, and is a good conductor electrically connected to the casing of the high frequency power source by the outer conductor of the coaxial cable
  • the case connection portion may be configured to electrically connect the power transmission side shield portion and the power reception side shield portion when contactless power feeding is performed, and to be accommodated when the contactless power feeding is not performed.
  • Another aspect of the present invention is a non-contact resonance from a power transmission side resonance coil unit connected to a high frequency power supply to a power reception side resonance coil unit connected to a load device by a coaxial cable.
  • a power receiving-side device used in a resonance-type non-contact power feeding system that transmits electric power by an action, covering the power-receiving-side resonance coil portion from the outside, and housing the casing of the load device by an outer conductor of the coaxial cable It is possible to absorb misalignment with respect to the power-receiving-side shield part of the good conductor that is electrically connected to the power-receiving-side shield part and the power-receiving-side shield part that covers the power-transmission-side resonance coil part from outside and accommodates it. And a case connecting portion for electrical connection.
  • the case connection portion may be configured to electrically connect the power receiving side shield portion and the power transmission side shield portion when non-contact power feeding is performed, and to be accommodated when non-contact power feeding is not performed. Further, a resonance that transmits electric power from a power transmission side resonance coil unit connected to a high-frequency power source by a first coaxial cable to a power reception side resonance coil unit connected to a load device by a second coaxial cable by non-contact resonance action.
  • a non-contact power feeding system that covers and accommodates the power transmission side resonance coil portion from the outside, and transmits a good conductor that is electrically connected to the casing of the high frequency power source by an outer conductor of the first coaxial cable
  • a side shield part, a power receiving side shield part of a good conductor that covers and accommodates the power receiving side resonance coil part from the outside, and is electrically connected to the casing of the load device by an outer conductor of the second coaxial cable;
  • a case connection portion that electrically connects the power transmission side shield portion and the power reception side shield portion so as to absorb the displacement.
  • case connecting portion is provided in the power receiving side shield portion, and can be accommodated when the power receiving side shield and the power transmitting side shield portion are electrically connected when non-contact power feeding is performed and when non-contact power feeding is not performed. May be configured.
  • case connecting portion is provided on the power transmission side shield, and can be accommodated when the power receiving side shield portion and the power transmission side shield portion are electrically connected when non-contact power feeding is performed and when the non-contact power feeding is not performed. May be configured.
  • FIG. 1A and FIG. 1B are diagrams for explaining the principle of a resonance type non-contact power feeding system according to a conventional technique.
  • FIG. 2 is a diagram schematically showing a configuration in the case where the resonant non-contact power feeding system of FIG. 1 according to the prior art is mounted on an actual system.
  • FIGS. 3A and 3B are diagrams showing an example in which the resonance type non-contact power feeding system according to the prior art is applied to a charging system for an electric vehicle or the like.
  • FIG. 4 is a schematic diagram illustrating a configuration of a resonance-type non-contact power feeding system including a power transmission side and a power reception side metal shield according to an embodiment of the invention.
  • FIG. 1A and FIG. 1B are diagrams for explaining the principle of a resonance type non-contact power feeding system according to a conventional technique.
  • FIG. 2 is a diagram schematically showing a configuration in the case where the resonant non-contact power feeding system of FIG. 1 according to the prior art is mounted on
  • FIG. 5 is a schematic diagram showing a configuration of a resonance type non-contact power feeding system in a state in which the power transmission side and power reception side metal shields are connected according to the embodiment of the invention.
  • FIG. 6 is a diagram illustrating an example in which a resonance-type non-contact power feeding system that can connect a power transmission side and a power reception side metal shield according to an embodiment of the invention is applied to a charging system for an electric vehicle or the like.
  • FIGS. 7A and 7B are diagrams schematically illustrating an example of the power transmission side and power reception side metal shields connected by the case connection portion according to the embodiment of the invention.
  • FIG. 8B are diagrams schematically illustrating an example of the power transmission side and power reception side metal shields connected by the case connection unit according to the embodiment of the invention.
  • FIG. 9A and FIG. 9B are diagrams schematically showing an example of the power transmission side and power reception side metal shields connected by the case connecting portion according to the embodiment of the invention.
  • FIG. 10 is a diagram showing a configuration of an electromagnetic field intensity measurement system in a conventional resonance type non-contact power feeding system as a comparative example according to the embodiment of the invention.
  • FIG. 11 is a diagram illustrating a configuration of an electromagnetic field intensity measurement system in the resonance type non-contact power feeding system according to the embodiment of the invention.
  • FIGS. 12 (a) to 12 (c) are diagrams showing measurement data showing the relationship between the distance from the center of the resonance coil and the electric field strength in the resonance type non-contact power feeding system according to the embodiment of the present invention.
  • FIG. 12A is a diagram showing measurement points from the center portion of the resonance coil when there is no contact with the metal case
  • FIG. 12B is a view from the center portion of the resonance coil when there is contact with the metal case. It is a figure which shows a measurement point
  • FIG.12 (c) is measurement data which show the relationship between the distance from the resonance coil center part, and electric field strength.
  • FIG. 13 (a) to 13 (c) are diagrams showing measurement data showing the relationship between the distance from the center of the resonance coil and the magnetic field strength in the resonance type non-contact power feeding system according to the embodiment of the invention.
  • FIG. 13A is a diagram showing measurement points from the center portion of the resonance coil when there is no contact with the metal case
  • FIG. 13B is a view from the center portion of the resonance coil when there is contact with the metal case. It is a figure which shows a measurement point
  • FIG.13 (c) is measurement data which show the relationship between the distance from the resonance coil center part, and electric field strength.
  • FIG. 14 is a diagram showing measurement data of electromagnetic field intensity in the vicinity of the coaxial cable in the conventional resonance type non-contact power feeding system as a comparative example according to the embodiment of the invention.
  • FIG. 15 is a diagram showing measurement data of the electromagnetic field intensity near the coaxial cable in the resonance type non-contact power feeding system according to the embodiment of the invention.
  • the periphery of the primary and secondary resonance coil portions is covered with a metal case (metal shield), and the metal case is electrically connected to the outer conductor of the coaxial cable.
  • a resonance-type non-contact power supply system is provided for charging systems such as electric vehicles, the area of electromagnetic field strength exceeding the standard value of the guideline during charging is reduced, and a safe area is secured without installing sensors, etc. as much as possible. To do.
  • the metal cases on the power transmission side and the power reception side are electrically connected to each other, and the potential difference between the two metal cases is made zero. Furthermore, in order to secure the degree of freedom of vehicle arrangement during charging, a structure having a structure that absorbs misalignment is adopted when the metal cases are electrically connected to each other.
  • the configuration different from the resonance-type non-contact power feeding system 510 of FIG. 2 is a configuration in which a power transmission side metal shield (metal case) 80 and a power reception side metal shield (metal case) 90 are provided.
  • the same components are partly denoted by the same reference numerals. Further, since the technique disclosed in the cited document 1 can be used for the principle of power transmission in the resonance type non-contact power feeding system, detailed description thereof is omitted here.
  • the resonance-type non-contact power feeding system 10 includes a high-frequency power source 20, a primary coil 30, and a primary resonance coil 35 as power transmission side (primary side) devices.
  • the power transmission side (primary side) device is embedded in the road surface when mounted on an electric vehicle charging system.
  • the primary coil 30 is connected to the high frequency power source 20 using a power transmission side coaxial cable 60.
  • the high frequency power supply 20 includes an oscillation source 22 inside a power supply housing 24 and is connected to the primary coil 30 by a power transmission side coaxial cable 60.
  • the power supply casing 24 is grounded to the ground GND. About the aspect of grounding, it may be grounded with a dedicated earth line, or may be grounded with an FG (Frame Ground) line of an AC cable or the like.
  • system 10 provided with the high frequency power supply 20 is demonstrated, it is good also as a system structure without the high frequency power supply 20.
  • the system 10 may be configured to be connectable to an appropriate high frequency power source outside the system 10 and to receive power from the high frequency power source.
  • the resonance type non-contact power feeding system 10 includes a power transmission side metal shield 80 and covers the primary coil 30 and the primary resonance coil 35.
  • the power transmission side metal shield 80 has, for example, a case shape (tubular shape) made of a metal of a good conductor such as steel or copper with an opening on the power reception side (secondary side; right side in the drawing). That is, the shield side surface 82 of the power transmission side metal shield 80 completely covers the periphery of the primary coil 30 and the primary resonance coil 35 except for the opening.
  • the shape of the power transmission side metal shield 80 should just be a shape which functions as a shield case, and cylindrical shape, prismatic shape, etc. can be employ
  • the material may be a conductor.
  • a transmission opening for a transmission path between the high frequency power supply 20 and the primary coil 30 is provided on the shield bottom surface 84 of the power transmission side metal shield 80, and the power transmission side coaxial cable 60 is provided in the transmission opening. It is connected. More specifically, one end (right side in the figure) of the coaxial cable outer conductor 64 of the power transmission side coaxial cable 60 is connected to the shield bottom surface 84 of the power transmission side metal shield 80. The other end (the left side in the figure) of the coaxial cable outer conductor 64 is connected to the power supply casing 24 of the high frequency power supply 20. Further, the coaxial cable inner conductor 62 directly connects the oscillation source 22 of the high frequency power supply 20 and the primary coil 30.
  • the resonance-type non-contact power feeding system 10 includes a load device 50, a secondary coil 40, and a secondary resonance coil 45 as a power receiving side (secondary side) device.
  • the power receiving side (secondary side) device is mounted on a vehicle when mounted on an electric vehicle charging system.
  • a load 52 such as a rechargeable battery is provided inside the load housing 54 of the load device 50.
  • the load device 50 and the secondary coil 40 are connected by a power receiving side coaxial cable 70.
  • the system 10 provided with the load apparatus 50 is demonstrated, it is good also as a system structure without the load apparatus 50.
  • the system 10 may be configured to be connectable to an appropriate load device outside the system 10 and to supply power to the load device.
  • the resonance-type non-contact power feeding system 10 includes a power reception side metal shield 90 that covers the secondary coil 40 and the secondary resonance coil 45.
  • the power receiving side metal shield 90 has a case shape (cylindrical shape) made of a good conductive metal such as steel or copper with an opening on the power transmission side (primary side; left side in the figure), for example. . That is, the shield side surface 92 of the power receiving side metal shield 90 completely covers the periphery of the secondary coil 40 and the secondary resonance coil 45 except for the opening.
  • the shape of the power receiving side metal shield 90 may be a shape that functions as a shield case, and a cylindrical shape, a prismatic shape, or the like can be appropriately employed.
  • the material may be a conductor.
  • a transmission bottom for a transmission path between the load device 50 and the secondary coil 40 is provided in the shield bottom 94 of the power reception side metal shield 90, and the power reception side coaxial cable 70 is provided in the transmission opening. Is connected. More specifically, one end (the left side in the figure) of the coaxial cable outer conductor 74 of the power receiving side coaxial cable 70 is connected to the shield bottom surface 94 of the power receiving side metal shield 90. The other end (right side in the drawing) of the coaxial cable outer conductor 74 is connected to the load housing 54 of the load device 50. The coaxial cable inner conductor 72 is directly connected to the load 52 inside the load housing 54.
  • the oscillation source 22 is in a state where the transmission path from the oscillation source 22 to the primary coil 30 and the transmission path from the load 52 to the secondary coil 40 are formed.
  • a high frequency of several MHz to several tens of MHz is oscillated, and the oscillation output is supplied to the primary coil 30.
  • the primary resonance coil 35 amplifies the power of the primary coil 30 and generates an electromagnetic field directed to the secondary resonance coil 45.
  • the secondary resonance coil 45 is combined with the electromagnetic field generated by the primary resonance coil 35 to generate an induced current in the secondary coil 40. As a result, power is supplied to the load 52.
  • the induced current flows into the ground GND through not only the inside of the coaxial cable outer conductor 64 of the power transmission side coaxial cable 60 but also the outside.
  • a radiated electromagnetic field was generated around the power transmission side coaxial cable 60.
  • the power receiving side of the resonance type non-contact power feeding system 510 not all of the electromagnetic field from the secondary resonance coil 45 is coupled to the secondary coil 40, but a part of the electromagnetic field is coupled to the coaxial cable outer conductor 74, resulting in transmission loss. As a result, a radiated electromagnetic field is generated around the power receiving side coaxial cable 70.
  • the power transmission side (primary side) resonance portion (the primary coil 30 and the primary resonance coil 35) is covered with the power transmission side metal shield 80, and the coaxial cable outer conductor 64 of the power transmission side metal shield 80 and the power transmission side coaxial cable 60 is covered. Since they are electrically connected, the current that has flowed outside the coaxial cable outer conductor 64 on the power transmission side can be collected inside.
  • the power receiving side (secondary side) resonance portion (secondary coil 40 and secondary resonance coil 45) is covered with a power receiving side metal shield 90, and the power receiving side metal shield 90 and the power receiving side coaxial cable 70 are coaxial cables.
  • the outer conductor 74 Since the outer conductor 74 is electrically connected, the current flowing outside the coaxial cable outer conductor 74 on the power receiving side can be collected inside the coaxial cable outer conductor 74. As a result, it is possible to improve transmission efficiency and reduce radiated electromagnetic fields.
  • the configuration shown in FIG. 4 can reduce the generation of the radiated electromagnetic field.
  • a potential difference may occur between the power transmission side metal shield 80 and the power reception side metal shield 90.
  • an electric field is generated.
  • an electromagnetic field leaks from the space S1 between the power transmission side metal shield 80 and the power reception side metal shield 90 to the outside.
  • the potential difference between the power transmission side metal shield 80 and the power reception side metal shield 90 is provided by providing the case connection portion 12 that electrically connects the power transmission side metal shield 80 and the power reception side metal shield 90. And the generation of an electric field due to a potential difference is prevented.
  • the power transmission side debases such as the high frequency power supply 20 and the primary resonance coil 35 are embedded in the road surface.
  • the primary resonance coil 35 is disposed in the vicinity of the road surface.
  • the periphery of the primary resonance coil 35 is covered with a power transmission side metal shield 80 as shown in FIGS.
  • the upper side (vehicle 1 side) in the figure of the power transmission side metal shield 80 is open without any shielding material.
  • the opening is covered with a lid body 88 made of a material such as resin.
  • the material of the lid body 88 is preferably a material that does not affect the coupling such as an electric field.
  • a power transmission side case connection portion 14 is provided as a case connection portion 12 in the vicinity of the upper end portion of the shield side surface 82 of the power transmission side metal shield 80.
  • the power transmission side case connection portion 14 is a conductor and is configured to be deformable. More specifically, the power transmission side case connection portion 14 is a plate-like body, and is normally connected when it is in contact with the power reception side metal shield 90 of the vehicle 1 while maintaining a desired shape that is not charged. It can be deformed to ensure that For example, there are conductive rubber and a resin material whose surface is conductively processed.
  • the power transmission side case connection part 14 is normally arrange
  • the power transmission side case connection part 14 is comprised with two or more considering the stop position error of the vehicle 1, the diversity of the shape of the power receiving side metal shield 90, etc.
  • the power receiving side devices such as the load device 50 and the secondary resonance coil 45 which are battery devices are mounted on the vehicle 1.
  • the secondary resonance coil 45 is disposed near the floor surface of the vehicle 1.
  • the periphery of the secondary resonance coil 45 is covered with a power receiving side metal shield 90 as shown in FIGS.
  • the lower side (road surface side) of the power receiving side metal shield 90 is open without any shielding material.
  • the opening is covered with a lid body 98 made of a material such as resin.
  • the material of the lid body 98 is preferably a material that does not affect the coupling such as an electric field.
  • a power receiving side case connecting portion 13 is provided as a case connecting portion 12 in the vicinity of the lower end portion of the shield side surface 92 of the power receiving side metal shield 90.
  • the power receiving side case connecting portion 13 is a conductor and is configured to be deformable. More specifically, the power receiving side case connecting portion 13 is a plate-like body, and is normally not charged, while maintaining a desired shape, and in contact with the power transmission side metal shield 80 that is the charging position, It can be deformed to ensure a secure connection.
  • the power receiving side case connecting portion 13 is normally disposed horizontally on the floor surface (lower outer surface) of the vehicle 1 and is driven by a motor or the like so as to be in the vertical direction during charging.
  • the power reception side case connection part 13 may be configured in plurality in consideration of the stop position error of the vehicle 1, the variety of shapes of the power transmission side metal shield 80, and the like. preferable.
  • the primary resonance coil 35 and the secondary resonance coil 45 face each other.
  • the positions of the power receiving side case connecting part 13 and the power transmitting side case connecting part 14 which are the case connecting parts 12 are drive-controlled.
  • the power receiving side case connecting portion 13 is connected to the power receiving side metal shield 90
  • the power transmitting side case connecting portion 14 is connected to the power transmitting side metal shield 80.
  • the power receiving side case connecting portion 13 and the power transmitting side case connecting portion 14 are formed longer than the distance between the vehicle 1 and the road surface, and the electric connection state is good by bending so as to be pressed at the time of connection. Maintained.
  • the power receiving side case connecting portion 13 (13a, 13b) is provided on the power receiving side metal shield 90 on the vehicle 1 side, and the case connecting portion 12 (power transmission) is provided on the power transmitting side metal shield 80.
  • the side case connection part 14) is not provided.
  • the upper end of the shield side surface 82 that is, the end on the road surface side, has an opening end that extends outward by a predetermined length and is formed to face the floor of the vehicle 1.
  • a shield front face 86 (86a, 86b) is provided. The extending length is set assuming an allowable range for the deviation of the stop position of the vehicle 1.
  • the receiving side case connection part 13 (13a, 13b) is maintained in a horizontal state.
  • the power receiving side case connecting portion 13 is driven so as to be vertical, and as shown in FIG. 7B, the power receiving side case connecting portion 13a on the right side in the drawing is bent to the shield front portion 86a on the right side in the drawing. Connected.
  • the power receiving side case connecting portion 13b on the left side in the drawing is accommodated in a horizontal state because the shield front surface portion 86 is not located immediately below even if controlled to a vertical state. Whether or not the shield front face 86 exists immediately below can be realized by a known sensing technique since the shield front face 86 is a conductor.
  • the case connection portion 12 (power transmission side case connection portions 14a and 14b) is connected to the power transmission side metal shield.
  • the structure provided only in 80 is shown.
  • a shield front surface portion having a surface shape formed so as to extend a predetermined length on the lower end portion of the shield side surface 92, that is, on the floor surface side end portion, and to face the road surface.
  • 96 (96a, 96b) are provided. The extending length is set assuming an allowable range for the deviation of the stop position of the vehicle 1.
  • the power transmission side case connection part 14 (14a, 14b) is maintained in a parallel (horizontal) state with a floor surface.
  • the power transmission side case connection portion 14 is driven to be vertical, and as shown in FIG. 8B, the power transmission side case connection portion 14a on the right side of the drawing is bent to the shield front portion 96a on the right side of the drawing. Connected.
  • the shield front surface portion 86b is not positioned directly above, and thus is accommodated in the horizontal state. Whether or not the shield front part 96 exists directly above can be realized by a known sensing technique since the shield front part 96 is a conductor.
  • FIG. 9A and 9B show a configuration in which the case connecting portion 12 is provided on both the power transmission side metal shield 80 and the power reception side metal shield 90.
  • the power transmission side metal shield 80 includes a shield front surface portion 86 and a power transmission side case connection portion 14.
  • the power receiving side metal shield 90 includes the shield front surface portion 96 and the power receiving side case connecting portion 13.
  • the power transmission side case connection portion 14a on the right side of the drawing and the left power reception side case connection portion 13b are connected while being bent vertically.
  • the power transmission side case connection part 14b on the left side and the right power reception side case connection part 13a shown by broken lines that are not used for connection are maintained horizontally.
  • the sensing result of the shield front portions 86 and 96 can be used as described above to determine which case connection portion 12 is vertical or horizontal. Moreover, the case where both the power receiving side case connection part 13 and the power transmission side case connection part 14 can be used for connection can also be assumed. In such a case, if the case connection unit 12 that is preferentially moved is set in advance, smooth operation becomes possible.
  • FIG. 10 shows a system configuration of a measurement system corresponding to the resonance type non-contact power feeding system 10 that is not connected by the case connection unit 12, and FIG. 11 corresponds to the resonance type non-contact power feeding system 110 connected by the case connection unit 12. The system configuration of the measurement system is shown.
  • the outline of the system configuration of the measurement system of FIGS. 10 and 11 is as follows.
  • High frequency power supply 20 Frequency 13.56MHZ ( ⁇ 1MHz), output power 3kW.
  • Coaxial cable (transmission-side coaxial cable 60) A coaxial cable (3 m) is used as a transmission line for high-frequency power, and the high-frequency power supply 20 and the loop coil (primary coil 30) are connected.
  • Electromagnetic field measurement location 5 locations (50 cm interval)
  • Loop coil (30, 40) copper diameter 150 mm, copper wire diameter 5 mm.
  • the power transmission side and the power reception side have the same structure.
  • Resonance coil (35, 45) copper diameter 300 mm, inner diameter 185 mm, copper wire diameter 5 mm, pitch 5 mm spiral type.
  • the power transmission side and the power reception side have the same structure, and the distance between the coils is 200 mm.
  • Load device 50 The high-frequency power on the power receiving side is attenuated by a predetermined amount with an attenuator, and the signal level is measured with a spectrum analyzer.
  • Case connecting portion 12 ⁇ FIG. 11; only this embodiment> The power transmission side and power reception side metal shields 80 and 90 are connected by the case connecting portion 12 so that the potential difference between the metal shields is zero.
  • FIGS. 12A to 12C show the measurement results regarding the relationship between the distance from the center of the primary resonance coil 35 and the secondary resonance coil 45 and the electric field strength.
  • the measured electric field is the ICNIRP human body protection guideline (hereinafter referred to as "guideline") for the first time at the position P6. Below 27.5V / m. This is because the electric field leaking from between the power transmission side metal shield 80 and the power reception side metal shield 90 is large, and the dangerous area is widened.
  • the electric field leaking to the outside is greatly reduced.
  • the electric field is almost the same as the guideline at the position P2 (approximately 500 mm point), and is lower at the position P3 (approximately 600 mm point). In this way, the dangerous area where the electric field exceeds the guideline can be greatly reduced.
  • FIGS. 13A to 13C show the measurement results regarding the relationship between the distance from the center of the primary resonance coil 35 and the secondary resonance coil 45 and the magnetic field strength.
  • the measurement result shown in the figure there is a certain reduction in the condition in which the power transmission side metal shield 80 and the power reception side metal shield 90 are connected, although there is no significant change compared to the condition in which the connection is not performed.
  • the magnetic field is not caused by the potential difference between the power transmission side metal shield 80 and the power reception side metal shield 90 but is generated as electromagnetic coupling energy between the primary resonance coil 35 and the secondary resonance coil 45 and leaks.
  • it largely depends on the distance between the power transmission side metal shield 80 and the power reception side metal shield 90. Therefore, since the distance between the power transmission side metal shield 80 and the power reception side metal shield 90 is fixed, the fluctuation of the magnetic field is hardly observed.
  • 14 and 15 show the measurement results of the electromagnetic field strength (electric field and radiated electromagnetic field) in the vicinity of the coaxial cables 60 and 70 on the power transmission side and the power reception side.
  • 14 shows a measurement result of the resonance type non-contact power feeding system 10 in which the power transmission side metal shield 80 and the power reception side metal shield 90 are not electrically connected by the case connection part 12, and FIG.
  • the measurement result of the resonance type non-contact electric power feeding system 110 connected to is shown.
  • the outline of the measurement conditions is as follows. • Install an electromagnetic field sensor at each measurement point. The vertical distance from the measurement point to the electromagnetic field sensor surface is 50 mm. Output 3kW power with a frequency of 13.56 MHz from the high frequency power supply 20 and obtain the maximum value of the electric field and the maximum value of the magnetic field measured by the electromagnetic field sensor.
  • a value of 400 to 800 V / m is measured with respect to the electric field on the power transmission side X.
  • a value of approximately 200 to 400 V / m is measured.
  • a value of approximately 0.2 to 0.5 A / m is measured.
  • the resonance-type non-contact power feeding system 110 including the case connection unit 12 the measurement results shown in FIG. 15 are obtained, and both the electric field and the magnetic field are substantially zero values on the power transmission side X and the power reception side Y. It was. Thus, by adopting the resonance type non-contact power feeding system 110 provided with the case connecting portion, the radiated electromagnetic field can be greatly reduced.
  • transmission efficiency can be improved easily and at low cost, and the radiated electromagnetic field can be further reduced.
  • the weight can be reduced compared to shielding the entire system. Therefore, even if it is a case where it mounts in moving bodies, such as a vehicle, the increase in the energy consumption by weight increase can be suppressed.
  • the danger area can be greatly reduced, and measures against entry into the danger area and the like are facilitated. That is, the number of devices such as human sensors can be greatly reduced and the operation can be simplified.
  • the primary resonance coil 35 and the secondary resonance coil 45 are a loop power feeding type (indirect type) using the primary coil 30 and the secondary coil 40, but may be configured to be directly fed.
  • the power transmission output may be changed according to the number of connected case connection parts 12 (the power receiving side case connection part 13 and the power transmission side case connection part 14), or less than a predetermined number. In some cases, the power transmission output may be reduced.
  • the present invention is useful in the field of resonant non-contact power feeding systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の共鳴式非接触給電システム(10)は、一次コイル(30)及び一次共鳴コイル(35)の周囲を覆う送電側金属シールド(80)と、二次コイル(40)及び二次共鳴コイル(45)の周囲を覆う受電側金属シールド(90)とを備え、充電の際に、送電側金属シールド(80)と受電側金属シールド(90)はケース接続部(12)により同電位になるように接続される。

Description

共鳴式非接触給電システム、受電側装置及び送電側装置
 本発明は、共鳴式非接触給電システム、その共鳴式非接触給電システムに用いられる受電側装置及び送電側装置に関する。
 非接触のシステムによって負荷装置に電力を供給する技術が知られている。近年では電気自動車に対する給電システムとしても、非接触の給電システムは実用化のステージに入り、各種の規格が定められるとともに、一般的な使用を想定した安全性が配慮されるようになっている。
 非接触の給電システムには、様々なタイプがある。電気自動車等に対する給電システムとして大きく注目されている種類の一つが、図1(a)に示す共鳴式非接触給電システムであり、MIT(Massachusetts Institute of Technology)により基本的原理が開発・実証されている(特許文献1参照)。図示の共鳴式非接触給電システムでは、高周波電源、共鳴コイル(一次及び二次共鳴コイル)及び負荷が電力を非接触で伝送する共鳴系を構成している。具体的には、送電側(一次側)ディバイスは、高周波電源、1次コイル、一次共鳴コイルで構成されている。受電側(二次側)ディバイスは、二次共鳴コイル、二次コイル、負荷で構成されている。このシステムでは送電側ディバイスと受電側ディバイスが、共鳴によって磁界結合(電磁結合)することで、数m程度離れた場所に高い伝送効率(時には50%前後)で電力を供給することができるという特長がある。
 ここで、図1(a)で示したMITによる技術では、「電源部(高周波電源及び1次コイル)、共鳴部(一次共鳴コイル、二次共鳴コイル)、負荷部(2次コイル及び負荷)」が、共鳴系となっている場合を想定している。しかしながら、非接触給電システムを電子機器や自動車給電システムに実装する場合には、追加の構成が必要となる。図1(b)に図1(a)のシステムを現実のシステムに実装する場合のシステム構成例を示す。図示のように、現実のシステムでは、電源と一次側共鳴コイル部の間の伝送路、二次側共鳴コイル部と負荷の間の伝送路が必要となる。
日本国特表2009-501510号公報 日本国特開2010-40699号公報 日本国特開平5-344602号公報
 図2に、図1(b)をより具体的な構成として共鳴式非接触給電システム510を示す。図示のように、同軸ケーブル(送電側及び受電側同軸ケーブル60、70)を使用した場合、次のような課題がある。
(1)伝送路に同軸ケーブルを使用した場合、電流が一次側の同軸ケーブル(送電側同軸ケーブル60)の同軸ケーブル外導体64内側だけでなく外側にも流れてしまい、放射電磁界が発生する。
(2)一次コイル30から一部の電磁界が同軸ケーブル外導体64と結合し、誘導電流が流れることで放射電磁界が発生する。
(3)二次共鳴コイル45からの電磁界の全てが二次コイル40と結合するわけでなく、一部の電磁界が受電側同軸ケーブル70の同軸ケーブル外導体74と結合して誘導電流が流れることで放射電磁界が発生する。
 図3(a)及び図3(b)に、上記の共鳴式非接触給電システム510を電気自動車等への充電システムに適用させた例を示す。送電側(一次側)のディバイス(20、30、35)は地中に配置されている。そして、受電側(二次側)のディバイス(50、40、45)を備えた車両1が、送電側のディバイスの上に配置されると非接触の送電が可能となる。ここで、電気自動車への充電システムでは、短期間で送電を行う必要性から、例えば、1kWを超えるような大電力伝送が求められると考えられている。しかし、図3(a)に示すように、大電力伝送を行うと、一次共鳴コイル35と二次共鳴コイル45の間、つまり車両と路面との間から、ICNIRP人体保護ガイドラインの基準値(DA)を超える放射電磁界が発生する恐れがある。この放射電磁界が広範囲にわたって漏洩すると、人体M1や電子機器に悪影響を及ぼす恐れがある。そのため、図3(b)に示すように、電磁界強度がICNIRP人体保護ガイドラインの基準値を超えるような危険区域に進入できないように、送電が行われる区域(危険区域)の周囲に柵2等の遮蔽物で囲う対策が検討されている。しかし、ルールを理解できない子供M2やペットなどの小動物P2が、危険区域に進入してしまい事故が起きる可能性もある。さらに、危険区域への進入を感知するためのセンサを各所に配置し、進入が認められた場合に、充電を即座に中止するシステムを構築することも考えられる。しかし、センサの数が多くなると、危険区域に進入した物体の判断基準の決定などにおいて、対応の難しさがある。
 本発明は、このような状況に鑑みてなされたものであり、上記課題を解決する技術を提供することを目的とする。
 本発明のある態様は、高周波電源に同軸ケーブルによって接続された送電側共鳴コイル部を備え、前記送電側共鳴コイル部から受電側共鳴コイル部への非接触の共鳴作用によって電力を伝送する共鳴式非接触給電システムに用いられる送電側装置であって、前記送電側共鳴コイル部を外側から覆って収容するとともに、前記同軸ケーブルの外導体によって前記高周波電源の筐体に電気的に接続される良導体の送電側シールド部と、前記送電側シールド部を、前記受電側共鳴コイル部を外側から覆って収容する良導体の受電側シールド部に対して、位置ズレを吸収可能に電気的に接続するケース接続部とを更に備える。
 また、前記ケース接続部は、非接触給電するときに前記送電側シールド部と前記受電側シールド部とを電気的に接続し、非接触給電しないときには収容されるように構成されてもよい。
 本発明の別の態様は、受電側共鳴コイル部を備え、高周波電源に接続された送電側共鳴コイル部から、負荷装置に同軸ケーブルによって接続された前記受電側共鳴コイル部への非接触の共鳴作用によって電力を伝送する共鳴式非接触給電システムに用いられる受電側装置であって、前記受電側共鳴コイル部を外側から覆って収容するとともに、前記同軸ケーブルの外導体によって前記負荷装置の筐体に電気的に接続される良導体の受電側シールド部と、前記受電側シールド部を、前記送電側共鳴コイル部を外側から覆って収容する良導体の送電側シールド部に対して、位置ズレを吸収可能に電気的に接続するケース接続部とを備える。
 また、前記ケース接続部は、非接触給電するときに前記受電側シールド部と前記送電側シールド部とを電気的に接続し、非接触給電しないときには収容されるように構成されてもよい。
 また、高周波電源に第1の同軸ケーブルによって接続された送電側共鳴コイル部から、負荷装置に第2の同軸ケーブルによって接続された受電側共鳴コイル部へ非接触の共鳴作用によって電力を伝送する共鳴式非接触給電システムであって、前記送電側共鳴コイル部を外側から覆って収容するとともに、前記第1の同軸ケーブルの外導体によって前記高周波電源の筐体に電気的に接続される良導体の送電側シールド部と、前記受電側共鳴コイル部を外側から覆って収容するとともに、前記第2の同軸ケーブルの外導体によって前記負荷装置の筐体に電気的に接続される良導体の受電側シールド部と、前記送電側シールド部と前記受電側シールド部とを、位置ズレを吸収可能に電気的に接続するケース接続部と、を備える。
 また、前記ケース接続部は、前記受電側シールド部に設けられており、非接触給電するときに前記受電側シールドと前記送電側シールド部とを電気的に接続し、非接触給電しないときには収容可能に構成されてもよい。
 また、前記ケース接続部は、前記送電側シールドに設けられており、非接触給電するときに前記受電側シールド部と前記送電側シールド部とを電気的に接続し、非接触給電しないときには収容可能に構成されてもよい。
 本発明によれば、共鳴式非接触給電システムにおける不要な放射電磁界を低減する技術を提供することができる。
図1(a)及び図1(b)は、従来技術に係る、共鳴式非接触給電システムの原理を説明するための図である。 図2は、従来技術に係る、図1の共鳴式非接触給電システムを現実のシステムに実装させた場合の構成を模式的に示す図である。 図3(a)及び図3(b)は、従来技術に係る、共鳴式非接触給電システムを電気自動車等への充電システムに適用させた例を示す図である。 図4は、発明の実施形態に係る、送電側及び受電側金属シールドを備えた共鳴式非接触給電システムの構成を示す模式図である。 図5は、発明の実施形態に係る、送電側及び受電側金属シールドを接続した状態の共鳴式非接触給電システムの構成を示す模式図である。 図6は、発明の実施形態に係る、送電側及び受電側金属シールドを接続可能とした共鳴式非接触給電システムを電気自動車等への充電システムに適用させた例を示す図である。 図7(a)及び図7(b)は、発明の実施形態に係る、ケース接続部により接続される送電側及び受電側金属シールドの一例を模式的に示す図である。 図8(a)及び図8(b)は、発明の実施形態に係る、ケース接続部により接続される送電側及び受電側金属シールドの一例を模式的に示す図である。 図9(a)及び図9(b)は、発明の実施形態に係る、ケース接続部により接続される送電側及び受電側金属シールドの一例を模式的に示す図である。 図10は、発明の実施形態に係る、比較例である従来の共鳴式非接触給電システムにおける電磁界強度の測定系の構成を示す図である。 図11は、発明の実施形態に係る、発明の実施形態に係る、共鳴式非接触給電システムにおける電磁界強度の測定系の構成を示す図である。 図12(a)~図12(c)は、発明の実施形態に係る、共鳴式非接触給電システムにおける共鳴コイル中心部からの距離と電界強度の関係を示す測定データを示す図であって、図12(a)は金属ケースの接触が無しの場合の共鳴コイル中心部からの測定点を示す図であり、図12(b)は金属ケースの接触が有りの場合の共鳴コイル中心部からの測定点を示す図であり、図12(c)は共鳴コイル中心部からの距離と電界強度の関係を示す測定データである。 図13(a)~図13(c)は、発明の実施形態に係る、共鳴式非接触給電システムにおける共鳴コイル中心部からの距離と磁界強度の関係を示す測定データを示す図であって、図13(a)は金属ケースの接触が無しの場合の共鳴コイル中心部からの測定点を示す図であり、図13(b)は金属ケースの接触が有りの場合の共鳴コイル中心部からの測定点を示す図であり、図13(c)は共鳴コイル中心部からの距離と電界強度の関係を示す測定データである。 図14は、発明の実施形態に係る、比較例である従来の共鳴式非接触給電システムにおける同軸ケーブル近傍の電磁界強度の測定データを示す図である。 図15は、発明の実施形態に係る、共鳴式非接触給電システムにおける同軸ケーブル近傍の電磁界強度の測定データを示す図である。
 以下、発明を実施するための形態(以下、「実施形態」という)を、図面を参照しつつ説明する。本実施形態の概要は次の通りである。本実施形態の共鳴式非接触給電システムでは、一次側及び二次側の共鳴コイル部の周囲を金属ケース(金属シールド)で覆い、その金属ケースを同軸線ケーブルの外導体と電気的に接続する。さらに、共鳴式非接触給電システムを電気自動車等の充電システムに提供した場合に、充電時にガイドラインの基準値を超える電磁界強度の領域を低減し、センサ等を極力設置せずに安全区域を確保する。そのために、給電時(充電時)に、送電側及び受電側の金属ケース同士を電気的に接続させ、両金属ケース間の電位差をゼロにする。さらに充電時の車両配置の自由度を確保するために、金属ケース同士を電気的に接続する際に、位置ズレを吸収する構造の手段を採用する。
