WO2010038297A1 - 自己共振コイル、非接触電力伝達装置および車両 - Google Patents

自己共振コイル、非接触電力伝達装置および車両 Download PDF

Info

Publication number
WO2010038297A1
WO2010038297A1 PCT/JP2008/067886 JP2008067886W WO2010038297A1 WO 2010038297 A1 WO2010038297 A1 WO 2010038297A1 JP 2008067886 W JP2008067886 W JP 2008067886W WO 2010038297 A1 WO2010038297 A1 WO 2010038297A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
resonant coil
coil
cross
resonant
Prior art date
Application number
PCT/JP2008/067886
Other languages
English (en)
French (fr)
Inventor
佐々木 将
石川 哲浩
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN200880131374XA priority Critical patent/CN102171777A/zh
Priority to US12/989,837 priority patent/US20110049978A1/en
Priority to JP2010531689A priority patent/JPWO2010038297A1/ja
Priority to EP08877155A priority patent/EP2333796A1/en
Priority to PCT/JP2008/067886 priority patent/WO2010038297A1/ja
Publication of WO2010038297A1 publication Critical patent/WO2010038297A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a self-resonant coil used in a non-contact power transmission device in which power is transmitted by magnetic field resonance, a non-contact power transmission device including the self-resonance coil, and a vehicle including the non-contact power transmission device. .
  • Electric vehicles such as electric cars and hybrid cars are attracting a great deal of attention as environmentally friendly vehicles. These vehicles are equipped with an electric motor that generates driving force and a rechargeable power storage device that stores electric power supplied to the electric motor.
  • the hybrid vehicle is a vehicle in which an internal combustion engine is further mounted as a power source together with an electric motor, or a fuel cell is further mounted as a direct current power source for driving the vehicle together with a power storage device.
  • a vehicle capable of charging an in-vehicle power storage device from a power source external to the vehicle in the same manner as an electric vehicle.
  • a so-called “plug-in hybrid vehicle” that can charge a power storage device from a general household power supply by connecting a power outlet provided in a house and a charging port provided in the vehicle with a charging cable is known. Yes.
  • a power transmission method wireless power transmission that does not use a power cord or a power transmission cable has recently attracted attention.
  • this wireless power transmission technology three technologies known as power transmission using electromagnetic induction, power transmission using electromagnetic waves, and power transmission using a resonance method are known.
  • the resonance method is a non-contact power transmission technique in which a pair of resonators (for example, a pair of self-resonant coils) are resonated in an electromagnetic field (near field) and transmitted through the electromagnetic field. It is also possible to transmit power over a long distance (for example, several meters) (see Patent Document 1 and Non-Patent Document 1).
  • a non-contact power feeding device that performs power transmission based on the mutual dielectric action of electromagnetic induction
  • a non-contact power feeding device described in Japanese Patent Laid-Open No. 2008-87733 (Patent Document 2) can be given.
  • This non-contact power supply device supplies power from the primary coil on the power supply side to the secondary coil on the power reception side.
  • the cross-sectional shape of a primary coil and a secondary coil is a circle.
  • JP 2008-87733 A International Publication No. 2007/008646 Pamphlet Andre Kurs et al., “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, [online], July 6, 2007, SCIENCE, Vol. 317, p. 83-86, [Search September 12, 2007], Internet ⁇ URL: http://www.sciencemag.org/cgi/reprint/317/5834/83.pdf>
  • the wireless power transmitting device and the power receiving device that employ the resonance method include a self-resonant coil that transmits electric power through an electromagnetic field.
  • a cross-sectional shape of the self-resonant coil a cross-section perpendicular to the extending direction of the self-resonant coil is a circular shape.
  • a high-frequency current flows through the self-resonant coil.
  • the current density is high on the surface of the coil and decreases when the coil is separated from the surface (skin effect).
  • Patent Document 1 the current flowing region is small, and on the contrary, the resistance is high.
  • the wireless power transmitting device and the power receiving device are often used by being mounted on a vehicle or the like, and it is highly necessary to make the device itself compact.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to reduce the resistance of the self-resonant coil and to provide a self-resonant coil that is made compact and the self-resonant coil. Another object is to provide a non-contact power transmission device and a vehicle equipped with the non-contact power transmission device.
  • the self-resonant coil according to the present invention is a self-resonant coil used in a non-contact power transmission device that transmits power by magnetic field resonance.
  • the cross-sectional shape of the cross section perpendicular to the extending direction is a circle, and the length of the circumference defining the cross section is self-resonant when viewed in cross section perpendicular to the extending direction of the self-resonant coil.
  • a coil equal to the length of a line segment defining the outer peripheral edge of the coil cross section is defined as a virtual coil.
  • At least one of the radial width and the axial length of the self-resonant coil in a cross section perpendicular to the extending direction of the self-resonant coil is made smaller than the cross-sectional diameter of the virtual coil.
  • the self-resonant coil according to the present invention is a self-resonant coil used in a non-contact power transmission device that transmits power by magnetic field resonance.
  • the self-resonant coil has first and second main surfaces facing each other, and the cross-section of the self-resonant coil is at least a part of a center line passing through the center between the first main surface and the second main surface. Extends in a direction intersecting the virtual axis extending in the radial direction of the self-resonant coil.
  • the self-resonant coil according to the present invention is a self-resonant coil used in a non-contact power transmission device that transmits power by magnetic field resonance.
  • the cross-sectional shape of the self-resonant coil perpendicular to the extending direction of the self-resonant coil is such that a plate-like member whose main surface is arranged in the axial direction of the self-resonant coil is bent toward the axial direction of the self-resonant coil The shape is obtained by bending.
  • the self-resonant coil according to the present invention is a self-resonant coil used in a non-contact power transmission device that transmits power by magnetic field resonance.
  • the cross-sectional shape of the self-resonant coil perpendicular to the extending direction of the self-resonant coil is substantially U-shaped or substantially V-shaped.
  • the cross-sectional shape of the self-resonant coil is substantially U-shaped or substantially V-shaped, so that a groove portion that opens toward one axial direction of the self-resonant coil is defined. Among these, at least a part of the portion adjacent in the axial direction to the portion where the groove portion is located is received.
  • the curvature of the bottom portion of the groove portion decreases as it goes from one axial end portion to the other axial end portion of the self-resonant coil.
  • the semiconductor device further includes a dielectric disposed between the first main surface and the second main surface.
  • a non-contact power transmission device includes the self-resonant coil and a primary coil that transmits power by electromagnetic induction between the self-resonant coil.
  • the resistance can be reduced and the coil itself can be made compact.
  • FIG. 1 is an overall configuration diagram of a power feeding system according to an embodiment of the present invention. It is a figure for demonstrating the principle of the power transmission by the resonance method. It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity
  • 2 is a perspective view schematically showing a secondary self-resonant coil 110.
  • FIG. 3 is a cross-sectional view of secondary self-resonant coil 110 in a cross section perpendicular to the extending direction of secondary self-resonant coil 110.
  • FIG. FIG. 3 is a cross-sectional view showing a cross section of a part of secondary self-resonant coil 110 along the direction of central axis O1.
  • FIG. 6 is a cross-sectional view showing a modified example of a wound state of secondary self-resonant coil 110.
  • FIG. 6 is a cross-sectional view showing a first modification of the cross-sectional shape of secondary self-resonant coil 110.
  • FIG. 6 is a cross-sectional view showing a second modification of the cross-sectional shape of secondary self-resonant coil 110.
  • FIG. 6 is a cross-sectional view showing a third modification of the cross-sectional shape of secondary self-resonant coil 110.
  • FIG. 6 is a cross-sectional view showing a fourth modification of the cross-sectional shape of secondary self-resonant coil 110.
  • FIG. 10 is a cross-sectional view showing a fifth modification of the cross-sectional shape of secondary self-resonant coil 110.
  • 100 electric vehicle 110 secondary self-resonant coil, 120 secondary coil, 130 rectifier, 140 converter, 150 power storage device, 170 motor, 190 communication device, 200 power supply device, 210 AC power supply, 220 high frequency power driver, 230 primary coil, 240 primary self-resonant coil, 250 communication device, 310 high frequency power supply, 317th, 320 primary coil, 330 primary self-resonant coil, 340 secondary self-resonant coil, 350 secondary coil, 360 load, 404 capacitor, 420, 421 main surface 422, 425, 426 bottom part, 423, 424, 427, 428 axial extension part, 430 non-contact power receiving device, 440 virtual circular coil, 441 virtual square coil, 445 dielectric, 446 groove part, 500 center line.
  • FIG. 1 is an overall configuration diagram of a power feeding system according to an embodiment of the present invention.
  • this power feeding system includes a non-contact power receiving device (non-contact power transmission device) provided in electric vehicle 100 and a power feeding device (non-contact power transmission device) 200 provided outside the vehicle.
  • the non-contact power receiving device includes a secondary self-resonant coil 110, a secondary coil 120, a rectifier 130, a DC / DC converter 140, and a power storage device 150.
  • the electric vehicle 100 includes a power receiving device, a power control unit (hereinafter also referred to as “PCU (Power Control Unit)”) 160, a motor 170, a vehicle ECU (Electronic Control Unit) 180, and a communication device 190.
  • PCU Power Control Unit
  • the secondary self-resonant coil 110 is disposed at the lower part of the vehicle body, but may be disposed at the upper part of the vehicle body as long as the power feeding device 200 is disposed above the vehicle.
  • the secondary self-resonant coil 110 is an LC resonant coil whose both ends are open (not connected), and receives power from the power feeder 200 by resonating with a primary self-resonant coil 240 (described later) of the power feeder 200 via an electromagnetic field.
  • the capacitance component of the secondary self-resonant coil 110 is the stray capacitance of the coil, but capacitors connected to both ends of the coil may be provided.
  • the secondary self-resonant coil 110 and the secondary self-resonant coil 240 are connected to the primary self-resonant coil 240 and the secondary self-resonant coil 240 based on the distance from the primary self-resonant coil 240 and the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110.
  • the number of turns is appropriately set so that the Q value (for example, Q> 100) indicating the resonance intensity with the self-resonant coil 110 and ⁇ indicating the degree of coupling increase.
  • the secondary coil 120 is disposed coaxially with the secondary self-resonant coil 110 and can be magnetically coupled to the secondary self-resonant coil 110 by electromagnetic induction.
  • the secondary coil 120 takes out the electric power received by the secondary self-resonant coil 110 by electromagnetic induction and outputs it to the rectifier 130.
  • the rectifier 130 rectifies the AC power extracted by the secondary coil 120.
  • DC / DC converter 140 converts the power rectified by rectifier 130 into a voltage level of power storage device 150 based on a control signal from vehicle ECU 180 and outputs the voltage level to power storage device 150.
  • DC / DC converter 140 is connected by rectifier 130.
  • the rectified power may be converted into a system voltage and supplied directly to the PCU 160.
  • DC / DC converter 140 is not necessarily required, and the AC power extracted by secondary coil 120 may be directly rectified by rectifier 130 and then directly supplied to power storage device 150.
  • the power storage device 150 is a rechargeable DC power source and includes, for example, a secondary battery such as lithium ion or nickel metal hydride.
  • the power storage device 150 stores power supplied from the DC / DC converter 140 and also stores regenerative power generated by the motor 170. Then, power storage device 150 supplies the stored power to PCU 160.
  • a large-capacity capacitor can also be used as the power storage device 150, and is a power buffer that can temporarily store the power supplied from the power supply device 200 and the regenerative power from the motor 170 and supply the stored power to the PCU 160. Anything is acceptable.
  • the PCU 160 drives the motor 170 with power output from the power storage device 150 or power directly supplied from the DC / DC converter 140. PCU 160 also rectifies the regenerative power generated by motor 170 and outputs the rectified power to power storage device 150 to charge power storage device 150.
  • the motor 170 is driven by the PCU 160 to generate a vehicle driving force and output it to driving wheels. Motor 170 generates electricity using kinetic energy received from driving wheels or an engine (not shown), and outputs the generated regenerative power to PCU 160.
  • the vehicle ECU 180 controls the PCU 160 based on the traveling state of the vehicle and the state of charge of the power storage device 150 (hereinafter also referred to as “SOC (State Of Charge)”) when the vehicle is traveling.
  • Communication device 190 is a communication interface for performing wireless communication with power supply device 200 outside the vehicle.
  • power supply apparatus 200 includes AC power supply 210, high-frequency power driver 220, primary coil 230, primary self-resonant coil 240, communication apparatus 250, and ECU 260.
  • AC power supply 210 is a power supply external to the vehicle, for example, a system power supply.
  • the high frequency power driver 220 converts power received from the AC power source 210 into high frequency power, and supplies the converted high frequency power to the primary coil 230.
  • the frequency of the high-frequency power generated by the high-frequency power driver 220 is, for example, 1 M to several tens of MHz.
  • the primary coil 230 is disposed coaxially with the primary self-resonant coil 240, and can be magnetically coupled to the primary self-resonant coil 240 by electromagnetic induction.
  • the primary coil 230 feeds high-frequency power supplied from the high-frequency power driver 220 to the primary self-resonant coil 240 by electromagnetic induction.
  • the primary self-resonant coil 240 is disposed near the ground, but may be disposed above the vehicle when power is supplied to the electric vehicle 100 from above the vehicle.
  • the primary self-resonant coil 240 is also an LC resonant coil whose both ends are open (not connected), and transmits electric power to the electric vehicle 100 by resonating with the secondary self-resonant coil 110 of the electric vehicle 100 via an electromagnetic field.
  • the capacitance component of the primary self-resonant coil 240 is also the stray capacitance of the coil, but capacitors connected to both ends of the coil may be provided.
  • the primary self-resonant coil 240 also has a Q value (for example, Q> based on the distance from the secondary self-resonant coil 110 of the electric vehicle 100, the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110, etc. 100), and the number of turns is appropriately set so that the degree of coupling ⁇ and the like are increased.
  • Q value for example, Q> based on the distance from the secondary self-resonant coil 110 of the electric vehicle 100, the resonance frequency of the primary self-resonant coil 240 and the secondary self-resonant coil 110, etc. 100
  • the communication device 250 is a communication interface for performing wireless communication with the electric powered vehicle 100 that is a power supply destination.
  • the ECU 260 controls the high frequency power driver 220 so that the received power of the electric vehicle 100 becomes a target value. Specifically, ECU 260 acquires the received power of electric vehicle 100 and its target value from electric vehicle 100 by communication device 250, and outputs high-frequency power driver 220 so that the received power of electric vehicle 100 matches the target value. To control. In addition, ECU 260 can transmit the impedance value of power supply apparatus 200 to electrically powered vehicle 100.
  • FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method.
  • this resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.
  • the primary coil 320 is connected to the high-frequency power source 310, and high-frequency power of 1 to 10 MHz is fed to the primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction.
  • the primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates with a secondary self-resonant coil 340 having the same resonance frequency as the primary self-resonant coil 330 via an electromagnetic field (near field). .
  • energy electrical power moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 via the electromagnetic field.
  • the energy (electric power) transferred to the secondary self-resonant coil 340 is taken out by the secondary coil 350 magnetically coupled to the secondary self-resonant coil 340 by electromagnetic induction and supplied to the load 360.
  • power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 330 and the secondary self-resonant coil 340 is greater than 100, for example.
  • the AC power supply 210 and the high-frequency power driver 220 in FIG. 1 correspond to the high-frequency power supply 310 in FIG.
  • the primary coil 230 and the primary self-resonant coil 240 in FIG. 1 correspond to the primary coil 320 and the primary self-resonant coil 330 in FIG. 2, respectively, and the secondary self-resonant coil 110 and the secondary coil 120 in FIG. This corresponds to the secondary self-resonant coil 340 and the secondary coil 350 in FIG.
  • FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the strength of the electromagnetic field.
  • the electromagnetic field includes three components.
  • a curve k1 is a component inversely proportional to the distance from the wave source, and is referred to as a “radiating electric field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induced electric field”.
  • the curve k3 is a component that is inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic field”.
  • the “electrostatic field” is a region where the intensity of the electromagnetic wave suddenly decreases with the distance from the wave source.
  • energy electric power
  • the near field evanescent field
  • Is transmitted That is, by resonating a pair of resonators having the same natural frequency (for example, a pair of LC resonance coils) in a near field where the “electrostatic field” is dominant, the resonance from one resonator (primary self-resonance coil) to the other Energy (electric power) is transmitted to the resonator (secondary self-resonant coil). Since this “electrostatic field” does not propagate energy far away, the resonance method can transmit power with less energy loss than electromagnetic waves that transmit energy (electric power) by “radiant electric field” that propagates energy far away. it can.
  • the non-contact power receiving device 430 includes the secondary self-resonant coil 110 and the secondary coil 120 shown in FIG.
  • a vehicle is equipped with a non-contact power receiving device that receives power from a power transmission coil that receives power from a power source outside the vehicle and transmits power.
  • FIG. 4 is a perspective view schematically showing the secondary self-resonant coil 110.
  • the secondary self-resonant coil 110 is formed so as to be wound around the central axis O1.
  • FIG. 5 is a cross-sectional view of secondary self-resonant coil 110 in a cross section perpendicular to the extending direction of secondary self-resonant coil 110.
  • a cross section 450 perpendicular to the extending direction of the secondary self-resonant coil 110 is substantially U-shaped.
  • the virtual circular coil 440 indicated by the alternate long and short dash line in FIG. 5 extends spirally in the same manner as the secondary self-resonant coil 110, and the cross-sectional shape perpendicular to the extending direction is a circle. .
  • the length of the circumference that defines the outer peripheral edge in the cross section of the virtual circular coil 440 is the length of the line that defines the outer peripheral edge of the cross section 450 of the secondary self-resonant coil 110.
  • the area of the cross section 450 of the secondary self-resonant coil 110 is suppressed smaller than the area of the cross section of the virtual circular coil 440. Further, the virtual circular coil 440 is made more compact. Specifically, the cross-sectional shape of the secondary self-resonant coil 110 is made more compact in both the radial width and the axial height than the virtual circular coil 440 cross-sectional shape.
  • the virtual circular coil whose cross-sectional area perpendicular to the coil extending direction is equal to the area of the cross-section 450 is compared with the secondary self-resonant coil 110.
  • the length of the line segment that defines the outer peripheral edge portion of the cross section 450 of the secondary self-resonant coil 110 is longer than the length of the line segment that defines the outer peripheral edge portion of the cross section of the virtual circular coil.
  • the resistance of the secondary self-resonant coil 110 when a high-frequency current flows can be suppressed to be lower than the resistance of the virtual circular coil.
  • the secondary self-resonant coil 110 is U-shaped to achieve compactness and low resistance to high-frequency current.
  • the secondary self-resonant coil 110 has a shape obtained by bending both ends in the radial direction of the virtual rectangular coil 441 shown by a broken line in FIG. 5 in the axial direction.
  • the virtual square coil 441 is also a coil that is spirally wound in the same manner as the secondary self-resonant coil 110.
  • the cross-sectional shape in the cross section perpendicular to the extending direction of the virtual rectangular coil 441 is a rectangular shape in which the main surface 442 and the main surface 443 are arranged in the direction of the central axis O1.
  • the secondary self-resonant coil 110 Since the secondary self-resonant coil 110 has a shape obtained by curving the end portion arranged in the radial direction of the virtual square coil 441 in the axial direction, the outer peripheral edge portion of the cross section of the virtual square coil 441 is formed.
  • the length of the defining line segment is equal to the length of the line segment defining the outer peripheral edge portion of the cross section 450 of the secondary self-resonant coil 110. Accordingly, due to the skin effect, the resistance of the virtual rectangular coil 441 with respect to the high-frequency current and the resistance of the secondary self-resonant coil 110 become equal.
  • the secondary self-resonant coil 110 is bent so that at least one of the end portions arranged in the radial direction of the virtual square coil 441 is bent or curved in the direction of the central axis O1, so that the secondary self-resonant coil
  • the width in the radial direction L2 of the cross section 450 of 110 is smaller than the radial width of the virtual square coil 441, and the secondary self-resonant coil 110 is made compact in the radial direction.
  • the cross-sectional shape of the secondary self-resonant coil 110 is substantially U-shaped, and both ends of the secondary self-resonant coil 110 that are arranged in the radial direction are bent in the direction of the central axis O1. A reduction in the radial dimension of 450 is achieved.
  • the secondary self-resonant coil 110 has a main surface 420 and a main surface 421 positioned so as to face each other in the direction of the central axis O1, and both the main surface 420 and the main surface 421 are curved in an arc shape.
  • a groove portion 446 is defined by the main surface 420.
  • the groove 446 is formed so as to open toward one axial direction L1 in the direction of the central axis O1.
  • FIG. 6 is a cross-sectional view showing a cross section of a part of the secondary self-resonant coil 110 along the direction of the central axis O1.
  • a dielectric 445 is filled between the main surface 420 defining the groove 446 and the main surface 421 adjacent to the main surface 420 of the secondary self-resonant coil 110 in one axial direction L1.
  • a stray capacitance having a predetermined capacitance can be formed without providing a separate capacitor, and the capacitance component of the secondary self-resonant coil 110 can be obtained.
  • silicon etc. are employ
  • the curvature defining the bottom of the groove 446 is formed so as to decrease from the end on the one axial direction L1 side toward the other end.
  • the bottom portion P1, the bottom portion P2, and the bottom portion P3 are sequentially arranged from the end on the one axial direction L1 side of the secondary self-resonant coil 110 toward the other end side, respectively, and the curvature The radii R1, R2, and R3 are formed so as to increase sequentially. For this reason, the opening width of the groove part 446 becomes large as it goes to the other edge part side from the one axial direction L1 side.
  • the groove portion 446 can receive at least a part of a portion of the secondary self-resonant coil 110 located on the one axial direction L1 side with respect to the groove portion 446.
  • the dimension of the secondary self-resonant coil 110 in the direction of the central axis O1 can be reduced.
  • the secondary self-resonant coil 110 is formed so that a part of the secondary self-resonant coil 110 enters the groove 446, but the secondary self-resonant coil 110 is inserted into the groove 446.
  • the secondary self-resonant coil 110 may be wound so that a part of the resonant coil 110 does not enter.
  • FIG. 7 is a cross-sectional view showing a modified example of the wound state of the secondary self-resonant coil 110.
  • the secondary self-resonant coil 110 is wound at intervals in the direction of the central axis O1. Thereby, both main surface 420 and main surface 421 are opened outward, and heat can be radiated from main surface 420 and main surface 421 to the outside.
  • a dielectric 445 may be filled between the main surface 420 and the main surface 421 as indicated by a broken line in FIG.
  • the side surface arranged in the radial direction of the secondary self-resonant coil 110 is exposed to the outside.
  • the heat transferred from the main surfaces 420 and 421 of the secondary self-resonant coil 110 to the dielectric 445 is radiated to the outside from the side surface of the dielectric 445.
  • the secondary self-resonant coil 110 is provided with main surfaces 420 and 421 that face each other and are opened outward, and have an intermediate between the main surface 420 and the main surface 421. At least a part of the passing center line 500 extends so as to intersect the virtual axis O2 extending along the radial direction of the secondary self-resonant coil 110.
  • the radial vector component is small, and as a result, the radial width of the secondary self-resonant coil 110 is small.
  • the center line 500 extends in a direction intersecting the virtual axis O ⁇ b> 2 in the portion other than the bottom portion 422 of the secondary self-resonant coil 110.
  • the width is reduced.
  • each main surface 420,421 is open
  • FIG. 8 is a cross-sectional view showing a first modification of the cross-sectional shape of the secondary self-resonant coil 110. As shown in FIG. 8, it may be formed to have an M-shaped cross section. In the example shown in FIG. 8, a plurality of bottom portions 422, 425, and 426 are formed, and a portion extending in a radial direction with respect to each of the bottom portions 422, 425, and 426 is an axis extending in a direction intersecting the virtual axis O2.
  • Direction extending portions 423, 424, 427, and 428 are formed, respectively.
  • the width in the radial direction can be reduced while suppressing an increase in the dimension in the direction of the central axis O1.
  • FIG. 9 is a cross-sectional view showing a second modification of the cross-sectional shape of the secondary self-resonant coil 110. As shown in FIG. 9, not only the virtual square coil 441 is bent, but also a shape obtained by bending it may be used.
  • FIG. 10 is a cross-sectional view showing a third modification of the cross-sectional shape of the secondary self-resonant coil 110.
  • the shape is not limited to the shape obtained by deforming the virtual rectangular coil 441, but can be obtained by deforming a virtual coil having an oval cross-sectional shape or an elliptical cross-sectional shape. May be used.
  • FIG. 11 is a cross-sectional view showing a fourth modification of the cross-sectional shape of the secondary self-resonant coil 110.
  • the virtual square coil 441 may have a shape obtained by inclining the virtual square coil 441 so that the center line 500 of the virtual square coil 441 intersects the virtual axis O2.
  • the radial width of the secondary self-resonant coil 110 can be suppressed to be smaller than the radial width of the virtual rectangular coil 441, and the radial direction can be made compact. be able to.
  • FIG. 12 is a cross-sectional view showing a fifth modification of the cross-sectional shape of the secondary self-resonant coil 110.
  • a plurality of recesses (depressions) or projections are formed on the outer peripheral surface of the secondary self-resonant coil 110.
  • the cross-sectional area of the secondary self-resonant coil 110 formed in this way can be kept smaller than the cross-sectional area of the virtual circular coil 440, and the secondary self-resonant coil 110 can be made compact.
  • the shape of the secondary self-resonant coil 110 has been described in FIGS. 4 to 12, the shape of the secondary self-resonant coil 110 can be applied to the primary self-resonant coil 240.
  • the non-contact power receiving device shown in each of the above embodiments can be mounted on various electric vehicles.
  • the electric vehicle can be applied to other types of hybrid vehicles besides the series / parallel type hybrid vehicle in which the power of the engine can be divided and transmitted to the drive wheels and the motor generator by the power split device. That is, for example, a so-called series-type hybrid vehicle that uses an engine only to drive a motor generator and generates the driving force of the vehicle only by the motor generator, or only regenerative energy of the kinetic energy generated by the engine is electric energy.
  • the present invention can also be applied to a hybrid vehicle that is recovered as a motor, a motor-assist type hybrid vehicle in which a motor assists the engine as the main power.
  • the present invention can also be applied to an electric vehicle that runs only on electric power without an engine, and a fuel cell vehicle that further includes a fuel cell as a DC power source in addition to a power storage device.
  • the present invention is also applicable to an electric vehicle that does not include a boost converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 磁場の共鳴により電力を送電または受電の少なくとも一方が可能な非接触電力伝達装置に用いられる自己共振コイル(110,240)であって、延在方向に対して垂直な断面の断面形状が円とされ、該断面を規定する円周の長さが、自己共振コイル(110,240)の延在方向に垂直な断面で断面視したときの自己共振コイル(110,240)の断面の外周縁を規定する線分の長さと等しいコイルを仮想コイル(440)とし、自己共振コイル(110,240)の延在方向に垂直な断面における該自己共振コイル(110,240)の径方向の幅と軸方向の長さの少なくとも一方が、仮想コイルの断面の径よりも小さくされる。

Description

自己共振コイル、非接触電力伝達装置および車両
 本発明は、磁場の共鳴により電力の伝達が行われる非接触電力伝達装置に用いられる自己共振コイル、当該自己共振コイルを備えた非接触電力伝達装置およびこの非接触電力伝達装置を備えた車両に関する。
 環境に配慮した車両として、電気自動車やハイブリッド車などの電動車両が大きく注目されている。これらの車両は、走行駆動力を発生する電動機と、その電動機に供給される電力を蓄える再充電可能な蓄電装置とを搭載する。なお、ハイブリッド車は、電動機とともに内燃機関をさらに動力源として搭載した車両や、車両駆動用の直流電源として蓄電装置とともに燃料電池をさらに搭載した車両である。
 ハイブリッド車においても、電気自動車と同様に、車両外部の電源から車載の蓄電装置を充電可能な車両が知られている。たとえば、家屋に設けられた電源コンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置を充電可能ないわゆる「プラグイン・ハイブリッド車」が知られている。
 一方、送電方法として、電源コードや送電ケーブルを用いないワイヤレス送電が近年注目されている。このワイヤレス送電技術としては、有力なものとして、電磁誘導を用いた送電、電磁波を用いた送電、および共鳴法による送電の3つの技術が知られている。
 このうち、共鳴法は、一対の共鳴器(たとえば一対の自己共振コイル)を電磁場(近接場)において共鳴させ、電磁場を介して送電する非接触の送電技術であり、数kWの大電力を比較的長距離(たとえば数m)送電することも可能である(特許文献1および非特許文献1参照)。
 電磁誘導の相互誘電作用に基づき送電を行う非接触給電装置としては、特開2008-87733号公報(特許文献2)に記載された非接触給電装置が挙げられる。この非接触給電装置は、給電側の1次コイルから、受電側の2次コイルに、電力を供給する。なお、1次コイルおよび2次コイルの断面形状は円となっている。
特開2008-87733号公報 国際公開第2007/008646号パンフレット Andre Kurs et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances"、[online]、2007年7月6日、SCIENCE、第317巻、p.83-86、[2007年9月12日検索]、インターネット<URL:http://www.sciencemag.org/cgi/reprint/317/5834/83.pdf>
 上記共鳴法が採用されたワイヤレス送電装置および受電装置は、電磁場を介して電力を伝達する自己共振コイルを備えている。この自己共振コイルの断面形状は、自己共振コイルの延在方向に対して垂直な断面が円形形状とされている。
 そして、受電および送電時には、自己共振コイルには高周波の電流が流れることになる。ここで、高周波の電流がコイル内を流通する際、電流密度はコイルの表面で高く、表面から離れると低くなることが知られている(表皮効果)。
 このため、上記特開2008-87733号公報(特許文献1)に記載された1次コイルおよび2次コイルでは、電流が流れる領域が小さく、却って、抵抗が高くなる。
 さらに、上記ワイヤレス送電装置や受電装置は、車両等に搭載されて使用されることが多く、装置自体のコンパクト化を図る必要性が高い。
 本発明は、上記のような課題に鑑みてなされたものであって、その目的は、自己共振コイルの抵抗の低減を図ると共に、コンパクト化が図られた自己共振コイル、この自己共振コイルを備えた非接触電力伝達装置およびこの非接触電力伝達装置を備えた車両を提供することである。
 本発明に係る自己共振コイルは、1つの局面では、磁場の共鳴により電力を伝達する非接触電力伝達装置に用いられる自己共振コイルである。そして、延在方向に対して垂直な断面の断面形状が円とされ、該断面を規定する円周の長さが、自己共振コイルの延在方向に垂直な断面で断面視したときの自己共振コイルの断面の外周縁を規定する線分の長さと等しいコイルを仮想コイルとする。上記自己共振コイルの延在方向に垂直な断面における該自己共振コイルの径方向の幅と軸方向の長さの少なくとも一方が、仮想コイルの断面の径よりも小さくされる。
 本発明に係る自己共振コイルは、他の局面では、磁場の共鳴により電力を伝達する非接触電力伝達装置に用いられる自己共振コイルである。そして、上記自己共振コイルは、互いに対向する第1および第2主表面を有し、自己共振コイルの断面は、第1主表面および第2主表面との間の中心を通る中心線少なくとも一部が、自己共振コイルの径方向に延びる仮想軸線に対して交差する方向に延びる。
 本発明に係る自己共振コイルは、他の局面では、磁場の共鳴により電力を伝達する非接触電力伝達装置に用いられる自己共振コイルである。そして、上記自己共振コイルの延在方向に対して垂直な自己共振コイルの断面形状は、主表面が自己共振コイルの軸方向に配列する板状部材を自己共振コイルの軸方向に向けて屈曲または湾曲させることで得られる形状とする。
 本発明に係る自己共振コイルは、他の局面では、磁場の共鳴により電力を伝達する非接触電力伝達装置に用いられる自己共振コイルである。上記自己共振コイルの延在方向に対して垂直な自己共振コイルの断面形状は、略U字形状または略V字形状とされる。
 好ましくは、上記自己共振コイルの断面形状が略U字形状または略V字形状とされることで、自己共振コイルの一方の軸方向に向けて開口する溝部が規定され、溝部は、自己共振コイルのうち、溝部が位置する部分に対して軸方向に隣り合う部分の少なくとも一部を受け入れる。
 好ましくは、上記自己共振コイルの一方の軸方向の端部側から他方の軸方向の端部側に向かうにしたがって、溝部の底部の曲率が小さくなる。
 好ましくは、上記第1主表面と第2主表面との間に配置された誘電体をさらに備える。
 本発明に係る非接触電力伝達装置は、上記自己共振コイルと、自己共振コイルとの間で電磁誘導により電力を伝達する一次コイルとを備える。
 本発明に係る自己共振コイル、非接触電力伝達装置および非接触電力伝達装置によれば、抵抗の低減を図ると共に、コイル自体のコンパクト化を図ることができる。
この発明の実施の形態による給電システムの全体構成図である。 共鳴法による送電の原理を説明するための図である。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 二次自己共振コイル110を模式的に示す斜視図である。 二次自己共振コイル110の延在方向に対して垂直な断面における二次自己共振コイル110の断面図である。 二次自己共振コイル110の一部を中心軸線O1方向に沿った断面を示す断面図である。 二次自己共振コイル110の巻回状態の変形例を示す断面図である。 二次自己共振コイル110の断面形状の第1変形例を示す断面図である。 二次自己共振コイル110の断面形状の第2変形例を示す断面図である。 二次自己共振コイル110の断面形状の第3変形例を示す断面図である。 二次自己共振コイル110の断面形状の第4変形例を示す断面図である。 二次自己共振コイル110の断面形状の第5変形例を示す断面図である。
符号の説明
 100 電動車両、110 二次自己共振コイル、120 二次コイル、130 整流器、140 コンバータ、150 蓄電装置、170 モータ、190 通信装置、200 給電装置、210 交流電源、220 高周波電力ドライバ、230 一次コイル、240 一次自己共振コイル、250 通信装置、310 高周波電源、317 第、320 一次コイル、330 一次自己共振コイル、340 二次自己共振コイル、350 二次コイル、360 負荷、404 コンデンサ、420,421 主表面、422,425,426 底部、423,424,427,428 軸方向延在部、430 非接触受電装置、440 仮想円コイル、441 仮想方形コイル、445 誘電体、446 溝部、500 中心線。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施の形態による給電システムの全体構成図である。図1を参照して、この給電システムは、電動車両100に設けられた非接触受電装置(非接触電力伝達装置)と、車両外部に設けられた給電装置(非接触電力伝達装置)200とを備える。非接触受電装置は、二次自己共振コイル110と、二次コイル120と、整流器130と、DC/DCコンバータ140と、蓄電装置150とを含む。また、電動車両100は、受電装置と、パワーコントロールユニット(以下「PCU(Power Control Unit)」とも称する。)160と、モータ170と、車両ECU(Electronic Control Unit)180と、通信装置190とをさらに含む。
 二次自己共振コイル110は、車体下部に配設されるが、給電装置200が車両上方に配設されていれば、車体上部に配設されてもよい。二次自己共振コイル110は、両端がオープン(非接続)のLC共振コイルであり、給電装置200の一次自己共振コイル240(後述)と電磁場を介して共鳴することにより給電装置200から電力を受電する。なお、二次自己共振コイル110の容量成分は、コイルの浮遊容量とするが、コイルの両端に接続されるコンデンサを設けてもよい。
 二次自己共振コイル110は、給電装置200の一次自己共振コイル240との距離や、一次自己共振コイル240および二次自己共振コイル110の共鳴周波数等に基づいて、一次自己共振コイル240と二次自己共振コイル110との共鳴強度を示すQ値(たとえば、Q>100)およびその結合度を示すκ等が大きくなるようにその巻数が適宜設定される。
 二次コイル120は、二次自己共振コイル110と同軸上に配設され、電磁誘導により二次自己共振コイル110と磁気的に結合可能である。この二次コイル120は、二次自己共振コイル110により受電された電力を電磁誘導により取出して整流器130へ出力する。整流器130は、二次コイル120によって取出された交流電力を整流する。
 DC/DCコンバータ140は、車両ECU180からの制御信号に基づいて、整流器130によって整流された電力を蓄電装置150の電圧レベルに変換して蓄電装置150へ出力する。なお、車両の走行中に給電装置200から受電する場合には(その場合には、給電装置200はたとえば車両上方または側方に配設される。)、DC/DCコンバータ140は、整流器130によって整流された電力をシステム電圧に変換してPCU160へ直接供給してもよい。また、DC/DCコンバータ140は、必ずしも必要ではなく、二次コイル120によって取出された交流電力が整流器130によって整流された後に直接蓄電装置150に与えられるようにしても良い。
 蓄電装置150は、再充電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池を含む。蓄電装置150は、DC/DCコンバータ140から供給される電力を蓄えるほか、モータ170によって発電される回生電力も蓄える。そして、蓄電装置150は、その蓄えた電力をPCU160へ供給する。なお、蓄電装置150として大容量のキャパシタも採用可能であり、給電装置200から供給される電力やモータ170からの回生電力を一時的に蓄え、その蓄えた電力をPCU160へ供給可能な電力バッファであれば如何なるものでもよい。
 PCU160は、蓄電装置150から出力される電力あるいはDC/DCコンバータ140から直接供給される電力によってモータ170を駆動する。また、PCU160は、モータ170により発電された回生電力を整流して蓄電装置150へ出力し、蓄電装置150を充電する。モータ170は、PCU160によって駆動され、車両駆動力を発生して駆動輪へ出力する。また、モータ170は、駆動輪や図示されないエンジンから受ける運動エネルギーによって発電し、その発電した回生電力をPCU160へ出力する。
 車両ECU180は、車両の走行時、車両の走行状況や蓄電装置150の充電状態(以下「SOC(State Of Charge)」とも称する。)に基づいてPCU160を制御する。通信装置190は、車両外部の給電装置200と無線通信を行なうための通信インターフェースである。
 一方、給電装置200は、交流電源210と、高周波電力ドライバ220と、一次コイル230と、一次自己共振コイル240と、通信装置250と、ECU260とを含む。
 交流電源210は、車両外部の電源であり、たとえば系統電源である。高周波電力ドライバ220は、交流電源210から受ける電力を高周波の電力に変換し、その変換した高周波電力を一次コイル230へ供給する。なお、高周波電力ドライバ220が生成する高周波電力の周波数は、たとえば1M~10数MHzである。
 一次コイル230は、一次自己共振コイル240と同軸上に配設され、電磁誘導により一次自己共振コイル240と磁気的に結合可能である。そして、一次コイル230は、高周波電力ドライバ220から供給される高周波電力を電磁誘導により一次自己共振コイル240へ給電する。
 一次自己共振コイル240は、地面近傍に配設されるが、車両上方から電動車両100へ給電する場合には車両上方に配設されてもよい。一次自己共振コイル240も、両端がオープン(非接続)のLC共振コイルであり、電動車両100の二次自己共振コイル110と電磁場を介して共鳴することにより電動車両100へ電力を送電する。なお、一次自己共振コイル240の容量成分も、コイルの浮遊容量とするが、コイルの両端に接続されるコンデンサを設けてもよい。
 この一次自己共振コイル240も、電動車両100の二次自己共振コイル110との距離や、一次自己共振コイル240および二次自己共振コイル110の共鳴周波数等に基づいて、Q値(たとえば、Q>100)および結合度κ等が大きくなるようにその巻数が適宜設定される。
 通信装置250は、給電先の電動車両100と無線通信を行なうための通信インターフェースである。ECU260は、電動車両100の受電電力が目標値となるように高周波電力ドライバ220を制御する。具体的には、ECU260は、電動車両100の受電電力およびその目標値を通信装置250によって電動車両100から取得し、電動車両100の受電電力が目標値に一致するように高周波電力ドライバ220の出力を制御する。また、ECU260は、給電装置200のインピーダンス値を電動車両100へ送信することができる。
 図2は、共鳴法による送電の原理を説明するための図である。図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。
 具体的には、高周波電源310に一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次自己共振コイル330へ1M~10数MHzの高周波電力を給電する。一次自己共振コイル330は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル330と同じ共振周波数を有する二次自己共振コイル340と電磁場(近接場)を介して共鳴する。そうすると、一次自己共振コイル330から二次自己共振コイル340へ電磁場を介してエネルギー(電力)が移動する。二次自己共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル340と磁気的に結合される二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次自己共振コイル330と二次自己共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。
 なお、図1との対応関係について説明すると、図1の交流電源210および高周波電力ドライバ220は、図2の高周波電源310に相当する。また、図1の一次コイル230および一次自己共振コイル240は、それぞれ図2の一次コイル320および一次自己共振コイル330に相当し、図1の二次自己共振コイル110および二次コイル120は、それぞれ図2の二次自己共振コイル340および二次コイル350に相当する。そして、図1の整流器130以降が負荷360として総括的に示されている。
 図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電界」と称される。
 「静電界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、共鳴法では、この「静電界」が支配的な近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、「静電界」が支配的な近接場において、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次自己共振コイル)から他方の共鳴器(二次自己共振コイル)へエネルギー(電力)を伝送する。この「静電界」は遠方にエネルギーを伝播しないので、遠方までエネルギーを伝播する「輻射電界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
 非接触受電装置430は、図1に示した二次自己共振コイル110および二次コイル120を含むものである。車両には、車両外部の電源から電力を受けて送電を行なう送電コイルから電力を受電する非接触受電装置が搭載されている。
 図4は、二次自己共振コイル110を模式的に示す斜視図であり、この図4に示すように、二次自己共振コイル110は、中心軸線O1を中心に巻回するように形成されている。図5は、二次自己共振コイル110の延在方向に対して垂直な断面における二次自己共振コイル110の断面図である。この図5に示すように、二次自己共振コイル110の延在方向に対して垂直な断面450は、略U字形状とされている。
 ここで、図5の一点鎖線によって示される仮想円コイル440は、二次自己共振コイル110と同様に螺旋状に延び、さらに、延在方向に対して垂直な断面の形状が円となっている。そして、この仮想円コイル440の断面における外周縁部を規定する円周の長さは、二次自己共振コイル110の断面450の外周縁部を規定する線分の長さとされている。ここで、一般に、高周波電流がコイル線内を流れると、主に、コイル線の表面を電流が流れることが知られている(表皮効果)。仮想円コイル440の断面の円周長と、二次自己共振コイル110の断面の外周縁部の長さとは一致しているため、高周波電流が仮想円コイル440内を流れるときの抵抗と、高周波電流が二次自己共振コイル110内を流れるときの抵抗は一致する。
 その一方で、この図5からも明らかなように、二次自己共振コイル110の断面450の面積は、仮想円コイル440の断面の面積よりも小さく抑えられており、二次自己共振コイル110は、仮想円コイル440よりもコンパクト化が図られている。具体的には、二次自己共振コイル110の断面形状は、仮想円コイル440の断面形状よりも径方向の幅および軸方向の高さいずれにおいても、コンパクト化が図られている。
 ここで、コイルの延在方向と垂直な断面の断面積が、断面450の面積と等しい仮想円コイルと、二次自己共振コイル110とを比較する。この場合、この仮想円コイルの断面の外周縁部を規定する線分の長さよりも、二次自己共振コイル110の断面450の外周縁部を規定する線分の長さの方が長くなる。
 このため、高周波の電流が流れるときの二次自己共振コイル110の抵抗は、この仮想円コイルの抵抗よりも低く抑えることができる。
 このように、二次自己共振コイル110は、U字形状とすることで、コンパクト化および高周波電流に対する低抵抗化が図られていることが分かる。
 二次自己共振コイル110は、図5の破線に示す仮想方形コイル441の径方向両端部を軸方向に湾曲させることで得られる形状となっている。
 なお、仮想方形コイル441も、二次自己共振コイル110と同様に螺旋状に巻回されているコイルとする。また、仮想方形コイル441の延在方向に対して垂直な断面における断面形状は、主表面442および主表面443が中心軸線O1方向に配列するような長方形形状となっているものとする。
 そして、二次自己共振コイル110は、仮想方形コイル441の径方向に配列する端部を軸方向に湾曲させることで得られる形状とされているため、仮想方形コイル441の断面の外周縁部を規定する線分の長さと、二次自己共振コイル110の断面450の外周縁部を規定する線分の長さとは等しくなっている。これに伴い、上記表皮効果によって、高周波電流に対する仮想方形コイル441の抵抗と、二次自己共振コイル110の抵抗とは等しくなる。
 その一方で、二次自己共振コイル110は、仮想方形コイル441の径方向に配列する端部の少なくとも一方を中心軸線O1方向に屈曲または湾曲するように曲げられているため、二次自己共振コイル110の断面450の径方向L2の幅は、仮想方形コイル441の径方向の幅よりも小さくなっており、二次自己共振コイル110の径方向のコンパクト化が図られている。
 特に、二次自己共振コイル110の断面形状は略U字形状とされており、二次自己共振コイル110のうち、径方向に配列する両端部が中心軸線O1方向に屈曲しているため、断面450の径方向の寸法の低減が図られている。
 二次自己共振コイル110は、中心軸線O1方向に互いに対向するように主表面420,主表面421が位置しており、主表面420および主表面421は、いずれも円弧状に湾曲している。そして、主表面420によって溝部446が規定されている。この溝部446は、中心軸線O1方向のうち一方の軸方向L1に向けて開口するように形成されている。
 図6は、二次自己共振コイル110の一部を中心軸線O1方向に沿った断面を示す断面図である。
 この図6に示すように、溝部446を規定する主表面420と、二次自己共振コイル110のうち当該主表面420に対して一方の軸方向L1に隣り合う主表面421との間には、誘電体445が充填されている。これにより、別途キャパシタを設けることなく、所定の容量を有する浮遊容量を構成することができ、二次自己共振コイル110の容量成分とすることができる。なお、誘電体としては、シリコン等が採用される。
 ここで、二次自己共振コイル110のうち、一方の軸方向L1側の端部から他方の端部に向かうにしたがって、溝部446の底部を規定する曲率が小さくなるように形成されている。具体的には、底部P1と底部P2と底部P3とは、それぞれ、二次自己共振コイル110の一方の軸方向L1側の端部から他方端部側に向けて順次配列してており、曲率半径R1,R2,R3が順次大きくなるように形成されている。このため、一方の軸方向L1側から他方の端部側に向かうにしたがって、溝部446の開口幅が大きくなるようになっている。
 これにより、溝部446は、二次自己共振コイル110のうち、当該溝部446に対して一方の軸方向L1側に位置する部分の少なくとも一部を受け入れることができる。このように、溝部446内に二次自己共振コイル110の一部が受け入れられることで、二次自己共振コイル110の中心軸線O1方向の寸法を低減することができる。このように、中心軸線O1方向の寸法を小さく抑えることで、車両のフロアパネルに搭載したとしても、フロアパネルから大きく突出することを抑制することができる。
 なお、この図6に示す例においては、二次自己共振コイル110は、溝部446内に二次自己共振コイル110の一部を入り込ませるように形成されているが、溝部446内に二次自己共振コイル110の一部が入り込まないように、二次自己共振コイル110を巻回してもよい。
 図7は、二次自己共振コイル110の巻回状態の変形例を示す断面図である。この図7に示すように、二次自己共振コイル110は、中心軸線O1方向に間隔をあけて巻回されている。これにより、主表面420および主表面421のいずれもが、外方に開放され、主表面420および主表面421から熱を外部に放熱することができる。
 なお、図7の破線に示されるように、主表面420と主表面421との間に誘電体445を充填してもよい。この場合、誘電体445の表面のうち、二次自己共振コイル110の径方向に配列する側面が外部に露出することになる。そして、二次自己共振コイル110の主表面420,421から誘電体445に伝達された熱は、誘電体445の側面から外部に放熱される。
 上記図5および図7に示す例においては、二次自己共振コイル110は、互いに対向すると共に、外方に開放された主表面420,421を備え、主表面420と主表面421との中間を通る中心線500の少なくとも一部が、二次自己共振コイル110の径方向に沿って延びる仮想軸線O2と交差するように延びている。
 中心線500が仮想軸線O2と交差する方向に延びる部分では、径方向ベクトル成分が小さくなっており、結果として、二次自己共振コイル110の径方向の幅が小さくなる。
 特に、図5および図7に示す例においては、二次自己共振コイル110のうち、底部422以外の部分では、中心線500が仮想軸線O2と交差する方向に延びているため、大幅に径方向の幅の低減が図られている。そして、各主表面420,421が外方に開放されているので、直接または誘電体等の他の部材を介して、外気に放熱することができる。
 図8は、二次自己共振コイル110の断面形状の第1変形例を示す断面図である。この図8に示すように、断面M字形状となるように形成してもよい。この図8に示す例においては、複数の底部422,425,426が形成され、各底部422,425,426に対して径方向に隣り合う部分には、仮想軸線O2と交差する方向に延びる軸方向延在部423,424,427,428がそれぞれ形成されている。
 このように、仮想方形コイル441を複数回、中心軸線O1方向に屈曲または湾曲させることで、中心軸線O1方向の寸法が大きくなることを抑制しつつも、径方向の幅を低減させることができる。
 図9は、二次自己共振コイル110の断面形状の第2変形例を示す断面図である。この図9に示すように、仮想方形コイル441を湾曲させる場合のみならず、屈曲させることで得られる形状としてもよい。
 図10は、二次自己共振コイル110の断面形状の第3変形例を示す断面図である。この図10に示すように、仮想方形コイル441を変形させることで得られる形状に限らず、断面形状が長円形状の仮想コイルや断面形状が楕円形状とされた仮想コイルを変形させることで得られるものであってもよい。
 図11は、二次自己共振コイル110の断面形状の第4変形例を示す断面図である。この図11に示すように、仮想方形コイル441の中心線500が仮想軸線O2と交差するように仮想方形コイル441を傾斜させることで得られる形状としてもよい。
 このように、傾斜させるように変形することで、二次自己共振コイル110の径方向の幅は、仮想方形コイル441の径方向の幅よりも小さく抑えることができ、径方向のコンパクト化を図ることができる。
 図12は、二次自己共振コイル110の断面形状の第5変形例を示す断面図である。この図12に示す例においては、二次自己共振コイル110の外周面に複数の凹部(窪み部)または凸部が形成されている。このように形成された二次自己共振コイル110の断面積は、仮想円コイル440の断面積よりも小さく抑えることができ、二次自己共振コイル110のコンパクト化を図ることができる。
 なお、図4から図12においては、二次自己共振コイル110の形状について説明したが、当該二次自己共振コイル110の形状を一次自己共振コイル240にも適用することができる。
 そして、上記の各実施の形態で示した非接触受電装置は各種電動車両に搭載することができる。電動車両としては、動力分割装置によりエンジンの動力を分割して駆動輪とモータジェネレータとに伝達可能なシリーズ/パラレル型のハイブリッド車以外にも、その他の形式のハイブリッド車にも適用可能である。すなわち、たとえば、モータジェネレータを駆動するためにのみエンジンを用い、モータジェネレータでのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車や、エンジンが生成した運動エネルギーのうち回生エネルギーのみが電気エネルギーとして回収されるハイブリッド車、エンジンを主動力として必要に応じてモータがアシストするモータアシスト型のハイブリッド車などにもこの発明は適用可能である。
 また、この発明は、エンジンを備えずに電力のみで走行する電気自動車や、直流電源として蓄電装置に加えて燃料電池をさらに備える燃料電池車にも適用可能である。また、この発明は、昇圧コンバータを備えない電動車両にも適用可能である。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (9)

  1.  磁場の共鳴により電力を送電または受電の少なくとも一方が可能な非接触電力伝達装置に用いられる自己共振コイル(110,240)であって、
     延在方向に対して垂直な断面の断面形状が円とされ、該断面を規定する円周の長さが、前記自己共振コイル(110,240)の延在方向に垂直な断面で断面視したときの前記自己共振コイル(110,240)の断面の外周縁を規定する線分の長さと等しいコイルを仮想コイル(440)とし、
     前記自己共振コイル(110,240)の延在方向に垂直な断面における該自己共振コイル(110,240)の前記径方向の幅と前記軸方向の長さの少なくとも一方が、前記仮想コイルの断面の径よりも小さくされた、自己共振コイル(110,240)。
  2.  磁場の共鳴により電力を送電または受電の少なくとも一方が可能な非接触電力伝達装置に用いられる自己共振コイル(110,240)であって、
     前記自己共振コイル(110,240)は、互いに対向する第1および第2主表面(420,421)を有し、
     前記第1主表面(420)および前記第2主表面(421)との間の中心を通る中心線(500)の少なくとも一部が、前記自己共振コイル(110,240)の径方向に延びる仮想軸線(O2)に対して交差する方向に延びる、自己共振コイル(110,240)。
  3.  磁場の共鳴により電力を送電または受電の少なくとも一方が可能な非接触電力伝達装置に用いられる自己共振コイル(110,240)であって、
     前記自己共振コイル(110,240)の延在方向に対して垂直な前記自己共振コイル(110,240)の断面形状は、主表面が前記自己共振コイル(110,240)の軸方向に配列する板状部材(441)を前記自己共振コイル(110,240)の軸方向に向けて屈曲または湾曲させることで得られる形状とした、自己共振コイル(110,240)。
  4.  磁場の共鳴により電力を送電または受電の少なくとも一方が可能な非接触電力伝達装置に用いられる自己共振コイル(110,240)であって、
     前記自己共振コイル(110,240)の延在方向に対して垂直な前記自己共振コイル(110,240)の断面形状は、略U字形状または略V字形状とされた、自己共振コイル(110,240)。
  5.  前記自己共振コイル(110,240)の断面形状が略U字形状または略V字形状とされることで、前記自己共振コイル(110,240)の一方の軸方向に向けて開口する溝部が規定され、前記溝部は、前記自己共振コイル(110,240)のうち、前記溝部が位置する部分に対して前記軸方向に隣り合う部分の少なくとも一部を受け入れる、請求の範囲第4項に記載の自己共振コイル(110,240)。
  6.  前記自己共振コイル(110,240)の前記一方の軸方向の端部側から他方の軸方向の端部側に向かうにしたがって、前記溝部の底部の曲率が小さくなる、請求の範囲第5項に記載の自己共振コイル(110,240)。
  7.  前記第1主表面(420)と前記第2主表面(421)との間に配置された誘電体(445)をさらに備える、請求の範囲第4項に記載の自己共振コイル(110,240)。
  8.  請求の範囲第4項に記載された自己共振コイル(110,240)と、
     前記自己共振コイル(110,240)との間で電磁誘導により電力を伝達する一次コイルと、
     を備えた非接触電力伝達装置。
  9.  請求の範囲第8項に記載された非接触電力伝達装置を備えた車両。
PCT/JP2008/067886 2008-10-02 2008-10-02 自己共振コイル、非接触電力伝達装置および車両 WO2010038297A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200880131374XA CN102171777A (zh) 2008-10-02 2008-10-02 自谐振线圈、非接触电力传输装置以及车辆
US12/989,837 US20110049978A1 (en) 2008-10-02 2008-10-02 Self-resonant coil, non-contact electric power transfer device and vehicle
JP2010531689A JPWO2010038297A1 (ja) 2008-10-02 2008-10-02 自己共振コイル、非接触電力伝達装置および車両
EP08877155A EP2333796A1 (en) 2008-10-02 2008-10-02 Self-resonant coil, contactless power transferring apparatus, and vehicle
PCT/JP2008/067886 WO2010038297A1 (ja) 2008-10-02 2008-10-02 自己共振コイル、非接触電力伝達装置および車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067886 WO2010038297A1 (ja) 2008-10-02 2008-10-02 自己共振コイル、非接触電力伝達装置および車両

Publications (1)

Publication Number Publication Date
WO2010038297A1 true WO2010038297A1 (ja) 2010-04-08

Family

ID=42073090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067886 WO2010038297A1 (ja) 2008-10-02 2008-10-02 自己共振コイル、非接触電力伝達装置および車両

Country Status (5)

Country Link
US (1) US20110049978A1 (ja)
EP (1) EP2333796A1 (ja)
JP (1) JPWO2010038297A1 (ja)
CN (1) CN102171777A (ja)
WO (1) WO2010038297A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181981A1 (en) * 2009-07-14 2012-07-19 Conductix-Wampfler Ag Energy supply unit, land vehicle, replacement station and method for replacement of an energy supply unit contained in a land vehicle
JP2016046298A (ja) * 2014-08-20 2016-04-04 Tdk株式会社 コイルユニット
JP2016046296A (ja) * 2014-08-20 2016-04-04 Tdk株式会社 コイルユニット
JP2016046297A (ja) * 2014-08-20 2016-04-04 Tdk株式会社 コイルユニット
JP2020178034A (ja) * 2019-04-18 2020-10-29 国立大学法人信州大学 非接触給電用伝送コイルユニット、非接触給電用伝送コイルユニットの製造方法、および非接触給電装置
JP2021100102A (ja) * 2019-12-23 2021-07-01 タツタ電線株式会社 電線
WO2024024121A1 (ja) * 2022-07-28 2024-02-01 タツタ電線株式会社 コイル

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634730B2 (en) * 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
CN102177043A (zh) * 2008-10-09 2011-09-07 丰田自动车株式会社 电动车辆
JP2010183814A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 非接触電力伝送装置
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US8292052B2 (en) * 2010-06-24 2012-10-23 General Electric Company Power transfer system and method
KR101228556B1 (ko) * 2010-11-04 2013-02-07 주식회사 한림포스텍 무선 전력 전송 장치에서의 전력 전송 코일 선택 제어 방법, 이를 적용한 무선 전력 전송 장치, 및 이를 적용하는 무선 전력 전송 시스템
JP5732870B2 (ja) * 2011-01-25 2015-06-10 株式会社明電舎 非接触給電装置および非接触給電方法
EP2684286A2 (en) 2011-03-11 2014-01-15 Utah State University Method and apparatus for controlling lcl converters using asymmetric voltage cancellation techniques
JP5968596B2 (ja) * 2011-04-11 2016-08-10 日東電工株式会社 無線電力供給システム
US9140763B2 (en) 2011-09-19 2015-09-22 Utah State University Wireless power transfer test system
DE102011115092C5 (de) 2011-10-07 2018-04-05 Sew-Eurodrive Gmbh & Co Kg System zur kontaktlosen Übertragung von Energie und Daten
US9240270B2 (en) 2011-10-07 2016-01-19 Utah State University Wireless power transfer magnetic couplers
BR112014018151A8 (pt) 2012-01-23 2017-07-11 Univ Utah State Sistema de transferência sem fio de potência
WO2013168240A1 (ja) * 2012-05-09 2013-11-14 トヨタ自動車株式会社 車両
US9859755B2 (en) * 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
JP5937631B2 (ja) * 2014-01-31 2016-06-22 トヨタ自動車株式会社 非接触電力伝送システムおよび充電ステーション
DE102015006298B4 (de) * 2015-05-16 2022-01-27 Audi Ag Ladestation für Kraftfahrzeuge und Verfahren zum Betreiben einer Ladestation
TWI614780B (zh) * 2015-12-21 2018-02-11 財團法人工業技術研究院 線圈組及無線傳能系統
JP6597592B2 (ja) * 2016-12-26 2019-10-30 トヨタ自動車株式会社 電動車両

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08265993A (ja) * 1991-03-26 1996-10-11 Auckland Uniservices Ltd 誘導電力分配システム
JPH10256491A (ja) * 1997-03-14 1998-09-25 Nec Corp 半導体装置
WO2004004118A1 (en) * 2002-06-26 2004-01-08 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
JP2004087607A (ja) * 2002-08-23 2004-03-18 Alps Electric Co Ltd 磁気素子
WO2007008646A2 (en) 2005-07-12 2007-01-18 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
JP2008087733A (ja) 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd 非接触給電装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201828B (ja) * 1991-03-26 1993-03-11 Auckland Uniservices Ltd
US6891380B2 (en) * 2003-06-02 2005-05-10 Multimetrixs, Llc System and method for measuring characteristics of materials with the use of a composite sensor
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08265993A (ja) * 1991-03-26 1996-10-11 Auckland Uniservices Ltd 誘導電力分配システム
JPH10256491A (ja) * 1997-03-14 1998-09-25 Nec Corp 半導体装置
WO2004004118A1 (en) * 2002-06-26 2004-01-08 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
JP2004087607A (ja) * 2002-08-23 2004-03-18 Alps Electric Co Ltd 磁気素子
WO2007008646A2 (en) 2005-07-12 2007-01-18 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
JP2008087733A (ja) 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd 非接触給電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDRE KURS ET AL.: "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", SCIENCE, vol. 317, 6 July 2007 (2007-07-06), pages 83 - 86, Retrieved from the Internet <URL:http://www.sciencemag. org/cgi/reprint/317/5834/83 .pdf>

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181981A1 (en) * 2009-07-14 2012-07-19 Conductix-Wampfler Ag Energy supply unit, land vehicle, replacement station and method for replacement of an energy supply unit contained in a land vehicle
JP2016046298A (ja) * 2014-08-20 2016-04-04 Tdk株式会社 コイルユニット
JP2016046296A (ja) * 2014-08-20 2016-04-04 Tdk株式会社 コイルユニット
JP2016046297A (ja) * 2014-08-20 2016-04-04 Tdk株式会社 コイルユニット
JP2020178034A (ja) * 2019-04-18 2020-10-29 国立大学法人信州大学 非接触給電用伝送コイルユニット、非接触給電用伝送コイルユニットの製造方法、および非接触給電装置
JP2021100102A (ja) * 2019-12-23 2021-07-01 タツタ電線株式会社 電線
JP7437289B2 (ja) 2019-12-23 2024-02-22 タツタ電線株式会社 電線及びコイル
WO2024024121A1 (ja) * 2022-07-28 2024-02-01 タツタ電線株式会社 コイル

Also Published As

Publication number Publication date
EP2333796A1 (en) 2011-06-15
US20110049978A1 (en) 2011-03-03
CN102171777A (zh) 2011-08-31
JPWO2010038297A1 (ja) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2010038297A1 (ja) 自己共振コイル、非接触電力伝達装置および車両
JP5718619B2 (ja) コイルユニット、非接触電力送電装置、車両および非接触電力給電システム
JP4743244B2 (ja) 非接触受電装置
JP5083413B2 (ja) 電動車両
JP5530848B2 (ja) コイルユニット、非接触電力送電装置、非接触電力受電装置、車両および非接触電力給電システム
JP5016069B2 (ja) 電力伝送システムおよび車両用給電装置
WO2010038326A1 (ja) 非接触電力伝達装置、非接触電力伝達装置の製造方法および非接触電力伝達装置を備えた車両
JP4947241B2 (ja) コイルユニット、非接触受電装置、非接触送電装置、非接触給電システムおよび車両
JP5625263B2 (ja) コイルユニット、非接触電力伝送装置、非接触給電システムおよび電動車両
EP2345553B1 (en) Non-contact power transmission device and vehicle having non-contact power transmission device
JP2010074937A (ja) 非接触受電装置およびそれを備える車両
JP2010098807A (ja) 非接触給電システム
WO2011074091A1 (ja) シールドおよびそれを搭載する車両
JP5867511B2 (ja) 送電装置、受電装置および電力伝送システム
WO2012124029A1 (ja) コイルユニット、送電装置、外部給電装置および車両充電システム
WO2013001636A1 (ja) 送電装置、受電装置、および電力伝送システム
JP2010073885A (ja) 共鳴コイルおよび非接触給電システム
JP5287115B2 (ja) 車両の受電制御装置およびそれを備える車両
JP5710313B2 (ja) 共鳴コイル、送電装置、受電装置および電力送電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131374.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008877155

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010531689

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE