WO2010038617A1 - 研磨スラリー、その製造方法、研磨方法および磁気ディスク用ガラス基板の製造方法 - Google Patents

研磨スラリー、その製造方法、研磨方法および磁気ディスク用ガラス基板の製造方法 Download PDF

Info

Publication number
WO2010038617A1
WO2010038617A1 PCT/JP2009/066186 JP2009066186W WO2010038617A1 WO 2010038617 A1 WO2010038617 A1 WO 2010038617A1 JP 2009066186 W JP2009066186 W JP 2009066186W WO 2010038617 A1 WO2010038617 A1 WO 2010038617A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing slurry
polishing
abrasive grains
ceria
producing
Prior art date
Application number
PCT/JP2009/066186
Other languages
English (en)
French (fr)
Inventor
智弘 酒井
義久 別府
浩之 朝長
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010501324A priority Critical patent/JP5516396B2/ja
Priority to CN2009801017308A priority patent/CN101909816B/zh
Publication of WO2010038617A1 publication Critical patent/WO2010038617A1/ja
Priority to US12/795,807 priority patent/US20100248593A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the present invention relates to a polishing method for a main surface of a glass substrate for magnetic disk containing SiO 2 , a polishing slurry suitably used in such a polishing method, and a method for producing the same.
  • Patent Document 1 proposed as being capable of polishing the main surface of a glass substrate for a magnetic disk (hereinafter also simply referred to as a glass substrate) with high accuracy uses ceria crystal particles produced by a flux method.
  • the main surface is polished with high accuracy.
  • the polishing rate with ceria particles is higher than the polishing rate with colloidal silica.
  • glass substrate polishing using ceria crystal fine particles has a small particle size, so colloidal silica. The problem is that the polishing rate cannot be said to be sufficiently high as compared with the above.
  • the present invention relates to a polishing method capable of polishing a main surface of a glass substrate at high speed even when ceria crystal particles or ceria-zirconia solid solution crystal particles are used, a polishing slurry suitable for such a polishing method, and such a polishing slurry. It aims at providing the manufacturing method of this.
  • the present invention prepares a polishing slurry stock solution containing abrasive grains composed of ceria particles or ceria-zirconia solid solution particles, a dispersant composed of 2-pyridinecarboxylic acid or glutamic acid, and water.
  • a polishing slurry stock solution containing abrasive grains made of ceria particles or ceria-zirconia solid solution particles, a dispersant made of 2-pyridinecarboxylic acid or glutamic acid, and water was prepared, and the abrasive grains in the polishing slurry stock solution were wet-jet milled. And then adding water to adjust the concentration of the abrasive grains, and adding the same dispersant as described above.
  • the polishing slurry manufactured by the manufacturing method of the said polishing slurry is provided. Also provides a polishing method in which the surface to be polished, wherein the polishing with a polishing slurry polished material containing SiO 2. Also provided is a process for producing a glass substrate for a magnetic disk which contains SiO 2, to provide a method for manufacturing a magnetic disk glass substrate using the polishing method for polishing a main surface of the glass substrate.
  • the present inventor has intensively studied the dispersant, the additive after dispersion, and the dispersion method. As a result, the crystallite diameter of the abrasive grains calculated by using the Scherrer method by X-ray diffraction measurement is reduced. Dispersing by a method that does not or not significantly reduce, using a dispersion and an additive that is likely to be positive in the specific pH range, the abrasive tends to be negative, and polishing within that pH range, The inventors have found that polishing can be performed at high speed, and have reached the present invention.
  • the main surface of a glass substrate for a magnetic disk can be polished at high speed using ceria crystal particles or ceria-zirconia solid solution crystal particles.
  • the glass substrate is usually produced through the following steps. That is, a circular hole is formed in the center of a circular glass plate containing SiO 2 , and chamfering, main surface lapping, and end mirror polishing are sequentially performed. Thereafter, a circular glass plate having been subjected to such processing is laminated and the inner peripheral end face is etched, and a polysilazane compound-containing liquid is applied to the etched inner peripheral end face by a spray method or the like, followed by firing. A coating (protective coating) is formed on the inner peripheral end surface. Next, the main surface of the circular glass plate with the coating formed on the inner peripheral end surface is polished to form a flat and smooth surface, which is a glass substrate for a magnetic disk.
  • the manufacturing method of the present invention is not limited to this, for example, instead of forming a protective film on the inner peripheral end surface, brushing of the inner peripheral end surface may be performed, and the main surface lapping step is a rough lapping step and a fine lapping step. And a shape processing step (drilling at the center of the circular glass plate, chamfering, end surface polishing) may be provided between them, and a chemical strengthening step may be provided after the main surface polishing step.
  • the main surface lapping is usually performed using aluminum oxide abrasive grains having an average particle diameter of 6 to 8 ⁇ m or abrasive grains made of aluminum oxide.
  • the lapped main surface is usually polished as follows. First, polishing is performed using a slurry containing cerium oxide having an average particle size of 0.9 to 1.8 ⁇ m and a urethane polishing pad.
  • the reduction amount (polishing amount) of the plate thickness is typically 30 to 40 ⁇ m. And it grind
  • the abrasive grains in the polishing slurry of the present invention are usually composed of ceria particles or ceria-zirconia solid solution particles in order to increase the polishing rate or polishing accuracy.
  • crystallite diameter D C of is preferably 5 ⁇ 100 nm. If it is less than 5 nm, the polishing may not proceed sufficiently. More preferably, it is 10 nm or more, typically 20 nm or more. If it exceeds 100 nm, it may cause scratches. More preferably, it is 50 nm or less, and typically 40 nm or less.
  • the crystallite diameter here is calculated based on Scherrer's equation from the spread of diffraction peaks measured by an X-ray diffractometer.
  • the average primary particle diameter D A of the abrasive grain used in the abrasive slurry stock solution is preferably 5 ⁇ 100 nm. If it is less than 5 nm, the polishing rate may decrease. More preferably, it is 10 nm or more, typically 20 nm or more. If it exceeds 100 nm, scratches may occur on the surface to be polished. More preferably, it is 50 nm or less, and typically 40 nm or less.
  • the average primary particle diameter here is calculated by approximating a true sphere from the specific surface area measurement by the BET method.
  • the ratio i.e. the particle size ratio D A / D C of the average primary particle diameter D A for the crystallite diameter D C is preferably 0.8 to 2.5.
  • it is 1.0 or more.
  • the coarse particles of polycrystalline coexist by 2.5 below D A / D C it is conceivable that. More preferably, it is 2.0 or less, Most preferably, it is 1.8 or less.
  • the abrasive grains can be produced by a known method such as a flux method, a hydrothermal method, a solid phase reaction method, a sol-gel method, or a gas phase method.
  • a flux method such as a flux method, a hydrothermal method, a solid phase reaction method, a sol-gel method, or a gas phase method.
  • the use of the flux method and solid phase reaction method since highly crystalline particles are obtained, the range of particle size ratio D A / D C is 0.8-2.5, the shape of the single crystal coercive This is particularly suitable for obtaining a fine oxide particle.
  • the flux methods a method called a glass crystallization method, in which glass particles are removed after crystallization of oxide particles in a glass matrix, has a small particle size and a single crystal shape is maintained. In particular, it is preferable because crystalline fine particles can be obtained.
  • the components to be precipitated as oxide fine particles are dissolved in the glass matrix melt, and the melt is rapidly cooled to vitrify, and then the heat treatment is performed again, so that the oxide fine particles are formed in the glass matrix. It is the method of making it precipitate.
  • the precipitated oxide fine particles are taken out by dissolving the glass matrix with an appropriate chemical solution.
  • the glass matrix borate-based, phosphate-based, silicate-based, etc. can be used. However, meltability, ease of production of complex compounds with the target oxide, and ease of glass matrix leaching. From the above, a borate glass base material is preferably used.
  • abrasive grains are prepared by the glass crystallization method, in terms of mol% based on oxide, CeO 2 or a mixture of CeO 2 and ZrO 2 is 5 to 50%, RO (R is Mg, Ca, Sr and Ba).
  • a step of obtaining a melt containing 10 to 50% of one or more selected from the group consisting of 30 to 75% of B 2 O 3 a step of rapidly cooling the melt to an amorphous substance, A step of precipitating ceria crystals or ceria-zirconia solid solution crystals from the amorphous substance to obtain a crystallized product, and a step of separating ceria crystals or ceria-zirconia solid solution crystals from the obtained crystallized product in this order.
  • the temperature for the step of obtaining the melt is preferably 1200 to 1600 ° C, more preferably 1400 to 1550 ° C.
  • the time for this step is preferably 1 to 6 hours including the temperature raising time.
  • the cooling rate in the process of the rapid cooling to amorphous material the melt is preferably 10 3 ⁇ 10 6 °C / sec, more preferably 10 4 ⁇ 10 6 °C / sec.