 まず、図4を参照して電気自動車の充電システムに適用する共鳴式非接触給電システム10のモデルを説明する。図2の共鳴式非接触給電システム510と異なる構成は、送電側金属シールド(金属ケース)80及び受電側金属シールド(金属ケース)90を設けた構成にあり、他の構成については同様の構成となっており、同様の構成要素については一部同一符号をしている。また、共鳴式非接触給電システムにおける電力伝送原理については、引用文献1に開示の技術を用いることができるので、ここでは詳細な説明は省略する。
 共鳴式非接触給電システム10は、送電側(一次側)ディバイスとして、高周波電源20と、一次コイル30と、一次共鳴コイル35とを備える。送電側(一次側)ディバイスは、電気自動車の充電システムに実装された場合に、路面に埋め込まれる。一次コイル30は送電側同軸ケーブル60を用いて高周波電源20に接続されている。より具体的には、高周波電源20は、電源筐体24の内部に発振源22を備え、送電側同軸ケーブル60によって一次コイル30に接続されている。また、電源筐体24はグランドGNDに接地されている。接地の態様については、専用アース線で接地されてもよいし、ACケーブルのFG(Frame Ground)線等で接地されてもよい。尚、高周波電源20を備えるシステム10について説明するが、高周波電源20の無いシステム構成としてもよい。この場合、システム10外の適宜な高周波電源に接続可能で且つ当該高周波電源から電力を受給可能な構成のシステム10としてよい。
 さらに、共鳴式非接触給電システム10は、送電側金属シールド80を備え、一次コイル30及び一次共鳴コイル35の周囲を覆っている。送電側金属シールド80は、例えば、受電側(二次側;図示右側)が開口となっているスチール製や銅製等の良導体の金属でできたケース状(筒状)を呈している。つまり送電側金属シールド80のシールド側面82は、一次コイル30及び一次共鳴コイル35の周囲を前記の開口を除いて完全に覆っている。なお、送電側金属シールド80の形状は、シールドケースとして機能する形状であればよく、円筒状、角柱状等を適宜採用することができる。また、材質についても導電体であればよい。
 また、送電側金属シールド80のシールド底面84には、高周波電源20と一次コイル30との間の伝送路のための伝送用開口が設けられており、その伝送用開口に送電側同軸ケーブル60が接続されている。より具体的には、送電側同軸ケーブル60の同軸ケーブル外導体64の一方の端部(図示右側)が、送電側金属シールド80のシールド底面84に接続されている。また、同軸ケーブル外導体64の他方の端部(図示左側)が、高周波電源20の電源筐体24に接続されている。さらに、同軸ケーブル内導体62は、高周波電源20の発振源22と一次コイル30とを直接接続している。
 一方、共鳴式非接触給電システム10は、受電側(二次側)ディバイスとして、負荷装置50と、二次コイル40と、二次共鳴コイル45とを備える。受電側(二次側)ディバイスは、電気自動車の充電システムに実装された場合に、車両に搭載される。負荷装置50の負荷筐体54の内部には充電池等の負荷52が設けられる。負荷装置50と二次コイル40とは受電側同軸ケーブル70によって接続されている。尚、負荷装置50を備えるシステム10について説明するが、負荷装置50の無いシステム構成としてもよい。この場合、システム10外の適宜な負荷装置に接続可能で且つ当該負荷装置に電力を供給可能な構成のシステム10としてもよい。
 また、送電側の送電側金属シールド80と同様に、共鳴式非接触給電システム10は、二次コイル40と二次共鳴コイル45とを覆う受電側金属シールド90を備える。具体的には、受電側金属シールド90は、例えば、送電側(一次側;図示左側)が開口となっているスチール製や銅製等の良導体金属でできたケース状(筒状)を呈している。つまり受電側金属シールド90のシールド側面92は、二次コイル40及び二次共鳴コイル45の周囲を前記の開口を除いて完全に覆っている。なお、受電側金属シールド90の形状は、シールドケースとして機能する形状であればよく、円筒状、角柱状等を適宜採用することができる。また、材質についても導電体であればよい。
 また、受電側金属シールド90のシールド底面94には、負荷装置50と二次コイル40との間の伝送路のための伝送用開口が設けられており、その伝送用開口に受電側同軸ケーブル70が接続されている。より具体的には、受電側同軸ケーブル70の同軸ケーブル外導体74の一方の端部(図示左側)が、受電側金属シールド90のシールド底面94に接続されている。同軸ケーブル外導体74の他方の端部(図示右側)が、負荷装置50の負荷筐体54に接続されている。同軸ケーブル内導体72は、負荷筐体54内部の負荷52と直接接続している。
 そして、以上の構成を有する共鳴式非接触給電システム10では、発振源22から一次コイル30への伝送路及び負荷52から二次コイル40への伝送路が形成された状態において、発振源22は、例えば数MHz~数10MHzの高周波を発振し、発振出力は一次コイル30に供給される。一次共鳴コイル35は一次コイル30の電力を増幅し、二次共鳴コイル45に向けた電磁界を発生させる。二次共鳴コイル45は、一次共鳴コイル35で発生した電磁界と結合し、二次コイル40に誘導電流を生じさせる。その結果、負荷52に電力が供給されることになる。
 このとき、上述したように従来の共鳴式非接触給電システム510の送電側では、送電側同軸ケーブル60の同軸ケーブル外導体64内側だけでなく外側をも通じて接地GNDに誘導電流が流れ込むことから、送電側同軸ケーブル60の周囲に放射電磁界が発生していた。共鳴式非接触給電システム510の受電側では、二次共鳴コイル45からの電磁界の全てが二次コイル40と結合せずに、一部の電磁界が同軸ケーブル外導体74と結合し伝送損失となる誘導電流を発生させ、その結果、受電側同軸ケーブル70の周囲に放射電磁界を発生させていた。
 しかし、本実施形態では、送電側同軸ケーブル60及び受電側同軸ケーブル70内への伝送エネルギの収集が向上している。つまり、送電側(一次側)の共鳴部(一次コイル30及び一次共鳴コイル35)の周囲を送電側金属シールド80で覆い、送電側金属シールド80と送電側同軸ケーブル60の同軸ケーブル外導体64を電気的に接続しているので、送電側の同軸ケーブル外導体64の外側に流れ出ていた電流を内側に収集することができる。同様に、受電側(二次側)の共鳴部(二次コイル40及び二次共鳴コイル45)の周囲を受電側金属シールド90で覆い、受電側金属シールド90と受電側同軸ケーブル70の同軸ケーブル外導体74を電気的に接続しているので、受電側の同軸ケーブル外導体74の外側に流れ出ていた電流を同軸ケーブル外導体74の内側に収集することができる。その結果、伝送効率の向上と放射電磁界の低減を実現することができる。
 ところで、図4で示した構成により、放射電磁界の発生の低減を実現できるが、電気自動車の充電システムにおいては、上述したように大電力伝送が想定されるため、一層の低減が必要となる。上記の構成では、送電側金属シールド80と受電側金属シールド90の間に電位差が生じる可能性ある。電位差が発生すると電界が発生する。また、送電側金属シールド80と受電側金属シールド90との間の空間S1から外部に電磁界が漏れる可能性はある。従来と比較すると大きく低減することができているが、ゼロに近づけることが望ましい。
 そこで、図5に示すように、送電側金属シールド80と受電側金属シールド90とを電気的に接続するケース接続部12を設けることで、送電側金属シールド80と受電側金属シールド90との電位差を解消し、電位差に起因する電界発生を防止する。
 つぎに、図6の共鳴式非接触給電システム110を参照して、電気自動車の充電システムに適用した際の具体例について説明する。基本的な構成は上述の共鳴式非接触給電システム10と同一である。
 図示のように、高周波電源20や一次共鳴コイル35等の送電側ディバスは路面に埋め込まれている。一次共鳴コイル35は、路面近傍に配置されている。一次共鳴コイル35の周囲は、図4や図5で示したように送電側金属シールド80で覆われている。ここでは、送電側金属シールド80の図示上側(車両1側)がシールド材が無く開口となっている。ただし、その開口は、樹脂等の材質のフタ体88で覆われている。フタ体88の材質は、電界等の結合に影響を与えない材質が好ましい。
 また、送電側金属シールド80のシールド側面82の上側先端部近傍には、ケース接続部12として送電側ケース接続部14が設けられている。具体例については図7(a)~図9(b)で説明するが、送電側ケース接続部14は、導電体であって、その形状が変形可能に構成されている。より具体的には、送電側ケース接続部14は、板状体であって、充電していない通常は所望の形状を維持しつつ、車両1の受電側金属シールド90に接した際に、接続が確実になされるように変形可能になっている。例えば、導電性ゴムや表面を導電性加工した樹脂材などがある。また、送電側ケース接続部14は、通常は、路面に水平に配置され、充電時にモータ等により鉛直方向に駆動される。なお、送電側ケース接続部14は、車両1の停車位置誤差や、受電側金属シールド90の形状の多様性等を考慮して、複数で構成されることが好ましい。
 一方、バッテリ装置である負荷装置50や二次共鳴コイル45等の受電側ディバイスは、車両1に搭載されている。二次共鳴コイル45は、車両1の床面近傍に配置されている。二次共鳴コイル45の周囲は、図4や図5で示したように受電側金属シールド90で覆われている。ここでは、受電側金属シールド90の図示下側(路面側)がシールド材が無く開口となっている。ただし、その開口は、樹脂等の材質のフタ体98で覆われている。フタ体98の材質は、電界等の結合に影響を与えない材質が好ましい。
 また、受電側金属シールド90のシールド側面92の下側先端部近傍には、ケース接続部12として受電側ケース接続部13が設けられている。具体例については図7(a)~図9(b)で説明するが、受電側ケース接続部13は、導電体であって形状が変形可能に構成されている。より具体的には、受電側ケース接続部13は、板状体であって、充電していない通常は所望の形状を維持しつつ、充電位置である送電側金属シールド80に接した際に、接続が確実になされるように変形可能になっている。例えば、導電性ゴムや表面を導電性加工した樹脂材などがある。また、受電側ケース接続部13は、通常は、車両1の床面(下側外面)に水平に配置され、充電時にモータ等により鉛直方向になるように駆動される。なお、受電側ケース接続部13は、送電側ケース接続部14と同様に、車両1の停車位置誤差や送電側金属シールド80の形状の多様性等を考慮して、複数で構成されることが好ましい。
 なお、ここでは、受電側ケース接続部13及び送電側ケース接続部14の両方について備える共鳴式非接触給電システム110については説明したが、いずれか一方のみが備わる構成であってもよい。
 そして、車両1が充電のために一次共鳴コイル35等の送電側ディバイスの上に位置したときに、一次共鳴コイル35と二次共鳴コイル45は対向する。そして、充電のための送電に先立ち、ケース接続部12である受電側ケース接続部13及び送電側ケース接続部14がその位置を駆動制御される。その結果、図6に示したように、受電側ケース接続部13は受電側金属シールド90に接続し、送電側ケース接続部14は送電側金属シールド80に接続する。このとき、受電側ケース接続部13及び送電側ケース接続部14は、車両1と路面との間隔よりも長く形成されており、接続時に押しつけられるように撓むことで、電気的接続状態が良好に維持される。一般に、充電に先立ち、車両1と送電側ディバイスを管理する装置の間で、通信によるユーザ認証処理が行われると考えられる。その認証処理の1プロセスに、ケース接続部12の接続が確保されているか否かの判断を組み込ませることで、接続がなされていない場合に充電処理に移らないように制御する等して、安全な充電システムを実現できる。
 つぎに、受電側ケース接続部13及び送電側ケース接続部14の構成バリエーションについて図7(a)~図9(b)を参照して説明する。
 図7(a)及び図7(b)は、車両1側の受電側金属シールド90に受電側ケース接続部13(13a、13b)を設け、送電側金属シールド80にはケース接続部12(送電側ケース接続部14)を設けない構成を示している。
 送電側金属シールド80では、シールド側面82の上側端部、つまり路面側の端部に、開口端部を外側に所定長だけ延出し車両1の床面と対向するような形成された面形状のシールド前面部86(86a、86b)が設けられている。延出する長さは、車両1の停止位置のずれについて許容できる範囲を想定して設定される。
 そして、充電しない際には、図7(a)に示すように、受電側ケース接続部13(13a、13b)は、水平状態に維持される。充電する際には、受電側ケース接続部13が垂直になるように駆動され、図7(b)に示すように、図示右側の受電側ケース接続部13aが図示右側のシールド前面部86aに撓みつつ接続している。一方、図示左側の受電側ケース接続部13bは、鉛直状態に制御されても、直下にシールド前面部86が位置していないため、水平状態に収容される。直下にシールド前面部86が存在するか否かは、シールド前面部86が導電体であることから、既知のセンシング技術で実現ができる。
 図8(a)及び図8(b)は、図7(a)及び図7(b)の構成とは逆に、ケース接続部12(送電側ケース接続部14a、14b)を送電側金属シールド80にのみ設けた構成を示している。
 受電側金属シールド90では、シールド側面92の下側端部、つまり床面側端部に、開口端部を外側に所定長だけ延出し路面と対向するような形成された面形状のシールド前面部96(96a、96b)が設けられている。延出する長さは、車両1の停止位置のずれについて許容できる範囲を想定して設定される。
 そして、充電しない際には、図8(a)に示すように、送電側ケース接続部14(14a、14b)は、床面と平行(水平)状態に維持される。充電する際には、送電側ケース接続部14が垂直になるように駆動され、図8(b)に示すように、図示右側の送電側ケース接続部14aが図示右側のシールド前面部96aに撓みつつ接続している。一方、図示左側の送電側ケース接続部14bは、鉛直状態に制御されても、真上にシールド前面部86bが位置していないため、水平状態に収容される。真上にシールド前面部96が存在するか否かは、シールド前面部96が導電体であることから、既知のセンシング技術で実現できる。
 図9(a)及び図9(b)は、ケース接続部12を送電側金属シールド80と受電側金属シールド90の両方に設けた構成を示している。送電側金属シールド80は、シールド前面部86を備えるとともに送電側ケース接続部14を備える。同様に、受電側金属シールド90は、シールド前面部96を備えるとともに受電側ケース接続部13を備える。そして、充電の際には、受電側ケース接続部13と送電側ケース接続部14が垂直になるように駆動して、送電側金属シールド80と受電側金属シールド90が電気的に接続される。ここでは、図示右側の送電側ケース接続部14aと左側の受電側ケース接続部13bが垂直になって撓みつつ接続されている。一方、接続に使用されない破線で示す図示左側の送電側ケース接続部14bと右側の受電側ケース接続部13aは、水平に維持されている。
 なお、どのケース接続部12を垂直するか、または水平にするかについては、上述の通りシールド前面部86、96のセンシング結果を利用することができる。また、受電側ケース接続部13、送電側ケース接続部14の両方とも接続に使用できる場合も想定できる。そのような場合には、予め優先的に動かすケース接続部12を設定しておけば円滑な運用が可能となる。
 つづいて、図10~図15を参照して、送電側金属シールド80(送電側ケース)と受電側金属シールド90(受電側ケース)とをケース接続部12で電気的に接続した共鳴式非接触給電システム110と、ケース接続部12で接続していない共鳴式非接触給電システム10において、放射電磁界を計測した。その結果を説明する。図10はケース接続部12で接続していない共鳴式非接触給電システム10に対応する測定系のシステム構成を示し、図11はケース接続部12で接続した共鳴式非接触給電システム110に対応する測定系のシステム構成を示している。
 図10と図11の測定系のシステム構成の概要は以下の通りである。
(1)高周波電源20:
周波数13.56MHZ(±1MHz)、出力電力3kW。
(2)同軸ケーブル(送電側同軸ケーブル60):
 同軸ケーブル(3m)を高周波電力の伝送線として利用し、高周波電源20とループコイル(一次コイル30)とを接続する。電磁界測定箇所…5箇所(50cm間隔)
(3)同軸ケーブル(受電側同軸ケーブル70):
 同軸ケーブル(2m)を高周波電力の伝送線として利用し、受電側ループコイル(二次コイル40)とアッテネータ(負荷)とを接続。
(4)ループコイル(30、40):銅製 直径150mm、銅線直径5mm。送電側と受電側は同構造である。
(5)共鳴コイル(35、45):銅製 直径300mm 内径185mm、銅線直径5mm、ピッチ5mm 渦巻き型。送電側と受電側とは同構造であり、コイル間距離200mm。
(6)金属ケース(送電側及び受電側金属シールド80、90):送電側及び受電側同軸ケーブル60、70の同軸ケーブル外導体64、74に接続されて、ループコイル(30、40)と共鳴コイル(35、45)を覆う。
(7)負荷装置50:
 アッテネータで受電側の高周波電力を所定量減衰させ、スペクトラムアナライザにて信号レベルを測定する。
(8)ケース接続部12<図11;本実施形態のみ>:
 送電側及び受電側金属シールド80、90をケース接続部12で接続して、両金属シールド間の電位差をゼロとする。
 図12(a)~図12(c)に、一次共鳴コイル35と二次共鳴コイル45との中心からの距離と電界強度の関係に関する測定結果を示す。図示のように、送電側金属シールド80と受電側金属シールド90とをケース接続部12で接続しない場合、計測された電界は位置P6で初めてICNIRP人体保護ガイドライン(以下、「ガイドライン」という)である27.5V/mを下回る。これは、送電側金属シールド80と受電側金属シールド90の間から漏れる電界が大きいためであり、危険区域が広くなっている。一方、送電側金属シールド80と受電側金属シールド90とをケース接続部12で接続して電位差をゼロとした場合、外部に漏れる電界は大幅に低減される。電界は位置P2(概ね500mm地点)でほぼガイドラインと同じ値となり、位置P3(概ね600mm地点)では下回っている。このように、電界がガイドラインを上回る危険な区域を大幅に縮小させることができる。
 図13(a)~図13(c)に、一次共鳴コイル35と二次共鳴コイル45との中心からの距離と磁界強度の関係に関する測定結果を示す。図示の計測結果では、送電側金属シールド80と受電側金属シールド90を接続した条件において、接続しない条件と比較して、大幅な変化はないものの一定の低減が見られる。これは、磁界は、送電側金属シールド80と受電側金属シールド90の電位差に起因するのではなく、一次共鳴コイル35と二次共鳴コイル45の間での電磁結合エネルギとして発生し、漏れ出す量は、送電側金属シールド80と受電側金属シールド90の距離に大きく依存するためである。したがって、送電側金属シールド80と受電側金属シールド90の距離が固定であるために、磁界の変動はあまり観測されない。
 図14及び図15に、送電側及び受電側同軸ケーブル60、70の近傍の電磁界強度(電界及び放射電磁界)の測定結果を示す。図14は送電側金属シールド80と受電側金属シールド90とをケース接続部12で電気的に接続していない共鳴式非接触給電システム10の測定結果を、図15はケース接続部12で電気的に接続した共鳴式非接触給電システム110の測定結果を示す。
 測定条件の概要は以下の通りである。
・各測定点に電磁界センサを設置する。測定点から電磁界センサ面までの垂直距離を50mmとする。
・高周波電源20から、周波数13.56MHzの3kW電力を出力し、電磁界センサにより測定された電界の最高値、及び磁界の最高値を取得する。
 まず、図14に示すように、ケース接続部12を有していない共鳴式非接触給電システム10では、送電側Xの電界に関して、400~800V/mの値が計測されている。受電側Yでは、概ね200~400V/mの値が計測されている。また、磁界に関しては、概ね0.2~0.5A/mの値が測定されている。
 一方で、ケース接続部12を備えた共鳴式非接触給電システム110に関しては、図15に示す測定結果となり、電界及び磁界のいずれも、送電側X及び受電側Yにおいて、ほぼゼロの値となった。このように、ケース接続部を備えた共鳴式非接触給電システム110を採用することで、放射電磁界を大幅に低減することができる。
 以上、本実施の形態によると、簡易的かつ低コストで伝送効率を向上させることができ、さらに放射電磁界を低減できる。また、共鳴コイル部の周囲にのみ金属ケースを配置することで、システム全体をシールドするよりも、重量を軽量化することができる。これによって、車両等の移動体に搭載された場合であっても、重量増によるエネルギ消費量の増加を抑制することができる。さらに、充電の際にも、危険区域を大幅に減少させることができ、危険区域への進入等に対する対策が容易となる。つまり、人感センサ等の装置を大幅に少なくすることができ、また、運用も簡易的なものとすることができる。
 以上、本発明を実施形態をもとに説明した。上記の実施形態は例示であり、各構成要素及びその組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。例えば、一次共鳴コイル35や二次共鳴コイル45は、一次コイル30や二次コイル40を用いたループ給電タイプ(間接タイプ)であるが、直接給電するタイプの構成であってもよい。また、設けられているケース接続部12(受電側ケース接続部13及び送電側ケース接続部14)のうち、接続している数に応じて送電出力を変更してもよいし、所定数以下の場合に、送電出力を低下させてもよい。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年4月22日出願の日本特許出願(特願2011-96362)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、共鳴式非接触給電システムの分野において有用である。
10、110、510 共鳴式非接触給電システム
20 高周波電源
22 発振源
24 電源筐体
30 一次コイル
35 一次共鳴コイル
40 二次コイル
45 二次共鳴コイル
50 負荷装置
52 負荷
54 負荷筐体
60 送電側同軸ケーブル
62、72 同軸ケーブル内導体
64、74 同軸ケーブル外導体
66 同軸オスコネクタ部
88、98 フタ体
70 受電側同軸ケーブル
80 送電側金属シールド
82、92 シールド側面
84、94 シールド底面
86、96 シールド前面部
90 受電側金属シールド

Claims (7)

  1.  高周波電源に同軸ケーブルによって接続された送電側共鳴コイル部を備え、前記送電側共鳴コイル部から受電側共鳴コイル部への非接触の共鳴作用によって電力を伝送する共鳴式非接触給電システムに用いられる送電側装置であって、
     前記送電側共鳴コイル部を外側から覆って収容するとともに、前記同軸ケーブルの外導体によって前記高周波電源の筐体に電気的に接続される良導体の送電側シールド部と、
     前記送電側シールド部を、前記受電側共鳴コイル部を外側から覆って収容する良導体の受電側シールド部に対して、位置ズレを吸収可能に電気的に接続するケース接続部と、
     を更に備える送電側装置。
  2.  前記ケース接続部は、非接触給電するときに前記送電側シールド部と前記受電側シールド部とを接続し、非接触給電しないときには収容されるように構成されている請求項1に記載の送電側装置。
  3.  受電側共鳴コイル部を備え、高周波電源に接続された送電側共鳴コイル部から、負荷装置に同軸ケーブルによって接続された前記受電側共鳴コイル部への非接触の共鳴作用によって電力を伝送する共鳴式非接触給電システムに用いられる受電側装置であって、
     前記受電側共鳴コイル部を外側から覆って収容するとともに、前記同軸ケーブルの外導体によって前記負荷装置の筐体に電気的に接続される良導体の受電側シールド部と、
     前記受電側シールド部を、前記送電側共鳴コイル部を外側から覆って収容する良導体の送電側シールド部に対して、位置ズレを吸収可能に電気的に接続するケース接続部と、
     を更に備える受電側装置。
  4.  前記ケース接続部は、非接触給電するときに前記受電側シールド部と前記送電側シールド部とを電気的に接続し、非接触給電しないときには収容されるように構成されている請求項3に記載の受電側装置。
  5.  高周波電源に第1の同軸ケーブルによって接続された送電側共鳴コイル部から、負荷装置に第2の同軸ケーブルによって接続された受電側共鳴コイル部へ非接触の共鳴作用によって電力を伝送する共鳴式非接触給電システムであって、
     前記送電側共鳴コイル部を外側から覆って収容するとともに、前記第1の同軸ケーブルの外導体によって前記高周波電源の筐体に電気的に接続される良導体の送電側シールド部と、
     前記受電側共鳴コイル部を外側から覆って収容するとともに、前記第2の同軸ケーブルの外導体によって前記負荷装置の筐体に電気的に接続される良導体の受電側シールド部と、
     前記送電側シールド部と前記受電側シールド部とを、位置ズレを吸収可能に電気的に接続するケース接続部と、
     を備える共鳴式非接触給電システム。
  6.  前記ケース接続部は、前記受電側シールド部に設けられており、非接触給電するときに前記受電側シールド部と前記送電側シールド部とを電気的に接続し、非接触給電しないときには収容可能に構成されている請求項5に記載の共鳴式非接触給電システム。
  7.  前記ケース接続部は、前記送電側シールド部に設けられており、非接触給電するときに前記受電側シールド部と前記送電側シールド部とを電気的に接続し、非接触給電しないときには収容可能に構成されている請求項5又は6に記載の共鳴式非接触給電システム。
PCT/JP2012/060797 2011-04-22 2012-04-20 共鳴式非接触給電システム、受電側装置及び送電側装置 WO2012144640A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12774391.2A EP2701284B1 (en) 2011-04-22 2012-04-20 Resonance-type non-contact power supply system, power-receiving-side device, and power-transmission-side device
KR1020137027834A KR101469407B1 (ko) 2011-04-22 2012-04-20 공명식 비접촉 급전 시스템, 수전측 장치 및 송전측 장치
CN201280019805.XA CN103493335A (zh) 2011-04-22 2012-04-20 谐振型非接触供电系统,电力接收侧装置和电力输送侧装置
US14/046,563 US9299492B2 (en) 2011-04-22 2013-10-04 Resonance-type non-contact power supply system, power-receiving-side device and power-transmission-side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-096362 2011-04-22
JP2011096362A JP5740200B2 (ja) 2011-04-22 2011-04-22 共鳴式非接触給電システム、受電側装置及び送電側装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/046,563 Continuation US9299492B2 (en) 2011-04-22 2013-10-04 Resonance-type non-contact power supply system, power-receiving-side device and power-transmission-side device

Publications (1)

Publication Number Publication Date
WO2012144640A1 true WO2012144640A1 (ja) 2012-10-26

Family

ID=47041736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060797 WO2012144640A1 (ja) 2011-04-22 2012-04-20 共鳴式非接触給電システム、受電側装置及び送電側装置

Country Status (6)

Country Link
US (1) US9299492B2 (ja)
EP (1) EP2701284B1 (ja)
JP (1) JP5740200B2 (ja)
KR (1) KR101469407B1 (ja)
CN (1) CN103493335A (ja)
WO (1) WO2012144640A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089160A1 (ja) * 2011-12-13 2013-06-20 矢崎総業株式会社 電気接続部の固定構造、コネクタ、コネクタの接続方法
GB2503484A (en) * 2012-06-27 2014-01-01 Bombardier Transp Gmbh Inductive vehicle charging station and method with lateral electromagnetic shielding
EP2808196A1 (de) * 2013-05-29 2014-12-03 Brusa Elektronik AG Übertragerelement
WO2015037046A1 (ja) * 2013-09-10 2015-03-19 中国電力株式会社 非接触給電システム及び非接触給電方法
JP2016017360A (ja) * 2014-07-10 2016-02-01 清水建設株式会社 フロアパネル
CN105474510A (zh) * 2013-08-23 2016-04-06 三菱电机工程技术株式会社 谐振型电力传输装置及谐振型电力多重传输系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718830B2 (ja) * 2012-01-16 2015-05-13 トヨタ自動車株式会社 車両
JP6124085B2 (ja) * 2012-07-05 2017-05-10 パナソニックIpマネジメント株式会社 無線電力伝送装置、無線電力送電装置および受電装置
JP5958217B2 (ja) * 2012-09-14 2016-07-27 株式会社デンソー 無線給電システム
JP5688549B2 (ja) 2013-04-10 2015-03-25 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America コイルモジュール及び電子機器
JP2014241673A (ja) * 2013-06-11 2014-12-25 株式会社東芝 電磁波漏洩防止装置
WO2015019956A1 (ja) 2013-08-05 2015-02-12 株式会社Ihi シールド装置および非接触給電システム
WO2015045088A1 (ja) 2013-09-27 2015-04-02 日産自動車株式会社 非接触給電システムの導電体配索構造
JP2015186426A (ja) * 2014-03-26 2015-10-22 株式会社エクォス・リサーチ 受電システム
CN103997134B (zh) * 2014-05-22 2016-01-13 中国矿业大学 一种消辐射无线电能传输供电装置
CN104057842B (zh) * 2014-06-17 2017-01-11 西南交通大学 一种电气化铁路同轴电缆供电系统
JP6430304B2 (ja) * 2015-03-18 2018-11-28 株式会社ベルニクス 非接触給電装置
CN209767247U (zh) * 2016-07-20 2019-12-10 株式会社伯尼克斯 非接触供电装置
DE102016113839A1 (de) * 2016-07-27 2018-02-01 Stephan Eder Spulenanordnung
WO2018181512A1 (ja) * 2017-03-31 2018-10-04 日東電工株式会社 電池パック、無線電力伝送システムおよび補聴器
JP6929732B2 (ja) * 2017-03-31 2021-09-01 日東電工株式会社 電池パック、無線電力伝送システムおよび補聴器
TWI678047B (zh) * 2017-10-20 2019-11-21 鴻海精密工業股份有限公司 一種無線充電汽車及無線充電馬路
CN107813726A (zh) * 2017-11-21 2018-03-20 扬州工业职业技术学院 一种电动汽车无线充电自动对位及防辐射装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344602A (ja) 1992-06-11 1993-12-24 Daifuku Co Ltd 無接触給電設備に使用するリッツ線
JP2000164379A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 無電極放電灯点灯装置
JP2008182523A (ja) * 2007-01-25 2008-08-07 Mitsumi Electric Co Ltd アンテナ装置
JP2009501510A (ja) 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
JP2010040699A (ja) 2008-08-04 2010-02-18 Showa Aircraft Ind Co Ltd 非接触給電装置
JP2010070048A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 非接触受電装置、非接触送電装置、非接触給電システムおよび電動車両
JP2010098807A (ja) * 2008-10-15 2010-04-30 Toyota Motor Corp 非接触給電システム
JP2011049825A (ja) * 2009-08-27 2011-03-10 Honda Motor Co Ltd 車両用受信設備

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746277B2 (en) * 2001-12-05 2004-06-08 Tyco Electronics Corporation Coaxial cable connector
EP2130287A1 (en) 2007-03-27 2009-12-09 Massachusetts Institute of Technology Wireless energy transfer
KR100819753B1 (ko) 2007-07-13 2008-04-08 주식회사 한림포스텍 배터리팩 솔루션을 위한 무접점충전시스템 및 그 제어방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344602A (ja) 1992-06-11 1993-12-24 Daifuku Co Ltd 無接触給電設備に使用するリッツ線
JP2000164379A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 無電極放電灯点灯装置
JP2009501510A (ja) 2005-07-12 2009-01-15 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
JP2008182523A (ja) * 2007-01-25 2008-08-07 Mitsumi Electric Co Ltd アンテナ装置
JP2010040699A (ja) 2008-08-04 2010-02-18 Showa Aircraft Ind Co Ltd 非接触給電装置
JP2010070048A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 非接触受電装置、非接触送電装置、非接触給電システムおよび電動車両
JP2010098807A (ja) * 2008-10-15 2010-04-30 Toyota Motor Corp 非接触給電システム
JP2011049825A (ja) * 2009-08-27 2011-03-10 Honda Motor Co Ltd 車両用受信設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2701284A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089160A1 (ja) * 2011-12-13 2013-06-20 矢崎総業株式会社 電気接続部の固定構造、コネクタ、コネクタの接続方法
GB2503484A (en) * 2012-06-27 2014-01-01 Bombardier Transp Gmbh Inductive vehicle charging station and method with lateral electromagnetic shielding
US9688157B2 (en) 2012-06-27 2017-06-27 Bombardier Transportation Gmbh Providing vehicles with electric energy by magnetic induction
EP2808196A1 (de) * 2013-05-29 2014-12-03 Brusa Elektronik AG Übertragerelement
WO2014191880A1 (de) 2013-05-29 2014-12-04 Brusa Elektronik Ag Übertragerelement
CN105474510A (zh) * 2013-08-23 2016-04-06 三菱电机工程技术株式会社 谐振型电力传输装置及谐振型电力多重传输系统
US9712000B2 (en) 2013-08-23 2017-07-18 Mitsubishi Electric Engineering Company, Limited Resonance type power transmission device and resonance type power multiplex transmission system
WO2015037046A1 (ja) * 2013-09-10 2015-03-19 中国電力株式会社 非接触給電システム及び非接触給電方法
JP2016017360A (ja) * 2014-07-10 2016-02-01 清水建設株式会社 フロアパネル

Also Published As

Publication number Publication date
US9299492B2 (en) 2016-03-29
US20140042823A1 (en) 2014-02-13
EP2701284A4 (en) 2015-09-02
KR20130137219A (ko) 2013-12-16
CN103493335A (zh) 2014-01-01
EP2701284B1 (en) 2018-01-10
EP2701284A1 (en) 2014-02-26
KR101469407B1 (ko) 2014-12-04
JP2012228148A (ja) 2012-11-15
JP5740200B2 (ja) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5740200B2 (ja) 共鳴式非接触給電システム、受電側装置及び送電側装置
KR101750149B1 (ko) 차량
JP5802424B2 (ja) 共鳴式非接触給電システム
US9426933B2 (en) Resonance type non-contact power feeding system, power transmission side apparatus and in-vehicle charging apparatus of resonance type non-contact power feeding system
KR101697418B1 (ko) 차량
KR20150006874A (ko) 차량
KR101508867B1 (ko) 공명식 비접촉 급전 시스템
WO2013168239A1 (ja) 非接触で電力を受電可能な車両
JP2015008552A (ja) 非接触充電装置
JP6370564B2 (ja) 受電ユニット及びそれを有する給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774391

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012774391

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137027834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE