WO2023229009A1 - 研磨液組成物 - Google Patents

研磨液組成物 Download PDF

Info

Publication number
WO2023229009A1
WO2023229009A1 PCT/JP2023/019507 JP2023019507W WO2023229009A1 WO 2023229009 A1 WO2023229009 A1 WO 2023229009A1 JP 2023019507 W JP2023019507 W JP 2023019507W WO 2023229009 A1 WO2023229009 A1 WO 2023229009A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
less
substrate
liquid composition
silica particles
Prior art date
Application number
PCT/JP2023/019507
Other languages
English (en)
French (fr)
Inventor
坂本俊介
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022086266A external-priority patent/JP2023173782A/ja
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2023229009A1 publication Critical patent/WO2023229009A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present disclosure relates to a polishing liquid composition, a method for manufacturing a magnetic disk substrate, and a method for polishing a substrate.
  • magnetic disk drives have become smaller and larger in capacity, and higher recording densities are required.
  • it is necessary to reduce the unit recording area and improve the detection sensitivity of the weakened magnetic signal. Therefore, technological development is underway to further lower the flying height of the magnetic head.
  • magnetic disk substrates have been developed to improve smoothness and flatness (reduce surface roughness, waviness, and edge sagging) and to reduce surface defects (residual abrasive grains, (reduction of scratches, protrusions, pits, etc.) is strictly required.
  • a multi-stage polishing method that includes two or more polishing steps has been adopted in the manufacturing method of magnetic disk substrates. is often adopted.
  • a polishing agent containing colloidal silica particles is used, and from the viewpoint of improving productivity, a polishing liquid composition containing alumina particles as an abrasive grain is used.
  • alumina particles stick into the substrate, which may cause defects in the magnetic disk substrate or a magnetic disk in which a magnetic layer is provided on the magnetic disk substrate.
  • JP 2017-19978 A Patent Document 1
  • JP 2021-175774 A Patent Document 2
  • Patent Document 2 disclose polishing liquid compositions that do not contain alumina particles but contain silica particles as abrasive grains. is proposed.
  • the present disclosure includes silica particles and an aqueous medium, the silica particles have an ignition loss of 4% or less on a dry weight basis, and the silica particles have a weight loss obtained by a centrifugal sedimentation method.
  • the present invention relates to a polishing liquid composition having D90 of 140 nm or more and 600 nm or less, where D90 is the particle size at which the cumulative frequency from the small particle size side is 90% in the converted particle size distribution.
  • the present disclosure relates to a method for manufacturing a magnetic disk substrate, including a polishing step of polishing a substrate to be polished using the polishing liquid composition of the present disclosure.
  • the present disclosure relates to a method for polishing a substrate, the substrate being polished is a substrate used for manufacturing a magnetic disk substrate, including polishing a substrate to be polished using the polishing liquid composition of the present disclosure. .
  • the present disclosure relates to a method for reducing silica residue on a substrate after polishing, which includes polishing a substrate to be polished using the polishing liquid composition of the present disclosure.
  • the abrasive grains have an ignition loss of 4% or less on a dry weight basis, and have a cumulative frequency of 90% from the small particle size side in the particle size distribution in terms of weight obtained by centrifugal sedimentation.
  • the present invention relates to a method of manufacturing a magnetic disk substrate, including:
  • FIG. 1 is an example of a transmission electron microscope (hereinafter also referred to as "TEM") photograph of confetti-type colloidal silica abrasive grains.
  • FIG. 2 is an example of a TEM observation photograph of irregularly shaped colloidal silica abrasive grains.
  • TEM transmission electron microscope
  • silica particles remaining on the surface of the substrate after polishing (hereinafter also referred to as "silica residue") are a cause of drive failure. It has also been found that the amount of residual silica correlates with the size of the silica particles that are abrasive grains. The remaining silica can be reduced by reducing the particle size of the silica abrasive grains. However, when the particle size of the abrasive grains is reduced, the polishing rate also decreases.
  • the present disclosure provides a polishing liquid composition that can improve the polishing rate without significantly increasing the amount of residual silica.
  • the present disclosure provides a polishing liquid composition that can reduce silica residue on the surface of a substrate after polishing while maintaining the polishing rate.
  • the present disclosure in one embodiment, it is possible to provide a polishing liquid composition that can improve the polishing rate without significantly increasing the amount of residual silica.
  • the present disclosure can provide a polishing liquid composition that can reduce silica residue on the surface of a substrate after polishing while maintaining the polishing rate.
  • Silica particles (silica residue) remaining on the substrate surface after polishing take time and effort to measure, are rarely recognized as a quality evaluation item for the substrate surface after polishing, and are not considered to be the cause of drive failures. It wasn't recognized. It should be noted that ⁇ silica residue'', which has been a problem in conventional technology, is a physical defect such as getting stuck in a scratch or sticking into a wound, and can be detected relatively easily using a model test using simple cleaning or an electron microscope. The problem and effects are different from the "silica residue" in the present disclosure. In Patent Document 1, since heat-treated silica having a generally high surface hardness is used, there is a problem that the substrate surface tends to have many dent defects and punctures.
  • Patent Document 2 a high polishing rate and excellent substrate surface quality are both achieved, but further improvement in the polishing rate has been desired from the viewpoint of improving substrate productivity.
  • Patent Documents 1 and 2 do not have the problem of reducing residual silica.
  • the present disclosure is based, in one aspect, on the finding that the amount of silica residue correlates with the ignition loss of silica abrasive grains having a predetermined particle size distribution.
  • the present disclosure includes silica particles and an aqueous medium, the silica particles have an ignition loss of 4% or less on a dry weight basis, and the silica particles are obtained by centrifugal sedimentation.
  • a polishing liquid composition (hereinafter referred to as “polishing liquid composition of the present disclosure") having D90 of 140 nm or more and 600 nm or less, where D90 is the particle size at which the cumulative frequency from the small particle size side is 90% in the particle size distribution in terms of weight. (also referred to as "liquid composition").
  • the amount of residual silica shows only a weaker correlation with the "silanol group density" of the silica abrasive grains than the ignition loss of the silica abrasive grains. Additional mechanisms may be involved in the correlation between the amount of silica remaining and loss on ignition. Silanol group density is generally determined by titration, and only the silanol groups on the outermost surface are detected. On the other hand, the ignition loss detects all silanol groups, including those inside the particles. It is also believed that a high load is applied to the particles during polishing, and some of the particles collapse, exposing internal silanol groups. Since this internal silanol group is also considered to be involved in remaining on the substrate, it is considered that there is a high correlation between the loss on ignition and the remaining silica. However, the present disclosure does not need to be interpreted as being limited to these mechanisms.
  • the polishing liquid composition of the present disclosure contains silica particles A (hereinafter also referred to as "component A”) as abrasive grains.
  • the silica particles A (component A) have an ignition loss of 4% or less on a dry weight basis, and are from the small particle size side in the particle size distribution in terms of weight obtained by centrifugal sedimentation. These are silica particles whose D90 is 140 nm or more and 600 nm or less, where D90 is the particle diameter at which the cumulative frequency of 90% is 90%.
  • Component A is preferably used as a polishing liquid component in the form of slurry. Component A may be used alone or in combination of two or more.
  • the particle diameter D10 of component A in terms of weight obtained by the centrifugal sedimentation method is preferably 50 nm or more, more preferably 52 nm or more, even more preferably 53 nm or more, from the viewpoint of maintaining the polishing rate, and 120 nm or more from the viewpoint of substrate surface quality.
  • the thickness is preferably below, more preferably 100 nm or less, and even more preferably 60 nm or less. More specifically, the particle diameter D10 of component A measured by centrifugal sedimentation is 50 nm or more and 120 nm or less, more preferably 52 nm or more and 100 nm or less, and even more preferably 53 nm or more and 60 nm or less.
  • the particle diameter D50 of component A in terms of weight by centrifugal sedimentation is preferably 80 nm or more, more preferably 85 nm or more, even more preferably 90 nm or more, even more preferably 93 nm or more, and the substrate surface From the viewpoint of quality, the thickness is preferably 340 nm or less, more preferably 200 nm or less, even more preferably 110 nm or less, and even more preferably 100 nm or less.
  • the particle diameter D50 of component A measured by centrifugal sedimentation is 80 nm or more and 340 nm or less, more preferably 85 nm or more and 200 nm or less, even more preferably 90 nm or more and 110 nm or less, even more preferably 90 nm or more and 100 nm or less, More preferably, the thickness is 93 nm or more and 100 nm or less.
  • the particle diameter D90 of component A in terms of weight obtained by centrifugal sedimentation is 140 nm or more, preferably 150 nm or more, more preferably 160 nm or more, and 170 nm or more, from the viewpoint of maintaining the polishing rate. is more preferably 600 nm or less, more preferably 500 nm or less, more preferably 400 nm or less, even more preferably 250 nm or less, more preferably 200 nm or less, and even more preferably 190 nm or less, from the viewpoint of reducing silica residue.
  • the particle diameter D90 of component A determined by centrifugal sedimentation is 140 nm or more and 600 nm or less, more preferably 150 nm or more and 500 nm or less, preferably 150 nm or more and 400 nm or less, more preferably 160 nm or more and 400 nm or less, and 170 nm or more. It is more preferably 160 nm or more and 200 nm or less, and even more preferably 170 nm or more and 190 nm or less.
  • D10, D50, and D90 refer to particle sizes at which the cumulative frequency from the small diameter side is 10%, 50%, and 90%, respectively, in the weight-based particle size distribution obtained by centrifugal sedimentation.
  • the centrifugal sedimentation method is a method (disk centrifugal sedimentation light transmission method) in which particles are classified and detected by size based on a difference in sedimentation velocity.
  • Particle size distribution by centrifugal sedimentation can be measured using, for example, a disc centrifugal particle size distribution measuring device (CPS Disc Centrifuge).
  • CPS Disc Centrifuge a disc centrifugal particle size distribution measuring device
  • the particle size distribution obtained by centrifugal sedimentation may also be referred to as "particle size distribution obtained by CPS measurement.” Specifically, it can be calculated by the measuring method described in Examples.
  • Examples of methods for adjusting the particle size distribution of component A by centrifugal sedimentation include methods of adjusting particle growth time, particle temperature, particle concentration, etc. during the growth process of silica particles.
  • a desired particle size distribution can be achieved by adding new core particles during the particle growth process in the production stage. Examples include a method in which two or more types of silica particles having different particle size distributions are mixed to give a desired particle size distribution.
  • the average secondary particle diameter of component A is preferably 100 nm or more, more preferably 110 nm or more, even more preferably 130 nm or more, from the viewpoint of maintaining the polishing rate, and from the viewpoint of substrate surface quality. , is preferably 340 nm or less, more preferably 200 nm or less, even more preferably 180 nm or less, and even more preferably 140 nm or less.
  • the average secondary particle diameter of component A is preferably 100 nm or more and 340 nm or less, more preferably 110 nm or more and 200 nm or less, still more preferably 130 nm or more and 180 nm or less, and even more preferably 130 nm or more and 140 nm or less.
  • the average secondary particle size of component A refers to the average particle size based on the scattering intensity distribution measured by a dynamic light scattering method.
  • scattering intensity distribution refers to the volume-based particle size distribution of submicron or smaller particles determined by dynamic light scattering (DLS) or quasielastic light scattering (QLS). It refers to Specifically, the average secondary particle diameter of component A in the present disclosure can be obtained by the method described in Examples.
  • the ignition loss of component A on a dry weight basis is 4% or less, preferably 3.6% or less, and more preferably 3.5% or less, from the viewpoint of reducing silica residue. It is preferably 3.4% or less, still more preferably 3.3% or less, and from the viewpoint of storage stability, 0% or more is preferable, more preferably 1% or more, and even more preferably 2% or more. More specifically, the loss on ignition of component A on a dry weight basis is preferably 0% or more and 3.6% or less, more preferably 1% or more and 3.4% or less, and 1% or more and 3.5% or less. is more preferable, more preferably 2% or more and 3.4% or less, even more preferably 2% or more and 3.3% or less.
  • the ignition loss WL on a dry weight basis refers to the weight change of a sample due to water evaporation when a silica slurry in which silica particles are mixed with water is heated at a temperature between 105° C. and 200° C. in one or more embodiments.
  • a silica slurry in which silica particles are mixed with water is heated at a temperature between 105° C. and 200° C. in one or more embodiments.
  • the sample was heat-treated at a temperature of 800°C or higher to determine the loss on drying (LOD (wt%)) when sufficiently dried at a temperature between
  • LOD loss on drying
  • LOI weight %
  • the heating temperature for measuring LOD is preferably 105°C or higher, more preferably 120°C or higher, even more preferably 150°C or higher, from the viewpoint of sufficient water evaporation, and from the viewpoint of not evaporating components other than water. , preferably 200°C or lower, more preferably 190°C or lower, and even more preferably 180°C or lower. More specifically, the heating temperature for measuring LOD is preferably 105°C or more and 200°C or less, more preferably 120°C or more and 190°C or less, and even more preferably 150°C or more and 180°C or less.
  • the heating temperature for measuring LOI is preferably 800°C or higher, more preferably 850°C or higher, even more preferably 900°C or higher, from the viewpoint of sufficient silanol group elimination, and 1200°C or higher from the viewpoint of safety.
  • the temperature is preferably below, more preferably 1150°C or less, and even more preferably 1100°C or less. More specifically, the heating temperature for measuring LOI is preferably 800°C or more and 1200°C or less, more preferably 850°C or more and 1150°C or less, and even more preferably 900°C or more and 1100°C or less.
  • Examples of methods for adjusting the ignition loss of component A include methods such as adjusting the dropping rate, reaction temperature, and concentration of the silicic acid solution during the growth process of silica particles (for example, as described in Japanese Patent No. 6756422 and Japanese Patent No. 5892882). method described).
  • methods for adjusting the ignition loss of component A for example, existing silica particles are subjected to heat treatment, metal modification of surface silanol groups, organic acid modification, or silane coupling treatment to achieve desired ignition loss. Examples include a method of adjusting the loss on ignition, and a method of mixing two or more types of silica particles having different ignition losses to have a desired ignition loss.
  • the method of adjusting the ignition loss of component A is preferably controlled by the growth conditions of the silica particles, more preferably controlled by the concentration of the silicic acid liquid, and the dropping rate of the silicic acid liquid is controlled. Control by is even more preferred.
  • the value represented by the above formula (I) when the loss on ignition on a dry weight basis of component A is WL is preferably 150 or less, and 100
  • the following are more preferable, still more preferably 90 or less, even more preferably 85 or less, even more preferably 80 or less, and from the viewpoint of polishing rate maintenance and storage stability, 10 or more is preferable, 20 or more is more preferable, 40 or more, or More preferably 60 or more.
  • the value represented by the above formula (I) is preferably 10 or more and 150 or less, more preferably 20 or more and 100 or less, even more preferably 40 or more and 90 or less, 40 or more and 80 or less, or 60 or more and 85 or less. is even more preferable.
  • component A examples include colloidal silica, wet silica (precipitated silica), fumed silica, ground silica, and surface-modified silica thereof.
  • Component A is preferably at least one selected from colloidal silica and wet silica from the viewpoint of polishing rate maintenance and availability. From the viewpoint of substrate surface quality, component A is preferably at least one selected from colloidal silica and wet silica. Colloidal silica, which is difficult to obtain, is more preferred.
  • the colloidal silica can be produced, for example, by a method of particle growth using an aqueous alkali silicate solution as a raw material (hereinafter also referred to as "water glass method"), and a method by condensation of a hydrolyzate of alkoxysilane (hereinafter referred to as "sol-gel method"). From the viewpoint of ease of production and economic efficiency, those obtained by the water glass method are preferred. Silica particles obtained by the water glass method and the sol-gel method can be produced by conventionally known methods.
  • the precipitated silica is silica particles obtained by a precipitation method. Examples of the method for producing precipitated silica particles include known methods such as the method described in Tosoh Research and Technical Report, Vol. 45 (2001), pp.
  • a specific example of the precipitation method for producing silica particles includes a precipitation method in which silica particles are precipitated by a neutralization reaction between a silicate such as sodium silicate and a mineral acid such as sulfuric acid. It is preferable to carry out the neutralization reaction under alkaline conditions at a relatively high temperature, whereby the growth of the primary silica particles proceeds rapidly, and the primary particles aggregate into flocs and settle, which is preferably further pulverized. By doing so, precipitated silica particles are obtained.
  • a silicate such as sodium silicate
  • a mineral acid such as sulfuric acid
  • component A may be non-spherical or spherical. From the viewpoint of polishing rate maintenance and substrate surface quality, component A preferably contains spherical silica particles and non-spherical silica particles (mixed silica) in one or more embodiments.
  • the average aspect ratio of the spherical silica particles is preferably 1.00 or more, more preferably 1.02 or more from the viewpoint of maintaining polishing rate, and preferably 1.02 or more from the viewpoint of substrate surface quality. It is 20 or less, more preferably 1.1 or less, even more preferably 1.06 or less.
  • the average aspect ratio of the non-spherical silica particles is preferably 1.00 or more, more preferably 1.02 or more, even more preferably 1.05 or more from the viewpoint of maintaining the polishing rate, and from the viewpoint of substrate surface quality. , preferably 1.30 or less, more preferably 1.15 or less, still more preferably 1.10 or less, still more preferably 1.08 or less.
  • the average aspect ratio is a simple average value of the length/breadth ratio of the minimum inscribed square determined for each particle using a known scanning electron microscope (SEM) and a known image analysis system.
  • component A is mixed silica containing spherical silica particles and non-spherical silica particles
  • preferred numerical values for the average aspect ratio of the mixed silica include the same numerical values as for the above-mentioned non-spherical silica particles.
  • the average aspect ratio of mixed silica can be calculated, for example, by the method described in Examples.
  • the shape of the non-spherical silica particles is determined by using silica particles as a precursor whose particle size is smaller than the secondary particle size of the non-spherical silica particles from the viewpoint of maintaining polishing rate and substrate surface quality.
  • the particles include a shape in which a plurality of precursor particles are aggregated or fused.
  • Examples of the type of non-spherical silica particles include at least one selected from silica particles Aa of a confectioner's sugar type, silica particles of an irregularly shaped type Ab, and silica particles Ac of an irregular shape and a confetti type.
  • confetti-shaped silica particles Aa refer to silica particles having unique wart-like projections on the spherical particle surface.
  • the particles Aa preferably have a shape in which the largest precursor particle a1 and one or more precursor particles a2 having a particle size of 1/5 or less of the precursor particle a1 are aggregated or fused together.
  • the particles Aa are preferably in a state in which a plurality of precursor particles a2 having a small particle size are partially embedded in one precursor particle a1 having a large particle size.
  • Particles Aa can be obtained, for example, by the method described in JP-A No. 2008-137822.
  • the particle size of the precursor particle can be determined as the equivalent circle diameter measured within one precursor particle in an image observed by TEM etc., that is, the major axis of a circle having the same area as the projected area of the precursor particle. .
  • the particle diameters of the precursor particles in the irregularly shaped silica particles Ab and the irregularly shaped and confetti-type silica particles Ac can also be determined in the same manner.
  • irregularly shaped silica particles Ab have a shape in which two or more precursor particles, preferably two or more and ten or less precursor particles are aggregated or fused together. Refers to silica particles (see Figure 1). Particles Ab preferably have a shape in which two or more precursor particles having a particle size within 1.5 times the particle size of the smallest precursor particle are agglomerated or fused together. Particles Ab can be obtained, for example, by the method described in JP-A-2015-86102.
  • irregularly shaped and confetti-shaped silica particles Ac include the particles Ab as precursor particles c1, the largest precursor particle c1, and the particle size of the precursor particle c1.
  • One or more precursor particles c2 whose size is 1/5 or less are aggregated or fused together.
  • the content of component A in the polishing liquid composition of the present disclosure is preferably 0.1% by mass or more in terms of SiO 2 , and 0.1% by mass or more in terms of SiO 2 . .5% by mass or more is more preferred, 1% by mass or more is even more preferred, 1.5% by mass or more or 2% by mass or more is even more preferred, and from the economic point of view, 30% by mass or less is preferred, 25% by mass or more. % or less, more preferably 20% by mass or less, even more preferably 15% by mass or less, and even more preferably 10% by mass or less.
  • the content of component A is preferably 0.1% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 25% by mass or less, and 0.5% by mass or more and 20% by mass or less. is more preferable, 1% by mass or more and 20% by mass or less, still more preferably 1% by mass or more and 15% by mass or less, still more preferably 1.5% by mass or more and 10% by mass or less, or even more preferably 2% by mass or more and 15% by mass or less. preferable.
  • component A consists of two or more types of silica particles, the content of component A refers to their total content.
  • component A contained in the polishing liquid composition of the present disclosure includes spherical silica particles and non-spherical silica particles
  • the proportion of spherical silica particles in component A should be 10% or more from the viewpoint of maintaining polishing rate and substrate surface quality. It is preferably 20% or more, still more preferably 30% or more, and preferably less than 100%, more preferably 80% or less, and even more preferably 70% or less.
  • the proportion of non-spherical silica particles in component A is preferably 90% or less, more preferably 80% or less, even more preferably 70% or less, and preferably more than 0%, more preferably 20% or more. , more preferably 30% or more.
  • aqueous medium examples include water such as distilled water, ion exchange water, pure water, and ultrapure water, or a mixed solvent of water and a solvent.
  • the solvent include solvents that are miscible with water (for example, alcohols such as ethanol).
  • the proportion of water to the entire mixed medium may not be particularly limited as long as the effects of the present disclosure are not hindered, and from an economical point of view, for example, , is preferably 95% by mass or more, more preferably 98% by mass or more, and even more preferably substantially 100% by mass.
  • the content of the aqueous medium in the polishing liquid composition of the present disclosure is the remainder after removing component A and optional components (component B, component C, component D, and other components) that will be described later and are added as necessary. be able to.
  • the polishing liquid composition of the present disclosure may contain an acid (hereinafter also referred to as "component B") from the viewpoint of further improving the polishing rate and further reducing short wavelength waviness.
  • component B an acid
  • the use of acids includes the use of acids and/or salts thereof.
  • Component B may be used alone or in combination of two or more.
  • Component B includes, for example, inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, polyphosphoric acid, amidosulfuric acid; organic phosphoric acid, organic phosphonic acid; organic acids such as acids; and the like.
  • inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, polyphosphoric acid, amidosulfuric acid; organic phosphoric acid, organic phosphonic acid; organic acids such as acids; and the like.
  • inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid
  • At least one selected from sulfuric acid and phosphoric acid is more preferred, and phosphoric acid is even more preferred.
  • the salts of these acids include salts of the above acids and at least one selected from metals, ammonia, and alkyl amines.
  • Specific examples of the above metals include metals belonging to groups 1 to 11 of the periodic table. Among these, salts of the above acids and metals belonging to Group 1 or ammonia are preferred from the viewpoint of further improving the polishing rate and further reducing short wavelength waviness.
  • the content of component B in the polishing liquid composition of the present disclosure is set to 0. 0.001% by mass or more is preferred, 0.01% by mass or more is more preferred, 0.05% by mass or more is even more preferred, 0.1% by mass or more is even more preferred, and from the same point of view, 5% by mass or less It is preferably 4% by mass or less, more preferably 3% by mass or less, even more preferably 2.5% by mass or less. More specifically, the content of component B is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.01% by mass or more and 4% by mass or less, and 0.05% by mass or more and 3% by mass or less. is more preferable, and even more preferably 0.1% by mass or more and 2.5% by mass or less. When component B is a combination of two or more types, the content of component B refers to their total content.
  • the polishing liquid composition of the present disclosure may contain an oxidizing agent (hereinafter also referred to as "component C") from the viewpoint of further improving the polishing rate and further reducing short wavelength waviness.
  • component C may be used alone or in combination of two or more. From the same point of view, component C includes, for example, peroxides, permanganic acid or its salts, chromic acid or its salts, peroxo acids or its salts, oxygen acids or its salts, nitric acids, sulfuric acids, etc. .
  • component C at least one selected from hydrogen peroxide, iron(III) nitrate, peracetic acid, ammonium peroxodisulfate, iron(III) sulfate, and ammonium iron(III) sulfate is preferable, and it is preferable for improving the polishing rate.
  • Hydrogen peroxide is more preferable from the viewpoint of preventing metal ions from adhering to the surface of the substrate to be polished and from the viewpoint of easy availability.
  • the content of component C in the polishing liquid composition of the present disclosure is preferably 0.01% by mass or more from the viewpoint of further improving the polishing rate, It is more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, and from the viewpoint of further improving the polishing rate and further reducing short wavelength waviness, it is preferably 4% by mass or less, and 2% by mass. The following is more preferable, and 1.5% by mass or less is even more preferable. More specifically, the content of component C is preferably 0.01% by mass or more and 4% by mass or less, more preferably 0.05% by mass or more and 2% by mass or less, and 0.1% by mass or more and 1.5% by mass. % or less is more preferable. When component C is a combination of two or more types, the content of component C refers to their total content.
  • the polishing liquid composition of the present disclosure further contains a nitrogen-containing compound (hereinafter also referred to as "component D") from the viewpoint of improving the polishing rate without significantly increasing the amount of residual silica.
  • component D is an organic amine compound having 4 or less nitrogen atoms in the molecule.
  • Component D is preferably one or more compounds having any one of primary to tertiary amino groups from the viewpoint of improving the polishing rate without significantly increasing the amount of residual silica.
  • component D may have a hydroxy group from the viewpoint of workability in consideration of odor and/or boiling point.
  • Component D may be used alone or in combination of two or more. It is thought that by using an organic amine compound having a nitrogen atom, the organic amine compound acts on both the substrate and the silica abrasive grains, thereby improving the polishing rate. Furthermore, by setting the number of nitrogen atoms in the molecule of the organic amine compound to 4 or less, easy cleaning is maintained without attracting too much silica abrasive grains to the substrate, so it is thought that the silica residue will not be significantly deteriorated. .
  • the number of nitrogen atoms in the molecule of component D is preferably 1, 2, or 3, and more preferably 1 or 2, from the viewpoint of improving the polishing rate without significantly increasing the amount of remaining silica.
  • component D is an aliphatic amine compound having 4 or less nitrogen atoms in the molecule and an aliphatic amine compound having 4 or less nitrogen atoms in the molecule, from the viewpoint of improving the polishing rate without significantly increasing the amount of residual silica.
  • At least one compound selected from the following alicyclic amine compounds having a nitrogen atom can be mentioned.
  • the aliphatic amine compounds include, for example, monoethanolamine, ethylenediamine, N,N,N',N'-tetramethylethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1 , 4-diaminobutane, hexamethylenediamine, 3-(diethylamino)propylamine, 3-(dibutylamino)propylamine, 3-(methylamino)propylamine, 3-(dimethylamino)propylamine, N-aminoethylethanol At least one selected from amine, N-(2-aminoethyl)diethanolamine, N-aminoethylisopropanolamine, N-aminoethyl-N-methylethanolamine, diethylenetriamine, and triethylenetetramine, among which , monoethanolamine (MEA), N-aminoethylethanolamine (AEA), N-amino
  • examples of the alicyclic amine compound include piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 1-amino-4-methylpiperazine, N-methylpiperazine, 1-(2-amino Examples include at least one selected from ethyl)piperazine, hydroxyethylpiperazine, and piperazine-1,4-bisethanol, and among these, hydroxyethylpiperazine (HEP) is preferred.
  • the molecular weight of component D is preferably 60 or more and 500 or less, more preferably 60 or more and 300 or less, still more preferably 60 or more, from the viewpoint of improving the polishing rate without significantly increasing the amount of residual silica. It is 150 or less, and even more preferably 60 or more and 135 or less.
  • the content of component D in the polishing liquid composition of the present disclosure is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of improving the polishing rate without significantly increasing the amount of residual silica. , more preferably 0.03% by mass or more, and, from the same viewpoint, preferably 1% by mass or less, more preferably 0.5% by mass or less, even more preferably 0.3% by mass or less. More specifically, the content of component D in the polishing liquid composition of the present disclosure is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.01% by mass or more and 0.5% by mass or less. , more preferably 0.03% by mass or more and 0.3% by mass or less. When component D is a combination of two or more types, the content of component D refers to their total content.
  • the mass ratio D/A of the content of component D to the content of component A in the polishing liquid composition of the present disclosure is determined from the viewpoint of improving the polishing rate without significantly increasing the amount of residual silica. , preferably 0.00018 or more, more preferably 0.0018 or more, even more preferably 0.0054 or more, and from the same viewpoint, 0.18 or less is preferably 0.18 or less, more preferably 0.09 or less, 0.054 or less. is even more preferable. More specifically, the mass ratio D/A is preferably 0.00018 or more and 0.18 or less, more preferably 0.0018 or more and 0.09 or less, and even more preferably 0.0054 or more and 0.054 or less.
  • the polishing liquid composition of the present disclosure may contain other components as necessary.
  • Other components include corrosion inhibitors, thickeners, dispersants, rust preventives, basic substances, surfactants, water-soluble polymers, and the like.
  • the other components are preferably contained in the polishing liquid composition within a range that does not impair the effects of the present disclosure.
  • the content of the other components in the polishing liquid composition of the present disclosure is preferably 0% by mass or more, more preferably more than 0% by mass, and further preferably 0.1% by mass or more.
  • the content is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • it is preferably from 0% by mass to 10% by mass, more preferably from more than 0% by mass to 10% by mass, even more preferably from 0.1% by mass to 10% by mass, and from 0.1% by mass to 5% by mass. It is more preferably less than % by mass.
  • the polishing liquid composition of the present disclosure preferably does not substantially contain alumina abrasive grains from the viewpoint of reducing protrusion defects.
  • substantially not containing alumina abrasive grains means, in one or more embodiments, not containing alumina particles, not containing alumina particles in an amount that functions as abrasive grains, or not containing alumina particles in an amount that functions as abrasive grains, or polishing results. and not containing alumina particles in an amount that affects the amount of alumina particles.
  • the content of alumina abrasive grains in the polishing liquid composition of the present disclosure is preferably 5% by mass or less, and 2% by mass or less from the viewpoint of reducing protrusion defects. More preferably 1% by mass or less, still more preferably 0.1% by mass or less, even more preferably 0.05% by mass or less, even more preferably 0.02% by mass or less, even more preferably substantially 0% by mass. . Further, in one or more embodiments, the content of alumina particles in the polishing liquid composition of the present disclosure is preferably 2% by mass or less, and 1% by mass or less with respect to the total amount of abrasive grains in the polishing liquid composition. It is more preferably 0.5% by mass or less, even more preferably substantially 0% by mass.
  • the pH of the polishing liquid composition of the present disclosure is preferably 0.5 or higher, more preferably 0.7 or higher, even more preferably 0.9 or higher, and even more preferably 1 or higher, and From the viewpoint of maintaining the polishing rate, it is preferably 9 or less, more preferably 6 or less, even more preferably 4 or less, even more preferably 3 or less, even more preferably 2.5 or less, and even more preferably 2 or less. More specifically, the pH of the polishing liquid composition of the present disclosure is preferably 0.5 or more and 9 or less, more preferably 0.5 or more and 6 or less, even more preferably 0.7 or more and 4 or less, and 1 or more and 3 or less.
  • the pH can be adjusted using the above-mentioned acid (component B) or a known pH adjuster.
  • the above pH is the pH of the polishing liquid composition at 25° C., and can be measured using a pH meter, preferably the value obtained 2 minutes after immersing the electrode of the pH meter in the polishing liquid composition.
  • the polishing liquid composition of the present disclosure can be produced, for example, by blending component A, an aqueous medium, and optional components (component B, component C, component D, and other components) by a known method. Therefore, in one embodiment, the present disclosure relates to a method for producing a polishing liquid composition, which includes a step of blending at least component A and an aqueous medium.
  • "blending" includes mixing component A, an aqueous medium, and optional components (component B, component C, component D, and other components) simultaneously or in any order.
  • the blending can be performed using a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill.
  • a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill.
  • the preferred content of each component in the method for producing a silica slurry and polishing liquid composition can be the same as the preferred content of each component in the polishing liquid composition according to the present disclosure described above.
  • the content of each component in the polishing liquid composition refers to the content of each of the components at the time of use, that is, at the time when the polishing liquid composition starts to be used for polishing.
  • the polishing liquid composition of the present disclosure may be stored and supplied in a concentrated state as long as its storage stability is not impaired. This case is preferable in that manufacturing and transportation costs can be further reduced.
  • the concentrate of the polishing liquid composition of the present disclosure may be appropriately diluted with the above-mentioned water as necessary at the time of use.
  • the present disclosure provides a polishing liquid kit for manufacturing the polishing liquid composition of the present disclosure, the kit comprising a container containing a silica dispersion containing component A and an aqueous medium. , relates to a polishing liquid kit (hereinafter also referred to as "polishing liquid kit of the present disclosure").
  • the polishing liquid kit according to the present disclosure may further include an additive aqueous solution containing at least one selected from component B, component C, and component D, which is housed in a container separate from the container-packed silica dispersion. can.
  • the polishing liquid kit of the present disclosure includes, for example, a silica dispersion (slurry) containing component A and an aqueous medium, and optionally additives containing component B, component C, and component D.
  • Examples include polishing liquid kits (two-component polishing liquid compositions) that contain an aqueous solution in an unmixed state, which are mixed at the time of use, and diluted with an aqueous medium as necessary.
  • the aqueous medium contained in the silica dispersion may be the entire amount or a portion of the aqueous medium used for preparing the polishing liquid composition.
  • the silica dispersion liquid and the additive aqueous solution may each contain the other components mentioned above as necessary.
  • the substrate to be polished is a substrate used for manufacturing a magnetic disk substrate, and includes, for example, an aluminum alloy substrate plated with Ni--P.
  • Ni--P plated aluminum alloy substrate refers to an aluminum alloy base material whose surface is ground and then subjected to electroless Ni--P plating.
  • a magnetic disk substrate can be manufactured by performing a step of forming a magnetic layer on the surface of the substrate by sputtering or the like.
  • the shape of the substrate to be polished includes, for example, a shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, and a shape having a curved surface portion such as a lens.
  • the shape of the substrate to be polished is a disk shape. be.
  • its outer diameter is, for example, 10 to 120 mm
  • its thickness is, for example, 0.5 to 2 mm.
  • magnetic disks are manufactured by subjecting a polished substrate that has undergone a grinding process to a rough polishing process, a final polishing process, and a magnetic layer forming process.
  • the polishing liquid composition of the present disclosure is preferably used for polishing in a rough polishing step.
  • the polishing liquid composition of the present disclosure is a polishing liquid composition for magnetic disk substrates.
  • the present disclosure provides a method for reducing silica residue on a substrate after polishing, the method comprising polishing a substrate to be polished using the polishing liquid composition of the present disclosure (hereinafter referred to as (also referred to as "method for reducing silica residue of the present disclosure").
  • the substrate to be polished in the method for reducing silica residue of the present disclosure include the substrate to be polished described above.
  • the method for reducing silica residue of the present disclosure may further include selecting silica particles A (component A) contained in the polishing liquid composition of the present disclosure.
  • the method for reducing silica residue of the present disclosure includes selecting silica particles A (component A), and polishing liquid of the present disclosure containing the selected silica particles A (component A).
  • the present invention relates to a method for reducing silica residue, which includes polishing a substrate to be polished using a composition.
  • the abrasive grains have an ignition loss of 4% or less on a dry basis, and a cumulative frequency of 90% from the small particle size side in the particle size distribution in terms of weight obtained by centrifugal sedimentation.
  • the present invention relates to a method for reducing silica residue, including: Examples of the silica particles in the method for reducing silica residue of this embodiment include the above-mentioned silica particles A (component A).
  • polishing liquid composition in the silica residue reduction method of this embodiment examples include the polishing liquid composition of the present disclosure described above. According to the silica residue reduction method of the present disclosure, by using the polishing liquid composition of the present disclosure, the polishing rate can be improved without significantly increasing the silica residue in one or more embodiments. Furthermore, in one or more embodiments, the amount of silica remaining on the surface of the substrate after polishing can be reduced while maintaining the polishing rate.
  • the specific polishing method and conditions can be the same as in the substrate manufacturing method of the present disclosure, which will be described later.
  • the present disclosure includes polishing a substrate to be polished using the polishing liquid composition of the present disclosure, the substrate to be polished being a substrate used for manufacturing a magnetic disk substrate, a method for polishing a substrate. (hereinafter also referred to as "polishing method of the present disclosure").
  • polishing method of the present disclosure examples include the substrate to be polished described above.
  • the polishing method of the present disclosure can be used, for example, in a rough polishing step. According to the polishing method of the present disclosure, by using the polishing liquid composition of the present disclosure, in one or more embodiments, the polishing rate can be improved without significantly increasing the amount of residual silica.
  • polishing method of the present disclosure in one or more embodiments, it is possible to reduce the amount of silica remaining on the substrate surface after polishing while maintaining the polishing rate. Therefore, the productivity of substrates (for example, magnetic disk substrates) with improved substrate quality can be improved.
  • substrates for example, magnetic disk substrates
  • the specific polishing method and conditions can be the same as in the substrate manufacturing method of the present disclosure, which will be described later.
  • the present disclosure provides a method for manufacturing a magnetic disk substrate (hereinafter referred to as "the present invention"), which includes a polishing step (hereinafter also referred to as “polishing step”) of polishing a substrate to be polished using the polishing liquid composition of the present disclosure. (Also referred to as "Disclosed Substrate Manufacturing Method”).
  • the polishing step in the substrate manufacturing method of the present disclosure is, for example, a rough polishing step.
  • the substrate manufacturing method of the present disclosure may further include a step of selecting silica particles A (component A) contained in the polishing liquid composition of the present disclosure.
  • the substrate manufacturing method of the present disclosure includes a step of selecting silica particles A (component A), and a polishing liquid composition of the present disclosure containing the selected silica particles A (component A).
  • the present invention relates to a method for manufacturing a magnetic disk substrate, including a step of polishing a substrate to be polished using a material.
  • the abrasive grains have an ignition loss of 4% or less on a dry basis, and a cumulative frequency of 90% from the small particle size side in the particle size distribution in terms of weight obtained by centrifugal sedimentation.
  • the present invention relates to a method of manufacturing a magnetic disk substrate, including: Examples of the silica particles in the method for manufacturing a magnetic disk substrate of this embodiment include the above-mentioned silica particles (component A). Examples of the polishing liquid composition in the method of manufacturing a magnetic disk substrate of this embodiment include the polishing liquid composition of the present disclosure described above.
  • the substrate to be polished is sandwiched between surface plates to which a polishing pad is attached, the polishing liquid composition of the present disclosure is supplied to the polishing surface, and the polishing pad and the substrate to be polished are moved while applying pressure. , the substrate to be polished can be polished.
  • the polishing load in the polishing step is preferably 3 kPa or more, more preferably 5 kPa or more, even more preferably 7 kPa or more, and preferably 30 kPa or less, more preferably 25 kPa or less, from the viewpoint of maintaining the polishing rate and reducing short wavelength waviness. , 20 kPa or less is more preferable. More specifically, the polishing load is preferably 3 kPa or more and 30 kPa or less, more preferably 5 kPa or more and 25 kPa or less, and even more preferably 7 kPa or more and 20 kPa or less.
  • polishing load refers to the pressure of a surface plate applied to the surface to be polished of the substrate to be polished during polishing. The polishing load can be adjusted by applying air pressure or weight to the surface plate, substrate, or the like.
  • the polishing amount per 1 cm 2 of the substrate to be polished is preferably 0.2 mg or more, more preferably 0.3 mg or more, and still more preferably 0.4 mg or more, from the viewpoint of maintaining the polishing rate and reducing short wavelength waviness.
  • the amount is preferably 2.5 mg or less, more preferably 2 mg or less, and even more preferably 1.6 mg or less. More specifically, the amount of polishing per 1 cm 2 of the substrate to be polished is preferably 0.2 mg or more and 2.5 mg or less, more preferably 0.3 mg or more and 2 mg or less, and even more preferably 0.4 mg or more and 1.6 mg or less.
  • the supply rate of the polishing liquid composition per 1 cm 2 of the substrate to be polished in the polishing step is preferably 2.5 mL/min or less, more preferably 2 mL/min or less, and 1.5 mL/min or less from an economical point of view. More preferably, from the viewpoint of improving the polishing rate, the rate is preferably 0.01 mL/min or more, more preferably 0.03 mL/min or more, and even more preferably 0.05 mL/min or more. More specifically, the supply rate of the polishing liquid composition per 1 cm 2 of the substrate to be polished is preferably 0.01 mL/min or more and 2.5 mL/min or less, more preferably 0.03 mL/min or more and 2 mL/min or less. , more preferably 0.05 mL/min or more and 1.5 mL/min or less.
  • Examples of a method for supplying the polishing liquid composition of the present disclosure to a polishing machine include a method of continuously supplying it using a pump or the like.
  • a method for supplying the polishing liquid composition to the polishing machine in addition to supplying it as a single liquid containing all the components, it is also possible to divide it into multiple component liquids in consideration of the storage stability of the polishing liquid composition. , it is also possible to supply two or more liquids. In the latter case, the plurality of compounding component liquids are mixed, for example, in the supply piping or on the substrate to be polished, to form the polishing liquid composition of the present disclosure.
  • the polishing rate can be improved without significantly increasing the amount of residual silica. Further, according to the substrate manufacturing method of the present disclosure, in one or more embodiments, the amount of silica remaining on the substrate surface after polishing can be reduced while maintaining the polishing rate. Therefore, it is possible to efficiently manufacture a substrate (for example, a magnetic disk substrate) with improved substrate quality.
  • polishing liquid compositions of Examples 1 to 5 and Comparative Examples 1 to 2 shown in Table 1 are prepared by mixing silica particles (component A or non-component A), acid (component B), oxidizing agent (component C), and water. was prepared.
  • the content (effective content) of each component in the polishing liquid composition is as follows: silica particles (component A): 5.5% by mass, acid (component B): 1.6% by mass, oxidizing agent (component C): 1 It was expressed as mass%.
  • the water content is the remainder after removing component A, component B, and component C.
  • the polishing liquid compositions of Examples 1 to 5 and Comparative Examples 1 to 2 do not contain alumina abrasive grains.
  • the silica particles (component A) used as the abrasive grains were manufactured by the water glass method.
  • the pH of the polishing liquid compositions of Examples 1 to 5 and Comparative Examples 1 to 2 was 1.5. The pH was measured at 25° C. using a pH meter (manufactured by Toa DKK Co., Ltd.), and the value obtained 2 minutes after immersing the electrode in the polishing liquid composition was adopted.
  • Polishing liquid compositions of Examples 6 to 10 shown in Table 2 were prepared by mixing silica particles (component A or non-component A), acid (component B), oxidizing agent (component C), nitrogen-containing compound (component D), and water. I prepared something.
  • the content (effective content) of each component in the polishing liquid compositions of Examples 6 to 10 was as follows: silica particles (component A or non-component A): 5.5% by mass, acid (component B): 1.6% by mass. %, oxidizing agent (component C): 1.0% by mass, and nitrogen-containing compound (component D): 0.1% by mass.
  • the water content in the polishing liquid compositions of Examples 6 to 10 is the remainder after removing component A or non-component A, component B, component C, and component D.
  • the polishing liquid compositions of Examples 6 to 10 do not contain alumina abrasive grains.
  • the silica particles (component A) used as the abrasive grains were manufactured by the water glass method.
  • the pH of the polishing liquid compositions of Examples 6 to 10 was 1.5. The pH was measured at 25° C. using a pH meter (manufactured by Toa DKK Co., Ltd.), and the value obtained 2 minutes after immersing the electrode in the polishing liquid composition was adopted.
  • ⁇ Silica particles (component A or non-component A)> Preparation of silica particles A1 to A5
  • Particle size is determined by intermittently dropping 7 kg of an acidic silicate solution adjusted to a silica concentration of 5% to 500 g of a metal silicate aqueous solution adjusted to a pH of 10 to 12 and a silica concentration of 2% over a period of 1 to 24 hours. increase (build up). At this time, by adjusting the dropping rate, silicic acid concentration, reaction temperature, pressure, pH, etc.
  • silica abrasive grains having silanol groups in a desired range can be obtained.
  • silica abrasive grains having silanol groups in a desired range can be obtained.
  • Silica particles A1 to A5 shown below were prepared by the above manufacturing method.
  • A1 Non-spherical silica particles [colloidal silica (water glass method), aspect ratio 1.11, average secondary particle diameter 143 nm]
  • A2 Non-spherical silica particles [colloidal silica (water glass method), aspect ratio 1.19, average secondary particle diameter 221 nm]
  • A3 Non-spherical silica particles [colloidal silica (water glass method), aspect ratio 1.09, average secondary particle diameter 160 nm]
  • A4 Non-spherical silica particles [colloidal silica (water glass method), aspect ratio 1.11, average secondary particle diameter 162 nm]
  • A5 Non-spherical silica particles [colloidal silica (water glass method), aspect ratio 1.12, average secondary particle diameter 142 nm]
  • Example 3 non-spherical silica particles A1 (aspect ratio 1.11, average secondary particle diameter 143 nm, loss on ignition 2.02%) and spherical colloidal silica SCS
  • A1/SCS1 70/30 (mixed silica, aspect ratio 1.06, average secondary particle diameter 133 nm, loss on ignition 3.24%) ) was used as the silica abrasive grain.
  • A6 Non-spherical silica particles [precipitation method silica, Nipsil E-743 manufactured by Tosoh Silica Co., Ltd.
  • the particle sizes at which the cumulative frequency from the small diameter side is 10%, 50%, and 90% in the weight-based particle size distribution obtained by centrifugal sedimentation were defined as D10, D50, and D90, respectively.
  • Refractive index of solvent 1.3592 (18%, 34°C) Measurement temperature: 15-45°C Measurement time: 3-420 minutes
  • Example 3 [Method for measuring particle diameter D50 (average secondary particle diameter) of silica particles by DLS measurement] Silica particles were mixed with phosphoric acid and ion-exchanged water to prepare a 1% by mass silica particle dispersion.
  • Example 3 mixed silica
  • the mass ratio of non-spherical silica particles A1 and spherical silica particles SCS1 was 70/30.
  • the prepared 1% by mass silica particle dispersion was placed in the following measuring device and measured under the following conditions. In the obtained particle size distribution, the particle size at which the cumulative volume frequency from the small diameter side is 50% was defined as D50.
  • D50 by DLS was taken as the average secondary particle diameter (volume average particle diameter) of silica particles.
  • the average aspect ratio in the case of the mixed silica of Example 3 was determined by blending so that the mass ratio of non-spherical silica particles A1 and spherical silica particles SCS1 was 70/30, and then drying and performing TEM observation. It was calculated using the short axis to long axis ratio in the analysis.
  • Example 3 the mass ratio of non-spherical silica particles A1 and spherical silica particles SCS1 was 70/30.
  • polishing of Substrate Using the prepared polishing liquid compositions of Examples 1 to 10 and Comparative Examples 1 to 2, a substrate to be polished was polished under the following polishing conditions.
  • Polishing machine Double-sided polishing machine (9B type double-sided polishing machine, manufactured by Speed Fam)
  • Substrate to be polished Ni-P plated aluminum alloy substrate, thickness 0.8 mm, diameter 95 mm, number of 10 pieces
  • Polishing liquid Polishing liquid composition
  • Polishing pad Suede type (foam layer: polyurethane elastomer, thickness 1.0 mm, Average pore diameter 30 ⁇ m, surface layer compressibility 2.5%, manufactured by Filwel)
  • Surface plate rotation speed 40 rpm
  • Polishing load 9.8kPa (set value)
  • Polishing liquid supply amount 100mL/min Supply rate per 1 cm 2 of substrate to be polished 0.8 mL/min
  • Polishing time 5 minutes
  • the polishing liquid compositions of Examples 6 to 10 containing predetermined silica particles (component A) and a specific nitrogen-containing compound (component D) were compared with those containing no component A or component D. It was found that, compared to the polishing liquid compositions of Examples 1 and 2, it was possible to reduce silica residue while maintaining the polishing rate. Furthermore, the polishing liquid compositions of Examples 6 to 10 containing component A and component D can reduce silica residue more than the polishing liquid composition of Example 4, which contains component A and does not contain component D. Understood.
  • the polishing rate can be improved without significantly increasing the amount of silica remaining, and in another aspect, the amount of silica remaining on the substrate surface after polishing can be reduced while maintaining the polishing rate. , the productivity of substrates with improved substrate quality can be improved.
  • the present disclosure can be suitably used for manufacturing a magnetic disk substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本開示は、一態様において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減できる研磨液組成物を提供する。 一態様において、シリカ粒子、及び水系媒体を含有し、前記シリカ粒子は、乾燥重量基準での強熱減量が4%以下であり、前記シリカ粒子は、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたとき、D90が140nm以上600nm以下である、研磨液組成物に関する。

Description

研磨液組成物
 本開示は、研磨液組成物、磁気ディスク基板の製造方法、及び、基板の研磨方法に関する。
 近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化のためには、単位記録面積を縮小し、弱くなった磁気信号の検出感度を向上させる必要がある。そのため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。
 このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、磁気ディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、平滑性という要求を満たすために、コロイダルシリカ粒子を含む研磨剤が使用され、生産性向上の観点から、アルミナ粒子を砥粒として含む研磨液組成物が使用される。しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりによって、磁気ディスク基板や、磁気ディスク基板に磁性層が施された磁気ディスクの欠陥を引き起こすことがある。
 そこで、例えば、特開2017-19978号公報(特許文献1)及び特開2021-175774号公報(特許文献2)には、アルミナ粒子を含まず、シリカ粒子を砥粒として含有する研磨液組成物が提案されている。
 本開示は、一態様において、シリカ粒子、及び水系媒体を含有し、前記シリカ粒子は、乾燥重量基準での強熱減量が4%以下であり、前記シリカ粒子は、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたとき、D90が140nm以上600nm以下である、研磨液組成物に関する。
 本開示は、一態様において、本開示の研磨液組成物を用いて被研磨基板を研磨する研磨工程を含む、磁気ディスク基板の製造方法に関する。
 本開示は、一態様において、本開示の研磨液組成物を用いて被研磨基板を研磨することを含み、被研磨基板が、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法に関する。
 本開示は、一態様において、研磨後の基板のシリカ残りを低減する方法であって、本開示の研磨液組成物を用いて被研磨基板を研磨することを含む、シリカ残り低減方法に関する。
 本開示は、一態様において、砥粒として、乾燥重量基準での強熱減量が4%以下であり、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたときD90が140nm以上600nm以下であるシリカ粒子を選択する工程、及び、前記シリカ粒子及び水系媒体を含有する研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法に関する。
図1は、金平糖型コロイダルシリカ砥粒の透過型電子顕微鏡(以下、「TEM」ともいう)観察写真の一例である。 図2は、異形型コロイダルシリカ砥粒のTEM観察写真の一例である。
 近年の磁気ディスクドライブの高記録密度化にともない高速回転する基板上の数nmに読取用ヘッドが位置するようになった。読取用ヘッドの低位置化に伴うドライブの故障が発生している。
 本発明者らが検討した結果、研磨後の基板表面に残留したシリカ粒子(以下、「シリカ残り」ともいう)が、ドライブの故障の一因であることが見いだされた。また、シリカ残りの量は、砥粒であるシリカ粒子の大きさと相関することも見いだされた。
 シリカ残りは、シリカ砥粒の粒子径を小さくすれば減らすことができる。しかし、砥粒の粒子径を小さくすると研磨速度も低下してしまう。
 そこで、本開示は、一態様において、シリカ残りを大きく増やすことなく、研磨速度を向上できる研磨液組成物を提供する。また、本開示は、その他の一態様において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減できる研磨液組成物を提供する。
 本開示によれば、一態様において、シリカ残りを大きく増やすことなく、研磨速度を向上できる研磨液組成物を提供できる。また、本開示は、その他の一態様において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減できる研磨液組成物を提供できる。
 研磨後の基板表面に残留したシリカ粒子(シリカ残り)は、その測定に手間がかかり、研磨後の基板表面の品質評価項目として認識されることは少なく、また、ドライブ故障の原因であるとは認識されていなかった。なお、従来技術において課題とされた「シリカ残留物」は、傷へのはまり込みや突き刺さりといった物理的な欠陥であり、簡易洗浄によるモデル試験や電子顕微鏡により比較的容易に検出可能であるという点で、本開示における「シリカ残り」とは課題や効果が異なるものである。
 特許文献1では、一般的に表面硬度が高い熱処理シリカを用いているため、基板表面の凹み欠陥や突き刺さりが多い傾向にあるという課題があった。また、特許文献2では、高い研磨速度と優れた基板面質を両立しているが、基板の生産性向上という点で更なる研磨速度の向上が望まれていた。しかし、特許文献1及び2には、シリカ残りを低減するという課題はない。
 本開示は、一態様において、シリカ残りの量が、所定の粒度分布を有するシリカ砥粒の強熱減量と相関するという知見に基づく。
 すなわち、本開示は、一態様において、シリカ粒子、及び水系媒体を含有し、前記シリカ粒子は、乾燥重量基準での強熱減量が4%以下であり、前記シリカ粒子は、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたとき、D90が140nm以上600nm以下である、研磨液組成物(以下、「本開示の研磨液組成物」ともいう)に関する。
 本開示の効果発現のメカニズムは明らかではないか、以下のように推察される。
 本発明者らが検討した結果、ドライブの故障につながるシリカ残りは、大径粒子割合を意味するD90が関与していると考えられる。大径粒子は研磨荷重を被研磨基板へ伝える力が大きいため、基板へ残り易くなる。しかし、D90を小さくするだけでは研磨速度が低下し、トレードオフの関係となる。また、シリカ残りの別の要因として、シリカ粒子のシラノール基と基板表面との水素結合が関与していると考えられる。しかし、シリカ残りの量は、シリカ砥粒の「シラノール基密度」とはシリカ砥粒の強熱減量に比べて弱い相関しか示さない。シリカ残りの量と強熱減量との相関関係にはさらなるメカニズムが関与していると思われる。
 シラノール基密度は一般的に滴定法により求められており、最表面のシラノール基のみが検出されている。一方で強熱減量は粒子内部も含めた全てのシラノール基を検出している。また研磨中は粒子に高荷重がかかっており、一部粒子は崩壊し内部シラノール基が露出していると考えられる。この内部シラノール基も基板への残留に関与すると考えられるため、強熱減量とシリカ残りに高い相関があるものと考えられる。
 但し、本開示はこれらのメカニズムに限定して解釈されなくてもよい。
[シリカ粒子A(成分A)]
 本開示の研磨液組成物は、砥粒として、シリカ粒子A(以下、「成分A」ともいう)を含有する。シリカ粒子A(成分A)は、一又は複数の実施形態において、乾燥重量基準での強熱減量が4%以下であり、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたときD90が140nm以上600nm以下であるシリカ粒子である。成分Aの使用形態としては、スラリー状の研磨液成分であることが好ましい。成分Aは、1種単独で用いてもよいし、2種以上を併用してもよい。
 成分Aの遠心沈降法による重量換算での粒子径D10は、研磨速度維持の観点から、50nm以上が好ましく、52nm以上がより好ましく、53nm以上が更に好ましく、そして、基板面質の観点から、120nm以下が好ましく、100nm以下がより好ましく、60nm以下が更に好ましい。より具体的には、成分Aの遠心沈降法による粒子径D10は、50nm以上120nm以下であって、52nm以上100nm以下がより好ましく、53nm以上60nm以下が更に好ましい。
 成分Aの遠心沈降法による重量換算での粒子径D50は、研磨速度維持の観点から、80nm以上が好ましく、85nm以上がより好ましく、90nm以上が更に好ましく、93nm以上が更に好ましく、そして、基板面質の観点から、340nm以下が好ましく、200nm以下がより好ましく、110nm以下が更に好ましく、100nm以下が更に好ましい。より具体的には、成分Aの遠心沈降法による粒子径D50は、80nm以上340nm以下であって、85nm以上200nm以下がより好ましく、90nm以上110nm以下が更に好ましく、90nm以上100nm以下が更に好ましく、93nm以上100nm以下が更に好ましい。
 成分Aの遠心沈降法による重量換算での粒子径D90は、一又は複数の実施形態において、研磨速度維持の観点から、140nm以上であって、150nm以上が好ましく、160nm以上がより好ましく、170nm以上が更に好ましく、そして、シリカ残り低減の観点から、600nm以下であって、500nm以下がより好ましく、400nm以下が好ましく、250nm以下が更に好ましく、200nm以下がより好ましく、190nm以下が更に好ましい。より具体的には、成分Aの遠心沈降法による粒子径D90は、140nm以上600nm以下であって、150nm以上500nm以下がより好ましく、150nm以上400nm以下が好ましく、160nm以上400nm以下がより好ましく、170nm以上250nm以下がより好ましく、160nm以上200nm以下がより好ましく、170nm以上190nm以下が更に好ましい。
 本開示において、D10、D50及びD90とはそれぞれ、遠心沈降法により得られる重量換算での粒度分布において小径側からの累積頻度が10%、50%、及び 90%となる粒径をいう。本開示において、遠心沈降法は、一又は複数の実施形態において、粒子を沈降速度差によってサイズごとに分級して検出する方法(ディスク遠心沈降光透過法)である。遠心沈降法による粒度分布は、例えば、ディスク遠心式粒子径分布測定装置(CPS Disc Centrifuge)を用いて測定できる。以下の説明において、遠心沈降法による粒度分布は「CPS測定による粒度分布」ということもある。具体的には、実施例に記載の測定方法により算出できる。
 成分Aの遠心沈降法による粒径分布を調整する方法としては、例えば、シリカ粒子の成長過程において、粒子成長時間、粒子温度、粒子濃度等を調整する方法が挙げられる。成分Aの遠心沈降法による粒径分布を調整する方法の他の実施形態としては、例えば、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法、異なる粒径分布を有する2種類以上のシリカ粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。
 成分Aの平均二次粒子径は、一又は複数の実施形態において、研磨速度維持の観点から、100nm以上が好ましく、110nm以上がより好ましく、130nm以上が更に好ましく、そして、基板面質の観点から、340nm以下が好ましく、200nm以下がより好ましく、180nm以下が更に好ましく、140nm以下が更に好ましい。より具体的には、成分Aの平均二次粒子径は、100nm以上340nm以下が好ましく、110nm以上200nm以下がより好ましく、130nm以上180nm以下が更に好ましく、130nm以上140nm以下が更に好ましい。
 本開示において、成分Aの平均二次粒子径とは、動的光散乱法により測定される散乱強度分布に基づく平均粒径をいう。本開示において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の体積換算の粒径分布のことをいう。本開示における成分Aの平均二次粒子径は、具体的には実施例に記載の方法により得ることができる。
 成分Aの乾燥重量基準での強熱減量は、一又は複数の実施形態において、シリカ残り低減の観点から、4%以下であって、3.6%以下が好ましく、3.5%以下がより好ましく、3.4%以下がより好ましく、3.3%以下が更に好ましく、そして、保存安定性の観点から、0%以上が好ましく、1%以上がより好ましく、2%以上が更に好ましい。より具体的には、成分Aの乾燥重量基準での強熱減量は、0%以上3.6%以下が好ましく、1%以上3.4%以下がより好ましく、1%以上3.5%以下がより好ましく、2%以上3.4%以下が更に好ましく、2%以上3.3%以下が更に好ましい。
 本開示において、乾燥重量基準での強熱減量WLは、一又は複数の実施形態において、シリカ粒子を水と混合したシリカスラリーを105℃から200℃の間の温度で水分蒸発による試料の重量変動が無くなるまで十分に乾燥させた試料を準備し、静置して常温(20~25℃)に戻した後、シリカ粒子の常温での水分吸着量を測定するため、再度105℃から200℃の間の温度で試料の重量変動が無くなるまで十分に乾燥させたときの乾燥減量LOD(重量%)と、脱水縮合によるシラノール基の脱離を行うため、試料を800℃以上の温度で加熱処理したあとの強熱減量LOI(重量%)とを測定し、下記式から算出される値である。具体的には、実施例に記載の方法により算出できる。乾燥重量基準での強熱減量WLが少ないほど、砥粒1g中に含まれる総シラノール基数が少ないと評価できる。
乾燥重量基準での強熱減量WL=100×{1-(100-LOI)/(100-LOD)}
 LODを測定するための加熱温度は、十分な水分蒸発の観点から、105℃以上が好ましく、120℃以上がより好ましく、150℃以上が更に好ましく、そして、水分以外の成分は蒸発させないという観点から、200℃以下が好ましく、190℃以下がより好ましく、180℃以下が更に好ましい。より具体的には、LODを測定するための加熱温度は、105℃以上200℃以下が好ましく、120℃以上190℃以下がより好ましく、150℃以上180℃以下が更に好ましい。
 LOIを測定するための加熱温度は、十分なシラノール基脱離の観点から、800℃以上が好ましく、850℃以上がより好ましく、900℃以上が更に好ましく、そして、安全性の観点から、1200℃以下が好ましく、1150℃以下がより好ましく、1100℃以下が更に好ましい。より具体的には、LOIを測定するための加熱温度は、800℃以上1200℃以下が好ましく、850℃以上1150℃以下がより好ましく、900℃以上1100℃以下が更に好ましい。
 成分Aの強熱減量を調整する方法としては、例えば、シリカ粒子の成長過程において、ケイ酸液の滴下速度や反応温度、濃度を調整する方法等が挙げられる(例えば、特許6756422や特許5892882に記載の方法)。成分Aの強熱減量を調整する方法の他の実施形態としては、例えば、既存のシリカ粒子を熱処理、表面シラノール基の金属修飾、有機酸修飾、シランカップリング処理を施すことにより所望の強熱減量を調整する方法、異なる強熱減量を有する2種類以上のシリカ粒子を混合して所望の強熱減量を持たせる方法等が挙げられる。経済性及び製造容易性の観点から、成分Aの強熱減量を調整する方法としては、シリカ粒子の成長条件による制御が好ましく、ケイ酸液の濃度による制御がより好ましく、ケイ酸液の滴下速度による制御が更により好ましい。
 シリカ残りとの相関において「強熱減量」より強い相関を示す指標として、「成分Aの乾燥重量基準での強熱減量をWLとしたときの下記式(I)で表される値」が挙げられる。
{(WL)3×D90}/100   (I)
 上記式(I)で表される値を所定値以下とすることで、高いシリカ残り低減効果と良好な研磨速度とを両立可能である。
 成分Aの乾燥重量基準での強熱減量をWLとしたときの上記式(I)で表される値は、一又は複数の実施形態において、シリカ残り低減の観点から、150以下が好ましく、100以下がより好ましく、90以下が更に好ましく、85以下が更に好ましく、80以下が更に好ましく、そして、研磨速度維持及び保存安定性の観点から、10以上が好ましく、20以上がより好ましく、40以上又は60以上が更に好ましい。より具体的には、上記式(I)で表される値は、10以上150以下が好ましく、20以上100以下がより好ましく、40以上90以下が更に好ましく、40以上80以下又は60以上85以下が更に好ましい。
 成分Aとしては、コロイダルシリカ、湿式法シリカ(沈降法シリカ)、ヒュームドシリカ、粉砕シリカ、及びそれらを表面修飾したシリカ等が挙げられる。成分Aは、研磨速度維持及び入手容易性の観点から、コロイダルシリカ及び湿式法シリカから選ばれる少なくとも1種が好ましく、基板面質の観点から、鋭利な表面形状や局所的な表面高硬度部位が得られづらいコロイダルシリカがより好ましい。
 前記コロイダルシリカは、例えば、珪酸アルカリ水溶液を原料とした粒子成長による方法(以下、「水ガラス法」ともいう)、及び、アルコキシシランの加水分解物の縮合による方法(以下、「ゾルゲル法」)ともいう)により得たものが挙げられ、製造容易性及び経済性の観点から、好ましくは水ガラス法により得たものである。水ガラス法及びゾルゲル法により得られるシリカ粒子は、従来から公知の方法によって製造できる。
 前記沈降法シリカは、沈降法により得られるシリカ粒子である。沈降法シリカ粒子の製造方法としては、例えば、東ソー研究・技術報告 第45巻(2001)第65~69頁に記載の方法等の公知の方法が挙げられる。沈降法シリカ粒子の製造方法の具体例としては、例えば、珪酸ナトリウム等の珪酸塩と硫酸等の鉱酸との中和反応によりシリカ粒子を析出させる沈降法が挙げられる。前記中和反応を比較的高温でアルカリ性の条件で行うことが好ましく、これにより、シリカの一次粒子の成長が早く進行し、一次粒子がフロック状に凝集して沈降し、好ましくはこれをさらに粉砕することで、沈降法シリカ粒子が得られる。
 成分Aの形状は、非球状でも球状でもよい。研磨速度維持及び基板面質の観点から、成分Aは、一又は複数の実施形態において、球状シリカ粒子及び非球状シリカ粒子を含むこと(混合シリカ)が好ましい。
 本開示において、球状シリカ粒子の平均アスペクト比は、研磨速度維持の観点から、好ましくは1.00以上、より好ましくは1.02以上であり、そして、基板面質の観点から、好ましくは1.20以下、より好ましくは1.1以下、更に好ましくは1.06以下である。
 非球状シリカ粒子の平均アスペクト比は、研磨速度維持の観点から、好ましくは1.00以上、より好ましくは1.02以上、更に好ましくは1.05以上であり、そして、基板面質の観点から、好ましくは1.30以下、より好ましくは1.15以下、更に好ましくは1.10以下、更に好ましくは1.08以下である。
 平均アスペクト比とは、公知の走査型電子顕微鏡(SEM)および公知の画像解析システムを用いて、粒子の各々について求めた最小内接四角の長径/短径比の単純平均値である。
 成分Aが球状シリカ粒子及び非球状シリカ粒子を含む混合シリカである場合、混合シリカの平均アスペクト比の好ましい数値としては、上述した非球状シリカ粒子と同じ数値が挙げられる。混合シリカの平均アスペクト比は、例えば、実施例に記載の方法により算出できる。
 成分Aが非球状シリカ粒子を含む場合、非球状シリカ粒子の形状は、研磨速度維持及び基板面質の観点から、非球状シリカ粒子の二次粒子径よりも粒径が小さいシリカ粒子を前駆体粒子として、複数の前駆体粒子が、凝集又は融着した形状が挙げられる。非球状シリカ粒子の種類としては、例えば、金平糖型のシリカ粒子Aa、異形型のシリカ粒子Ab、及び、異形かつ金平糖型のシリカ粒子Acから選ばれる少なくとも1種が挙げられる。
 本開示において、金平糖型のシリカ粒子Aa(以下、「粒子Aa」ともいう)は、球状の粒子表面に特異な疣状突起を有するシリカ粒子をいう。粒子Aaは、好ましくは、最も大きい前駆体粒子a1と、粒径が前駆体粒子a1の1/5以下である1個以上の前駆体粒子a2とが、凝集又は融着した形状である。粒子Aaは、好ましくは粒径の小さい複数の前駆体粒子a2が粒径の大きな1個の前駆体粒子a1に一部埋没した状態である。粒子Aaは、例えば、特開2008-137822号公報に記載の方法により得ることができる。前駆体粒子の粒径は、TEM等による観察画像において1個の前駆体粒子内で測定される円相当径、すなわち、前駆体粒子の投影面積と同じ面積である円の長径として求めることができる。異形型のシリカ粒子Ab、及び、異形かつ金平糖型のシリカ粒子Acにおける前駆体粒子の粒径も同様に求めることができる。
 本開示において、異形型のシリカ粒子Ab(以下、「粒子Ab」ともいう)は、2個以上の前駆体粒子、好ましくは2個以上10個以下の前駆体粒子が凝集又は融着した形状のシリカ粒子をいう(図1参照)。粒子Abは、好ましくは、最も小さい前駆体粒子の粒径を基準にして、粒径が1.5倍以内の2個以上の前駆体粒子が、凝集又は融着した形状である。粒子Abは、例えば、特開2015-86102号公報に記載の方法により得ることができる。
 本開示において、異形かつ金平糖型のシリカ粒子Ac(以下、「粒子Ac」ともいう)は、前記粒子Abを前駆体粒子c1とし、最も大きい前駆体粒子c1と、粒径が前駆体粒子c1の1/5以下である1個以上の前駆体粒子c2とが、凝集又は融着した形状である。
 本開示の研磨液組成物中の成分Aの含有量は、一又は複数の実施形態において、研磨速度維持及び基板面質の観点から、SiO2換算で、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、1.5質量%以上又は2質量%以上が更により好ましく、そして、経済性の観点から、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がより好ましく、15質量%以下が更に好ましく、10質量%以下が更により好ましい。より具体的には、成分Aの含有量は、0.1質量%以上30質量%以下が好ましく、0.5質量%以上25質量%以下がより好ましく、0.5質量%以上20質量%以下がより好ましく、1質量%以上20質量%以下が更に好ましく、1質量%以上15質量%以下が更に好ましく、1.5質量%以上10質量%以下又は2質量%以上15質量%以下が更により好ましい。成分Aが2種以上のシリカ粒子からなる場合、成分Aの含有量はそれらの合計含有量をいう。
 本開示の研磨液組成物に含まれる成分Aが球状シリカ粒子と非球状シリカ粒子を含む場合、研磨速度維持及び基板面質の観点から、成分Aにおける球状シリカ粒子の割合は、10%以上が好ましく、20%以上がより好ましく、30%以上が更に好ましく、そして、100%未満が好ましく、80%以下がより好ましく、70%以下が更に好ましい。同様の観点から、成分Aにおける非球状シリカ粒子の割合は、90%以下が好ましく、80%以下がより好ましく、70%以下が更に好ましく、そして、0%超が好ましく、20%以上がより好ましく、30%以上が更に好ましい。
[水系媒体]
 本開示の研磨液組成物に含まれる水系媒体としては、蒸留水、イオン交換水、純水及び超純水等の水、又は、水と溶媒との混合溶媒等が挙げられる。上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が挙げられる。水系媒体が、水と溶媒との混合溶媒の場合、混合媒体全体に対する水の割合は、本開示の効果が妨げられない範囲であれば特に限定されなくてもよく、経済性の観点から、例えば、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましい。
 本開示の研磨液組成物中の水系媒体の含有量は、成分A及び必要に応じて配合される後述する任意成分(成分B、成分C、成分D、その他の成分)を除いた残余とすることができる。
[酸(成分B)]
 本開示の研磨液組成物は、研磨速度の更なる向上及び短波長うねりの更なる低減の観点から、酸(以下、「成分B」ともいう)を含有してもよい。本開示において、酸の使用は、酸及び/又はその塩の使用を含む。成分Bは、1種でもよいし、2種以上の組合せでもよい。
 成分Bとしては、例えば、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、ポリリン酸、アミド硫酸等の無機酸;有機リン酸、有機ホスホン酸等の有機酸;等が挙げられる。中でも、研磨速度の更なる向上及び短波長うねりの更なる低減の観点から、成分Bとしては、リン酸、硫酸及び1-ヒドロキシエチリデン-1,1-ジホスホン酸から選ばれる少なくとも1種が好ましく、硫酸及びリン酸から選ばれる少なくとも1種がより好ましく、リン酸が更に好ましい。これらの酸の塩としては、例えば、上記の酸と、金属、アンモニア及びアルキルアミンから選ばれる少なくとも1種との塩が挙げられる。上記金属の具体例としては、周期表の1~11族に属する金属が挙げられる。これらの中でも、研磨速度の更なる向上及び短波長うねりの更なる低減の観点から、上記の酸と、1族に属する金属又はアンモニアとの塩が好ましい。
 本開示の研磨液組成物が成分Bを含有する場合、本開示の研磨液組成物中の成分Bの含有量は、研磨速度の更なる向上及び短波長うねりの更なる低減の観点から、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.1質量%以上が更により好ましく、そして、同様の観点から、5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましく、2.5質量%以下が更により好ましい。より具体的には、成分Bの含有量は、0.001質量%以上5質量%以下が好ましく、0.01質量%以上4質量%以下がより好ましく、0.05質量%以上3質量%以下が更に好ましく、0.1質量%以上2.5質量%以下が更により好ましい。成分Bが2種以上の組合せである場合、成分Bの含有量はそれらの合計含有量をいう。
[酸化剤(成分C)]
 本開示の研磨液組成物は、研磨速度の更なる向上及び短波長うねりの更なる低減の観点から、酸化剤(以下、「成分C」ともいう)を含有してもよい。成分Cは、1種でもよいし、2種以上の組合せでもよい。
 成分Cとしては、同様の観点から、例えば、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、硝酸類、硫酸類等が挙げられる。これらの中でも、成分Cとしては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)から選ばれる少なくとも1種が好ましく、研磨速度向上の観点、被研磨基板の表面に金属イオンが付着しない観点及び入手容易性の観点から、過酸化水素がより好ましい。
 本開示の研磨液組成物が成分Cを含有する場合、本開示の研磨液組成物中の成分Cの含有量は、研磨速度の更なる向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、そして、研磨速度の更なる向上及び短波長うねりの更なる低減の観点から、4質量%以下が好ましく、2質量%以下がより好ましく、1.5質量%以下が更に好ましい。より具体的には、成分Cの含有量は、0.01質量%以上4質量%以下が好ましく、0.05質量%以上2質量%以下がより好ましく、0.1質量%以上1.5質量%以下が更に好ましい。成分Cが2種以上の組合せである場合、成分Cの含有量はそれらの合計含有量をいう。
 [窒素含有化合物(成分D)]
 本開示の研磨液組成物は、一又は複数の実施形態において、シリカ残りを大きく増やすことなく、研磨速度を向上する観点から、窒素含有化合物(以下、「成分D」ともいう)をさらに含有してもよい。成分Dは、一又は複数の実施形態において、分子内に4個以下の窒素原子を有する有機アミン化合物である。成分Dは、シリカ残りを大きく増やすことなく、研磨速度を向上する観点から、第1級から3級までのいずれかのアミノ基を有する1種又は2種以上の化合物であることが好ましい。成分Dは、一又は複数の実施形態において、臭気及び/又は沸点を考慮した作業性の観点から、ヒドロキシ基を有していてもよい。成分Dは、1種でもよいし、2種以上の組合せでもよい。窒素原子を有する有機アミン化合物を使用することにより、基板とシリカ砥粒の両者に上記有機アミン化合物が作用して研磨速度が向上できると考えられる。更に上記有機アミン化合物の分子内の窒素原子数を4個以下とすることで、基板にシリカ砥粒を引き付けすぎることなく、易洗浄性が保たれるためシリカ残りを大幅に悪化させないと考えられる。
 成分Dの分子内の窒素原子数は、シリカ残りを大きく増やすことなく、研磨速度を向上する観点から、1、2又は3個が好ましく、1又は2個がより好ましい。
 成分Dとしては、シリカ残りを大きく増やすことなく、研磨速度を向上する観点から、一又は複数の実施形態において、分子内に4個以下の窒素原子を有する脂肪族アミン化合物及び分子内に4個以下の窒素原子を有する脂環式アミン化合物から選ばれる少なくとも1種の化合物が挙げられる。
 前記脂肪族アミン化合物としては、同様の観点から、例えば、モノエタノールアミン、エチレンジアミン、N,N,N',N'-テトラメチルエチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、3-(ジエチルアミノ)プロピルアミン、3-(ジブチルアミノ)プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、N-アミノエチルエタノールアミン、N-(2-アミノエチル)ジエタノールアミン、N-アミノエチルイソプロパノールアミン、N-アミノエチル-N-メチルエタノールアミン、ジエチレントリアミン、及びトリエチレンテトラミンから選ばれる少なくとも1種が挙げられ、これらのなかでも、モノエタノールアミン(MEA)、N-アミノエチルエタノールアミン(AEA)、ジエチレントリアミン(DETA)、及びトリエチレンテトラミン(TETA)から選ばれる少なくとも1種が好ましい。
 前記脂環式アミン化合物としては、同様の観点から、例えば、ピペラジン、2-メチルピペラジン、2、5-ジメチルピペラジン、1-アミノ-4-メチルピペラジン、N-メチルピペラジン、1-(2-アミノエチル)ピペラジン、ヒドロキシエチルピペラジン、及びピペラジン-1,4-ビスエタノールから選ばれる少なくとも1種が挙げられ、これらのなかでも、ヒドロキシエチルピペラジン(HEP)が好ましい。
 成分Dの分子量は、一又は複数の実施形態において、シリカ残りを大きく増やすことなく、研磨速度を向上する観点から、60以上500以下が好ましく、より好ましくは60以上300以下、更に好ましくは60以上150以下、更により好ましくは60以上135以下である。
 本開示の研磨液組成物中の成分Dの含有量は、シリカ残りを大きく増やすことなく、研磨速度を向上する観点から、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.03質量%以上が更に好ましく、そして、同様の観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましい。より具体的には、本開示の研磨液組成物中の成分Dの含有量は、0.001質量%以上1質量%以下が好ましく、0.01質量%以上0.5質量%以下がより好ましく、0.03質量%以上0.3質量%以下が更に好ましい。成分Dが2種以上の組合せである場合、成分Dの含有量はそれらの合計含有量をいう。
 本開示の研磨液組成物における成分Aの含有量に対する成分Dの含有量の質量比D/Aは、一又は複数の実施形態において、シリカ残りを大きく増やすことなく、研磨速度を向上する観点から、0.00018以上が好ましく、0.0018以上がより好ましく、0.0054以上が更に好ましく、そして、同様の観点から、0.18以下が好ましく、0.09以下がより好ましく、0.054以下が更に好ましい。より具体的には、質量比D/Aは、0.00018以上0.18以下が好ましく、0.0018以上0.09以下がより好ましく、0.0054以上0.054以下が更に好ましい。
[その他の成分]
 本開示の研磨液組成物は、必要に応じてその他の成分を含有してもよい。その他の成分としては、腐食抑制剤、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤、水溶性高分子等が挙げられる。前記その他の成分は、本開示の効果を損なわない範囲で研磨液組成物中に含有されることが好ましい。その他の成分を含む場合には、本開示の研磨液組成物中の前記その他の成分の含有量は、0質量%以上が好ましく、0質量%超がより好ましく、0.1質量%以上が更に好ましく、そして、10質量%以下が好ましく、5質量%以下がより好ましい。より具体的には、0質量%以上10質量%以下が好ましく、0質量%超10質量%以下がより好ましく、0.1質量%以上10質量%以下が更に好ましく、0.1質量%以上5質量%以下が更に好ましい。
[アルミナ砥粒]
 本開示の研磨液組成物は、突起欠陥低減の観点から、アルミナ砥粒を実質的に含まないことが好ましい。本開示において「アルミナ砥粒を実質的に含まない」とは、一又は複数の実施形態において、アルミナ粒子を含まないこと、砥粒として機能する量のアルミナ粒子を含まないこと、又は、研磨結果に影響を与える量のアルミナ粒子を含まないこと、を含みうる。具体的には、本開示の研磨液組成物中のアルミナ砥粒の含有量は、一又は複数の実施形態において、突起欠陥の低減の観点から、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましく、0.1質量%以下が更に好ましく、0.05質量%以下が更に好ましく、0.02質量%以下が更に好ましく、実質的に0質量%が更に好ましい。また、本開示の研磨液組成物中のアルミナ粒子の含有量は、一又は複数の実施形態において、研磨液組成物中の砥粒全量に対し、2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましく、実質的に0質量%であることが更により好ましい。
[pH]
 本開示の研磨液組成物のpHは、基板面質の観点から、0.5以上が好ましく、0.7以上がより好ましく、0.9以上が更に好ましく、1以上が更により好ましく、そして、研磨速度維持の観点から、9以下が好ましく、6以下がより好ましく、4以下が更に好ましく、3以下が更に好ましく、2.5以下が更により好ましく、2以下が更により好ましい。より具体的には、本開示の研磨液組成物のpHは、0.5以上9以下が好ましく、0.5以上6以下がより好ましく、0.7以上4以下が更に好ましく、1以上3以下が更に好ましく、1以上2.5以下が更に好ましく、1以上2以下が更に好ましい。pHは、前述の酸(成分B)や公知のpH調整剤を用いて調整することができる。上記のpHは、25℃における研磨液組成物のpHであり、pHメータを用いて測定でき、好ましくは、pHメータの電極を研磨液組成物へ浸漬して2分後の数値である。
[研磨液組成物の製造方法]
 本開示の研磨液組成物は、例えば、成分A、水系媒体、及び必要に応じて任意成分(成分B、成分C、成分D及びその他の成分)を公知の方法で配合することにより製造できる。したがって、本開示は、一態様において、少なくとも成分A及び水系媒体を配合する工程を含む、研磨液組成物の製造方法に関する。本開示において「配合する」とは、成分A、水系媒体、及び必要に応じて任意成分(成分B、成分C、成分D及びその他の成分)を同時に又は任意の順に混合することを含む。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。シリカスラリー及び研磨液組成物の製造方法における各成分の好ましい配合量は、上述した本開示に係る研磨液組成物中の各成分の好ましい含有量と同じとすることができる。
 本開示において「研磨液組成物中の各成分の含有量」とは、使用時、すなわち、研磨液組成物の研磨への使用を開始する時点における前記各成分の含有量をいう。
 本開示の研磨液組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造及び輸送コストをさらに低くできる点で好ましい。本開示の研磨液組成物の濃縮物は、使用時に、必要に応じて前述の水で適宜希釈して使用すればよい。
[研磨液キット]
 本開示は、一態様において、本開示の研磨液組成物を製造するための研磨液キットであって、成分A及び水系媒体を含むシリカ分散液が容器に収容された容器入りシリカ分散液を含む、研磨液キット(以下、「本開示の研磨液キット」ともいう)に関する。本開示に係る研磨液キットは、前記容器入りシリカ分散液とは別の容器に収納された、成分B、成分C、及び成分Dから選ばれる少なくとも1種を含む添加剤水溶液をさらに含むことができる。本開示によれば、一又は複数の実施形態において、シリカ残りを大きく増やすことなく、研磨速度を向上可能な研磨液組成物を得ることができる。また、その他の一又は複数の実施形態において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減可能な研磨液組成物を得ることができる。
 本開示の研磨液キットとしては、一又は複数の実施形態において、例えば、成分A及び水系媒体を含むシリカ分散液(スラリー)と、必要に応じて成分B、成分C及び成分Dを含む添加剤水溶液とを相互に混合されない状態で含み、これらが使用時に混合され、必要に応じて水系媒体を用いて希釈される研磨液キット(2液型研磨液組成物)が挙げられる。シリカ分散液に含まれる水系媒体は、研磨液組成物の調製に使用する水系媒体の全量でもよいし、一部でもよい。前記シリカ分散液及び前記添加剤水溶液にはそれぞれ必要に応じて上述したその他の成分が含まれていてもよい。
[被研磨基板]
 被研磨基板は、一又は複数の実施形態において、磁気ディスク基板の製造に用いられる基板であり、例えば、Ni-Pメッキされたアルミニウム合金基板が挙げられる。本開示において「Ni-Pメッキされたアルミニウム合金基板」とは、アルミニウム合金基材の表面を研削後、無電解Ni-Pメッキ処理したものをいう。被研磨基板の表面を本開示の研磨液組成物を用いて研磨する工程の後、スパッタ等でその基板表面に磁性層を形成する工程を行うことにより磁気ディスク基板を製造できる。被研磨基板の形状は、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が挙げられ、好ましくはディスク状の被研磨基板である。ディスク状の被研磨基板の場合、その外径は例えば10~120mmであり、その厚みは例えば0.5~2mmである。
 一般に、磁気ディスクは、研削工程を経た被研磨基板が、粗研磨工程、仕上げ研磨工程を経て研磨され、磁性層形成工程を経て製造される。本開示の研磨液組成物は、一又は複数の実施形態において、粗研磨工程における研磨に使用されることが好ましい。本開示の研磨液組成物は、一又は複数の実施形態において、磁気ディスク基板用研磨液組成物である。
[シリカ残り低減方法]
 本開示は、一態様において、研磨後の基板のシリカ残りを低減する方法であって、本開示の研磨液組成物を用いて被研磨基板を研磨することを含む、シリカ残り低減方法(以下、「本開示のシリカ残り低減方法」ともいう)に関する。本開示のシリカ残り低減方法における被研磨基板としては、上述した被研磨基板が挙げられる。
 本開示のシリカ残り低減方法は、一又は複数の実施形態において、本開示の研磨液組成物に含まれるシリカ粒子A(成分A)を選択することをさらに含むものであってもよい。本開示において、「シリカ粒子Aを選択する」とは、カタログ、製品説明書、ラベル等に、シリカ粒子A(成分A)の物性、及び/又は、シリカ残りを低減できる旨の記載がある製品を購入することを含む。
 したがって、本開示のシリカ残り低減方法は、一又は複数の実施形態において、シリカ粒子A(成分A)を選択すること、及び、選択されたシリカ粒子A(成分A)を含む本開示の研磨液組成物を用いて被研磨基板を研磨することを含む、シリカ残り低減方法に関する。
 本開示は、その他の態様において、砥粒として、乾燥基準での強熱減量が4%以下であり、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたときD90が140nm以上600nm以下であるシリカ粒子を選択すること、及び、前記シリカ粒子及び水系媒体を含有する研磨液組成物を用いて被研磨基板を研磨することを含む、シリカ残り低減方法に関する。本態様のシリカ残り低減方法におけるシリカ粒子としては、上述したシリカ粒子A(成分A)が挙げられる。本態様のシリカ残り低減方法における研磨液組成物としては、上述した本開示の研磨液組成物が挙げられる。
 本開示のシリカ残り低減方法によれば、本開示の研磨液組成物を用いることで、一又は複数の実施形態において、シリカ残りを大きく増やすことなく、研磨速度を向上できる。また、その他の一又は複数の実施形態において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減できる。具体的な研磨の方法及び条件は、後述する本開示の基板製造方法と同じようにすることができる。
[研磨方法]
 本開示は、一態様において、本開示の研磨液組成物を用いて被研磨基板を研磨することを含み、前記被研磨基板は、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法(以下、「本開示の研磨方法」ともいう)に関する。本開示の研磨方法における被研磨基板としては、上述した被研磨基板が挙げられる。本開示の研磨方法は、例えば、粗研磨工程に用いることができる。
 本開示の研磨方法によれば、本開示の研磨液組成物を用いることで、一又は複数の実施形態において、シリカ残りを大きく増やすことなく、研磨速度を向上できる。また、本開示の研磨方法によれば、その他の一又は複数の実施形態において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減できる。そのため、基板品質が向上した基板(例えば、磁気ディスク基板)の生産性を向上できる。具体的な研磨の方法及び条件は、後述する本開示の基板製造方法と同じようにすることができる。
[磁気ディスク基板の製造方法]
 本開示は、一態様において、本開示の研磨液組成物を用いて被研磨基板を研磨する研磨工程(以下、「研磨工程」ともいう)を含む、磁気ディスク基板の製造方法(以下、「本開示の基板製造方法」ともいう。)に関する。本開示の基板製造方法における前記研磨工程は、例えば、粗研磨工程である。
 本開示の基板製造方法は、一又は複数の実施形態において、本開示の研磨液組成物に含まれるシリカ粒子A(成分A)を選択する工程をさらに含むものであってもよい。本開示において、「シリカ粒子Aを選択する」とは、上述したとおり、カタログ、製品説明書、ラベル等に、シリカ粒子A(成分A)の物性、及び/又は、シリカ残りを低減できる旨の記載がある製品を購入することを含む。
 したがって、本開示の基板製造方法は、一又は複数の実施形態において、シリカ粒子A(成分A)を選択する工程、及び、選択されたシリカ粒子A(成分A)を含む本開示の研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法に関する。
 本開示は、その他の態様において、砥粒として、乾燥基準での強熱減量が4%以下であり、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたときD90が140nm以上600nm以下であるシリカ粒子を選択する工程、及び、前記シリカ粒子及び水系媒体を含有する研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法に関する。本態様の磁気ディスク基板の製造方法におけるシリカ粒子としては、上述したシリカ粒子(成分A)が挙げられる。本態様の磁気ディスク基板の製造方法における研磨液組成物としては、上述した本開示の研磨液組成物が挙げられる。
 前記研磨工程では、例えば、研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本開示の研磨液組成物を研磨面に供給し、圧力を加えながら研磨パッドや被研磨基板を動かすことにより、被研磨基板を研磨することができる。
 前記研磨工程における研磨荷重は、研磨速度の維持及び短波長うねり低減の観点から、3kPa以上が好ましく、5kPa以上がより好ましく、7kPa以上が更に好ましく、そして、30kPa以下が好ましく、25kPa以下がより好ましく、20kPa以下が更に好ましい。より具体的には、研磨荷重は、3kPa以上30kPa以下が好ましく、5kPa以上25kPa以下がより好ましく、7kPa以上20kPa以下が更に好ましい。本開示において「研磨荷重」とは、研磨時に被研磨基板の被研磨面に加えられる定盤の圧力をいう。研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。
 前記研磨工程における、被研磨基板1cm2あたりの研磨量は、研磨速度の維持及び短波長うねり低減の観点から、0.2mg以上が好ましく、0.3mg以上がより好ましく、0.4mg以上が更に好ましく、そして、同様の観点から、2.5mg以下が好ましく、2mg以下がより好ましく、1.6mg以下が更に好ましい。より具体的には、被研磨基板1cm2あたりの研磨量は、0.2mg以上2.5mg以下が好ましく、0.3mg以上2mg以下がより好ましく、0.4mg以上1.6mg以下が更に好ましい。
 前記研磨工程における被研磨基板1cm2あたりの研磨液組成物の供給速度は、経済性の観点から、2.5mL/分以下が好ましく、2mL/分以下がより好ましく、1.5mL/分以下が更に好ましく、そして、研磨速度向上の観点から、0.01mL/分以上が好ましく、0.03mL/分以上がより好ましく、0.05mL/分以上が更に好ましい。より具体的には、被研磨基板1cm2あたりの研磨液組成物の供給速度は、0.01mL/分以上2.5mL/分以下が好ましく、0.03mL/分以上2mL/分以下がより好ましく、0.05mL/分以上1.5mL/分以下が更に好ましい。
 本開示の研磨液組成物を研磨機へ供給する方法としては、例えば、ポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の保存安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、前記複数の配合用成分液が混合され、本開示の研磨液組成物となる。
 本開示の基板製造方法によれば、本開示の研磨液組成物を用いることで、一又は複数の実施形態において、シリカ残りを大きく増やすことなく、研磨速度を向上できる。また、本開示の基板製造方法によれば、その他の一又は複数の実施形態において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減できる。そのため、基板品質が向上した基板(例えば、磁気ディスク基板)を効率よく製造できる。
 以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。
1.研磨液組成物の調製
(実施例1~5及び比較例1~2)
 シリカ粒子(成分A又は非成分A)、酸(成分B)、酸化剤(成分C)、及び水を混合し、表1に示す実施例1~5及び比較例1~2の研磨液組成物を調製した。研磨液組成物中の各成分の含有量(有効分)は、シリカ粒子(成分A):5.5質量%、酸(成分B):1.6質量%、酸化剤(成分C):1質量%とした。水の含有量は、成分A、成分B及び成分Cを除いた残余である。実施例1~5及び比較例1~2の研磨液組成物は、アルミナ砥粒を含んでいない。砥粒に用いたシリカ粒子(成分A)は、水ガラス法により製造されたものである。実施例1~5及び比較例1~2の研磨液組成物のpHは1.5であった。pHは、pHメータ(東亜ディーケーケー社製)を用いて25℃にて測定し、電極を研磨液組成物へ浸漬して2分後の数値を採用した。
(実施例6~10)
 シリカ粒子(成分A又は非成分A)、酸(成分B)、酸化剤(成分C)、窒素含有化合物(成分D)及び水を混合し、表2に示す実施例6~10の研磨液組成物を調製した。実施例6~10の研磨液組成物中の各成分の含有量(有効分)は、シリカ粒子(成分A又は非成分A):5.5質量%、酸(成分B):1.6質量%、酸化剤(成分C):1.0質量%、窒素含有化合物(成分D):0.1質量%とした。実施例6~10の研磨液組成物中の水の含有量は、成分A又は非成分Aと成分Bと成分Cと成分Dとを除いた残余である。実施例6~10の研磨液組成物は、アルミナ砥粒を含んでいない。砥粒に用いたシリカ粒子(成分A)は、水ガラス法により製造されたものである。実施例6~10の研磨液組成物のpHは1.5であった。pHは、pHメータ(東亜ディーケーケー社製)を用いて25℃にて測定し、電極を研磨液組成物へ浸漬して2分後の数値を採用した。
 研磨液組成物の調製に用いた成分A又は非成分A、成分B、成分C、成分Dには以下のものを使用した。
<シリカ粒子(成分A又は非成分A)>
(シリカ粒子A1~A5の調製)
 pH10~12、シリカ濃度2%に調整した金属ケイ酸塩水溶液500gに対して、シリカ濃度5%に調整した酸性ケイ酸液7kgを、1~24時間かけて断続的に滴下することで粒子サイズを増大させる(ビルドアップ)。このとき、前記滴下液の滴下速度、ケイ酸濃度、反応温度、圧力、pH等を調整することで、所望の範囲のシラノール基を有するシリカ砥粒を得ることができる。特に滴下速度を遅くしてゆっくりと粒子を成長させることで緻密な表面や内部構造が形成され、シロキサン結合が増える為シラノール基及び強熱減量を調整することができる。
 上記製法により、下記に示すシリカ粒子A1~A5を調製した。
 A1:非球状シリカ粒子[コロイダルシリカ(水ガラス法)、アスペクト比1.11、平均二次粒子径143nm]
 A2:非球状シリカ粒子[コロイダルシリカ(水ガラス法)、アスペクト比1.19、平均二次粒子径221nm]
 A3:非球状シリカ粒子[コロイダルシリカ(水ガラス法)、アスペクト比1.09、平均二次粒子径160nm]
 A4:非球状シリカ粒子[コロイダルシリカ(水ガラス法)、アスペクト比1.11、平均二次粒子径162nm]
 A5:非球状シリカ粒子[コロイダルシリカ(水ガラス法)、アスペクト比1.12、平均二次粒子径142nm]
 実施例3では、非球状シリカ粒子A1(アスペクト比1.11、平均二次粒子径143nm、強熱減量2.02%)と球状コロイダルシリカSCS1(アスペクト比1.03、平均二次粒子径106nm、強熱減量3.4%)を重量比A1/SCS1=70/30となるように配合したもの(混合シリカ、アスペクト比1.06、平均二次粒子径133nm、強熱減量3.24%)をシリカ砥粒として用いた。
(シリカ粒子A6の詳細)
 A6:非球状シリカ粒子[沈降法シリカ、東ソーシリカ社製のNipsil E-743を湿式ビーズミルにより解砕して平均二次粒子径を調整したもの、アスペクト比1.34、平均二次粒子径349nm]
<酸(成分B)>
 リン酸[濃度75%、日本化学工業社製]
<酸化剤(成分C)>
 過酸化水素[濃度35質量%、ADEKA社製]
<窒素含有化合物(成分D)>
MEA:モノエタノールアミン(分子量61、窒素原子数1)
AEA:N-(β―アミノエチル)エタノールアミン(分子量104.5、窒素原子数2)
HEP:N-(2-ヒドロキシエチル)ピペラジン(分子量130.19、窒素原子数2):
DETA:ジエチレントリアミン(分子量103.17、窒素原子数3)
TETA:トリエチレンテトラミン(分子量146.23、窒素原子数4)
2.各パラメータの測定方法
[遠心沈降法(CPS測定)によるシリカ粒子の粒子径D10、D50及びD90の測定方法]
 シリカ粒子をイオン交換水で希釈し、シリカ粒子を0.4質量%含有する分散液を調製して試料とした。なお、実施例3(混合シリカ)では、非球状シリカ粒子A1と球状シリカ粒子SCS1との質量比が70/30となるように配合した。
 調製した試料を、下記測定装置を用いて遠心沈降法による粒度分布を測定した。遠心沈降法により得られる重量換算での粒度分布において小径側からの累積頻度が10%、50%、90%となる粒径をそれぞれD10、D50、D90とした。
<測定条件>
測定装置:CPS Instruments社製の「CPS DC24000 UHR」
測定範囲:0.02~3μm
粒子の消衰係数:0.1
粒子の形状因子:1.2 or 1.0
回転数:18,000rpm
校正用標準粒子径:0.476μm
標準粒子密度:1.0465(13%、34℃)
密度勾配溶液:スクロース水溶液(8%、24%)
溶媒の粘度:1.16cp(13%、34℃)
溶媒の屈折率:1.3592(18%、34℃)
測定温度:15~45℃
測定時間:3~420分
[DLS測定によるシリカ粒子の粒子径D50(平均二次粒子径)の測定方法]
 シリカ粒子をリン酸及びイオン交換水と混合して1質量%シリカ粒子分散液を調製した。なお、実施例3(混合シリカ)では、非球状シリカ粒子A1と球状シリカ粒子SCS1との質量比が70/30となるように配合した。調製した1質量%シリカ粒子分散液を、下記測定装置内に投入し、下記条件で測定した。得られた粒度分布において、小径側からの累積体積頻度が50%となる粒子径をD50とした。なお、DLSによるD50は、シリカ粒子の平均二次粒子径(体積平均粒子径)とした。測定結果を表1に示した。
<測定条件>
測定機器:マルバーン ゼータサイザー ナノ「Nano S」
サンプル量:1.5mL
レーザー : He-Ne、3.0mW、633nm
散乱光検出角:173°
[シリカ粒子の平均アスペクト比]
 シリカ粒子をTEM(日本電子社製「JEM-2000FX」、80kV、1~5万倍)で観察した写真を、パーソナルコンピュータにスキャナで画像データとして取込み、解析ソフト(三谷商事「WinROOF(Ver.3.6)」)を用いて500個のシリカ粒子の投影画像について下記の通り解析した。
 個々のシリカ粒子の短径及び長径を求め、長径を短径で除した値からアスペクト比の平均値(平均アスペクト比)を得た。
 実施例3の混合シリカの場合の平均アスペクト比は、非球状シリカ粒子A1と球状シリカ粒子SCS1との質量比が70/30となるように配合した後、乾燥させてTEM観察を実施し、画像解析の短径長径比で算出した。
[強熱減量]
 シリカ粒子をイオン交換水と混合して40質量%シリカスラリーを調製した。なお、実施例3(混合シリカ)では、非球状シリカ粒子A1と球状シリカ粒子SCS1との質量比が70/30となるように配合した。
 調製したシリカスラリーを硫酸によりpH=3.5に調整し、島津製作所製赤外水分計「MOC63u」にて180℃の条件で加熱して水分を除く。その後10分静置して常温に戻し、試料2gを得る。そのうち、試料1gは再度赤外水分計にて乾燥減量LOD(どれだけ常温で水分を吸収するか)を求める。
 残りの試料1gはセラミック製るつぼに入れて焼成炉にて1000℃、2時間焼成しデシケーターで30分間放熱後、強熱減量LOI(シラノール基の脱水により減った重量)を求める。なお、シリカ粒子は吸水しやすい性質もあることから、湿度80%を超える室内や、屋外での測定は精度に影響が出るため、避けることが好ましい。同様に、焼成後の静置時間も30分を超えると測定精度に影響が出るため、避けることがより好ましい。
 最後に下記式により乾燥重量基準の強熱減量WLを求めた。
乾燥重量基準での強熱減量WL=100×{1-(100-LOI)/(100-LOD)}
3.基板の研磨
 調製した実施例1~10及び比較例1~2の研磨液組成物を用いて、下記の研磨条件で被研磨基板を研磨した。
[研磨条件]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
被研磨基板:Ni-Pメッキされたアルミニウム合金基板、厚さ0.8mm、直径95mm、枚数10枚
研磨液:研磨液組成物
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー、厚み1.0mm、平均気孔径30μm、表面層の圧縮率2.5%、Filwel社製)
定盤回転数:40rpm
研磨荷重:9.8kPa(設定値)
研磨液供給量:100mL/min
被研磨基板1cm2あたりの供給速度0.8mL/分
被研磨基板1cm2あたりの研磨量0.8mg
研磨時間:5分間
4.評価方法
[研磨速度の評価]
 実施例1~10及び比較例1~2の研磨液組成物の研磨速度は、以下のようにして評価した。まず、研磨前後の各基板の重さを計り(Sartorius社製、「BP-210S」)を用いて測定し、各基板の質量変化から質量減少量を求めた。全10枚の平均の質量減少量を研磨時間で割った値を研磨速度とし、下記式に導入することにより算出した。そして、比較例1の研磨速度を100とした場合の相対値を算出し、評価項目とした。
 質量減少量(g)={研磨前の質量(g)-研磨後の質量(g)}
 研磨速度(g/min)=質量減少量(g)/研磨時間(min)
[シリカ残りの評価]
 上記研磨後の基板をヒカリ社製洗浄機を用いて洗浄したのち、基板表面に残るシリカ粒子の強度をリガク社製蛍光X線「ZSX100e」にて測定した。詳細を下記に記載する。そして、比較例1のシリカ残りを100とした場合の相対値を算出し、評価項目とした。
[洗浄条件]
 超純水浸漬時間:3分
 超音波洗浄時間:3分
 ブラシ洗浄時間:4秒
 超純水濯ぎ時間:10秒
 スピンドライ乾燥時間:10秒
[蛍光X線測定条件]
 上記研磨及び洗浄後の基板を切断することなく装置へ設置し、Si元素のピーク強度を検出することでシリカ残りの指標とした。Si元素のピーク強度が低い程シリカ残りが少ないことを意味する。
 測定時間:300秒
 開口度:30mm
 検出角度:2θ=47degree
 ピーク検出角度:144.610
 電圧:50kv
 電流:50mA
 検出箇所:基板一枚につき任意の点8か所
上記測定のとおり基板を切断すること無く装置へ投入することにより、基板切断時の衝撃によるシリカ残り脱落、異物混入のリスク、基板1枚当たりのばらつきの影響を減らすことができる。
5.結果
 各評価の結果を表1~2に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、所定のシリカ粒子(成分A)を用いた実施例1~5の研磨液組成物は、比較例1~2に比べて、研磨速度を維持しつつ、シリカ残りを低減できることがわかった。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、所定のシリカ粒子(成分A)と特定の窒素含有化合物(成分D)とを含む実施例6~10の研磨液組成物は、成分A及び成分Dを含まない比較例1~2の研磨液組成物に比べて、研磨速度を確保しつつ、シリカ残りを低減できることがわかった。また、成分A及び成分Dを含む実施例6~10の研磨液組成物は、成分Aを含み、成分Dを含まない実施例4の研磨液組成物に比べて、よりシリカ残りを低減できることがわかった。
 本開示によれば、一態様において、シリカ残りを大きく増やすことなく、研磨速度を向上でき、また、その他の態様において、研磨速度を維持しつつ、研磨後の基板表面のシリカ残りを低減できるから、基板品質が向上した基板の生産性を向上できる。本開示は、磁気ディスク基板の製造に好適に用いることができる。

Claims (13)

  1.  シリカ粒子、及び水系媒体を含有し、
     前記シリカ粒子は、乾燥重量基準での強熱減量が4%以下であり、
     前記シリカ粒子は、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたとき、D90が140nm以上600nm以下である、研磨液組成物。
  2.  前記強熱減量をWLとしたとき、下記式(I)で表される値が150以下である、請求項1に記載の研磨液組成物。
    {(WL)3×D90}/100   (I)
  3.  前記シリカ粒子は、前記粒度分布において小粒径側からの累積頻度が10%となる粒子径をD10としたとき、D10が50nm以上120nm以下である、請求項1又は2に記載の研磨液組成物。
  4.  前記シリカ粒子は、前記粒度分布において小粒径側からの累積頻度が50%となる粒子径をD50としたとき、D50が80nm以上340nm以下である、請求項1から3のいずれかに記載の研磨液組成物。
  5.  前記シリカ粒子は、球状シリカ粒子及び非球状シリカ粒子を含む、請求項1から4のいずれかに記載の研磨液組成物。
  6.  前記研磨液組成物は、磁気ディスク基板用研磨液組成物である、請求項1から5のいずれかに記載の研磨液組成物。
  7.  窒素含有化合物をさらに含有し、
     前記窒素含有化合物は、分子内に4個以下の窒素原子を有する有機アミン化合物である、請求項1から6のいずれかに記載の研磨液組成物。
  8.  請求項1から7のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨する研磨工程を含む、磁気ディスク基板の製造方法。
  9.  被研磨基板が、Ni-Pメッキされたアルミニウム合金基板である、請求項8に記載の磁気ディスク基板の製造方法。
  10.  前記研磨工程が、粗研磨工程である、請求項8又は9に記載の磁気ディスク基板の製造方法。
  11.  請求項1から7のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨することを含み、前記被研磨基板は、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法。
  12.  研磨後の基板のシリカ残りを低減する方法であって、
     請求項1から7のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨することを含む、シリカ残り低減方法。
  13.  砥粒として、乾燥重量基準での強熱減量が4%以下であり、遠心沈降法により得られる重量換算での粒度分布において小粒径側からの累積頻度が90%となる粒子径をD90としたときD90が140nm以上600nm以下であるシリカ粒子を選択する工程、及び、
    前記シリカ粒子及び水系媒体を含有する研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法。
PCT/JP2023/019507 2022-05-26 2023-05-25 研磨液組成物 WO2023229009A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022086266A JP2023173782A (ja) 2022-05-26 2022-05-26 研磨液組成物
JP2022086265 2022-05-26
JP2022-086266 2022-05-26
JP2022-086265 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023229009A1 true WO2023229009A1 (ja) 2023-11-30

Family

ID=88919460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019507 WO2023229009A1 (ja) 2022-05-26 2023-05-25 研磨液組成物

Country Status (2)

Country Link
TW (1) TW202405106A (ja)
WO (1) WO2023229009A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309236A (ja) * 2000-05-16 2002-10-23 Mitsui Mining & Smelting Co Ltd セリウム系研摩材およびそのための原料、ならびにそれらの製造方法
JP2006097014A (ja) * 2004-09-03 2006-04-13 Showa Denko Kk 混合希土類酸化物、混合希土類フッ素化物及びそれらを用いたセリウム系研磨材、並びにそれらの製造方法
JP2018081733A (ja) * 2016-11-15 2018-05-24 花王株式会社 磁気ディスク基板用研磨液組成物
JP2019178302A (ja) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド 研磨用組成物、パッド表面調整用組成物およびその利用
JP2021175774A (ja) * 2020-05-01 2021-11-04 花王株式会社 研磨液組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309236A (ja) * 2000-05-16 2002-10-23 Mitsui Mining & Smelting Co Ltd セリウム系研摩材およびそのための原料、ならびにそれらの製造方法
JP2006097014A (ja) * 2004-09-03 2006-04-13 Showa Denko Kk 混合希土類酸化物、混合希土類フッ素化物及びそれらを用いたセリウム系研磨材、並びにそれらの製造方法
JP2018081733A (ja) * 2016-11-15 2018-05-24 花王株式会社 磁気ディスク基板用研磨液組成物
JP2019178302A (ja) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド 研磨用組成物、パッド表面調整用組成物およびその利用
JP2021175774A (ja) * 2020-05-01 2021-11-04 花王株式会社 研磨液組成物

Also Published As

Publication number Publication date
TW202405106A (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
JP4231632B2 (ja) 研磨液組成物
JP5860587B2 (ja) 研磨用シリカゾル、研磨用組成物及び研磨用シリカゾルの製造方法
JP4451347B2 (ja) 研磨液組成物
JP6259182B2 (ja) ニッケルリンめっきが施された磁気ディスク基板の一次研磨用研磨液
WO2016002613A1 (ja) 磁気ディスク基板用研磨液組成物
JP6138677B2 (ja) 磁気ディスク基板用研磨液組成物
TWI723085B (zh) 磁碟基板用研磨液組合物
JP6820723B2 (ja) 磁気ディスク基板用研磨液組成物
JP2010260121A (ja) 研磨材スラリーの製造方法
JP6730921B2 (ja) 研磨液組成物の製造方法
WO2023229009A1 (ja) 研磨液組成物
JP6584936B2 (ja) 磁気ディスク基板用研磨液組成物
JP4286168B2 (ja) ナノスクラッチを低減する方法
JP6092623B2 (ja) 磁気ディスク基板の製造方法
JP2007301721A (ja) 研磨液組成物
JP2023173782A (ja) 研磨液組成物
JP7411498B2 (ja) 研磨液組成物
JP2003211351A (ja) 微小突起の低減方法
JP2023174608A (ja) 研磨液組成物
JP6584945B2 (ja) 磁気ディスク基板用研磨液組成物
JP6316680B2 (ja) 磁気ディスク基板用研磨液組成物
WO2024106338A1 (ja) 研磨液組成物
JP2024073372A (ja) 研磨液組成物
JP6584935B2 (ja) 磁気ディスク基板用研磨液組成物
WO2018003878A1 (ja) 磁気ディスク基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811881

Country of ref document: EP

Kind code of ref document: A1