  • the glass matrix is separated from the obtained crystallized product with an appropriate chemical solution such as an inorganic acid such as nitric acid or hydrochloric acid, or an organic acid. It is preferable to dissolve at 20 to 90 ° C. for 1 to 100 hours, and then separate ceria crystals or ceria-zirconia solid solution crystals by a method such as filtration, drying or centrifugation.
  • ceria crystals or ceria-zirconia solid solution crystals from the amorphous substance at 600 to 850 ° C. in the atmosphere.
  • this crystallization step at a temperature of 600 ° C. or higher, ceria crystals or ceria-zirconia solid solution crystals can be sufficiently precipitated.
  • D A / D C is 0.8-2.5, ceria crystal fine particles or ceria having a single crystal form - zirconia crystals It becomes easy to obtain fine particles.
  • the above crystallization step is performed in the atmosphere at 650 to 800 ° C., and particularly preferably at 680 to 800 ° C. Since crystals of D C precipitated as performing heating at a high temperature tends to be large, it may be set to heating temperature depending on the desired crystallite diameter.
  • the time for this crystallization step is preferably 0.5 to 128 hours, more preferably 2 to 32 hours.
  • Polishing slurry stock solution is dispersed by the decrease rate of the abrasive grains D C is distributed so as to be 10% or less, or a wet jet mill.
  • reduction ratio of the abrasive grains D C even when dispersed by a wet jet mill is preferably set to be 10% or less.
  • Reduction ratio of the abrasive grains D C is preferably 2% or less, particularly preferably 0%.
  • the wet jet mill is a method of mixing suspensions and solutions without using a grinding medium.
  • the slurry, suspension, solution, etc. are collided with each other at high speed and mixed in a short time. ⁇ Distribution is possible.
  • a high-pressure slurry jetted from two or more nozzles is collided so that particles collide with each other, and aggregates are crushed and dispersed by the kinetic energy of the collision (Sugino Machine Co., Ltd.) Starburst (trade name)) and those that disintegrate and disperse agglomerates with the shearing force by passing slurry through a slit at a high speed (Yoshida Kikai Kogyo Co., Ltd. Nanomizer (trade name)) are known.
  • the ultrasonic dispersion method is a method for crushing and dispersing aggregates with ultrasonic energy.
  • the polishing slurry stock solution promotes dispersion by the dispersion method as described above to reduce the dispersed particle diameter of the abrasive grains in the slurry (median diameter, which is the cumulative 50% particle diameter of the particle size distribution), thereby generating scratches in polishing.
  • a dispersing agent comprising 2-pyridinecarboxylic acid or glutamic acid is contained.
  • the content of the dispersant in the stock slurry slurry is preferably 0.1 to 5% by mass. If it is less than 0.1% by mass, the effect of promoting the dispersion is small. Preferably it is 0.15 mass% or more. If it exceeds 5% by mass, there is a risk of aggregation.
  • Water is added to the dispersion obtained by dispersing the polishing slurry stock solution as described above in order to adjust the concentration of the abrasive grains.
  • the same thing as the said dispersing agent is added to the said dispersion liquid. That is, when the dispersing agent is 2-pyridinecarboxylic acid, 2-pyridinecarboxylic acid is added to the dispersion, and when the dispersing agent is glutamic acid, glutamic acid is added to the dispersion.
  • the zeta potential of the abrasive grains can be increased, and between the pH 2 that is the equipotential point of the glass substrate and the pH 7 that is the equipotential point of the abrasive grains. Is positive and the glass substrate is negatively charged, and the interaction between the abrasive grains and the glass substrate becomes strong, so that the polishing rate can be increased.
  • the pot life that is, the usable period of the polishing slurry may be shortened, or the abrasive grains tend to aggregate.
  • the addition ratio of the same dispersant as the dispersant is preferably 0.01 to 2% by mass as a content ratio in the polishing slurry. If it is less than 0.01% by mass, a sufficient polishing rate may not be obtained. More preferably, it is 0.03 mass% or more, Most preferably, it is 0.3 mass% or more. If it exceeds 2% by mass, there is a risk of aggregation. More preferably, it is 1.5 mass% or less, Most preferably, it is 1 mass% or less.
  • filtration with a filter or centrifugation may be performed.
  • the pH of the polishing slurry produced in this way is adjusted to 2-7. If it is less than 2, aggregation tends to occur. Preferably it is 3 or more. If it exceeds 7, it tends to agglomerate or the ⁇ potential of the abrasive tends to be negative. Preferably it is 5 or less.
  • pH adjusters or pH buffers include inorganic acids such as nitric acid, organic acids such as succinic acid and citric acid, quaternary ammonium hydroxides such as ammonia water and tetramethylammonium hydroxide, and alkali metal hydroxides. Preferably used.
  • the content of abrasive grains in the polishing slurry may be appropriately set in consideration of the polishing rate, uniform dispersibility, stability during dispersion, etc., but is usually in the range of 0.1 to 40% by mass. If the content is less than 0.1% by mass, polishing may not proceed sufficiently. Preferably it is 0.5 mass% or more. If it exceeds 40 mass%, the viscosity of the slurry becomes high, or it becomes difficult to maintain sufficient dispersibility, and handling as a polishing slurry becomes difficult. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less.
  • the median diameter of the polishing slurry is preferably 10 to 300 nm. If it is less than 10 nm, polishing may not proceed sufficiently. More preferably, it is 20 nm or more. If it exceeds 300 nm, it may cause scratches. More preferably, it is 200 nm or less.
  • the polishing slurry of the present invention contains abrasive grains, water, 2-pyridinecarboxylic acid or glutamic acid, but may further contain other components as long as the object of the present invention is not impaired.
  • the pH adjusting agent or pH buffering agent described above is contained as necessary, and may contain polyethylene glycol, polyethyleneimine, etc. in order to adjust the viscosity of the slurry.
  • a solvent having a high relative dielectric constant that is water-soluble or miscible with water such as methanol, ethanol, propanol, ethylene glycol, and propylene glycol, may be contained. Further, it may contain an oxidizing agent, a reducing agent, a resin serving as a fine particle stabilizer, a dishing inhibitor, an erosion inhibitor and the like.
  • the polishing slurry contains 2-pyridinecarboxylic acid or glutamic acid
  • the ⁇ potential of the abrasive grains of the polishing slurry is positive and the ⁇ potential of the object to be polished is negative.
  • Such a material is preferable because the interaction between the abrasive grains and the object to be polished is strong.
  • the ⁇ potential of the abrasive grains is preferably 30 to 50 mV, and the ⁇ potential of the object to be polished is preferably ⁇ 50 to ⁇ 10 mV.
  • Example 1 Cerium oxide (ceria, CeO 2 ), barium carbonate (BaCO 3 ), and boron oxide (B 2 O 3 ) are expressed as 33.4% and 13.3% in terms of mol% based on CeO 2 , BaO, and B 2 O 3 , respectively. % And 53.3%, weighed well in an automatic mortar using a small amount of ethanol, and then dried to obtain a raw material mixture.
  • the obtained raw material mixture was filled in a platinum container (containing 10% by mass of rhodium) with a nozzle for dropping molten droplets, and heated at 1350 ° C. for 2 hours in an electric furnace using molybdenum silicide as a heating element. Fully melted. Next, the nozzle part is heated, and the melt is dropped on a twin roll (roll diameter: 150 mm, roll rotation speed: 300 rpm, roll surface temperature: 30 ° C.) installed under the electric furnace, and the flaky solid is obtained. Obtained. The obtained flaky solid was transparent, and as a result of powder X-ray diffraction, it was confirmed to be an amorphous substance.
  • This amorphous material was pulverized by dry ball mill for 8 hours using zirconia balls having a diameter of 5 mm to obtain a pulverized product.
  • the obtained pulverized product was heated at 700 ° C. for 32 hours to precipitate ceria crystals.
  • this crystallized product was added to a 1 mol / L acetic acid aqueous solution kept at 80 ° C., stirred for 12 hours, and then centrifuged, washed with water, and dried to obtain ceria crystal fine particles (hereinafter referred to as “fine particles A”).
  • fine particles A ceria crystal fine particles
  • the mineral phase of the fine particles A the results were identified using X-ray diffraction apparatus, exhibit cubic, further existing CeO 2 (JCPDS card number: 34-0394) consistent with the diffraction peaks of, CeO 2 single phase It was proved to be fine particles having high crystallinity.
  • the crystallite diameter is calculated based on Scherrer's equation from the spread of diffraction lines measured by a Rigaku X-ray diffractometer (model: RINT2500), and the average primary particle size is a specific surface area measuring device (model: ASAP2020) manufactured by Micrometrics. ) To calculate a true sphere from the specific surface area obtained from the multipoint BET method.
  • This polishing slurry stock solution was subjected to a dispersion treatment using a wet jet mill apparatus (type: HJP-25005) manufactured by Sugino Machine Co. to obtain Dispersion A.
  • the crystallite size of the fine particles of dispersion A was 31 nm, and the decrease in crystallite size was 0%.
  • the concentration of the dispersion A is adjusted with pure water so that the concentration of the fine particles A is 2% by mass, and this is adjusted to a mass ratio of 1: 1 with a 0.4% by mass 2-pyridinecarboxylic acid aqueous solution.
  • the mixture was stirred and mixed to obtain a polishing slurry 1.
  • the 2-pyridinecarboxylic acid added to the dispersion A is 0.2% by mass in the polishing slurry 1 and the content of abrasive grains in the polishing slurry 1 is 1% by mass.
  • the median diameter of the polishing slurry 1 was 148 nm, the pH was 3.6, the zeta potential of fine particles as abrasive grains was 38 mV, and the zeta potential of the glass substrate was ⁇ 13 mV.
  • the median diameter was determined using a particle size distribution measuring apparatus (model: UPA-ST150) manufactured by Nikkiso Co., Ltd., and the zeta potential was measured using a zeta potential measuring apparatus (model: ELS-8000) manufactured by Otsuka Electronics.
  • the silicate glass substrate was polished with a small polishing machine (type: FAM12BS) manufactured by Speedfam.
  • the polishing rate was 0.116 ⁇ m / min.
  • the polishing rate is preferably 0.1 ⁇ m / min or more.
  • Example 2 The concentration of the dispersion A is adjusted with pure water so that the concentration of the fine particles A is 2% by mass, and this is mixed with a 1% by mass 2-pyridinecarboxylic acid aqueous solution at a mass ratio of 1: 1 to obtain a polishing slurry 2 Got.
  • the 2-pyridinecarboxylic acid added to the dispersion A is 0.5% by mass in the polishing slurry 2 and the content of abrasive grains in the polishing slurry 2 is 1% by mass.
  • the median diameter of the polishing slurry 2 was 148 nm, the pH was 3.3, the zeta potential of fine particles as abrasive grains was 38 mV, and the zeta potential of the glass substrate was -11 mV.
  • the polishing rate measured using the polishing slurry 2 in the same manner as in Example 1 was 0.135 ⁇ m / min.
  • Example 3 The concentration of the dispersion A was adjusted with pure water so that the concentration of the fine particles A was 2% by mass, and this was mixed with a 2% by mass 2-pyridinecarboxylic acid aqueous solution at a mass ratio of 1: 1 to obtain a polishing slurry 3 Got.
  • the 2-pyridinecarboxylic acid added to the dispersion A is 1% by mass in the polishing slurry 3, and the content of abrasive grains in the polishing slurry 3 is 1% by mass.
  • the median diameter of the polishing slurry 3 was 145 nm, the pH was 3.2, the zeta potential of fine particles as abrasive grains was 39 mV, and the zeta potential of the glass substrate was ⁇ 14 mV.
  • the polishing rate measured using the polishing slurry 3 in the same manner as in Example 1 was 0.119 ⁇ m / min.
  • the polishing slurry stock solution was subjected to a dispersion treatment using a wet jet mill apparatus (type: HJP-25005) manufactured by Sugino Machine Co. to obtain dispersion B.
  • the crystallite size of the fine particles of dispersion B was 31 nm, and the decrease in crystallite size was 0%.
  • the concentration of the dispersion B was adjusted with pure water so that the concentration of the fine particles A was 2 mass%, and this was mixed with a 1 mass% glutamic acid aqueous solution at a mass ratio of 1: 1 to obtain a polishing slurry 4.
  • the 2-pyridinecarboxylic acid added to the dispersion B is 0.5% by mass in the polishing slurry 4, and the content of abrasive grains in the polishing slurry 4 is 1% by mass.
  • the median diameter of the polishing slurry 4 was 137 nm, the pH was 3.1, the zeta potential of the fine particles as the abrasive grains was 44 mV, and the zeta potential of the glass substrate was ⁇ 45 mV.
  • the polishing rate measured using the polishing slurry 4 in the same manner as in Example 1 was 0.125 ⁇ m / min.
  • Example 5 Cerium oxide, barium carbonate, calcium carbonate (CaCO 3 ) and boron oxide are expressed as 17.8%, 4.4%, 35.6% and CeO 2 , BaO, CaO and B 2 O 3 on a mol% basis, respectively.
  • the mixture was weighed to 42.2%, thoroughly mixed in an automatic mortar using a small amount of ethanol, and then dried to obtain a raw material mixture.
  • the obtained raw material mixture was melted in the same manner as in Example 1 to obtain a flaky solid, which was pulverized.
  • the obtained pulverized product was heated at 800 ° C. for 8 hours to precipitate ceria-zirconia solid solution crystals.
  • this crystallized product was added to a 1 mol / L acetic acid aqueous solution kept at 80 ° C., stirred for 12 hours, then centrifuged, washed with water, and dried to obtain ceria-zirconia solid solution crystal fine particles (hereinafter referred to as abrasive grains).
  • fine particles B also referred to as fine particles B).
  • This polishing slurry stock solution was subjected to a dispersion treatment using a wet jet mill apparatus (type: HJP-25005) manufactured by Sugino Machine Co. to obtain dispersion C.
  • the crystallite diameter of the fine particles of dispersion C was 22 nm, and the decrease in crystallite diameter was 0%.
  • the concentration of the dispersion C is adjusted with pure water so that the concentration of the fine particles B is 1% by mass, and this is mixed with 1% by mass of 2-pyridinecarboxylic acid aqueous solution at a mass ratio of 1: 1 to polish.
  • a slurry 5 was obtained.
  • the 2-pyridinecarboxylic acid added to the dispersion C is 0.5% by mass in the polishing slurry 5 and the content of abrasive grains in the polishing slurry 5 is 1% by mass.
  • the median diameter of the polishing slurry 5 was 132 nm
  • the pH was 3.3
  • the zeta potential of fine particles as abrasive grains was 43 mV
  • the zeta potential of the glass substrate was ⁇ 12 mV.
  • the polishing rate measured using the polishing slurry 5 in the same manner as in Example 1 was 0.110 ⁇ m / min.
  • a dispersion D was obtained in the same manner as in Example 1 except that 450 g of the fine particles A, 1047.7 g of pure water, and 2.3 g of ammonium polyacrylate were mixed and dispersed.
  • the crystallite diameter of the fine particles after dispersion was 31 nm, and the decrease in crystallite diameter was 0%.
  • the concentration of the dispersion D was adjusted with pure water so that the fine particle concentration was 3% by mass to obtain a polishing slurry 11.
  • the median diameter of the polishing slurry 11 was 131 nm, and the pH was 8.1.
  • polishing was performed in the same manner as in Example 1 using the polishing slurry 11.
  • the polishing rate was 0.055 ⁇ m / min
  • the zeta potential of the fine particles was ⁇ 38 mV
  • the zeta potential of the glass substrate was ⁇ 42 mV.
  • the dispersion D was adjusted with pure water so that the fine particle concentration was 6% by mass and mixed with 1% by mass of 2-pyridinecarboxylic acid aqueous solution at a weight ratio of 1: 1 to obtain a polishing slurry 12.
  • the median diameter of the polishing slurry 12 was 480 nm, and the pH was 7.0.
  • polishing was performed in the same manner as in Example 1 using the polishing slurry 12.
  • the polishing rate was 0.034 ⁇ m / min
  • the zeta potential of the fine particles was ⁇ 46 mV
  • the zeta potential of the glass substrate was ⁇ 43 mV.
  • Example 3 A dispersion E was obtained in the same manner as in Example 1 except that 450 g of the fine particles B, 1047.7 g of pure water, and 2.3 g of ammonium polyacrylate were mixed and dispersed. The crystallite diameter of the fine particles after dispersion was 22 nm, and the decrease in crystallite diameter was 0%. Next, the concentration of the dispersion E was adjusted with pure water so that the fine particle concentration was 3% by mass to obtain a polishing slurry 13. The median diameter of the polishing slurry 13 was 125 nm, and the pH was 8.1. Further, polishing was performed in the same manner as in Example 1 using the polishing slurry 13. The polishing rate was 0.069 ⁇ m / min, the zeta potential of the fine particles was ⁇ 40 mV, and the zeta potential of the glass substrate was ⁇ 45 mV.
  • the dispersion F is adjusted with pure water so that the fine particle concentration becomes 2% by mass, and mixed with 1% by mass of 2-pyridinecarboxylic acid aqueous solution at a weight ratio of 1: 1. 14 was obtained.
  • the median diameter of the polishing slurry 14 was 99 nm, and the pH was 3.8.
  • polishing was performed in the same manner as in Example 1 using the polishing slurry 14.
  • the polishing rate was 0.040 ⁇ m / min
  • the zeta potential of the fine particles was 41 mV
  • the zeta potential of the glass substrate was ⁇ 8 mV.
  • polishing was performed in the same manner as in Example 1 using the polishing slurry 15.
  • the polishing rate was 0.005 ⁇ m / min
  • the zeta potential of the fine particles was ⁇ 39 mV
  • the zeta potential of the glass substrate was ⁇ 42 mV.
  • Example 6 The concentration of colloidal silica having a particle diameter of 30 nm was adjusted to 15.7% by mass, and the pH was adjusted to 2 with nitric acid to obtain a polishing slurry 16. The median diameter of the polishing slurry 16 was 37 nm. Further, polishing was performed in the same manner as in Example 1 using the polishing slurry 16. The polishing rate was 0.040 ⁇ m / min, the zeta potential of the fine particles was ⁇ 2 mV, and the zeta potential of the glass substrate was ⁇ 4 mV.
  • the concentration of the dispersion A was adjusted with pure water so that the concentration of the fine particles A was 1% by mass to obtain a polishing slurry 17.
  • the median diameter of the polishing slurry 17 was 148 nm
  • the pH was 4.2
  • the zeta potential of fine particles as abrasive grains was 25 mV
  • the zeta potential of the glass substrate was ⁇ 18 mV.
  • the polishing rate measured like Example 1 using the polishing slurry 17 was 0.037 micrometer / min.
  • the concentration of the dispersion B was adjusted with pure water so that the concentration of the fine particles A was 1% by mass to obtain a polishing slurry 18.
  • the median diameter of the polishing slurry 18 was 141 nm
  • the pH was 3.8
  • the zeta potential of fine particles as abrasive grains was 17 mV
  • the zeta potential of the glass substrate was ⁇ 35 mV.
  • the polishing rate measured like Example 1 using the polishing slurry 18 was 0.031 micrometer / min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 セリア結晶微粒子またはセリア-ジルコニア固溶体結晶微粒子を用いる場合であってもガラス基板主表面を高速で研磨できる研磨スラリーの製造方法の提供。  セリア粒子またはセリア-ジルコニア固溶体粒子からなる砥粒と2-ピリジンカルボン酸またはグルタミン酸からなる分散剤と水とを含有する研磨スラリー原液を作製し、当該研磨スラリー原液の砥粒をその結晶子径の減少割合が10%以下となるように分散し、その後、水を加え、また前記分散剤と同じものを添加することを特徴とするpHが2~7である研磨スラリーの製造方法。

Description

研磨スラリー、その製造方法、研磨方法および磁気ディスク用ガラス基板の製造方法
 本発明はSiOを含有する磁気ディスク用ガラス基板の主表面などの研磨方法、そのような研磨方法において好適に用いられる研磨スラリーおよびその製造方法に関する。
 ハードディスクドライブなどの情報処理機器に搭載される磁気ディスクに対する高記録密度化の要請は近年強くなっており、このような状況の下、従来のアルミニウム基板に替わってガラス基板が広く用いられるようになってきている。
  しかし、高記録密度化の要請はさらに強くなっており、このような要請に応えるべくガラス基板主表面を高精度で研磨する方法について種々のものが提案されている(たとえば特許文献1参照)。
特開2008-105168号公報
 磁気ディスク用ガラス基板(以下、単にガラス基板ともいう。)の主表面を高精度で研磨できるとして提案されている特許文献1に記載されている発明は、フラックス法により作製したセリア結晶微粒子を用いて主表面を高精度で研磨するというものである。
  一般的にセリア粒子による研磨速度はコロイダルシリカによる研磨速度と比較して高いが、高精度の表面性状を得るためにセリア結晶微粒子を用いたガラス基板研磨では、粒子が微小であるためにコロイダルシリカと比較して十分に研磨速度が速いとはいえないのが課題である。
 本発明は、たとえセリア結晶微粒子またはセリア-ジルコニア固溶体結晶微粒子を用いる場合であってもガラス基板主表面を高速で研磨できる研磨方法、そのような研磨方法に好適な研磨スラリーおよびそのような研磨スラリーの製造方法の提供を目的とする。
 本発明は、セリア粒子またはセリア-ジルコニア固溶体粒子からなる砥粒と2-ピリジンカルボン酸またはグルタミン酸からなる分散剤と水とを含有する研磨スラリー原液を作製し、当該研磨スラリー原液の砥粒をその結晶子径の減少割合が10%以下となるように分散し、その後、水を加え、また前記分散剤と同じものを添加することを特徴とするpHが2~7である研磨スラリーの製造方法を提供する。
  また、セリア粒子またはセリア-ジルコニア固溶体粒子からなる砥粒と2-ピリジンカルボン酸またはグルタミン酸からなる分散剤と水とを含有する研磨スラリー原液を作製し、当該研磨スラリー原液の砥粒を湿式ジェットミルにより分散し、その後、水を加えて砥粒の濃度を調整し、前記分散剤と同じものを添加することを特徴とするpHが2~7である研磨スラリーの製造方法を提供する。
 また、前記研磨スラリーの製造方法により製造された研磨スラリーを提供する。
  また、研磨される表面がSiOを含有する被研磨体を前記研磨スラリーを用いて研磨することを特徴とする研磨方法を提供する。
  また、SiOを含有する磁気ディスク用ガラス基板の製造方法であって、ガラス基板の主表面の研磨に前記研磨方法を用いる磁気ディスク用ガラス基板の製造方法を提供する。
 本発明者は上記目的を達成するために、分散剤、分散後の添加剤、分散方法について鋭意検討した結果、X線回折測定によりシェラー法を使用して計算した砥粒の結晶子径が減少しないまたは顕著には減少しない方法で分散を行い、分散剤および添加剤として特定のpH範囲で砥粒が正、被研磨物が負となりやすいものを用い、そのpH範囲内で研磨することにより、高速で研磨できることを見出し、本発明に至った。
 本発明によれば、セリア結晶微粒子またはセリア-ジルコニア固溶体結晶微粒子を用いて、磁気ディスク用ガラス基板の主表面などを高速に研磨できる。
 本発明の磁気ディスク用ガラス基板の製造方法においては、通常次のような各工程を経てガラス基板が製造される。すなわち、SiOを含有する円形ガラス板の中央に円孔を開け、面取り、主表面ラッピング、端面鏡面研磨を順次行う。その後、このような加工が行われた円形ガラス板を積層して内周端面をエッチング処理し、そのエッチング処理された内周端面にたとえばポリシラザン化合物含有液をスプレー法等によって塗布し、焼成して内周端面に被膜(保護被膜)を形成する。次に、内周端面に被膜が形成された円形ガラス板の主表面を研磨して平坦かつ平滑な面とし磁気ディスク用ガラス基板とされる。
 本発明の製造方法はこのようなものに限らず、たとえば、内周端面に対する保護被膜形成に替えて内周端面のブラシ研磨を行ってもよく、主表面ラッピング工程を粗ラッピング工程と精ラッピング工程に分けそれらの間に形状加工工程(円形ガラス板中央の孔開け、面取り、端面研磨)を設けてもよく、主表面研磨工程の後に化学強化工程を設けてもよい。なお、中央に円孔を有さないガラス基板を製造する場合には、円形ガラス板中央の孔開けは不要である。
  主表面ラッピングは通常、平均粒径が6~8μmである酸化アルミニウム砥粒または酸化アルミニウム質の砥粒を用いて行う。
 ラッピングされた主表面は通常、次のようにして研磨される。
  まず、平均粒径が0.9~1.8μmである酸化セリウムを含有するスラリーとウレタン製研磨パッドとを用いて研磨する。なお、板厚の減少量(研磨量)は典型的には30~40μmである。
  そして、本発明の研磨方法を用いて研磨を行う。パッドとしてはたとえばウレタン製研磨パッドを用いる。
 本発明の研磨スラリーにおける砥粒は、研磨速度または研磨精度を高くするために通常、セリア粒子またはセリア-ジルコニア固溶体粒子からなるものとされる。
 研磨スラリー原液に用いられるセリア粒子またはセリア-ジルコニア固溶体粒子からなる砥粒(以下、単に砥粒ということがある。)の結晶子径Dは5~100nmであることが好ましい。5nm未満では十分に研磨が進行しないおそれがある。より好ましくは10nm以上、典型的には20nm以上である。100nm超ではスクラッチの原因となるおそれがある。より好ましくは50nm以下、典型的には40nm以下である。なお、ここでいう結晶子径はX線回折装置により測定した回折ピークの広がりからシェラーの式に基づき算出される。
 研磨スラリー原液に用いられる砥粒の平均一次粒子径Dは5~100nmであることが好ましい。5nm未満では研磨速度が低下するおそれがある。より好ましくは10nm以上、典型的には20nm以上である。100nm超では被研磨面にスクラッチが発生するおそれがある。より好ましくは50nm以下、典型的には40nm以下である。なお、ここでいう平均一次粒子径はBET法による比表面積測定から真球近似をして算出される。
 前記結晶子径Dに対する前記平均一次粒子径Dの比すなわち粒径比D/Dは0.8~2.5であることが好ましい。0.8以上にすることにより単結晶の形状を維持しやすくなり、結晶格子欠陥を少なくできる結果、研磨速度の向上に寄与する活性部位を常に研磨粒子の外表面に確保することが可能となり、高速で研磨することができると考えられる。より好ましくは1.0以上である。また、D/Dを2.5以下にすることにより酸化物微粒子の形状を単結晶の形状に維持しやすくなる結果、多結晶からなる粗大粒子が混在することによるスクラッチの発生を抑えられると考えられる。より好ましくは2.0以下、特に好ましくは1.8以下である。
 砥粒は、フラックス法、水熱法、固相反応法、ゾルゲル法または気相法といった公知の方法により作製されうる。
  このうち、フラックス法および固相反応法を用いれば、結晶性の高い粒子が得られるため、粒径比D/Dが0.8~2.5の範囲の、単結晶の形状の保たれた酸化物微粒子を得るうえで特に好適である。
  フラックス法の中でも、ガラスマトリックス中で酸化物粒子を結晶化させた後、ガラスマトリックス成分を除去する、ガラス結晶化法と呼ばれる方法を用いると、小粒径でかつ単結晶の形状の保たれた、結晶質の微粒子が得られるため特に好適である。すなわち、ガラスマトリックス融液中に酸化物微粒子として析出させる成分を溶解させておき、融液を急速冷却してガラス化させた後、再度加熱処理を行うことで、ガラスマトリックス中に酸化物微粒子を析出させる方法である。析出した酸化物微粒子は、ガラスマトリックスを適当な薬液により溶解させることにより取り出される。上記ガラスマトリックスとしては、ホウ酸塩系、リン酸塩系、ケイ酸塩系等が使用できるが、溶融性や目的酸化物との複合化合物の製造のしやすさおよびガラスマトリックスの溶脱の容易性等から、ホウ酸塩系のガラス母材が好ましく用いられる。
 砥粒を前記ガラス結晶化法で作製する場合、酸化物基準のモル%表示で、CeOまたはCeOとZrOの混合物を5~50%、RO(RはMg、Ca、SrおよびBaからなる群より選ばれる1種以上)を10~50%、Bを30~75%含有する溶融物を得る工程と、前記溶融物を急速冷却して非晶質物質とする工程と、前記非晶質物質からセリア結晶またはセリア-ジルコニア固溶体結晶を析出させて結晶化物とする工程と、得られた結晶化物からセリア結晶またはセリア-ジルコニア固溶体結晶を分離する工程とをこの順に含むことを特徴とする製造方法により製造することが好ましい。このようにして製造することにより組成および粒子径の均一性に優れ、かつ小粒子径のセリア結晶微粒子またはセリア-ジルコニア結晶微粒子を容易に得ることができる。
 前記の溶融物を得る工程の温度は、1200~1600℃が好ましく、1400~1550℃がより好ましい。また、該工程の時間は、昇温時間を含み1~6時間が好ましい。前記溶融物を急速冷却して非晶質物質とする工程における冷却速度は10~10℃/秒が好ましく、10~10℃/秒がより好ましい。また、得られた結晶化物からセリア結晶またはセリア-ジルコニア固溶体結晶を分離する工程においては、得られた結晶化物から上記ガラスマトリックスを硝酸、塩酸等の無機酸、または有機酸等の適当な薬液により20~90℃で1~100時間溶解させ、その後、ろ過、乾燥または遠心分離等の方法によりセリア結晶またはセリア-ジルコニア固溶体結晶を分離するのが好ましい。
 このとき、非晶質物質からセリア結晶またはセリア-ジルコニア固溶体結晶を析出させる工程を大気中、600~850℃で行うことが好ましい。この結晶化工程を600℃以上の温度で行うことで、セリア結晶またはセリア-ジルコニア固溶体結晶を充分に析出させることができる。一方、この結晶化工程を850℃以下の温度で行うことで、粒径比D/Dが0.8~2.5であり、単結晶の形状を有するセリア結晶微粒子またはセリア-ジルコニア結晶微粒子を得やすくなる。より好ましくは、上記の結晶化工程を大気中、650~800℃で行うことものとし、特には680~800℃で行うことが好ましい。なお、加熱を高温で行うほど析出する結晶のDが大きくなる傾向があるので、所望の結晶子径に応じて加熱温度を設定すればよい。この結晶化工程の時間は、0.5~128時間が好ましく、2~32時間がより好ましい。
 研磨スラリー原液はその砥粒のDの減少割合が10%以下となるように分散される、または湿式ジェットミルにより分散される。なお、湿式ジェットミルにより分散される場合においても砥粒のDの減少割合が10%以下となるようにすることが好ましい。砥粒のDの減少割合は、2%以下が好ましく、0%が特に好ましい。
  研磨スラリー原液の砥粒のDの減少割合が10%以下となるように分散する方法としては、粉砕媒体を用いない分散方法であれば一般的な分散方法でよく、たとえば周知の湿式ジェットミルや超音波分散法が例示される。
 ここで、湿式ジェットミルは、ボールミルなどと違い粉砕媒体を用いずに懸濁液や溶液などを混合する方法であり、スラリー、懸濁液、溶液などを高速で互いに衝突させ短時間での混合・分散を可能にするものである。
  スラリーの湿式ジェットミルとしては、2つ以上のノズルから噴流させた高圧スラリーを衝突させることにより、粒子同士を衝突させて、衝突の運動エネルギーで凝集体を解砕、分散させるもの(スギノマシン社スターバースト(商品名))や、スラリーを高速でスリットに通すことによりそのせん断力で凝集体を解砕、分散させるもの(吉田機械興業社ナノマイザー(商品名))が知られている。
  また、超音波分散法は超音波のエネルギーにより凝集体を解砕、分散させる方法である。
 なお、このようなメディアレス分散とは違い、ボールミルのようなメディアを使用した分散においては、粒子に加わるせん断力が大きすぎるため、分散と同時に粒子が破壊されてDが10%を超えて減少し、その結果研磨レートも低下しやすく好ましくない。
  Dが10%を超えて減少すると研磨レートが低下しやすくなる理由は必ずしも明確ではないが、発明者らは結晶の破壊に伴い、粒子表面にもダメージが入って、不活性層ができて研磨を阻害しているものと考えている。
 研磨スラリー原液は先に述べたような分散法による分散を促進してスラリー中の砥粒の分散粒子径(粒度分布の累積50%粒子径であるメディアン径)を小さくし、研磨におけるスクラッチの発生を抑制するために、2-ピリジンカルボン酸またはグルタミン酸からなる分散剤を含有する。
  前記分散剤の研磨スラリー原液における含有割合は0.1~5質量%であることが好ましい。0.1質量%未満では前記分散を促進する効果が小さい。好ましくは0.15質量%以上である。5質量%超では凝集するおそれがある。
 研磨スラリー原液を先に述べたように分散して得られた分散液には砥粒の濃度を調整するために水が加えられる。
 また、当該分散液には前記分散剤と同じものが添加される。すなわち、分散剤が2-ピリジンカルボン酸である場合には分散液に2-ピリジンカルボン酸が添加され、分散剤がグルタミン酸である場合には分散液にグルタミン酸が添加される。
  分散液に前記分散剤と同じものを添加することにより砥粒のゼータ電位を高くすることができ、ガラス基板の等電位点であるpH2から砥粒の等電位点であるpH7の間で砥粒が正、ガラス基板が負に帯電する状態となり、砥粒とガラス基板の相互作用が強くなるため、研磨レートを高くすることが可能になる。
 また、分散液に前記分散剤と同じものが添加されないと、ポットライフすなわち研磨スラリーの使用可能期間が短くなるおそれがある、または、砥粒が凝集しやすくなる。
 前記分散剤と同じものの添加割合は、研磨スラリーにおける含有割合として0.01~2質量%であることが好ましい。0.01質量%未満では十分な研磨レートが得られないおそれがある。より好ましくは0.03質量%以上、特に好ましくは0.3質量%以上である。2質量%超では凝集するおそれがある。より好ましくは1.5質量%以下、特に好ましくは1質量%以下である。
 なお、分散液中の凝集粒子や粗大粒子を除去するためにフィルターによる濾過処理や遠心分離を施してもよい。
 このようにして製造される研磨スラリーのpHは2~7に調整される。2未満では凝集しやすくなる。好ましくは3以上である。7超ではやはり凝集しやすくなる、または砥粒のζ電位が負になりやすくなる。好ましくは5以下である。
  なお、pH調整剤またはpH緩衝剤としては硝酸等の無機酸、コハク酸、クエン酸等の有機酸、アンモニア水、テトラメチルアンモニウムヒドロキシド等の4級アンモニウムヒドロキシドおよびアルカリ金属水酸化物等が好適に用いられる。
 研磨スラリーの砥粒の含有割合は研磨レート、均一分散性、分散時の安定性などを考慮して適切に設定すればよいが、通常は0.1~40質量%の範囲内とされる。含有割合が0.1質量%未満では研磨が十分進行しないおそれがある。好ましくは0.5質量%以上である。40質量%超ではスラリーの粘度が高くなり、または分散性を充分に保つことが難しくなり、研磨スラリーとしての取扱いが困難となる。好ましくは20質量%以下、より好ましくは10質量%以下である。
 研磨スラリーのメディアン径は10~300nmであることが好ましい。10nm未満では研磨が十分に進行しないおそれがある。より好ましくは20nm以上である。300nm超ではスクラッチの原因となるおそれがある。より好ましくは200nm以下である。
 本発明の研磨スラリーは砥粒、水、2-ピリジンカルボン酸またはグルタミン酸を含有するが、この他に本発明の目的を損なわない範囲で他の成分を含有してもよい。
  たとえば、先に述べたpH調整剤またはpH緩衝剤は必要に応じて含有し、スラリーの粘性を調整するためにポリエチレングリコール、ポリエチレンイミンなどを含有してもよいし、研磨特性や分散安定性を高める目的で、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール等の水溶性または水と混和しうる比誘電率の高い溶媒を含有してもよい。また、酸化剤、還元剤、微粒子の安定化剤となる樹脂、ディッシング防止剤、エロージョン防止剤等を含有してもよい。
 本発明の研磨方法においては、研磨スラリーが2-ピリジンカルボン酸またはグルタミン酸を含有するので通常、研磨スラリーの砥粒のζ電位は正であり、被研磨体のζ電位は負となる。このようなものであると、砥粒と被研磨体の相互作用が強くなり好ましい。砥粒のζ電位は30~50mV、被研磨体のζ電位は-50~-10mVであるのが好ましい。
 以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
 (実施例1)
  酸化セリウム(セリア、CeO)、炭酸バリウム(BaCO)および酸化ホウ素(B)を、CeO、BaOおよびB基準のモル%表示でそれぞれ33.4%、13.3%および53.3%となるように秤量し、エタノール少量を用いて自動乳鉢でよく湿式混合した後、乾燥させて原料混合物とした。
 得られた原料混合物を、融液滴下用のノズルのついた白金製容器(ロジウムを10質量%含有)に充填し、ケイ化モリブデンを発熱体とした電気炉において1350℃で2時間加熱し、完全に溶融させた。ついで、ノズル部を加熱し、融液を電気炉の下に設置された双ロール(ロール径:150mm、ロール回転数:300rpm、ロール表面温度:30℃)に滴下し、フレーク状の固形物を得た。得られたフレーク状固形物は透明を呈し、粉末X線回折の結果、非晶質物質であることが確認された。
 この非晶質物質を、5mmφのジルコニアボールを用いて8時間、乾式ボールミル粉砕を行って粉砕物を得た。
  得られた粉砕物を700℃で32時間加熱し、セリア結晶を析出させた。
  ついで、この結晶化物を80℃に保った1mol/Lの酢酸水溶液中に添加し、12時間撹拌した後、遠心分離、水洗浄、乾燥を行って砥粒たるセリア結晶微粒子(以下、微粒子Aともいう)を得た。
 微粒子Aの鉱物相を、X線回折装置を用いて同定した結果、立方晶を呈し、さらに既存のCeO(JCPDSカード番号:34-0394)の回折ピークと一致しており、CeO単相からなる結晶性の高い微粒子であることが判明した。また、微粒子Aの結晶子径は31nmであり、平均一次粒子径は32nmであり、結晶子径:平均一次粒子径=1:1.0であった。
  なお、結晶子径はリガク社製X線回折装置(型式:RINT2500)により測定した回折線の広がりからシェラーの式に基づき算出し、平均一次粒子径はMicrometrics社製比表面積測定装置(型式:ASAP2020)により多点BET法から求めた比表面積から真球近似をして算出した。
 さらに、微粒子A450gと、純水1036.5gと、2-ピリジンカルボン酸すなわち分散剤13.5gとを混合し研磨スラリー原液を得た(分散剤の含有割合=0.9質量%)。
  この研磨スラリー原液についてスギノマシン社製湿式ジェットミル装置(形式:HJP-25005)を用いて分散処理を行い、分散液Aとした。分散液Aの微粒子の結晶子径は31nmであり、結晶子径の減少は0%であった。
 次に、分散液Aを微粒子Aの濃度が2質量%となるように純水で濃度調整し、これを0.4質量%の2-ピリジンカルボン酸水溶液と質量比1:1となるようにして撹拌して混合し、研磨スラリー1を得た。なお、分散液Aに添加された2-ピリジンカルボン酸は研磨スラリー1における含有割合として0.2質量%、研磨スラリー1中の砥粒の含有割合は1質量%である。
  研磨スラリー1のメディアン径は148nmであり、pHは3.6であり、砥粒たる微粒子のゼータ電位は38mVであり、ガラス基板のゼータ電位は-13mVであった。
  なお、メディアン径は日機装株式会社製粒度分布測定装置(型式:UPA-ST150)を用いて求め、ゼータ電位は大塚電子社製ゼータ電位測定装置(形式:ELS-8000)を用いて測定した。
 そして、研磨スラリー1を用いて、スピードファム社製小型研磨機(形式:FAM12BS)でケイ酸塩ガラス基板の研磨を行った。その研磨レートは0.116μm/minであった。なお、この研磨レートは0.1μm/min以上であることが好ましい。
 (実施例2)
  前記分散液Aを微粒子Aの濃度が2質量%となるように純水で濃度調整し、これを1質量%の2-ピリジンカルボン酸水溶液と質量比1:1で混合して、研磨スラリー2を得た。なお、分散液Aに添加された2-ピリジンカルボン酸は研磨スラリー2における含有割合として0.5質量%、研磨スラリー2中の砥粒の含有割合は1質量%である。
  研磨スラリー2のメディアン径は148nmであり、pHは3.3であり、砥粒たる微粒子のゼータ電位は38mVであり、ガラス基板のゼータ電位は-11mVであった。
  そして、研磨スラリー2を用いて実施例1と同様にして測定した研磨レートは0.135μm/minであった。
 (実施例3)
  前記分散液Aを微粒子Aの濃度が2質量%となるように純水で濃度調整し、これを2質量%の2-ピリジンカルボン酸水溶液と質量比1:1で混合して、研磨スラリー3を得た。なお、分散液Aに添加された2-ピリジンカルボン酸は研磨スラリー3における含有割合として1質量%、研磨スラリー3中の砥粒の含有割合は1質量%である。
  研磨スラリー3のメディアン径は145nmであり、pHは3.2であり、砥粒たる微粒子のゼータ電位は39mVであり、ガラス基板のゼータ電位は-14mVであった。
  そして、研磨スラリー3を用いて実施例1と同様にして測定した研磨レートは0.119μm/minであった。
 (実施例4)
  微粒子A450gと、純水1045.5gと、グルタミン酸すなわち分散剤4.5gとを混合し研磨スラリー原液を得た(分散剤の含有割合=0.3質量%)。
  この研磨スラリー原液についてスギノマシン社製湿式ジェットミル装置(形式:HJP-25005)を用いて分散処理を行い、分散液Bとした。分散液Bの微粒子の結晶子径は31nmであり、結晶子径の減少は0%であった。
  前記分散液Bを微粒子Aの濃度が2質量%となるように純水で濃度調整し、これを1質量%のグルタミン酸水溶液と質量比1:1で混合して、研磨スラリー4を得た。なお、分散液Bに添加された2-ピリジンカルボン酸は研磨スラリー4における含有割合として0.5質量%、研磨スラリー4中の砥粒の含有割合は1質量%である。
  研磨スラリー4のメディアン径は137nmであり、pHは3.1であり、砥粒たる微粒子のゼータ電位は44mVであり、ガラス基板のゼータ電位は-45mVであった。
  そして、研磨スラリー4を用いて実施例1と同様にして測定した研磨レートは0.125μm/minであった。
 (実施例5)
  酸化セリウム、炭酸バリウム、炭酸カルシウム(CaCO)および酸化ホウ素を、CeO、BaO、CaOおよびB基準のモル%表示でそれぞれ17.8%、4.4%、35.6%および42.2%となるように秤量し、エタノール少量を用いて自動乳鉢でよく湿式混合した後、乾燥させて原料混合物とした。
 得られた原料混合物を実施例1と同様にして溶融などしてフレーク状の固形物を得、これを粉砕した。
  得られた粉砕物を800℃で8時間加熱し、セリア-ジルコニア固溶体結晶を析出させた。
  ついで、この結晶化物を80℃に保った1mol/Lの酢酸水溶液中に添加し、12時間撹拌した後、遠心分離、水洗浄、乾燥を行って砥粒たるセリア-ジルコニア固溶体結晶微粒子(以下、微粒子Bともいう)を得た。
  微粒子Bの結晶子径は22nmであり、平均一次粒子径は25nmであり、結晶子径:平均一次粒子径=1:1.1であった。
 さらに、微粒子B450gと、純水1036.5gと、2-ピリジンカルボン酸すなわち分散剤13.5gとを混合し研磨スラリー原液を得た(分散剤の含有割合=0.9質量%)。
  この研磨スラリー原液についてスギノマシン社製湿式ジェットミル装置(形式:HJP-25005)を用いて分散処理を行い、分散液Cとした。分散液Cの微粒子の結晶子径は22nmであり、結晶子径の減少は0%であった。
 次に、分散液Cを微粒子Bの濃度が1質量%となるように純水で濃度調整し、これを1質量%の2-ピリジンカルボン酸水溶液と質量比1:1で混合して、研磨スラリー5を得た。なお、分散液Cに添加された2-ピリジンカルボン酸は研磨スラリー5における含有割合として0.5質量%、研磨スラリー5中の砥粒の含有割合は1質量%である。
  研磨スラリー5のメディアン径は132nmであり、pHは3.3であり、砥粒たる微粒子のゼータ電位は43mVであり、ガラス基板のゼータ電位は-12mVであった。
  そして、研磨スラリー5を用いて実施例1と同様にして測定した研磨レートは0.110μm/minであった。
 (比較例1)
  前記微粒子A450gと、純水1047.7gと、ポリアクリル酸アンモニウム2.3gとを混合し、分散処理を行った以外は実施例1と同様にして、分散液Dを得た。分散後の微粒子の結晶子径は31nmであり、結晶子径の減少は0%であった。
  次に、上記分散液Dを微粒子濃度が3質量%となるように純水で濃度調整し、研磨スラリー11を得た。研磨スラリー11のメディアン径は131nmであり、pHは8.1であった。
  さらに、研磨スラリー11を用いて、実施例1と同様に研磨を行った。その研磨レートは0.055μm/minであり、微粒子のゼータ電位は-38mVであり、ガラス基板のゼータ電位は-42mVであった。
 (比較例2)
  前記分散液Dを微粒子濃度が6質量%となるように純水で濃度調整し、1質量%の2-ピリジンカルボン酸水溶液と重量比1:1で混合して、研磨スラリー12を得た。研磨スラリー12のメディアン径は480nmであり、pHは7.0であった。
  さらに、研磨スラリー12を用いて、実施例1と同様に研磨を行った。その研磨レートは0.034μm/minであり、微粒子のゼータ電位は-46mVであり、ガラス基板のゼータ電位は-43mVであった。
 (比較例3)
  前記微粒子B450gと、純水1047.7gと、ポリアクリル酸アンモニウム2.3gとを混合し、分散処理を行った以外は実施例1と同様にして、分散液Eを得た。分散後の微粒子の結晶子径は22nmであり、結晶子径の減少は0%であった。
  次に、分散液Eを微粒子濃度が3質量%となるように純水で濃度調整し、研磨スラリー13を得た。研磨スラリー13のメディアン径は125nmであり、pHは8.1であった。
  さらに、研磨スラリー13を用いて、実施例1と同様に研磨を行った。その研磨レートは0.069μm/minであり、微粒子のゼータ電位は-40mVであり、ガラス基板のゼータ電位は-45mVであった。
 (比較例4)
  前記微粒子A450gと、純水1036.5gと、2-ピリジンカルボン酸13.5gとを混合し、直径0.5mmのジルコニアボールを用いたボールミルで72時間、分散処理を行い、分散液Fを得た。分散後の微粒子の結晶子径は25nmであり、結晶子径の減少は19%であった。
 次に、分散液Fを微粒子濃度が微粒子濃度が2質量%となるように純水で濃度調整し、1質量%の2-ピリジンカルボン酸水溶液と重量比1:1で混合して、研磨スラリー14を得た。研磨スラリー14のメディアン径は99nmであり、pHは3.8であった。
さらに、研磨スラリー14を用いて、実施例1と同様に研磨を行った。その研磨レートは0.040μm/minであり、微粒子のゼータ電位は41mVであり、ガラス基板のゼータ電位は-8mVであった。
 (比較例5)
  前記微粒子A450gと、純水1047.7gと、ポリアクリル酸アンモニウム2.3gとを混合し、直径0.5mmのジルコニアボールを用いたボールミルで72時間、分散処理を行い、分散液Gを得た。分散後の微粒子の結晶子径は25nmであり、結晶子径の減少は19%であった。
  次に、分散液Gを微粒子濃度が微粒子濃度が3質量%となるように純水で濃度調整し、研磨スラリー15を得た。研磨スラリー15のメディアン径は72nmであり、pHは8.2であった。
  さらに、研磨スラリー15を用いて、実施例1と同様に研磨を行った。その研磨レートは0.005μm/minであり、微粒子のゼータ電位は-39mVであり、ガラス基板のゼータ電位は-42mVであった。
 (比較例6)
  粒子径30nmのコロイダルシリカを15.7質量%に濃度調整し、硝酸でpH2として、研磨スラリー16を得た。研磨スラリー16のメディアン径は37nmであった。
  さらに、研磨スラリー16を用いて、実施例1と同様に研磨を行った。その研磨レートは0.040μm/minであり、微粒子のゼータ電位は-2mVであり、ガラス基板のゼータ電位は-4mVであった。
 (比較例7)
 前記微粒子A450gと、純水1050gとを混合し、スギノマシン社製湿式ジェットミル装置(形式:HJP-25005)を用いて分散処理を行った。得られたスラリーは沈降性であり、分散しなかった。
 (比較例8)
 前記微粒子A450gと、純水1045.5gと、グリシン4.5gとを混合し、スギノマシン社製湿式ジェットミル装置(形式:HJP-25005)を用いて分散処理を行った。得られたスラリーは沈降性であり、分散しなかった。
 (比較例9)
 前記微粒子A450gと、純水1045.5gと、2、3-ピリジンジカルボン酸4.5gとを混合し、スギノマシン社製湿式ジェットミル装置(形式:HJP-25005)を用いて分散処理を行った。得られたスラリーは沈降性であり、分散しなかった。
 (比較例10)
 前記分散液Aを微粒子Aの濃度が1質量%となるように純水で濃度調整し、研磨スラリー17を得た。研磨スラリー17のメディアン径は148nmであり、pHは4.2であり、砥粒たる微粒子のゼータ電位は25mVであり、ガラス基板のゼータ電位は-18mVであった。
  そして、研磨スラリー17を用いて実施例1と同様にして測定した研磨レートは0.037μm/minであった。
 (比較例11)
 前記分散液Bを微粒子Aの濃度が1質量%となるように純水で濃度調整し、研磨スラリー18を得た。研磨スラリー18のメディアン径は141nmであり、pHは3.8であり、砥粒たる微粒子のゼータ電位は17mVであり、ガラス基板のゼータ電位は-35mVであった。
  そして、研磨スラリー18を用いて実施例1と同様にして測定した研磨レートは0.031μm/minであった。
 磁気ディスク、光ディスク、半導体デバイス、ディスプレイなどのガラス基板や光学レンズなどの研磨に利用できる。

 なお、2008年10月1日に出願された日本特許出願2008-256103号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  セリア粒子またはセリア-ジルコニア固溶体粒子からなる砥粒と2-ピリジンカルボン酸またはグルタミン酸からなる分散剤と水とを含有する研磨スラリー原液を作製し、当該研磨スラリー原液の砥粒をその結晶子径の減少割合が10%以下となるように分散し、その後、水を加え、また前記分散剤と同じものを添加することを特徴とするpHが2~7である研磨スラリーの製造方法。
  2.  セリア粒子またはセリア-ジルコニア固溶体粒子からなる砥粒と2-ピリジンカルボン酸またはグルタミン酸からなる分散剤と水とを含有する研磨スラリー原液を作製し、当該研磨スラリー原液の砥粒を湿式ジェットミルにより分散し、その後、水を加え、また前記分散剤と同じものを添加することを特徴とするpHが2~7である研磨スラリーの製造方法。
  3.  研磨スラリー原液の砥粒を湿式ジェットミルにより分散することによる当該砥粒の結晶子径の減少割合が10%以下である請求項2に記載の研磨スラリーの製造方法。
  4.  研磨スラリー原液における分散剤の含有割合が0.1~5質量%である請求項1、2または3に記載の研磨スラリーの製造方法。
  5.  研磨スラリー原液における砥粒の結晶子径が5~100nmである請求項1、2、3または4に記載の研磨スラリーの製造方法。
  6.  研磨スラリー原液における砥粒の平均一次粒子径が5~100nmである請求項1~5のいずれかに記載の研磨スラリーの製造方法。
  7.  研磨スラリー原液における砥粒の結晶子径に対する平均一次粒子径の比が0.8~2.5である請求項1~6のいずれかに記載の研磨スラリーの製造方法。
  8.  研磨スラリー原液の砥粒を湿式ジェットミルにより分散した後に添加される前記分散剤と同じものの添加割合が、研磨スラリーにおける含有割合として0.01~2質量%である請求項1~7のいずれかに記載の研磨スラリーの製造方法。
  9.  研磨スラリー原液の砥粒が、酸化物基準のモル%表示で、CeOまたはCeOとZrOの混合物を5~50%、RO(RはMg、Ca、SrおよびBaからなる群より選ばれる1種以上)を10~50%、Bを30~75%含有する溶融物を得る工程と、前記溶融物を急速冷却して非晶質物質とする工程と、前記非晶質物質からセリア結晶またはセリア-ジルコニア固溶体結晶を析出させて結晶化物とする工程と、得られた結晶化物からセリア結晶またはセリア-ジルコニア固溶体結晶を分離する工程とをこの順に含むことを特徴とする製造方法により製造されたものである請求項1~8のいずれかに記載の研磨スラリーの製造方法。
  10.  請求項1~9のいずれかに記載の研磨スラリーの製造方法により製造された研磨スラリー。
  11.  砥粒の含有割合が0.1~40質量%である請求項10に記載の研磨スラリー。
  12.  メディアン径が10~300nmである請求項10または11に記載の研磨スラリー。
  13.  研磨される表面がSiOを含有する被研磨体を請求項10~12のいずれかに記載の研磨スラリーを用いて研磨することを特徴とする研磨方法。
  14.  前記研磨スラリーの砥粒のζ電位が正であり、前記被研磨体のζ電位が負である請求項13に記載の研磨方法。
  15.  SiOを含有する磁気ディスク用ガラス基板の製造方法であって、ガラス基板の主表面の研磨に請求項13または14に記載の研磨方法を用いる磁気ディスク用ガラス基板の製造方法。
PCT/JP2009/066186 2008-10-01 2009-09-16 研磨スラリー、その製造方法、研磨方法および磁気ディスク用ガラス基板の製造方法 WO2010038617A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010501324A JP5516396B2 (ja) 2008-10-01 2009-09-16 研磨スラリー、その製造方法、研磨方法および磁気ディスク用ガラス基板の製造方法
CN2009801017308A CN101909816B (zh) 2008-10-01 2009-09-16 研磨浆料、其制造方法、研磨方法及磁盘用玻璃基板的制造方法
US12/795,807 US20100248593A1 (en) 2008-10-01 2010-06-08 Polishing slurry, process for producing the same, polishing method and process for producing glass substrate for magnetic disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008256103 2008-10-01
JP2008-256103 2008-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/795,807 Continuation US20100248593A1 (en) 2008-10-01 2010-06-08 Polishing slurry, process for producing the same, polishing method and process for producing glass substrate for magnetic disk

Publications (1)

Publication Number Publication Date
WO2010038617A1 true WO2010038617A1 (ja) 2010-04-08

Family

ID=42073386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066186 WO2010038617A1 (ja) 2008-10-01 2009-09-16 研磨スラリー、その製造方法、研磨方法および磁気ディスク用ガラス基板の製造方法

Country Status (4)

Country Link
US (1) US20100248593A1 (ja)
JP (1) JP5516396B2 (ja)
CN (1) CN101909816B (ja)
WO (1) WO2010038617A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320744A (zh) * 2010-05-21 2012-01-18 株式会社小原 玻璃基板
WO2012042735A1 (ja) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 情報記録媒体用ガラス基板の製造方法
JPWO2012042769A1 (ja) * 2010-09-30 2014-02-03 コニカミノルタ株式会社 ハードディスク用ガラス基板の製造方法
JP2017190450A (ja) * 2016-03-31 2017-10-19 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー 複合粒子、その精製方法及び使用
WO2018020931A1 (ja) * 2016-07-28 2018-02-01 株式会社バイコウスキージャパン 研磨砥粒、その製造方法、それを含む研磨スラリー及びそれを用いる研磨方法
JP2019102476A (ja) * 2017-11-28 2019-06-24 花王株式会社 研磨液組成物
JP2020105345A (ja) * 2018-12-27 2020-07-09 花王株式会社 研磨液組成物
US11161751B2 (en) 2017-11-15 2021-11-02 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110637A (ja) * 2009-11-25 2011-06-09 Asahi Glass Co Ltd 磁気ディスク用ガラス基板の製造方法
WO2011125895A1 (ja) * 2010-03-31 2011-10-13 Hoya株式会社 磁気ディスク用ガラス基板の製造方法
JP5967999B2 (ja) * 2011-03-31 2016-08-10 Hoya株式会社 磁気ディスク用ガラス基板の製造方法
JP5695963B2 (ja) 2011-04-28 2015-04-08 株式会社荏原製作所 研磨方法
JP5168387B2 (ja) * 2011-06-08 2013-03-21 旭硝子株式会社 磁気記録媒体用ガラス基板の製造方法
GB2493187B (en) 2011-07-27 2018-02-21 Imerys Minerals Ltd Diatomaceous earth product
US9633863B2 (en) 2012-07-11 2017-04-25 Cabot Microelectronics Corporation Compositions and methods for selective polishing of silicon nitride materials
CN103450815A (zh) * 2013-06-19 2013-12-18 云南光电辅料有限公司 一种光学玻璃加工用氧化锆抛光液及其制备方法
US9828560B2 (en) * 2013-12-06 2017-11-28 Baker Hughes, A Ge Company, Llc Dispersing fines in hydrocarbon applications using artificial lift
JP2015120845A (ja) * 2013-12-24 2015-07-02 旭硝子株式会社 研磨剤の製造方法、研磨方法および半導体集積回路装置の製造方法
KR101741707B1 (ko) * 2015-02-27 2017-05-30 유비머트리얼즈주식회사 연마 슬러리 및 이를 이용한 기판 연마 방법
US20200016721A1 (en) * 2016-09-21 2020-01-16 Hitachi Chemical Company, Ltd. Slurry and polishing method
WO2018100686A1 (ja) * 2016-11-30 2018-06-07 日立化成株式会社 スラリ、研磨液及びそれらの製造方法、並びに基板の研磨方法
KR102492098B1 (ko) * 2017-03-14 2023-01-26 쇼와덴코머티리얼즈가부시끼가이샤 연마제, 연마제용 저장액 및 연마 방법
JP6775453B2 (ja) * 2017-03-23 2020-10-28 山口精研工業株式会社 磁気ディスク基板用研磨剤組成物
US11267987B2 (en) * 2019-10-30 2022-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing slurry composition and method of polishing metal layer
KR20230090768A (ko) * 2021-12-15 2023-06-22 인오켐 주식회사 디스플레이 유리기판 연마용 조성물의 제조방법 및 상기 조성물을 이용한 디스플레이 기판을 연마하는 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144613A (ja) * 2005-10-25 2007-06-14 Hitachi Chem Co Ltd 有機膜研磨用研磨液及びこれを用いた有機膜の研磨方法
WO2007126030A1 (ja) * 2006-04-27 2007-11-08 Asahi Glass Company, Limited 酸化物結晶微粒子及び該微粒子を含む研磨用スラリー
JP2008105168A (ja) * 2006-04-28 2008-05-08 Asahi Glass Co Ltd 磁気ディスク用ガラス基板の製造方法および磁気ディスク

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100188901B1 (ko) * 1996-02-02 1999-06-01 가지카와 히로시 자기디스크용 결정화 유리기판
US6447693B1 (en) * 1998-10-21 2002-09-10 W. R. Grace & Co.-Conn. Slurries of abrasive inorganic oxide particles and method for polishing copper containing surfaces
EP1369906B1 (en) * 2001-02-20 2012-06-27 Hitachi Chemical Company, Ltd. Polishing compound and method for polishing substrate
KR101082620B1 (ko) * 2004-12-16 2011-11-15 학교법인 한양학원 연마용 슬러리
SG136886A1 (en) * 2006-04-28 2007-11-29 Asahi Glass Co Ltd Method for producing glass substrate for magnetic disk, and magnetic disk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144613A (ja) * 2005-10-25 2007-06-14 Hitachi Chem Co Ltd 有機膜研磨用研磨液及びこれを用いた有機膜の研磨方法
WO2007126030A1 (ja) * 2006-04-27 2007-11-08 Asahi Glass Company, Limited 酸化物結晶微粒子及び該微粒子を含む研磨用スラリー
JP2008105168A (ja) * 2006-04-28 2008-05-08 Asahi Glass Co Ltd 磁気ディスク用ガラス基板の製造方法および磁気ディスク

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320744A (zh) * 2010-05-21 2012-01-18 株式会社小原 玻璃基板
CN102320744B (zh) * 2010-05-21 2016-01-27 株式会社小原 玻璃基板
WO2012042735A1 (ja) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 情報記録媒体用ガラス基板の製造方法
JPWO2012042769A1 (ja) * 2010-09-30 2014-02-03 コニカミノルタ株式会社 ハードディスク用ガラス基板の製造方法
JPWO2012042735A1 (ja) * 2010-09-30 2014-02-03 コニカミノルタ株式会社 情報記録媒体用ガラス基板の製造方法
JP5782041B2 (ja) * 2010-09-30 2015-09-24 Hoya株式会社 ハードディスク用ガラス基板の製造方法
JP2017190450A (ja) * 2016-03-31 2017-10-19 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー 複合粒子、その精製方法及び使用
WO2018020931A1 (ja) * 2016-07-28 2018-02-01 株式会社バイコウスキージャパン 研磨砥粒、その製造方法、それを含む研磨スラリー及びそれを用いる研磨方法
JP2018024814A (ja) * 2016-07-28 2018-02-15 株式会社バイコウスキージャパン 研磨砥粒、その製造方法、それを含む研磨スラリー及びそれを用いる研磨方法
TWI664279B (zh) * 2016-07-28 2019-07-01 日商日本百考基股份有限公司 研磨粒、其製造方法、包含其之研磨漿料及使用其之研磨方法
US11161751B2 (en) 2017-11-15 2021-11-02 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same
JP2019102476A (ja) * 2017-11-28 2019-06-24 花王株式会社 研磨液組成物
JP2020105345A (ja) * 2018-12-27 2020-07-09 花王株式会社 研磨液組成物
JP7236270B2 (ja) 2018-12-27 2023-03-09 花王株式会社 研磨液組成物

Also Published As

Publication number Publication date
JPWO2010038617A1 (ja) 2012-03-01
CN101909816B (zh) 2013-01-23
JP5516396B2 (ja) 2014-06-11
US20100248593A1 (en) 2010-09-30
CN101909816A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5516396B2 (ja) 研磨スラリー、その製造方法、研磨方法および磁気ディスク用ガラス基板の製造方法
US7857680B2 (en) Method for producing glass substrate for magnetic disk, and magnetic disk
JP5012026B2 (ja) CeO2微粒子の製造方法
TWI554601B (zh) 研磨材料及研磨用組成物
JP6358899B2 (ja) 金属酸化物粒子およびその製造方法
JP4033440B2 (ja) セリウム系研摩材スラリー及びセリウム系研摩材スラリーの製造方法
JPWO2009031447A1 (ja) 酸化物結晶微粒子の製造方法
US20090113809A1 (en) Fine particles of oxide crystal and slurry for polishing which contains the fine particles
JP4957284B2 (ja) 磁気ディスク用ガラス基板の製造方法および磁気ディスク
TW201313849A (zh) 研磨材及研磨用組成物
WO2015049942A1 (ja) 研摩材、その製造方法及びそれを含む研摩スラリー
JP7117225B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP5248096B2 (ja) 研磨液組成物
JP2008001907A (ja) セリウム系研摩材スラリー及びセリウム系研摩材スラリーの製造方法
KR101196757B1 (ko) 고정도 연마용 산화세륨의 제조방법
JP4471072B2 (ja) ボールミル装置を用いた酸化セリウムの粉砕方法
JP2002326812A (ja) 結晶性酸化第二セリウムゾル及びその製造方法
JP2020050571A (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
KR20060014658A (ko) 화학 기계적 연마를 위한 산화세륨 연마입자 분산액 및 그제조방법
WO2023229009A1 (ja) 研磨液組成物
KR100697304B1 (ko) 판상카올린-세리아 복합연마재 및 그 제조방법
JPH11209745A (ja) ガラス研磨用研磨材組成物およびその研磨方法
WO2013099142A1 (ja) 基板用研磨剤及び基板の製造方法
KR20050016964A (ko) 볼 밀 장치를 이용한 세륨화합물의 분쇄방법
JP2003051467A (ja) 酸化セリウム研磨剤及び基板の研磨法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101730.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010501324

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: PI 2010002522

Country of ref document: MY

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817654

Country of ref document: EP

Kind code of ref document: A1