WO2016002613A1 - 磁気ディスク基板用研磨液組成物 - Google Patents

磁気ディスク基板用研磨液組成物 Download PDF

Info

Publication number
WO2016002613A1
WO2016002613A1 PCT/JP2015/068308 JP2015068308W WO2016002613A1 WO 2016002613 A1 WO2016002613 A1 WO 2016002613A1 JP 2015068308 W JP2015068308 W JP 2015068308W WO 2016002613 A1 WO2016002613 A1 WO 2016002613A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
silica particles
less
spherical silica
magnetic disk
Prior art date
Application number
PCT/JP2015/068308
Other languages
English (en)
French (fr)
Inventor
木村陽介
内野陽介
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to MYPI2016001409A priority Critical patent/MY184290A/en
Publication of WO2016002613A1 publication Critical patent/WO2016002613A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present disclosure relates to a polishing liquid composition for a magnetic disk substrate, a method for polishing a magnetic disk substrate, and a method for manufacturing a magnetic disk substrate.
  • the hard disk substrate manufacturing method includes a multi-stage polishing method having two or more polishing steps. Often adopted.
  • a polishing composition for finishing that contains colloidal silica particles in order to satisfy the requirements of reducing surface roughness and scratches such as scratches, protrusions, and pits.
  • a polishing liquid composition containing alumina particles is used from the viewpoint of improving productivity.
  • media drive defects may be caused by the piercing of the alumina particles into the substrate.
  • Patent Documents 1 and 2 a method of manufacturing a magnetic disk substrate that can reduce the sticking of particles to the substrate by using a polishing composition containing no alumina particles and using silica particles as abrasive grains in the rough polishing step has been proposed.
  • phosphoric acid or phosphonic acid may be used as the acid contained in the polishing composition (Patent Document 3).
  • silica particles having a plurality of protrusions on the surface (Patent Document 4) and beaded silica particles (Patent Document 5) have been proposed.
  • a rough polishing process and a final polishing process that do not use alumina particles are employed in the polishing process of the magnetic disk substrate, residual alumina (for example, alumina adhesion, alumina sticking) can be eliminated, thereby reducing projection defects.
  • a rough polishing process is performed with silica particles instead of alumina particles, a problem that long-period defects cannot be removed occurs.
  • the rough polishing process is performed with alumina particles, the problem of long-period defects generally does not occur. Since the removal rate of long-period defects has a high correlation with the substrate yield, further improvement of the removal rate of long-period defects is desired in the rough polishing process.
  • Patent Document 1 discloses that if rough polishing is performed using non-spherical silica particles defined by predetermined parameters as abrasive grains, the polishing time for rough polishing is greatly prolonged even when alumina particles are substantially not included. Disclosed is that long-wave waviness after rough polishing can be reduced without doing so. However, for long-period defects, further improvement in removal rate is desired.
  • the present disclosure reduces long-period defects on the substrate surface after rough polishing without significantly impairing the polishing speed in rough polishing using non-spherical silica particles as abrasive grains.
  • a polishing composition for a magnetic disk substrate is provided.
  • the present disclosure includes a method of manufacturing a magnetic disk substrate, (1) a step of polishing a surface to be polished of a substrate to be polished using the polishing liquid composition I; (2) a step of cleaning the substrate obtained in step (1), and (3) It has the process of grind
  • the polishing liquid composition I in the step (1) contains non-spherical silica particles A, spherical silica particles B, an acid, an oxidizing agent, and water, (Ii) In the polishing composition I in the step (1), the mass ratio A / B between the non-spherical silica particles A and the spherical silica particles B is 80/20 or more and 99/1 or less, and the entire silica particles The total content of non-spherical silica particles A and spherical silica particles B with respect to (Iii) The non-spherical silica particle A has a ⁇ CV value of more than 0.0% and less than 10%, (Iv) The particle diameter ratio (D1 / D2) of the volume average particle diameter (D1) determined by the dynamic light scattering method and the specific surface area converted particle diameter (D2) determined by the BET method of the non-spherical silica particles A is 2.00 or more and 4 .00 or less, (V
  • the present disclosure relates to a magnetic disk substrate polishing method including steps (1) to (3) in the method of manufacturing a magnetic disk substrate according to the present disclosure.
  • the present disclosure is a first polishing machine that performs the polishing in the step (1) in the method for manufacturing a magnetic disk substrate according to the present disclosure, and a step in the method for manufacturing the magnetic disk substrate according to the present disclosure.
  • the present invention relates to a magnetic disk substrate polishing system comprising: a cleaning unit that performs the cleaning in (2); and a second polishing machine that performs polishing in step (3) in the method for manufacturing a magnetic disk substrate according to the present disclosure.
  • the present disclosure is a polishing liquid composition for a magnetic disk substrate, comprising: Containing abrasive grains, acid, oxidant and water,
  • the abrasive contains non-spherical silica particles A and spherical silica particles B,
  • the mass ratio A / B between the non-spherical silica particles A and the spherical silica particles B is 80/20 or more and 99/1 or less
  • the non-spherical silica particle A has a ⁇ CV value of more than 0.0% and less than 10%
  • CV90 of the non-spherical silica particles A is 20.0% or more and 40.0% or less
  • the ⁇ CV value of the spherical silica particles B is higher than 0% and 10% or lower
  • the CV90 of the spherical silica B is 10.0% or higher and 35.0% or lower
  • the volume average particle diameter (D1) of the spherical silica particles B by a dynamic light scattering method is 6.0 nm or more and 80.0 nm or less
  • the present invention relates to a polishing composition for a magnetic disk substrate, wherein the acid is at least one selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and combinations thereof.
  • the method for manufacturing a magnetic disk substrate according to the present disclosure does not use alumina particles, and thus can greatly reduce protrusion defects after rough polishing and after final polishing. According to the method for manufacturing a magnetic disk substrate according to the present disclosure, in one or a plurality of embodiments, the effect of reducing long-period defects on the substrate surface after rough polishing without significantly impairing the polishing rate in rough polishing. The substrate yield can be improved while maintaining the productivity of the substrate.
  • FIG. 1 is an example of an electron microscope (TEM) observation photograph of deformed colloidal silica abrasive grains.
  • FIG. 2 is an example of an electron microscope (TEM) observation photograph of a confetti-type colloidal silica abrasive grain.
  • FIG. 3 is a graph showing the volume particle size distribution.
  • FIG. 4 is an example of a result obtained by measuring a substrate surface having a long-period defect (PED) with an optical interference type surface shape measuring machine.
  • FIG. 5 is a diagram illustrating an embodiment of a polishing system.
  • FIG. 6 is a diagram for explaining an embodiment of a polishing process of a method for manufacturing a magnetic disk substrate.
  • the present disclosure uses a predetermined acid (phosphoric acid or phosphonic acid) in the polishing liquid composition in a rough polishing step using a polishing liquid composition containing predetermined non-spherical silica particles and spherical silica particles as abrasive grains. Then, it is based on the knowledge that the removal rate of long-period defects is improved and the polishing rate is not greatly impaired. Generally, in the manufacture of a magnetic disk substrate, if long-period defects can be reduced, the substrate yield is improved. Therefore, according to the present disclosure, in one or a plurality of embodiments, the substrate yield can be improved while maintaining the productivity in the manufacture of the magnetic disk substrate.
  • a predetermined acid phosphoric acid or phosphonic acid
  • the non-spherical silica particles have more voids in the filled state than the spherical silica particles because of the surface shape. If particles of a specific size that enter this void are blended, in a mixed system containing a plurality of abrasive components, the filling rate of the abrasive particles is further increased, and the frictional resistance peculiar to non-spherical silica particles during polishing is alleviated.
  • the removal rate of long-period defects can be improved.
  • the polishing rate can be maintained or improved because the filling ratio of the abrasive grains increases or the cutting area on the substrate increases or the load applied during polishing is more easily transmitted to the substrate.
  • the presence of phosphoric acid or phosphonic acid in the polishing composition makes it possible to reduce long-period defects, particularly PED (polish enhanced defect), with a small amount of polishing due to the corrosion inhibition effect of phosphoric acid or phosphonic acid. It is thought to improve.
  • the polishing rate is improved by using silica having a specific shape, and defects are suppressed by using a specific acid such as phosphoric acid, thereby achieving high quality of the substrate to be polished.
  • the polishing composition can act on the substrate more efficiently by using abrasives with a high filling rate and using a specific acid having a corrosion-inhibiting effect. It is conceivable that the supply amount of the liquid composition can be reduced as compared with the conventional one. However, the present disclosure need not be construed as being limited to these mechanisms.
  • the present disclosure is, in one aspect, a method of manufacturing a magnetic disk substrate, (1) a step of polishing a surface to be polished of a substrate to be polished using the polishing liquid composition I; (2) a step of cleaning the substrate obtained in step (1), and (3) It has the process of grind
  • the polishing liquid composition I in the step (1) contains non-spherical silica particles A, spherical silica particles B, an acid, an oxidizing agent, and water, (Ii)
  • the mass ratio (A / B) of the non-spherical silica particles A and the spherical silica particles B is 80/20 or more and 99/1 or less, and silica
  • the total content of the non-spherical silica particles A and the spherical silica particles B with respect to the whole particles exceeds 98.0% by mass
  • the non-spherical silica particle A has a ⁇ CV value of more than 0.0% and less than 10%
  • the particle diameter ratio (D1 / D2) of the volume average particle diameter (D1) determined by the dynamic light scattering method and the specific surface area converted particle diameter (D2) determined by the BET method of the non-spherical silica particles A is
  • protrusion defects after finish polishing can be significantly reduced without greatly impairing the polishing rate in rough polishing, and the surface of the substrate after rough polishing can be reduced. An effect that long-period defects can be reduced can be achieved.
  • the “long-period defect” includes PED (polish-enhanced-defect) and grind scratches generated in the manufacturing process of the Ni—P plated aluminum substrate.
  • PED is an annealing step in the step of forming a plating film on an aluminum substrate, and refers to a portion of insufficient annealing caused by water or foreign matter adhering to the substrate surface.
  • Grind scratches refer to grinding marks on a grindstone in a process of grinding an aluminum substrate before plating (grinding process).
  • the long-period defect and its removal rate can be measured using the measuring device described in the examples.
  • the “protrusion defect” mainly refers to a defect on the surface of the substrate that is considered to be derived from residual abrasive grains, abrasive grain adhesion, and abrasive sticking after the rough polishing process and the final polishing process.
  • the protrusion defect on the substrate surface can be evaluated by a surface defect inspection apparatus such as microscopic observation or scanning electron microscope observation of the substrate surface obtained after polishing, and can be specifically evaluated by the method described in the examples. .
  • the polishing composition I used in the step (1) contains non-spherical silica particles A as described above.
  • examples of the non-spherical silica particles A include colloidal silica, fumed silica, and surface-modified silica.
  • the non-spherical silica particles A are preferably colloidal silica, and more preferably colloidal silica having the following specific shape.
  • the non-spherical silica particles A may be produced by a flame melting method or a sol-gel method from the viewpoint of reducing long-period defects without significantly reducing the polishing rate. Preferably there is.
  • the shape of the non-spherical silica particles A is a shape in which a plurality of particles (for example, two or more particles) are aggregated or fused from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • the non-spherical silica particles A are selected from the group consisting of confetti-type silica particles A1, deformed-type silica particles A2, and deformed and confetti-type silica particles A3. At least one type of silica particles is preferable, and irregular-shaped silica particles A2 are more preferable.
  • the confetti-type silica particle A1 refers to a silica particle having unique ridge-like protrusions on the spherical particle surface in one or a plurality of embodiments (see FIG. 2).
  • the silica particle A1 has a shape in which two or more particles different in particle size by 5 times or more are aggregated or fused on the basis of the particle size of the smallest silica particle.
  • particles having a small particle size are partially embedded in particles having a large particle size.
  • the particle diameter can be obtained as the equivalent circle diameter measured in one particle in an electron microscope (TEM or the like) observation image, that is, the major axis of an equivalent circle having the same area as the projected area of the particle.
  • the particle diameter in silica particle A2 and silica particle A3 can be similarly determined.
  • the irregular-shaped silica particle A2 refers to a silica particle having a shape in which two or more particles, preferably 2 to 10 particles are aggregated or fused (see FIG. 1). In one or a plurality of embodiments, the silica particle A2 has a shape in which two or more particles having a particle size of 1.5 times or less are aggregated or fused on the basis of the particle size of the smallest silica particle.
  • the irregular and confetti-type silica particles A3 are particles having a shape in which two or more particles are aggregated or fused.
  • the silica particle A3 is a particle obtained by agglomerating or fusing two or more particles having a particle size of 1.5 times or less, and further having the smallest agglomerated or fused silica particle. In this shape, small particles having a particle size of 1/5 or less are aggregated or fused.
  • the non-spherical silica particle A is any one of the silica particles A1, A2, and A3, any two of the silica particles A1, A2, and A3, or the silica particles A1, A2, and Includes all of A3.
  • the proportion (content) occupied by the total of silica particles A1, A2, and A3 in non-spherical silica particles A is preferably 50% by mass or more from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, Still more preferably, it is 90 mass% or more or substantially 100 mass%.
  • the ⁇ CV value of the non-spherical silica particles A is preferably higher than 0.0%, more preferably from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. It is 0.2% or more, more preferably 0.3% or more, still more preferably 0.4% or more. In one or a plurality of embodiments, the ⁇ CV value of the non-spherical silica particles A is preferably less than 10.0%, more preferably 8.0% or less, still more preferably 7.0% from the same viewpoint. Hereinafter, it is still more preferably 4.0% or less.
  • the ⁇ CV value of the non-spherical silica particles A is preferably more than 0.0% and less than 10.0%, more preferably 0.2% or more and 8.0% or less from the same viewpoint. More preferably, it is 0.3% or more and 7.0% or less, and still more preferably 0.4% or more and 4.0% or less.
  • the ⁇ CV value of the silica particles is the standard deviation of the particle diameter measured based on the scattering intensity distribution at the detection angle of 30 ° (forward scattering) by the dynamic light scattering method, and the detection angle of 30 ° by the dynamic light scattering. Measured based on the coefficient of variation (CV30) multiplied by 100 divided by the average particle size measured based on the scattering intensity distribution and the scattering intensity distribution at a detection angle of 90 ° (side scattering) by the dynamic light scattering method.
  • the ⁇ CV value can be specifically measured by the method described in the examples.
  • the present inventor as a method for showing the characteristics of non-spherical silica particles, the average particle size (D1) described above, the average particle size (D1) measured by the dynamic light scattering method and the specific surface area converted particle size by the BET method It was thought that the polishing performance of the silica particles could not be expressed only by the conventional view expressed using the particle size ratio (D1 / D2) with (D2).
  • the ⁇ CV value is effective as a means for knowing the state of the entire system (bulk) of non-spherical silica particles, and by focusing on these parameters, polishing that has not been known in the past It has been found that the reduction in speed is suppressed, the removal rate of long-period defects is improved, and the range of non-spherical silica that can reduce protrusion defects can be accurately defined. That is, the non-spherical silica particles have different ⁇ CV values depending on the degree of irregularity, and the ⁇ CV value can be an index indicating the degree of irregularity of the non-spherical silica particles.
  • scattering intensity distribution means three particle size distributions (scattering) of sub-micron or less particles obtained by dynamic light scattering (DLS: Dynamic LightcScattering) or quasielastic light scattering (QLS). The particle size distribution of the scattering intensity among the intensity, volume conversion, and number conversion.
  • DLS Dynamic LightcScattering
  • QLS quasielastic light scattering
  • the volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more and less than 300.0 nm in one or a plurality of embodiments from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. .
  • the volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more, more preferably 150.0 nm or more, and further preferably 160.0 nm or more, from the same viewpoint.
  • the volume average particle diameter (D1) of the non-spherical silica particles A is preferably less than 300.0 nm, more preferably less than 260.0 nm, and still more preferably less than 250.0 nm, from the same viewpoint. Even more preferably less than 220.0 nm, even more preferably less than 210.0 nm.
  • the volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more and less than 260.0 nm, more preferably 150.0 nm or more and less than 260.0 nm, from the same viewpoint. More preferably 160.0 nm or more and less than 260.0 nm, even more preferably 170.0 nm or more and less than 260.0 nm, even more preferably 180.0 nm or more and less than 250.0 nm, even more preferably 190.0 nm or more and 220.0 nm. Is more preferably 200.0 nm or more and less than 210.0 nm.
  • the volume average particle diameter (D1) of silica particles refers to an average particle diameter based on a scattering intensity distribution measured by a dynamic light scattering method, and unless otherwise specified, the average particle diameter of silica particles is The average particle diameter based on the scattering intensity distribution measured at a detection angle of 90 ° in the dynamic light scattering method.
  • the volume average particle diameter (D1) of the silica particles in the present disclosure can be specifically obtained by the method described in the examples.
  • the particle diameter ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A and the specific surface area converted particle diameter (D2) by the BET method is as follows: From the viewpoint of suppressing a decrease in the polishing rate and improving the long-period defect removal rate, 2.00 or more is preferable, more preferably 2.50 or more, still more preferably 3.00 or more, and even more preferably 3.50 or more. .
  • the particle diameter ratio (D1 / D2) of the non-spherical silica particles A is preferably 4.00 or less, more preferably 3.90 or less, and still more preferably 3.80, from the same viewpoint. It is as follows. In one or more embodiments, the particle diameter ratio (D1 / D2) of the non-spherical silica particles A is preferably 2.00 or more and 4.00 or less, more preferably 2.50 or more and 3.90, from the same viewpoint. Hereinafter, it is more preferably from 3.00 to 3.90, and even more preferably from 3.50 to 3.80.
  • the particle diameter ratio (D1 / D2) between the volume average particle diameter (D1) measured by the dynamic light scattering method and the specific surface area converted particle diameter (D2) by the BET method may mean the degree of deformation of the silica particles A. .
  • the volume average particle diameter (D1) measured by the dynamic light scattering method is such that when the silica particles are irregularly shaped particles, the processing is performed by detecting light scattering in the long direction. Considering the length, the larger the degree of deformation, the larger the value.
  • the specific surface area equivalent particle diameter (D2) by the BET method is expressed as a sphere on the basis of the volume of the obtained particle, and is a smaller numerical value than D1. From the viewpoint of polishing rate, the particle size ratio (D1 / D2) is preferably large in the above range.
  • the CV90 of the non-spherical silica particles A is preferably 20.0% or more, more preferably 25.0% or more, from the viewpoint of suppressing a decrease in polishing rate and improving the long-period defect removal rate. Further, it is preferably 27.0% or more, and from the same viewpoint, it is preferably 40.0% or less, more preferably 38.0% or less, still more preferably 35.0% or less, and even more preferably 32. 0.0% or less.
  • the CV90 of the non-spherical silica particle A is 20.0% or more and 40.0% or less, preferably 25.0% or more and 38.0% or less, from the same viewpoint. Preferably they are 25.0% or more and 35.0% or less, More preferably, they are 27.0% or more and 32.0% or less.
  • CV90 of silica particles is a coefficient of variation obtained by dividing the standard deviation based on the scattering intensity distribution by the average particle diameter and multiplying by 100 in the dynamic light scattering method, and has a detection angle of 90 ° (side scatter). ) Is the CV value measured.
  • CV90 of silica particles A can be obtained by the method described in the examples.
  • the content of the non-spherical silica particles A in the polishing composition I is preferably 0.1% by mass or more from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. 0.5 mass% or more is more preferable, 1 mass% or more is still more preferable, and 2 mass% or more is still more preferable. From the economical viewpoint, the content is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the content of the non-spherical silica particles A in the polishing liquid composition I is 0.1 from the viewpoint of suppressing the reduction of the polishing rate, improving the long-period defect removal rate, and economically.
  • the mass is preferably from 30% by mass to 30% by mass, more preferably from 0.5% by mass to 25% by mass, further preferably from 1% by mass to 20% by mass, and still more preferably from 2% by mass to 15% by mass.
  • the non-spherical silica particles A were produced by a flame melting method, a sol-gel method, and a pulverization method from the viewpoint of suppressing a decrease in polishing rate in rough polishing, removing a long-period defect, and reducing protrusion defects after rough polishing and final polishing. It is preferably a silica particle produced by a water glass method (particle growth method using an alkali silicate aqueous solution as a starting material).
  • the usage form of the non-spherical silica particles A is preferably a slurry.
  • the silica particles are usually 1) A mixture (seed liquid) of No. 3 sodium silicate of less than 10% by mass and seed particles (small-size silica) is put in a reaction vessel, and the seed liquid is heated to 60 ° C. or more for aging. 2) An acidic active silicic acid aqueous solution prepared by passing No. 3 silicate through a cation exchange resin and an alkali (alkali metal or quaternary ammonium) are dropped into the seed solution to make the pH constant. 3) It is obtained by growing spherical particles (seed particles) and 3) concentrating the mixed solution in the reaction vessel by aging after evaporation or by ultrafiltration (for example, Japanese Patent Application Laid-Open No.
  • non-spherical silica particles A can be produced if the steps are slightly changed in the same production process.
  • a slender silica sol can be produced by intentionally adding polyvalent metal ions such as Ca and Mg into the mixed solution in the reaction vessel.
  • the temperature of the reaction product (mixed solution in the reaction vessel) (when the liquid temperature exceeds the boiling point of water, the water in the mixed solution evaporates and silica is dried at the gas-liquid interface), and the pH of the reaction product (mixing When the pH of the liquid is 9 or less, silica particles are liable to be linked), SiO 2 / M 2 O (M is an alkali metal or quaternary ammonium) in the reaction product, and a molar ratio thereof (at a molar ratio of 30 to 60,
  • Non-spherical silica particles can be produced by changing (for example, non-spherical silica is selectively produced) (for example, Japanese Patent Publication No. 8-5657, Japanese Patent No.
  • the method of adjusting the particle size distribution of the non-spherical silica particles A is not particularly limited, but a method of giving a desired particle size distribution by adding particles serving as new nuclei in the process of particle growth in the production stage, Examples thereof include a method of mixing two or more types of silica particles having different particle size distributions so as to have a desired particle size distribution.
  • the polishing liquid composition I used in the step (1) contains spherical silica particles B as described above.
  • examples of the spherical silica particles B include colloidal silica, fumed silica, and surface-modified silica.
  • the spherical silica particles B are preferably colloidal silica from the viewpoint of suppressing a decrease in polishing rate, improving the long-period defect removal rate, and reducing protrusion defects.
  • spherical particles close to a true sphere can be used from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. Those having a sphericity of 0.9 to 1.1 can be used.
  • the “spherical silica particles” may correspond to generally commercially available colloidal silica in one or more embodiments.
  • the spherical silica particles B may be one kind of spherical silica particles or a combination of two or more kinds of spherical silica particles.
  • the spherical silica particles B are a combination of two or more types of spherical silica particles, in one or more embodiments, each spherical silica particle meets the requirements for “spherical silica particles B” described in this disclosure. Fulfill.
  • the spherical silica particles B are preferably two or more types having different particle diameters from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate.
  • the ⁇ CV value of the spherical silica particles B is preferably higher than 0.0%, more preferably 0, from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. .2% or more, more preferably 0.3% or more, and still more preferably 0.4% or more. In one or a plurality of embodiments, the ⁇ CV value of the spherical silica particles B is preferably 10% or less, more preferably less than 10.0%, still more preferably 8.0% or less, and still more preferably from the same viewpoint. 7.0% or less, still more preferably 4.0% or less.
  • the ⁇ CV value of the spherical silica particles B is preferably more than 0.0% and less than 10%, more preferably more than 0.0% and less than 10.0% from the same viewpoint. More preferably, it is 0.2% or more and 8.0% or less, still more preferably 0.3% or more and 7.0% or less, and still more preferably 0.4% or more and 4.0% or less.
  • the volume average particle diameter (D1) of the spherical silica particles B is 6.0 nm or more and 80.0 nm or less from the viewpoint of suppressing a decrease in the polishing rate and improving the long-period defect removal rate.
  • the volume average particle diameter (D1) of the spherical silica particles B is 6.0 nm or more, preferably 7.0 nm or more, from the same viewpoint.
  • the volume average particle diameter (D1) of the spherical silica particles B is 80.0 nm or less, preferably 70.0 nm or less, more preferably 60.0 nm or less, from the same viewpoint. is there. In one or a plurality of embodiments, the volume average particle diameter (D1) of the spherical silica particles B is 6.0 nm or more and 80.0 nm or less, preferably 6.0 nm or more and 70.0 nm or less, from the same viewpoint. More preferably, it is 7.0 nm or more and 60.0 nm or less.
  • the spherical silica particles B contained in the polishing liquid composition I are, in one or a plurality of embodiments, two types having different particle diameters from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. It is preferable to use larger particles.
  • the volume average particle diameter (D1) is a spherical particle having a particle size of 6.0 nm to 15.0 nm and a spherical particle having a particle size of 15.5 nm to 70.0 nm.
  • a combination or a combination of spherical particles of 15.5 nm to 30.0 nm and spherical particles of 30.5 nm to 70.0 nm may be mentioned.
  • the particle size ratio (D1 / D2) of the volume average particle size (D1) by the dynamic light scattering method of the spherical silica particles B and the specific surface area equivalent particle size (D2) by the BET method is determined in one or a plurality of embodiments. From the viewpoint of suppressing the decrease in speed and improving the long-period defect removal rate, it is preferably 1.00 or more, more preferably 1.10 or more, and still more preferably 1.15 or more.
  • the particle diameter ratio (D1 / D2) of the spherical silica particles B is preferably 1.50 or less, more preferably 1.40 or less, and still more preferably 1.30 or less, from the same viewpoint. It is. In one or more embodiments, the particle size ratio (D1 / D2) of the spherical silica particles B is 1.00 or more and 1.50 or less, preferably 1.10 or more and 1.40 or less, from the same viewpoint. More preferably, it is 1.15 or more and 1.30 or less.
  • the CV90 of the spherical silica particles B is preferably 10.0% or more, more preferably 15.0% or more, from the viewpoint of suppressing reduction in polishing rate and improving the long-period defect removal rate. More preferably, it is 20.0% or more, and from the same viewpoint, it is preferably 35.0% or less, more preferably 32.0% or less, still more preferably 30.0% or less. In one or a plurality of embodiments, the CV90 of the spherical silica particles B is 10.0% or more and 35.0% or less, preferably 15.0% or more and 32.0% or less, more preferably, from the same viewpoint. Is 20.0% or more and 30.0% or less.
  • the content of the spherical silica particles B in the polishing liquid composition I is preferably 0.01% by mass or more from the viewpoint of suppressing the reduction of the polishing rate and improving the long-period defect removal rate.
  • 0.05 mass% or more is more preferable, 0.1 mass% or more is still more preferable, and 0.2 mass% or more is still more preferable.
  • the content is preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass or less, and even more preferably 1.5% by mass or less.
  • Spherical silica particles B are produced by the flame melting method, the sol-gel method, and the pulverization method from the viewpoint of suppressing the decrease in the polishing rate in the rough polishing, removing the long-period defects, and reducing the protrusion defects after the rough polishing and the final polishing. Rather, silica particles produced by a particle growth method using an alkali silicate aqueous solution as a starting material are preferable.
  • the usage form of the spherical silica particles B is preferably a slurry.
  • the total overlap frequency of the volume particle size distributions of the non-spherical silica particles A and the spherical silica particles B in the polishing liquid composition I is the reduction of the polishing rate and the improvement of the long-period defect removal rate in one or more embodiments. From the viewpoint, 0% to 50% is preferable, more preferably 10% to 45%, still more preferably 15% to 40%, and still more preferably 20% to 35%.
  • the overlapping frequency of the volume particle size distribution of the non-spherical silica particles A and the spherical silica particles B can be specifically obtained by the method described in the examples. It is presumed that the above-described effect occurs when the porosity and the small particles existing in the voids are appropriately balanced in the silica particle mixture having different sizes.
  • the mass ratio (A / B) which is the ratio of the content of the non-spherical silica particles A and the spherical silica particles B in the polishing liquid composition I, is one or more embodiments. From the viewpoint of improving the removal rate, it is 80/20 or more, preferably 85/15 or more, more preferably 88/12 or more. In one or a plurality of embodiments, the mass ratio (A / B) of the non-spherical silica particles A and the spherical silica particles B is 99/1 or less, preferably 95/5 or less, more preferably. Is 92/8 or less.
  • the content of the spherical silica particles B refers to the total content thereof. The same applies to the content of non-spherical silica particles A.
  • polishing liquid composition I contains silica particles in addition to the non-spherical silica particles A and the spherical silica particles B, the non-spherical silica particles A with respect to the entire silica particles in the polishing liquid composition I
  • the total content of the spherical silica particles B exceeds 98.0% by mass, preferably 98.5% by mass or more, and more preferably 99.99% by mass, from the viewpoint of suppressing a decrease in the polishing rate and improving the long-period defect removal rate. It is 0% by mass or more, more preferably 99.5% by mass or more, still more preferably 99.8% by mass or more, and still more preferably substantially 100% by mass.
  • the polishing liquid composition I contains at least one acid selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and combinations thereof from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. Containing.
  • the use of an acid in the polishing liquid composition I includes the use of an acid and / or a salt thereof.
  • phosphoric acids refers to phosphoric acid and other similar compounds having a phosphoric acid skeleton. In one or a plurality of embodiments, pyrophosphoric acid is mentioned as the group of similar compounds.
  • phosphoric acid includes, in one or more embodiments, inorganic phosphoric acid.
  • phosphonic acid includes, in one or more embodiments, inorganic phosphonic acid.
  • organic phosphonic acid means, in one or more embodiments, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid), ethylenediaminetetra ( Methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane- 1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid, ⁇ -methylphosphonosuccinic acid , And combinations thereof.
  • HEDP 2-aminoethylphosphonic acid
  • HEDP 1-hydroxyethylidene-1,1-diphosphonic acid
  • aminotri methylenephospho
  • Phosphoric acids, phosphonic acids, organic phosphonic acids, and salts thereof may be used alone or in admixture of two or more.
  • phosphoric acid or HEDP is preferable from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • the content of the acid in the polishing liquid composition I is preferably 0.001% by mass or more and 5.0% by mass or less, more preferably 0%, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. It is 0.01 mass% or more and 4.0 mass% or less, More preferably, it is 0.05 mass% or more and 3.0 mass% or less, More preferably, it is 0.1 mass% or more and 2.5 mass% or less.
  • Polishing liquid composition I may contain an acid different from phosphoric acids, phosphonic acid, and organic phosphonic acid in one or a plurality of embodiments as long as the effect is not impaired.
  • inorganic acids are preferred as acids different from phosphoric acids, phosphonic acids, and organic phosphonic acids.
  • other inorganic acids include nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, amidosulfuric acid and the like.
  • sulfuric acid is preferable from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • the content of the other inorganic acid in the polishing liquid composition I is preferably 0.001% by mass or more and 0.6% by mass or less from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • they are 0.01 mass% or more and 0.5 mass% or less, More preferably, they are 0.05 mass% or more and 0.4 mass% or less, More preferably, they are 0.1 mass% or more and 0.3 mass% or less.
  • Polishing liquid composition I contains an oxidizing agent from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof from the same viewpoint.
  • hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate are preferable, and metal ions do not adhere to the surface in terms of improving the polishing rate. From the viewpoint of being used for general purposes and inexpensive, hydrogen peroxide is more preferable.
  • These oxidizing agents may be used alone or in admixture of two or more.
  • the content of the oxidizing agent in the polishing composition I is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more from the viewpoint of improving the polishing rate.
  • the content is preferably 4.0% by mass or less, more preferably 2.0% by mass or less, and still more preferably 1 from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. .5% by mass or less.
  • the content is preferably 0.01% by mass or more and 4.0% by mass or less, more preferably 0.05% by mass or more and 2.0% by mass. % Or less, more preferably 0.1% by mass or more and 1.5% by mass or less.
  • polishing composition I other components can be blended as necessary.
  • other components include thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, and polymer compounds.
  • These other optional components are preferably blended in the polishing liquid composition I as long as the effects of the present disclosure are not impaired, and the total content of optional components in the polishing liquid composition I is 10% by mass or less. Preferably, 5 mass% or less is more preferable.
  • Polishing liquid composition I contains water as a medium.
  • water distilled water, ion-exchanged water, pure water, ultrapure water, or the like can be used.
  • the content of water in the polishing liquid composition I is preferably 61% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and still more preferably, because the handling of the polishing liquid composition becomes easy.
  • the polishing composition I preferably contains substantially no alumina abrasive grains from the viewpoint of reducing the protrusion defects.
  • substantially free of alumina abrasive grains means that in one or a plurality of embodiments, it does not contain alumina particles, does not contain alumina particles in an amount that functions as abrasive grains, or polishing results. Not including an amount of alumina particles that affects the amount of alumina particles.
  • the specific content of alumina particles in the polishing liquid composition I is not particularly limited, but is preferably 5% by mass or less, more preferably 2% by mass or less, and more preferably 1% by mass or less as a whole abrasive grain. More preferably, it is still more preferably substantially 0%.
  • the pH of the polishing composition I is adjusted to 0.5 or more and 6.0 or less using the aforementioned acid or a known pH adjuster from the viewpoint of reducing long-period defects without significantly reducing the polishing rate. More preferably, 0.7 to 4.0, still more preferably 0.9 to 3.0, still more preferably 1.0 to 3.0, still more preferably 1.2 to 2. .5 or less, still more preferably 1.4 or more and 2.0 or less.
  • the above pH is the pH of the polishing composition at 25 ° C., which can be measured using a pH meter, and is a value two minutes after immersion of the electrode in the polishing composition.
  • the polishing liquid composition I is prepared by, for example, mixing non-spherical silica particles A, spherical silica particles B, the above-described acid, the above-mentioned oxidizing agent, and water with other components as desired in a known manner. Can be prepared.
  • the “content of the component in the polishing liquid composition” refers to the content of the component when the polishing liquid composition is used for polishing. Therefore, when the polishing liquid composition is prepared as a concentrate, the content of the components can be increased by the concentration.
  • the mixing is not particularly limited, and can be performed using a homomixer, a homogenizer, an ultrasonic disperser, a stirrer such as a wet ball mill, or the like.
  • the present disclosure is a method for producing a polishing liquid composition I, comprising: (1) The ⁇ CV value is more than 0.0% and less than 10%, and the particle size ratio (D1 /) of the volume average particle size (D1) by the dynamic light scattering method and the specific surface area converted particle size (D2) by the BET method.
  • the mass ratio (A / B) between the particles A and the spherical silica particles B is 80/20 or more and 99/1 or less, and the total content of the nonspherical silica particles A and the spherical silica particles B with respect to the entire silica particles is 98.0. Mixing so as to exceed mass%. About.
  • the content of each component can be as described above.
  • the substrate to be polished roughly using the polishing liquid composition I is a magnetic disk substrate or a substrate used for a magnetic disk substrate.
  • a Ni—P plated aluminum alloy substrate, silicate glass, aluminosilicate glass is used.
  • glass substrates such as crystallized glass and tempered glass.
  • the substrate to be polished used in the present disclosure is preferably a Ni—P plated aluminum alloy substrate from the viewpoint of strength and ease of handling.
  • the shape of the said to-be-polished substrate For example, what is necessary is just the shape which has planar parts, such as a disk shape, plate shape, slab shape, prism shape, and the shape which has curved surface parts, such as a lens.
  • a disk-shaped substrate to be polished is suitable. In the case of a disk-shaped substrate to be polished, its outer diameter is, for example, about 2 to 95 mm, and its thickness is, for example, about 0.5 to 2 mm.
  • a magnetic disk is obtained by polishing a glass substrate that has undergone a fine grinding process or an aluminum alloy substrate that has undergone a Ni-P plating process through a rough polishing process and a final polishing process, and forming a magnetic disk in a recording portion forming process.
  • the manufacturing method of a magnetic disk substrate according to the present disclosure is a manufacturing method that includes the following steps (1) to (3) and is performed by a polishing machine different from steps (1) and (3).
  • (1) Rough polishing step A step of polishing a substrate to be polished using the polishing composition I described above.
  • (2) Cleaning step A step of cleaning the substrate obtained in step (1).
  • Finish polishing Using the step (2), the substrate obtained in the step (2) is used with a polishing liquid composition containing silica particles C (hereinafter also referred to as “polishing liquid composition II”). Polishing process.
  • the step (1) is a step of polishing the surface to be polished of the substrate to be polished using the polishing liquid composition I in one or a plurality of embodiments, and in the other one or a plurality of embodiments, the polishing liquid composition I is supplied to the surface to be polished of the substrate to be polished, a polishing pad (hereinafter also referred to as “polishing pad A”) is brought into contact with the surface to be polished, and at least one of the polishing pad and the substrate to be polished is moved. In this step, the surface to be polished is polished.
  • the polishing machine used in the step (1) is not particularly limited, and a known polishing machine for polishing a magnetic disk substrate can be used. Examples of the substrate to be polished in the step (1) include the above-mentioned substrates to be polished.
  • the polishing pad A used in the step (1) of the manufacturing method according to the present disclosure is a suede type having a base layer and a foamed surface layer from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • the surface layer has a compressibility of 2.5% or more.
  • a closed foam type and a continuous foam type can be used, but a continuous foam type is preferable from the viewpoint of discharge of polishing waste.
  • a continuous foaming type polishing pad include, for example, “CMP Technology Basic Example Course Series 2nd Mechanochemical Polishing (CMP) Basics and Examples (Polishing Pad Edition) May 27, 1998 Material Global Net Corporation Edition”, Alternatively, a polishing pad as described in “CMP Science, Masahiro Kashiwa, Science Forum, Chapter 4” can be used.
  • the suede type has, in one or a plurality of embodiments, a base layer and a foam layer having spindle-shaped pores perpendicular to the base layer as described in JP-A No. 11-335979. Refers to the structure.
  • the suede type polishing pad is manufactured by the following method in one or a plurality of embodiments.
  • a solution in which polyurethane elastomer is dissolved in a solvent such as dimethylformamide (DMF) is applied on a base layer made of polyethylene terephthalate (PET), and then immersed in water or a mixed solution of water and a solvent for polyurethane elastomer solution. Then, wet coagulation is carried out, followed by washing with water for solvent removal and drying. As a result, a foam layer having spindle-shaped pores perpendicular to the base layer is formed on the base layer.
  • a solvent such as dimethylformamide (DMF)
  • a suede type polishing pad having a foam layer having a pore portion on the surface and a spindle-shaped pore perpendicular to the base layer Is obtained.
  • Examples of the material of the base layer of the polishing pad A include, in one or a plurality of embodiments, a non-woven fabric made of natural fibers such as cotton or a synthetic fiber, a base layer obtained by filling a rubber-like substance such as styrene butadiene rubber, and the like.
  • a polyethylene terephthalate (PET) film and a polyester film are preferable, and a PET film is more preferable from the viewpoint of reducing microwaviness and obtaining a resin film having high hardness.
  • Examples of the material of the foam layer (surface layer) of the polishing pad A include polyurethane elastomer, polystyrene, polyester, polyvinyl chloride, natural rubber, and synthetic rubber in one or a plurality of embodiments. From the viewpoint of reducing long-period defects without loss, polyurethane elastomers are preferred.
  • “undulation” of a substrate refers to irregularities on the surface of the substrate having a wavelength longer than the roughness.
  • the compression rate of the foam layer (surface layer) of the polishing pad A is 2.5% or more, preferably 20.0% or less, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • it is 15.0% or less, More preferably, it is 10.0% or less, More preferably, it is 7.0% or less, More preferably, it is 5.0% or less.
  • the compressibility of the polishing pad can be measured by a compression tester based on the compressibility measurement method described in Japanese Industrial Standard (JIS) L1096. That is, the value obtained by subtracting the thickness (T1) of the polishing pad measured under 1000 g / cm 2 from the thickness (T0) of the polishing pad measured under standard pressure (100 g / cm 2 ) is divided by T0. It can be determined by multiplying the value by 100.
  • JIS Japanese Industrial Standard
  • the compressibility of the polishing pad can be controlled by, for example, the thickness of the foam layer, the pore size on the base layer side of the foam layer, or the material of the base layer.
  • the average pore diameter of the pores on the surface of the polishing pad A is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 15 ⁇ m or more and 80 ⁇ m or less, and still more preferably 20 ⁇ m, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • the thickness is 60 ⁇ m or less, and more preferably 25 ⁇ m or more and 55 ⁇ m or less.
  • the average pore size of the pores on the surface of the polishing pad is such that pigments such as carbon black, a hydrophilic activator that promotes foaming, or a hydrophobic activator that stabilizes wet coagulation of the polyurethane elastomer with respect to the polyurethane elastomer raw material. It can control by adding an additive. And the said average pore diameter can be calculated
  • WinROOF Mitsubishi Corporation
  • the thickness of the polishing pad A is preferably from 0.7 mm to 1.5 mm, more preferably from 0.8 mm to 1.4 mm, and still more preferably from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. It is 0.8 mm or more and 1.3 mm or less, and more preferably 0.9 mm or more and 1.3 mm or less.
  • the polishing load means the pressure of the surface plate applied to the polishing surface of the substrate to be polished during polishing.
  • the polishing load in the step (1) is preferably 30 kPa or less, more preferably 25 kPa or less, still more preferably 20 kPa or less, still more preferably 18 kPa or less, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. Even more preferably, it is 16 kPa or less, and still more preferably 14 kPa or less.
  • the polishing load is preferably 3 kPa or more, more preferably 5 kPa or more, still more preferably 7 kPa or more, even more preferably 8 kPa or more, and even more preferably from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. 9 kPa or more.
  • the polishing load is preferably 3 kPa or more and 30 kPa or less, more preferably 5 kPa or more and 25 kPa or less, still more preferably 7 kPa or more and 20 kPa or less, and even more preferably 8 kPa, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.
  • the polishing load can be adjusted by applying air pressure or weight to the surface plate or the substrate.
  • the polishing amount per substrate to be polished is 110 mg or more and 160 mg or less from the viewpoint of reducing long-period defects without significantly reducing the polishing rate in one or a plurality of embodiments. More preferably, it is 115 mg or more and 155 mg or less, More preferably, it is 120 mg or more and 150 mg or less.
  • the above range is applied according to the area.
  • the polishing in the step (1) in the production method according to the present disclosure uses the polishing composition I containing the above-mentioned predetermined non-spherical silica particles A, spherical silica particles B, acid, oxidizing agent, and water. Long period defects can be effectively removed with a polishing amount in the range.
  • the supply rate of the polishing liquid composition I in the step (1) is preferably 2.5 mL / min or less per 1 cm 2 of the substrate to be polished, more preferably 2.0 mL / min or less, and still more preferably 1 from the economical viewpoint.
  • the supply rate is preferably 0.01 mL / min or more per 1 cm 2 of the substrate to be polished, more preferably 0.03 mL / min or more, and further preferably 0.05 mL / min or more.
  • the supply rate is preferably 0.01 mL / min or more and 2.5 mL / min or less, more preferably 0.03 mL / min or more, per 1 cm 2 of the substrate to be polished, from the viewpoint of economy and improvement of the polishing rate.
  • 0 mL / min or less more preferably 0.03 mL / min or more and 1.5 mL / min or less, still more preferably 0.03 mL / min or more and 1.0 mL / min or less, still more preferably 0.05 mL / min or more and 0. 5 mL / min or less, still more preferably 0.05 mL / min or more and 0.2 mL / min or less.
  • the supply amount of the polishing liquid composition I in the step (1) depends on the supply speed of the polishing liquid composition I, but is preferably further reduced from the viewpoint of economy. In one or a plurality of embodiments of the present disclosure, it is conceivable that the polishing liquid composition I can act on the substrate more efficiently, so that the supply amount of the polishing liquid can be reduced from the conventional supply amount.
  • the reduction efficiency of the polishing liquid supply amount in the present disclosure can be specifically evaluated by the method described in the examples.
  • Method for supplying polishing liquid composition I in step (1) to polishing machine As a method of supplying the polishing composition I to the polishing machine, for example, a method of continuously supplying using a pump or the like can be mentioned.
  • a plurality of component liquids for blending It can also be divided into two liquids or more. In the latter case, for example, the plurality of compounding component liquids are mixed into the polishing liquid composition I in the supply pipe or on the substrate to be polished.
  • Step (2) is a step of cleaning the substrate obtained in step (1).
  • Step (2) is a step of cleaning the substrate that has been subjected to the rough polishing in step (1) with a cleaning composition in one or more embodiments.
  • the cleaning method in the step (2) is not particularly limited, in one or a plurality of embodiments, the method of immersing the substrate obtained in the step (1) in the cleaning composition (cleaning method a), and the cleaning agent The method (cleaning method b) which injects a composition and supplies a cleaning composition on the surface of the board
  • the conditions for immersing the substrate in the cleaning composition are not particularly limited.
  • the temperature of the cleaning composition is 20 to 100 ° C. from the viewpoint of safety and operability.
  • the immersion time is preferably from 10 seconds to 30 minutes from the viewpoint of the cleaning properties and production efficiency of the cleaning composition.
  • ultrasonic vibration is applied to the cleaning composition.
  • the frequency of the ultrasonic wave is preferably 20 kHz to 2000 kHz, more preferably 40 kHz to 2000 kHz, and still more preferably 40 kHz to 1500 kHz.
  • the cleaning agent composition to which ultrasonic vibration is applied is injected to bring the cleaning agent composition into contact with the surface of the substrate. Or cleaning the surface by supplying the cleaning composition onto the surface of the substrate to be cleaned by injection and rubbing the surface supplied with the cleaning composition with a cleaning brush. preferable. Further, in the cleaning method b, the cleaning composition to which ultrasonic vibration is applied is supplied to the surface to be cleaned by injection, and the surface to which the cleaning composition is supplied is applied with a cleaning brush. It is preferable to perform washing.
  • a spray nozzle As means for supplying the cleaning composition onto the surface of the substrate to be cleaned, known means such as a spray nozzle can be used.
  • cleaning For example, well-known things, such as a nylon brush and a PVA (polyvinyl alcohol) sponge brush, can be used.
  • the ultrasonic frequency may be the same as the value preferably employed in the cleaning method a.
  • step (2) in addition to the cleaning method a and / or the cleaning method b, one or more steps using known cleaning such as rocking cleaning, cleaning using rotation of a spinner, paddle cleaning, scrub cleaning, and the like are included. But you can.
  • cleaning composition in step (2) As a cleaning composition of a process (2), in one or some embodiment, what contains an alkali agent, water, and various additives as needed can be used.
  • the alkaline agent used in the cleaning composition may be either an inorganic alkaline agent or an organic alkaline agent.
  • the inorganic alkaline agent include ammonia, potassium hydroxide, and sodium hydroxide.
  • the organic alkali agent include one or more selected from the group consisting of hydroxyalkylamine, tetramethylammonium hydroxide, and choline. These alkaline agents may be used alone or in combination of two or more.
  • the alkaline agent includes potassium hydroxide, sodium hydroxide, monoethanolamine, methyldiethanolamine, and aminoethyl. At least one selected from the group consisting of ethanolamine is preferable, and at least one selected from the group consisting of potassium hydroxide and sodium hydroxide is more preferable.
  • the content of the alkaline agent in the cleaning composition is 0.05 from the viewpoint of improving the cleaning properties of the cleaning composition on the residue on the substrate and increasing the safety when handling the cleaning composition.
  • the content is preferably from 10% by mass to 10% by mass, more preferably from 0.08% by mass to 5% by mass, and still more preferably from 0.1% by mass to 3% by mass.
  • the pH of the cleaning composition is preferably 8 or more and 14 or less, more preferably 9 or more and 13 or less, still more preferably 10 or more and 13 or less, and even more, from the viewpoint of improving the detergency with respect to the residue on the substrate. Preferably they are 11 or more and 13 or less.
  • said pH is pH of the cleaning composition at 25 degreeC, can be measured using a pH meter, and is a numerical value 2 minutes after immersion in the cleaning composition of an electrode.
  • the detergent composition includes nonionic surfactants, chelating agents, ether carboxylates or fatty acids, anionic surfactants, water-soluble polymers, antifoaming agents (surfactants corresponding to ingredients are Except alcohol), preservatives, antioxidants, and the like.
  • the content of components other than water in the cleaning composition is from the viewpoint of coexistence of a concentration sufficient to improve workability, economy and storage stability, and improvement in storage stability.
  • the total content of water and components other than water is 100% by mass, it is preferably 10% by mass to 60% by mass, more preferably 15% by mass to 50% by mass, Preferably they are 15 to 40 mass%.
  • the cleaning composition is used after diluting.
  • the dilution rate is preferably 10 to 500 times, more preferably 20 to 200 times, and still more preferably 50 to 100 times.
  • the water for dilution may be the same as that of the polishing composition I described above.
  • the cleaning composition can be a concentrate based on the dilution ratio. Therefore, in the case of a concentrate, the content of components other than water in the cleaning composition is preferably 0.02 when the total of the content of water and the content of components other than water is 100% by mass. It is not less than 6% by mass and not more than 6% by mass, more preferably not less than 0.1% by mass and not more than 3% by mass, and further preferably not less than 0.15% by mass and not more than 1% by mass.
  • a process (3) is a process of grind
  • the step (3) supplies the polishing liquid composition II containing the silica particles C to the surface to be polished of the substrate obtained in the step (2).
  • a polishing pad is brought into contact and at least one of the polishing pad and the substrate to be polished is moved to polish the surface to be polished.
  • the polishing machine used in step (3) is used in step (1) from the viewpoint of reducing protrusion defects and using pads having different pore diameters from rough polishing in order to efficiently reduce other surface defects. This polishing machine is different from the polishing machine used.
  • the manufacturing method according to the present disclosure includes a rough polishing step in step (1), a cleaning step in step (2), and a final polishing step in step (3), thereby greatly impairing the polishing rate of rough polishing. Therefore, it is possible to efficiently manufacture a substrate in which long-period defects are reduced and protrusion defects after finish polishing are reduced.
  • Polishing liquid composition II used at a process (3) contains the silica particle C as an abrasive from a viewpoint of the projection defect reduction after final polishing.
  • the silica particles C used are preferably colloidal silica from the viewpoint of reducing long wavelength waviness after finish polishing.
  • the polishing composition II preferably does not substantially contain alumina abrasive grains from the viewpoint of reducing protrusion defects after finish polishing.
  • the silica particles C are spherical in one or more embodiments.
  • “long wavelength undulation” refers to undulation observed with a wavelength of 500 to 5000 ⁇ m.
  • the volume average particle diameter (D1) by the dynamic light scattering method of the silica particles C used in the polishing composition II is preferably 5 nm or more and 50 nm or less, more preferably 10 nm, from the viewpoint of reducing protrusion defects after finish polishing. It is not less than 45 nm, more preferably not less than 15 nm and not more than 40 nm, and still more preferably not less than 20 nm and not more than 35 nm.
  • the volume average particle diameter (D1) of the silica particles C by the dynamic light scattering method is the volume average particle diameter (D1) of the nonspherical silica particles A by the dynamic light scattering method from the viewpoint of reducing the protrusion defects after finish polishing. Preferably it is smaller.
  • the CV90 of the silica particles C is preferably 10.0% or more, more preferably 15.0% or more, from the viewpoint of suppressing a decrease in polishing rate and reducing protrusion defects after finish polishing. More preferably, it is 20.0% or more, and from the same viewpoint, it is preferably 35.0% or less, more preferably 32.0% or less, still more preferably 30.0% or less. In one or a plurality of embodiments, the CV90 of the spherical silica particles B is 10.0% or more and 35.0% or less, preferably 15.0% or more and 32.0% or less, more preferably, from the same viewpoint. Is 20.0% or more and 30.0% or less.
  • the content of the silica particles C in the polishing liquid composition II is preferably 0.5% by mass or more and 20% by mass or less, and preferably 1.0% by mass or more from the viewpoint of reducing long-wave waviness and protrusion defects after finish polishing. 15 mass% or less is more preferable, 3.0 mass% or more and 13 mass% or less are still more preferable, and 4.0 mass% or more and 10 mass% or less are still more preferable.
  • Polishing liquid composition II contains 1 or more types chosen from the polymer which has a heterocyclic aromatic compound, a polyvalent amine compound, and an anionic group from a viewpoint of reducing the long wavelength waviness and protrusion defect after final polishing. It is preferable to include two or more types, and it is more preferable to include a heterocyclic aromatic compound, a polyvalent amine compound, and a polymer having an anionic group.
  • Polishing liquid composition II preferably contains an acid and an oxidizing agent from the viewpoint of improving the polishing rate.
  • an acid and an oxidizing agent it is the same as that of the case of the above-mentioned polishing liquid composition I.
  • the water used for the polishing liquid composition II, the pH of the polishing liquid composition II, and the method for preparing the polishing liquid composition II are the same as those for the polishing liquid composition I described above.
  • polishing pad in step (3) As the polishing pad used in the step (3), the same type of polishing pad as that used in the step (1) can be used.
  • the average pore diameter of the polishing pad used in the step (3) is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and still more preferably, from the viewpoint of reducing long wavelength waviness and protrusion defects after finish polishing. 3 ⁇ m or more and 30 ⁇ m or less.
  • the polishing load in the step (3) is preferably 16 kPa or less, more preferably 14 kPa or less, and still more preferably 13 kPa or less, from the viewpoint of reducing long wavelength waviness and protrusion defects after finish polishing.
  • the polishing load is preferably 7.5 kPa or more, more preferably 8.5 kPa or more, and further preferably 9.5 kPa or more, from the viewpoint of reducing long wavelength waviness and protrusion defects after finish polishing.
  • the polishing load is preferably 7.5 kPa or more and 16 kPa or less, more preferably 8.5 kPa or more and 14 kPa or less, and further preferably 9.5 kPa or more and 13 kPa or less, from the viewpoint of reducing long wavelength waviness and protrusion defects after finish polishing. is there.
  • the polishing amount per unit area (1 cm 2 ) of the substrate to be polished and the polishing time per minute is preferably 0.02 mg or more from the viewpoint of reducing long wavelength waviness and protrusion defects after finish polishing. More preferably, it is 0.03 mg or more, More preferably, it is 0.04 mg or more.
  • the polishing amount is preferably 0.15 mg or less, more preferably 0.12 mg or less, and still more preferably 0.10 mg or less from the viewpoint of improving productivity. Therefore, the polishing amount is preferably 0.02 mg or more and 0.15 mg or less, more preferably 0.03 mg or more and 0.12 mg or less, and further preferably 0.04 mg or more and 0.10 mg or less from the same viewpoint as described above. .
  • the supply rate of the polishing liquid composition II and the method of supplying the polishing liquid composition II to the polishing machine are the same as in the case of the polishing liquid composition I described above.
  • a magnetic disk substrate with reduced protrusion defects can be obtained with a high substrate yield.
  • the effect of being able to manufacture with high productivity can be achieved.
  • polishing method As another aspect, the present disclosure relates to a polishing method having the above-described step (1), step (2), and step (3). Polishing substrate, polishing liquid composition I, non-spherical silica particles A, spherical silica particles B, polishing liquid composition II, silica particles C, polishing method and conditions in steps (1) to (3), cleaning composition,
  • the cleaning method can be the same as the method for manufacturing the magnetic disk substrate according to the present disclosure described above.
  • polishing method of the present disclosure in one or a plurality of embodiments, it is possible to reduce long-period defects without significantly reducing the polishing rate in rough polishing, so that a magnetic disk substrate with reduced protrusion defects is a high substrate.
  • the effect that it can manufacture with sufficient productivity with a yield can be show
  • a manufacturing method and a polishing method according to the present disclosure include a first polishing machine 51 that polishes (roughly polishes) a substrate to be polished using a polishing composition I as shown in FIG.
  • a magnetic disk substrate polishing system comprising: a cleaning unit 52 for cleaning the substrate polished by the first polishing machine 51; and a second polishing machine 53 for polishing the cleaned substrate using the polishing composition II.
  • the present disclosure provides a first polishing machine that performs the polishing in the step (1), a cleaning unit that performs the cleaning in the step (2), and a second that performs the polishing in the step (3).
  • the present invention relates to a polishing system for a magnetic disk substrate provided with a polishing machine.
  • the polishing liquid composition I and the polishing liquid composition II are as described above.
  • the substrate to be polished, the polishing pad used in each polishing machine, the polishing method and conditions, the cleaning composition, and the cleaning method are as described above. It can be the same as the manufacturing method of the magnetic disk substrate according to the present disclosure.
  • the polishing amount for at least one substrate to be polished (diameter: 95 mm) polished by the first polishing machine 51 is preferably 110 mg or more and 160 mg or less. It may have a means (polishing control unit) (not shown) for confirming that it is preferably 115 mg or more and 155 mg or less, more preferably 120 mg or more and 150 mg or less. In one or a plurality of embodiments, the means (polishing control unit) controls the first polishing machine 51 based on the polishing amount of the substrate.
  • an embodiment of the operation of the polishing system according to the present disclosure (polishing step of the method for manufacturing a magnetic disk substrate) will be described with reference to FIG. 5 and FIG.
  • the substrate to be polished is polished (roughly polished) by the first polishing machine 51 (step S61). Then, the polishing controller determines whether the polishing amount of the substrate by the first polishing machine 51 is within a predetermined polishing amount range (110 to 160 mg in this case) (step S62). When the polishing amount is within the predetermined polishing amount, the substrate after rough polishing is cleaned by the cleaning unit 52 (step S62), and the cleaned substrate is polished by the second polishing machine 53 (step S63). On the other hand, when the polishing amount is not within the predetermined polishing amount, the polishing is continued or stopped in the first polishing machine 51 (step S65).
  • a predetermined polishing amount range 110 to 160 mg in this case
  • the present disclosure further relates to one or more embodiments below.
  • the said polishing liquid composition I of the said process (1) contains the nonspherical silica particle A, the spherical silica particle B, an acid, an oxidizing agent, and water
  • the said process ( In the polishing composition I of 1), the mass ratio (A / B) of the non-spherical silica particles A and the spherical silica particles B is 80/20 or more and 99/1 or less, and the non-spherical silica with respect to the entire silica particles The total content of the particles A and the spherical silica particles B exceeds 98.0% by mass
  • the ⁇ CV value of the non-spherical silica particle A is more than 0.0% and less than 10%, where the ⁇ CV value is a standard deviation based on a scattering intensity distribution at a detection angle of 30 ° by the dynamic light scattering method.
  • the volume average particle diameter (D1) of the non-spherical silica particles A by dynamic light scattering method and the specific surface area conversion by BET method ( ⁇ CV CV30 ⁇ CV90)
  • the particle size ratio (D1 / D2) of the particle size (D2) is 2.00 or more and 4.00 or less
  • the spherical silica particle B has a volume average particle size (D1) by a dynamic light scattering method. 6.0 nm or more and 80.0 nm or less, i) said acid, phosphoric acids, phosphonic acids, organic phosphonic acids, and is selected from the group consisting of method of manufacturing a magnetic disk substrate.
  • the non-spherical silica particles A are at least one selected from the group consisting of confetti-type silica particles A1, deformed-type silica particles A2, deformed and confetti-type silica particles A3, and combinations thereof.
  • the ⁇ CV value of the non-spherical silica particles A is preferably more than 0.0%, more preferably 0.2% or more, still more preferably 0.3% or more, and even more preferably 0.4% or more.
  • the non-spherical silica particles A preferably have a ⁇ CV value of less than 10.0%, more preferably 8.0% or less, still more preferably 7.0% or less, and even more preferably 4.0. % Or less, The manufacturing method in any one of ⁇ 1> to ⁇ 3>.
  • the ⁇ CV value of the non-spherical silica particles A is preferably more than 0.0% and less than 10.0%, more preferably 0.2% or more and 8.0% or less, and more preferably 0.
  • the manufacturing method according to any one of ⁇ 1> to ⁇ 4> which is 0.3% or more and 7.0% or less, and more preferably 0.4% or more and 4.0% or less.
  • the volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more, more preferably 150.0 nm or more, still more preferably 160.0 nm or more, and even more preferably 170.0 nm or more.
  • the volume average particle diameter (D1) of the non-spherical silica particles A is preferably less than 300.0 nm, more preferably less than 260.0 nm, still more preferably less than 250.0 nm, and even more preferably less than 220.0 nm. Even more preferably, the production method according to any one of ⁇ 1> to ⁇ 6>, which is less than 210.0 nm.
  • the volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more and less than 300.0 nm, more preferably 120.0 nm or more and less than 260.0 nm, and further preferably 150.0 nm or more and 260.
  • a volume ratio (D1 / D2) of the volume average particle diameter (D1) of the non-spherical silica particles A by a dynamic light scattering method and a specific surface area conversion particle diameter (D2) by a BET method is preferably 2.
  • the production method according to any one of ⁇ 1> to ⁇ 8> which is 00 or more, more preferably 2.50 or more, still more preferably 3.00 or more, and even more preferably 3.50 or more.
  • the particle diameter ratio (D1 / D2) of the volume average particle diameter (D1) of the non-spherical silica particles A by the dynamic light scattering method and the specific surface area equivalent particle diameter (D2) by the BET method is preferably 4.
  • the production method according to any one of ⁇ 1> to ⁇ 9> which is 00 or less, more preferably 3.90 or less, and still more preferably 3.80 or less.
  • the particle diameter ratio (D1 / D2) of the volume average particle diameter (D1) of the non-spherical silica particles A by the dynamic light scattering method and the specific surface area converted particle diameter (D2) by the BET method is preferably 2. 00 or more and 4.00 or less, more preferably 2.50 or more and 3.90 or less, still more preferably 3.00 or more and 3.90 or less, and even more preferably 3.50 or more and 3.80 or less, from ⁇ 1>
  • the manufacturing method in any one of ⁇ 10>.
  • the CV90 of the non-spherical silica particles A is preferably 20.0% or more, more preferably 25.0% or more, and further preferably 27.0% or more, any one of ⁇ 1> to ⁇ 11>
  • the CV90 of the non-spherical silica particles A is preferably 40.0% or less, more preferably 38.0% or less, still more preferably 35.0% or less, and even more preferably 32.0% or less. ⁇ 1> to the production method according to any one of ⁇ 12>.
  • the CV90 of the non-spherical silica particles A is preferably 20.0% or more and 40.0% or less, more preferably 25.0% or more and 38.0% or less, and further preferably 25.0 or more and 35.0%. % Or less, and even more preferably 27.0% or more and 32.0% or less, according to any one of ⁇ 1> to ⁇ 13>.
  • the content of the non-spherical silica particles A in the polishing composition I is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, and even more.
  • the content of the non-spherical silica particles A in the polishing composition I is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, and even more preferably 15% by mass. % Or less, The manufacturing method in any one of ⁇ 1> to ⁇ 15>.
  • the content of the non-spherical silica particles A in the polishing composition I is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and still more preferably. Is 1% by mass or more and 20% by mass or less, and more preferably 2% by mass or more and 15% by mass or less.
  • ⁇ 18> The production method according to any one of ⁇ 1> to ⁇ 17>, wherein the non-spherical silica particles A are silica particles produced by a particle growth method using water glass as a raw material.
  • the ⁇ CV value of the spherical silica particles B is preferably more than 0.0%, more preferably 0.2% or more, still more preferably 0.3% or more, and even more preferably 0.4% or more.
  • the ⁇ CV value of the spherical silica particles B is preferably less than 10.0%, more preferably 8.0% or less, still more preferably 7.0% or less, and even more preferably 4.0%.
  • the production method according to any one of ⁇ 1> to ⁇ 19> which is as follows.
  • the ⁇ CV value of the spherical silica particles B is preferably more than 0.0% and less than 10.0%, more preferably 0.2% or more and 8.0% or less, and still more preferably 0.8.
  • the production method according to any one of ⁇ 1> to ⁇ 20> which is 3% or more and 7.0% or less, and more preferably 0.4% or more and 4.0% or less.
  • ⁇ 22> The method according to any one of ⁇ 1> to ⁇ 21>, wherein the spherical silica particles B have a volume average particle diameter (D1) of preferably 6.0 nm or more, more preferably 7.0 nm or more. .
  • the volume average particle diameter (D1) of the spherical silica particles B is preferably 80.0 nm or less, more preferably 70.0 nm or less, and more preferably 60.0 nm or less.
  • the volume average particle diameter (D1) of the spherical silica particles B is preferably 6.0 nm or more and 80.0 nm or less, more preferably 6.0 nm or more and 70.0 nm or less, and still more preferably 7.0 nm or more and 60.60.
  • the spherical silica particles B are two types of particles having different particle diameters, and the two types of particles are a spherical particle of 6.0 nm to 15.0 nm and a spherical particle of 15.5 nm to 70.0 nm. Or a combination of spherical particles of 15.5 nm or more and 30.0 nm or less and spherical particles of 30.5 nm or more and 70.0 nm or less, according to any one of ⁇ 1> to ⁇ 24> .
  • the particle size ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the spherical silica particles B and the specific surface area converted particle diameter (D2) by the BET method is preferably 1.00.
  • the volume ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the spherical silica particles B and the specific surface area converted particle diameter (D2) by the BET method is preferably 1.50.
  • the particle diameter ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the spherical silica particles B and the specific surface area converted particle diameter (D2) by the BET method is preferably 1.00.
  • CV90 of the spherical silica particles B is preferably 10.0% or more, more preferably 15.0% or more, and further preferably 20.0% or more.
  • the manufacturing method as described in. ⁇ 30> Any of ⁇ 1> to ⁇ 29>, wherein CV90 of the spherical silica particles B is preferably 35.0% or less, more preferably 32.0% or less, and even more preferably 30.0% or less.
  • the CV90 of the spherical silica particles B is preferably 10.0% or more and 35.0% or less, more preferably 15.0% or more and 32.0% or less, and further preferably 20.0% or more.
  • the content of the spherical silica particles B in the polishing composition I is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more. More preferably, it is 0.2 mass% or more,
  • the content of the spherical silica particles B in the polishing composition I is preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass or less, and still more preferably 1%.
  • the total overlap frequency of the volume particle size distribution of the non-spherical silica particles A and the spherical silica particles B in the polishing liquid composition I is preferably 0% to 50%, more preferably 10% to 45%.
  • the mass ratio (A / B) of the content of the non-spherical silica particles A and the spherical silica particles B in the polishing composition I is preferably 80/20 or more, more preferably 85/15 or more, The production method according to any one of ⁇ 1> to ⁇ 34>, which is preferably 90/10 or more.
  • the mass ratio (A / B) of the content of non-spherical silica particles A and spherical silica particles B in the polishing composition I is preferably 99/1 or less, more preferably 95/5 or less, and further The production method according to any one of ⁇ 1> to ⁇ 35>, which is preferably 92/8 or less.
  • the total content of the non-spherical silica particles A and the spherical silica particles B with respect to the entire silica particles in the polishing composition I is preferably more than 98.0% by mass, more preferably 98.5% by mass or more. More preferably 99.0% by weight or more, even more preferably 99.5% by weight or more, even more preferably 99.8% by weight or more, even more preferably substantially 100% by weight, ⁇ 1 > To ⁇ 36>.
  • the content of the acid in the polishing liquid composition I is preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 4% by mass, and still more preferably 0.8%.
  • the production method according to any one of ⁇ 1> to ⁇ 37> which is from 05% by mass to 3% by mass, and more preferably from 0.1% by mass to 2.5% by mass.
  • the pH of the polishing composition I is preferably 0.5 or more and 6.0 or less, more preferably 0.7 or more and 4.0 or less, still more preferably 0.9 or more and 3.0 or less, and even more.
  • the polishing amount per substrate to be polished (diameter 95 mm) in the step (1) is preferably 110 mg or more and 160 mg or less, more preferably 115 mg or more and 155 mg or less, and further preferably 120 mg or more and 150 mg or less. 1> to ⁇ 41>.
  • a method for polishing a magnetic disk substrate comprising the steps (1) to (3) in the method for producing a magnetic disk substrate according to any one of ⁇ 1> to ⁇ 42>.
  • a first polishing machine that performs the polishing in the step (1) in the method of manufacturing a magnetic disk substrate according to any one of ⁇ 1> to ⁇ 42>, and any one of ⁇ 1> to ⁇ 42>
  • Magnetic disk substrate polishing system comprising a polishing machine.
  • a polishing liquid composition I used in step (1) and a polishing liquid composition II used in step (3) were prepared as described below, and polishing of the substrate to be polished under the following conditions including steps (1) to (3) Went.
  • the preparation method of the polishing liquid composition, the additive used, the measurement method of each parameter, the polishing conditions (polishing method) and the evaluation method are as follows.
  • polishing liquid composition I used in step (1) (rough polishing)] Using the non-spherical silica abrasive grains A and spherical silica particles B (both colloidal silica particles) shown in Table 1, the acid, hydrogen peroxide, and water shown in Table 2, a polishing liquid composition I used in the step (1) was prepared. (Examples 1 to 16, Reference Examples 1 to 9, Comparative Examples 1 to 6) (Table 2). The content of each component in the polishing composition I was colloidal silica particles: 6.0% by mass, acid: 1.0-2.4% by mass, and hydrogen peroxide: 1.0% by mass. The pH of the polishing composition I was 1.2-1.9.
  • the colloidal silica particles of the silica abrasive grains in Table 1 are produced by the water glass method.
  • the pH was measured using a pH meter (manufactured by TOA DK Corporation).
  • the numerical value after 2 minutes of immersing the electrode in the polishing composition was adopted (hereinafter the same).
  • the type of the non-spherical silica abrasive grain A in Table 1 is a classification that can be discriminated by an observation photograph of a transmission electron microscope (TEM) and analysis using the same in one or a plurality of embodiments.
  • TEM transmission electron microscope
  • “Atypical silica particles” refers to non-spherical silica particles having a shape in which two or more particles are aggregated or fused.
  • the irregular-shaped silica particles refer to particles having a shape in which two or more particles having a particle size of 1.5 times or less are aggregated or fused.
  • Konpeira type silica particles refers to non-spherical silica particles having unique ridges on the surface of the spherical particles.
  • the confetti type silica particles refer to particles having a shape in which two or more particles different in particle size by 5 times or more are aggregated or fused.
  • An example of an electron microscope (TEM) observation photograph of an irregular-shaped colloidal silica abrasive grain is shown in FIG. 1, and an example of an electron microscope (TEM) observation photograph of a confetti-type colloidal silica abrasive grain is shown in FIG.
  • the “spherical silica particles” of the spherical silica abrasive grains B in Table 1 refer to spherical particles (generally commercially available colloidal silica) close to true spheres.
  • the particle size of the silica particles is a particle size obtained as an equivalent circle diameter measured within one particle in an electron microscope (TEM) observation image, that is, a major axis of an equivalent circle having the same area as the projected area of the particle. .
  • polishing liquid composition II used in step (3) (finish polishing)
  • Polishing liquid composition II was prepared using the colloidal silica particle (abrasive grain f) of Table 1, sulfuric acid, hydrogen peroxide, and water.
  • the content of each component in the polishing liquid composition II was colloidal silica particles: 5.0% by mass, sulfuric acid: 0.5% by mass, and hydrogen peroxide: 0.5% by mass.
  • the pH of the polishing composition II was 1.4. Polishing liquid composition II was used in step (3) in the polishing of Examples 1 to 16, Reference Examples 1 to 9, and Comparative Examples 1 to 6.
  • the particle size that was 50% of the total was determined and used as the volume average particle size (D1) of the silica particles.
  • the CV value (CV90) of the silica particles at a detection angle of 90 ° was calculated as a value obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the volume average particle diameter and multiplying by 100.
  • Preprocessing (A) The slurry-like abrasive grains are adjusted to pH 2.5 ⁇ 0.1 with a nitric acid aqueous solution. (B) The slurry-like abrasive grains adjusted to pH 2.5 ⁇ 0.1 are placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour. (C) After drying, the obtained sample is finely ground in an agate mortar. (D) The pulverized sample is suspended in ion exchange water at 40 ° C. and filtered through a 1 ⁇ m membrane filter. (E) The filtrate on the filter is thoroughly washed with 20 g of ion exchange water (40 ° C.). (F) The filter to which the filtrate is attached is dried in an atmosphere of 110 ° C. for 4 hours. (G) The dried filtrate was taken so that filter waste was not mixed and finely pulverized with a mortar to obtain a measurement sample.
  • [D10, D50, and D90 of silica abrasive grains] A 1% by mass dispersion obtained by diluting the silica abrasive grains with ion-exchanged water was put into the following measuring apparatus to obtain a volume particle size distribution of the silica abrasive grains.
  • the particle sizes at which the cumulative volume frequency of the obtained volume particle size distribution becomes 10%, 50%, and 90% were defined as D10, D50 (volume average particle diameter), and D90, respectively.
  • polishing conditions Polishing of the substrate to be polished was performed according to steps (1) to (3). The conditions for each step are shown below. Step (3) was performed with a polishing machine separate from the polishing machine used in step (1).
  • the substrate to be polished was an aluminum alloy substrate plated with Ni—P.
  • the substrate to be polished had a thickness of 1.27 mm and a diameter of 95 mm.
  • Polishing machine Double-side polishing machine (9B-type double-side polishing machine, manufactured by Speed Fam Co., Ltd.) Polishing liquid: Polishing liquid composition I Polishing pad: Suede type (foam layer: polyurethane elastomer), thickness 0.82-1.26 mm, average pore diameter 20-30 ⁇ m, surface layer compression ratio: 2.5% (Filwel, manufactured by Fujibo) Plate rotation speed: 35 rpm Polishing load: 9.8 kPa (set value) Polishing liquid supply amount: 100 mL / min (0.076 mL / (cm 2 ⁇ min)) Polishing time: 5 minutes Polishing amount: 110 mg to 160 mg (per 95 mm diameter disc) Number of substrates loaded: 10
  • Step (2) Cleaning
  • the substrate obtained in the step (1) was washed under the following conditions. 1.
  • the substrate obtained in the step (1) is immersed for 5 minutes in a tank containing a pH 12 alkaline detergent composition made of 0.1 mass% KOH aqueous solution. 2.
  • the substrate after immersion is rinsed with ion exchange water for 20 seconds.
  • the rinsed substrate is transferred to a scrub cleaning unit in which a cleaning brush is set and cleaned.
  • Polishing machine Double-side polishing machine (9B type double-side polishing machine, manufactured by Speedfam Co., Ltd.), polishing machine separate from the polishing machine used in step (1): Polishing liquid: Polishing liquid composition II Polishing pad: Suede type (foam layer: polyurethane elastomer), thickness 0.9mm, average pore diameter 5 ⁇ m, surface layer compressibility: 10.2% (Fujibo) Plate rotation speed: 40 rpm Polishing load: 9.8 kPa Polishing liquid supply amount: 100 mL / min (0.076 mL / (cm 2 ⁇ min)) Polishing time: 2 minutes Polishing amount: 0.04-0.10 mg / (cm 2 ⁇ min) Number of loaded substrates: 10 sheets After the step (3), cleaning was performed. The washing conditions were the same as in the above step (2).
  • the polishing in the step (1) is performed at a polishing liquid supply amount of 100 mL / min (0.076 mL / (cm 2 ⁇ min)).
  • the polishing liquid supply amount is separately reduced under the following conditions: Further, it was determined whether the decrease in the polishing rate can be suppressed within 10%. That is, if the decrease in the polishing rate can be suppressed within 10%, it is considered that the supply amount of the polishing liquid can be reduced without significantly impairing the productivity, which means that it is excellent from the viewpoint of economy.
  • Reduction in polishing rate (%) (Polishing speed under reduced polishing liquid supply rate) / (Polishing polishing liquid supply rate at 100 mL / min) ⁇ 100
  • Table 2 shows the results of the four-stage evaluation of the reduction efficiency of the polishing liquid supply amount based on the following criteria.
  • [Evaluation criteria] Reduction efficiency of polishing liquid supply amount (relative value): Evaluation can be reduced by 30% (polishing rate decrease within 10% at 70 mL / min): A “Excellent economic efficiency” Can be reduced by 20% (polishing rate is less than 10% at 80 mL / min): B “Excellent economy” Can be reduced by 10% (90% / min. Polishing speed is less than 10%): C “Somewhat economical” 10% cannot be reduced (at 90 mL / min, the polishing rate decreases more than 10%): D “It is difficult to reduce the amount of polishing liquid supplied in actual production”
  • Measuring instrument OSA7100 (manufactured by KLA Tencor) Evaluation: Polishing was performed using the polishing composition II, and then 4 pieces were selected at random, and each substrate was irradiated with a laser at 10,000 rpm to measure the number of abrasive sticks. Divide the total number of abrasive sticks (pieces) on both surfaces of each of the four substrates by 8 to obtain the number of abrasive sticks per board surface (number of protrusion defects) (relative value with Comparative Example 1 as 100). Was calculated. Table 2 shows the relative values of the number of protrusion defects and the results of evaluating the number of protrusion defects according to the following criteria.
  • long-period defects can be reduced while maintaining the polishing rate, so that the substrate yield can be improved while maintaining the productivity of manufacturing the magnetic disk substrate.
  • the present disclosure can be suitably used for manufacturing a magnetic disk substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

 粗研磨後の基板表面の長周期欠陥を低減できる磁気ディスク基板の製造方法を提供する。 一態様において、(1)研磨液組成物Iを用いた研磨工程、(2)得られた基板を洗浄する工程、及び、(3)得られた基板をシリカ粒子Cを含有する研磨液組成物IIを用いて研磨する工程を有し、前記工程(1)と(3)を別の研磨機で行い、(i)研磨液組成物Iは、非球状シリカ粒子A、球状シリカ粒子B、酸、酸化剤及び水を含有し、(ii)質量比(A/B)が80/20以上99/1以下であり、シリカ粒子A及びBの合計の含有量が98.0質量%を超え、(iii)非球状シリカ粒子AのΔCV値が0.0%より上10%未満であり、(iv)非球状シリカ粒子Aの粒径比(D1/D2)が2.00以上4.00以下であり、(v)球状シリカ粒子Bの体積平均粒径(D1)が6.0nm以上80.0nm以下であり、(vi)酸が、リン酸類、ホスホン酸又は有機ホスホン酸である製造方法。

Description

磁気ディスク基板用研磨液組成物
 本開示は、磁気ディスク基板用研磨液組成物、磁気ディスク基板の研磨方法、及び、磁気ディスク基板の製造方法に関する。
 近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化のためには、磁気信号の検出感度を向上させる必要がある。そこで、磁気ヘッドの浮上高さをより低下させ、単位記録面積を縮小する技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、ハードディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、多段研磨方式の最終研磨工程、即ち、仕上げ研磨工程では、表面粗さの低減、スクラッチ、突起、ピット等の傷の低減という要求を満たすために、コロイダルシリカ粒子を含む仕上げ用研磨液組成物が使用され、仕上げ研磨工程より前の研磨工程(粗研磨工程ともいう)では、生産性向上の観点から、アルミナ粒子を含む研磨液組成物が使用される。しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりによって、メディア・ドライブの欠陥を引き起こすことがある。
 そこで、アルミナ粒子を含まず、シリカ粒子を砥粒とした研磨液組成物を粗研磨工程に用いることで、基板への粒子の突き刺さりの低減を可能とする磁気ディスク基板の製造方法が提案されている(特許文献1及び2)。
 一方で、研磨液組成物に含まれる酸として、リン酸やホスホン酸が使用されることもある(特許文献3)。
 さらに、シリカ粒子の研磨速度を向上させるため、複数の突起を表面に有するシリカ粒子(特許文献4)や、数珠状のシリカ粒子(特許文献5)が提案されている。
特開2014-29754号公報 特開2012-29755号公報 特開2003-147337号公報 特開2013-121631号公報 特開2001-11433号公報
 磁気ディスク基板の研磨工程においてアルミナ粒子を使用しない粗研磨工程及び仕上げ研磨工程を採用すれば、残留アルミナ(例えば、アルミナ付着、アルミナ突き刺さり)を無くすことができるから突起欠陥が低減する。しかし、アルミナ粒子に換えてシリカ粒子で粗研磨工程を行う場合、長周期欠陥を除去できないという問題が新たに発生することが見出された。アルミナ粒子で粗研磨工程を行う場合には、一般に、長周期欠陥の問題は起らない。長周期欠陥の除去率は基板収率と相関性が高いため、粗研磨工程において長周期欠陥の除去率のより一層の向上が望まれる。
 特許文献1は、所定のパラメータで規定される非球状シリカ粒子を砥粒として粗研磨を行えば、実質的にアルミナ粒子を含まない場合であっても、粗研磨の研磨時間を大幅に長期化することなく粗研磨後の長波長うねりを低減できることを開示する。しかしながら、長周期欠陥については、より一層の除去率の向上が望まれる。
 そこで、本開示は、一又は複数の実施形態において、非球状シリカ粒子を砥粒とする粗研磨において、粗研磨における研磨速度を大きく損ねることなく、粗研磨後の基板表面の長周期欠陥を低減できる磁気ディスク基板用研磨液組成物を提供する。
 本開示は、一又は複数の実施形態において、磁気ディスク基板の製造方法あって、
 (1)研磨液組成物Iを用いて被研磨基板の研磨対象面を研磨する工程、
 (2)工程(1)で得られた基板を洗浄する工程、及び、
 (3)工程(2)で得られた基板を、シリカ粒子Cを含有する研磨液組成物IIを用いて研磨する工程を有し、前記工程(1)と(3)を別の研磨機で行い、
 (i)前記工程(1)の前記研磨液組成物Iは、非球状シリカ粒子A、球状シリカ粒子B、酸、酸化剤及び水を含有し、
 (ii)前記工程(1)の前記研磨液組成物Iにおいて、前記非球状シリカ粒子Aと前記球状シリカ粒子Bの質量比A/Bが80/20以上99/1以下であり、シリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の含有量が98.0質量%を超え、
 (iii)前記非球状シリカ粒子AのΔCV値が0.0%より上10%未満であり、
 (iv)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が2.00以上4.00以下であり、
 (v)前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)が6.0nm以上80.0nm以下であり、
 (vi)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される少なくとも1種である、磁気ディスク基板の製造方法に関する。
 本開示は、一又は複数の実施形態において、本開示に係る磁気ディスク基板の製造方法における工程(1)~(3)を含む、磁気ディスク基板の研磨方法に関する。
 本開示は、一又は複数の実施形態において、本開示に係る磁気ディスク基板の製造方法における工程(1)の研磨を行う第一の研磨機と、本開示に係る磁気ディスク基板の製造方法における工程(2)の洗浄を行う洗浄ユニットと、本開示に係る磁気ディスク基板の製造方法における工程(3)の研磨を行う第二の研磨機とを備える磁気ディスク基板の研磨システムに関する。
 本開示は、一又は複数の実施形態において、磁気ディスク基板用研磨液組成物であって、
 砥粒、酸、酸化剤及び水を含み、
 前記砥粒は、非球状シリカ粒子A及び球状シリカ粒子Bを含有し、
 前記非球状シリカ粒子Aと前記球状シリカ粒子Bの質量比A/Bが80/20以上99/1以下であり、
 前記非球状シリカ粒子AのΔCV値が0.0%より上10%未満であり、
 前記非球状シリカ粒子AのCV90が、20.0%以上40.0%以下であり、
 前記球状シリカ粒子BのΔCV値が0%より上10%以下、かつ、前記球状シリカBのCV90が10.0%以上35.0%以下であり、
 前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が2.00以上4.00以下であり、
 前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)が6.0nm以上80.0nm以下であり、
 前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される少なくとも1種である、磁気ディスク基板用研磨液組成物に関する。
 本開示に係る磁気ディスク基板の製造方法は、アルミナ粒子を使用しないから粗研磨後及び仕上げ研磨後の突起欠陥を大幅に低減できる。そして、本開示に係る磁気ディスク基板の製造方法によれば、一又は複数の実施形態において、粗研磨における研磨速度を大きく損ねることなく、粗研磨後の基板表面の長周期欠陥を低減できるという効果が奏され、基板の生産性を維持しつつ、基板収率を向上しうる。
図1は、異形型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例である。 図2は、金平糖型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例である。 図3は、体積粒度分布を示すグラフである。 図4は、長周期欠陥(PED)を有する基板表面を光干渉型表面形状測定機で計測した結果の一例である。 図5は、研磨システムの一実施形態を説明する図である。 図6は、磁気ディスク基板の製造方法の研磨工程の一実施形態を説明する図である。
 本開示は、所定の非球状シリカ粒子及び球状シリカ粒子を砥粒として含有する研磨液組成物を用いた粗研磨工程において、該研磨液組成物に所定の酸(リン酸又はホスホン酸)を使用すると、長周期欠陥の除去率が向上し、さらに、研磨速度を大きく損ねることがないという知見に基づく。一般に、磁気ディスク基板の製造において、長周期欠陥が低減できれば基板収率が向上する。よって、本開示によれば、一又は複数の実施形態において、磁気ディスク基板の製造において、生産性を維持しつつ、基板収率を向上できる。
 所定の非球状シリカ粒子及び球状シリカ粒子と所定の酸との組合せで研磨速度を大きく損ねることなく長周期欠陥の除去率が向上するメカニズムの詳細は明らかではないが、以下のように推察される。すなわち、非球状シリカ粒子はその表面形状から、充填された状態では球状シリカ粒子に比べて空隙が多い。この空隙に入る特定の大きさの粒子を配合すれば、複数の砥粒成分を含む混合系では、より砥粒の充填率が高まり、研磨時の非球状シリカ粒子特有の摩擦抵抗が緩和されるため、長周期欠陥の除去率を向上できると推定される。そして、砥粒の充填率が高まることで、基板への切削面積が増加、もしくは研磨時に印加された荷重がより基板に伝わりやすくなるため、研磨速度を維持、あるいは向上できると考えられる。さらに、研磨液組成物中にリン酸又はホスホン酸が存在することで、リン酸又はホスホン酸の腐食抑制効果により、少ない研磨量で長周期欠陥、とりわけ、PED(polish enhanced defect)の低減効率が向上すると考えられる。つまり、特定形状のシリカを用いることにより研磨速度が向上するとともにリン酸等の特定の酸を用いることにより欠陥が抑制されることにより研磨対象基板の高品質化が達成される。加えて、研磨工程面での利点として、充填率の高い砥粒を用い、且つ腐食抑制効果を有する特定の酸を用いることで、より効率良く基板に研磨液組成物が作用しうるため、研磨液組成物の供給量を従来のそれより減らしうることが考えられる。但し、本開示はこれらのメカニズムに限定して解釈されなくてもよい。
 すなわち、本開示は一態様において、磁気ディスク基板の製造方法あって、
 (1)研磨液組成物Iを用いて被研磨基板の研磨対象面を研磨する工程、
 (2)工程(1)で得られた基板を洗浄する工程、及び、
 (3)工程(2)で得られた基板を、シリカ粒子Cを含有する研磨液組成物IIを用いて研磨する工程を有し、前記工程(1)と(3)を別の研磨機で行い、
 (i)前記工程(1)の前記研磨液組成物Iは、非球状シリカ粒子A、球状シリカ粒子B、酸、酸化剤及び水を含有し、
 (ii)前記工程(1)の前記研磨液組成物Iにおいて、前記非球状シリカ粒子Aと前記球状シリカ粒子Bの質量比(A/B)が80/20以上99/1以下であり、シリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の含有量が98.0質量%を超え、
 (iii)前記非球状シリカ粒子AのΔCV値が0.0%より上10%未満であり、
 (iv)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が2.00以上4.00以下であり、
 (v)前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)が6.0nm以上80.0nm以下であり、
 (vi)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される少なくとも1種である、磁気ディスク基板の製造方法(以下、「本開示に係る製造方法」ともいう)に関する。本開示に係る製造方法によれば、一又は複数の実施形態において、粗研磨における研磨速度を大きく損ねることなく、仕上げ研磨後の突起欠陥を大幅に低減でき、かつ、粗研磨後の基板表面の長周期欠陥を低減できるという効果が奏されうる。
 本開示において「長周期欠陥」とは、Ni―Pめっきアルミニウム基板の製造工程で発生するPED(polish enhanced defect)及びグラインド傷を含む。PEDは、アルミニウム基板にめっき成膜する工程におけるアニール工程で、基板表面に付着した水や異物に起因するアニール不足の部分をいう。グラインド傷は、めっき前のアルミニウム基板をグラインドする工程(グラインド工程)におけると砥石の削り痕をいう。長周期欠陥及びその除去率は、一又は複数の実施形態において、実施例に記載の測定器を用いて測定できる。
 本開示において、「突起欠陥」は、主に、粗研磨工程後及び仕上げ研磨工程後の残留砥粒、砥粒付着、及び砥粒突き刺さりに由来すると考えられる基板表面の欠陥のことをいう。基板表面の突起欠陥は、例えば、研磨後に得られる基板表面の顕微鏡観察、走査型電子顕微鏡観察等、表面欠陥検査装置により評価することができ、具体的には実施例に記載した方法で評価できる。
 [非球状シリカ粒子A]
 工程(1)で用いられる研磨液組成物Iは、上述したように、非球状シリカ粒子Aを含有する。一又は複数の実施形態において、非球状シリカ粒子Aとしては、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等が挙げられる。研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、非球状シリカ粒子Aとしては、コロイダルシリカが好ましく、下記の特定の形状をもったコロイダルシリカがより好ましい。非球状シリカ粒子Aは、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、火炎溶融法やゾルゲル法で製造されたものでも構わないが、水ガラス法で製造されたシリカ粒子であることが好ましい。
 [非球状シリカ粒子Aの形状]
 非球状シリカ粒子Aの形状は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、複数の粒子(例えば、2以上の粒子)が凝集又は融着した形状である。非球状シリカ粒子Aは、一又は複数の実施形態において、同様の観点から、金平糖型のシリカ粒子A1、異形型のシリカ粒子A2、及び異形かつ金平糖型のシリカ粒子A3からなる群から選択される少なくとも1種類のシリカ粒子であることが好ましく、異形型のシリカ粒子A2がより好ましい。
 本開示において、金平糖型のシリカ粒子A1は、一又は複数の実施形態において、球状の粒子表面に特異な疣状突起を有するシリカ粒子をいう(図2参照)。シリカ粒子A1は、一又は複数の実施形態において、最も小さいシリカ粒子の粒径を基準にして、粒径が5倍以上異なる2つ以上の粒子が凝集又は融着した形状である。好ましくは粒径が小さい粒子が粒径が大きな粒子に一部埋没した状態である。前記粒径は、電子顕微鏡(TEMなど)観察画像において1つの粒子内で測定される円相当径、すなわち、粒子の投影面積と同じ面積の等価円の長径として求められうる。シリカ粒子A2及びシリカ粒子A3における粒径も同様に求めることができる。
 本開示において、異形型のシリカ粒子A2は、2つ以上の粒子、好ましくは2~10個の粒子が凝集又は融着した形状のシリカ粒子をいう(図1参照)。シリカ粒子A2は、一又は複数の実施形態において、最も小さいシリカ粒子の粒径を基準にして、粒径が1.5倍以内の2つ以上の粒子が凝集又は融着した形状である。
 本開示において、異形かつ金平糖型のシリカ粒子A3は、2つ以上の粒子が凝集又は融着した形状の粒子いう。シリカ粒子A3は、一又は複数の実施形態において、粒径が1.5倍以内の2つ以上の粒子が凝集又は融着した粒子に、さらに、凝集又は融着した前記粒子の最も小さいシリカ粒子の粒径を基準にして粒径が1/5以下の小さな粒子が凝集又は融着した形状である。
 非球状シリカ粒子Aは、一又は複数の実施形態において、シリカ粒子A1、A2、A3のいずれか1つ、シリカ粒子A1、A2、A3のいずれか2つ、又は、シリカ粒子A1、A2、及びA3のすべてを含む。非球状シリカ粒子A中のシリカ粒子A1、A2、及びA3の合計が占める割合(含有量)は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、50質量%以上が好ましく、より好ましくは70質量%以上、更に好ましくは80質量%以上、更により好ましくは90質量%以上又は実質的に100質量%である。
 [非球状シリカ粒子AのΔCV値]
 非球状シリカ粒子AのΔCV値は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0.0%より上であることが好ましく、より好ましくは0.2%以上、更に好ましくは0.3%以上、更により好ましくは0.4%以上である。非球状シリカ粒子AのΔCV値は、一又は複数の実施形態において、同様の観点から、10.0%未満であることが好ましく、より好ましくは8.0%以下、更に好ましくは7.0%以下、更により好ましくは4.0%以下である。非球状シリカ粒子AのΔCV値は、一又は複数の実施形態において、同様の観点から、0.0%より上10.0%未満が好ましく、より好ましくは0.2%以上8.0%以下、更に好ましくは0.3%以上7.0%以下、更により好ましくは0.4%以上4.0%以下である。
 本開示においてシリカ粒子のΔCV値は、動的光散乱法により検出角30°(前方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱により検出角30°の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数の値(CV30)と、動的光散乱法により検出角90°(側方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱により検出角90°の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数の値(CV90)との差(ΔCV=CV30-CV90)をいい、動的光散乱法により測定される散乱強度分布の角度依存性を示す値をいう。ΔCV値は、具体的に実施例に記載の方法により測定することができる。
 本発明者は、非球状シリカ粒子の特徴を示す方法として上記記載の平均粒径(D1)、及び動的光散乱法によって測定された平均粒径(D1)とBET法による比表面積換算粒径(D2)との粒径比(D1/D2)を用いて表す従来の見方だけでは、そのシリカ粒子の研磨性能を表すことはできないと考えた。本発明者のさらなる検討によれば、非球状シリカ粒子の系全体(バルク)での状態を知る手段としてΔCV値が有効であり、これらのパラメータに着目することで、従来では知りえなかった研磨速度の低下を抑制し、長周期欠陥の除去率が向上し、突起欠陥を低減できる非球状シリカの範囲を正確に規定することができることを見出した。すなわち、非球状シリカ粒子は、その異形度によってΔCV値が異なり、ΔCV値は、非球状シリカ粒子の異形度を示す指標となりうる。例えば、非球状シリカ粒子の異形度が高くなると擬似的な多重散乱(自己散乱)が起きやすくなり、動的光散乱法により測定される散乱強度分布の角度依存性が小さくなりΔCV値が小さくなる。
 本開示において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の3つの粒度分布(散乱強度、体積換算、個数換算)のうち散乱強度の粒径分布のことをいう。
 [非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)]
 非球状シリカ粒子Aの体積平均粒径(D1)は、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、一又は複数の実施形態において、120.0nm以上300.0nm未満が好ましい。非球状シリカ粒子Aの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、120.0nm以上が好ましく、より好ましくは150.0nm以上、更に好ましくは160.0nm以上、更により好ましくは170.0nm以上、更により好ましくは180.0nm以上、更により好ましくは190.0nm以上であり、更により好ましくは200.0nm以上である。非球状シリカ粒子Aの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、300.0nm未満が好ましく、より好ましくは260.0nm未満、更に好ましくは250.0nm未満、更により好ましくは220.0nm未満、更により好ましくは210.0nm未満である。非球状シリカ粒子Aの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、好ましくは120.0nm以上260.0nm未満、より好ましくは150.0nm以上260.0nm未満、更に好ましくは160.0nm以上260.0nm未満、更により好ましくは170.0nm以上260.0nm未満、更により好ましくは180.0nm以上250.0nm未満、更により好ましくは190.0nm以上220.0nm未満、更により好ましくは200.0nm以上210.0nm未満である。
 本開示においてシリカ粒子の体積平均粒径(D1)は、動的光散乱法により測定される散乱強度分布に基づく平均粒径をいい、特に言及のない場合、シリカ粒子の平均粒径とは、動的光散乱法において検出角90°で測定される散乱強度分布に基づく平均粒径をいう。本開示におけるシリカ粒子の体積平均粒径(D1)は、具体的には実施例に記載の方法により得ることができる。
 [非球状シリカ粒子Aの粒径比(D1/D2)]
 非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、2.00以上が好ましく、より好ましくは2.50以上、更に好ましくは3.00以上、更により好ましくは3.50以上である。非球状シリカ粒子Aの粒径比(D1/D2)は、一又は複数の実施形態において、同様の観点から、4.00以下が好ましく、より好ましくは3.90以下、更に好ましくは3.80以下である。非球状シリカ粒子Aの粒径比(D1/D2)は、一又は複数の実施形態において、同様の観点から、2.00以上4.00以下が好ましく、より好ましくは2.50以上3.90以下、更に好ましくは3.00以上3.90以下、更により好ましくは3.50以上3.80以下である。
 本開示においてシリカ粒子の比表面積換算粒径(D2)は、窒素吸着法(BET法)により測定された比表面積Sm2/gからD2=2720/S[nm]の式によって与えられる。
 動的光散乱法によって測定された体積平均粒径(D1)とBET法による比表面積換算粒径(D2)との粒径比(D1/D2)は、シリカ粒子Aの異形度合いを意味し得る。一般的に動的光散乱法によって測定された体積平均粒径(D1)は、シリカ粒子が異形粒子の場合、長方向での光散乱を検出して処理を行うため、長方向と短方向の長さを考慮して異形度合いが大きいほど大きな数値となる。BET法による比表面積換算粒径(D2)は、求まる粒子の体積をベースとして球換算で表されるため、D1に比べると小さな数値となる。研磨速度の観点から粒径比(D1/D2)は、上述の範囲のなかでも大きいことが好ましい。
 [非球状シリカ粒子AのCV90]
 非球状シリカ粒子AのCV90は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、20.0%以上が好ましく、より好ましくは25.0%以上、更に好ましくは27.0%以上であり、そして、同様の観点から、40.0%以下が好ましく、より好ましくは38.0%以下、更に好ましくは35.0%以下、更により好ましくは32.0%以下である。非球状シリカ粒子AのCV90は、一又は複数の実施形態において、同様の観点から、20.0%以上40.0%以下であって、好ましくは25.0%以上38.0%以下、より好ましくは25.0%以上35.0%以下、更に好ましくは27.0%以上32.0%以下である。
 本開示においてシリカ粒子のCV90は、動的光散乱法において散乱強度分布に基づく標準偏差を平均粒径で除して100を掛けた変動係数の値であって、検出角90°(側方散乱)で測定されるCV値をいう。シリカ粒子AのCV90は、具体的には実施例に記載の方法により得ることができる。
 [非球状シリカ粒子AのCV30]
 非球状シリカ粒子AのCV30は、上記CV90で示された範囲と同様に好ましい範囲となる。要はΔCV値(=CV30-CV90)との関係を保つ範囲で適宜設定される。
 [研磨液組成物I中の非球状シリカ粒子Aの含有量]
 研磨液組成物I中の非球状シリカ粒子Aの含有量は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、2質量%以上が更により好ましい。前記含有量は、経済性の観点から、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましく、15質量%以下が更により好ましい。研磨液組成物I中の非球状シリカ粒子Aの含有量は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点並びに経済性の観点から、0.1質量%以上30質量%以下が好ましく、0.5質量%以上25質量%以下がより好ましく、1質量%以上20質量%以下が更に好ましく、2質量%以上15質量%以下が更により好ましい。
 [非球状シリカ粒子Aの製造方法]
 非球状シリカ粒子Aは、粗研磨における研磨速度の低下抑制及び長周期欠陥除去率並びに粗研磨及び仕上げ研磨後の突起欠陥低減の観点から、火炎溶融法やゾルゲル法、及び粉砕法で製造されたものでなく、水ガラス法(珪酸アルカリ水溶液を出発原料とする粒子成長法)により製造されたシリカ粒子であることが好ましい。非球状シリカ粒子Aの使用形態としては、スラリー状であることが好ましい。
 シリカ粒子は、通常、1)10質量%未満の3号珪酸ソーダと種粒子(小粒径シリカ)の混合液(シード液)を反応槽に入れ、シード液を60℃以上に加熱して熟成し、2)シード液中に、3号珪酸ソーダを陽イオン交換樹脂に通して調製された酸性の活性珪酸水溶液とアルカリ(アルカリ金属または第4級アンモニウム)とを滴下してpHを一定にして球状の粒子(種粒子)を成長させ、3)反応槽内の混合液を熟成後に蒸発法や限外ろ過法で濃縮することで得られる(例えば、特開昭47-1964号公報、特公平1-23412号公報、特公平4-55125号公報、特公平4-55127号公報)。しかし、同じ製造プロセスで少し工程を変えると非球状シリカ粒子Aの製造が可能であることが多く報告されている。たとえば、活性珪酸は非常に化学的に不安定なため、意図的にCaやMgなどの多価金属イオンを反応槽内の混合液中に添加すると細長い形状のシリカゾルを製造できる。さらに、反応物(反応槽内の混合液)の温度(液温が水の沸点を越えると、混合液中の水分が蒸発し、気液界面でシリカが乾燥する)、反応物のpH(混合液のpHが9以下では、シリカ粒子の連結が起きやすい)、反応物中のSiO2/M2O(Mはアルカリ金属または第4級アンモニウム)及びそのモル比(モル比30~60では、非球状シリカが選択的に生成される)などを変えることで、非球状シリカ粒子を製造できる(例えば、特公平8-5657号公報、特許2803134号公報、特開2003-133267号公報、特開2006-80406号公報、特開2007-153671号公報、特開2009-137791号公報、特開2009-149493号公報、特開2011-16702号公報)。ただし、非球状シリカ粒子Aの製造方法はこれらに限定されて解釈されない。
 非球状シリカ粒子Aの粒径分布を調整する方法は、特に限定されないが、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法や、異なる粒径分布を有する2種類以上のシリカ粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。
 [球状シリカ粒子B]
 工程(1)で用いられる研磨液組成物Iは、上述したように、球状シリカ粒子Bを含有する。一又は複数の実施形態において、球状シリカ粒子Bとしては、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等が挙げられる。研磨速度の低下抑制及び長周期欠陥除去率の向上並びに突起欠陥の低減の観点から、球状シリカ粒子Bは、コロイダルシリカが好ましい。
 本開示において「球状シリカ粒子」は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、真球に近い球形状の粒子を用いることができ、例えば球形度が0.9~1.1のものを使用できる。「球状シリカ粒子」は、一又は複数の実施形態において、一般的に市販されているコロイダルシリカが該当し得る。
 球状シリカ粒子Bは、一又は複数の実施形態において、1種類の球状シリカ粒子であってもよく、2種類又はそれ以上の球状シリカ粒子の組み合わせであってもよい。球状シリカ粒子Bが、2種類又はそれ以上の球状シリカ粒子の組み合わせの場合、一又は複数の実施形態において、それぞれの球状シリカ粒子は、本開示に記載される「球状シリカ粒子B」の要件を満たす。球状シリカ粒子Bは、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、粒径が異なる2種又はそれ以上の粒子を用いることが好ましい。
 [球状シリカ粒子BのΔCV値]
 球状シリカ粒子BのΔCV値は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0.0%より上であることが好ましく、より好ましくは0.2%以上、更に好ましくは0.3%以上、更により好ましくは0.4%以上である。球状シリカ粒子BのΔCV値は、一又は複数の実施形態において、同様の観点から、10%以下が好ましく、より好ましくは10.0%未満、更に好ましくは8.0%以下、更により好ましくは7.0%以下、更により好ましくは4.0%以下である。球状シリカ粒子BのΔCV値は、一又は複数の実施形態において、同様の観点から、0.0%より上10%以下が好ましく、より好ましくは0.0%より上10.0%未満が好ましく、更に好ましくは0.2%以上8.0%以下、更により好ましくは0.3%以上7.0%以下、更により好ましくは0.4%以上4.0%以下である。
 [球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)]
 球状シリカ粒子Bの体積平均粒径(D1)は、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から6.0nm以上80.0nm以下である。球状シリカ粒子Bの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、6.0nm以上であって、好ましくは7.0nm以上である。球状シリカ粒子Bの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、80.0nm以下であって、好ましくは70.0nm以下、より好ましくは60.0nm以下である。球状シリカ粒子Bの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、6.0nm以上80.0nm以下であって、好ましくは6.0nm以上70.0nm以下、より好ましくは7.0nm以上60.0nm以下である。
 上述のとおり、研磨液組成物Iに含まれる球状シリカ粒子Bは、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、粒径が異なる2種又はそれ以上の粒子を用いることが好ましい。2種類の組み合わせとして、限定されない一又は複数の実施形態において、体積平均粒径(D1)が、6.0nm以上15.0nm以下の球状粒子と15.5nm以上70.0nm以下の球状粒子との組み合わせ、又は、15.5nm以上30.0nm以下の球状粒子と30.5nm以上70.0nm以下の球状粒子との組み合わせが挙げられる。
 [球状シリカ粒子Bの粒径比(D1/D2)]
 球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、1.00以上が好ましく、より好ましくは1.10以上、更に好ましくは1.15以上である。球状シリカ粒子Bの粒径比(D1/D2)は、一又は複数の実施形態において、同様の観点から、1.50以下が好ましく、より好ましくは1.40以下、更に好ましくは1.30以下である。球状シリカ粒子Bの粒径比(D1/D2)は、一又は複数の実施形態において、同様の観点から、1.00以上1.50以下であって、好ましくは1.10以上1.40以下、より好ましくは1.15以上1.30以下である。
 [球状シリカ粒子BのCV90]
 球状シリカ粒子BのCV90は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、10.0%以上が好ましく、より好ましくは15.0%以上、更に好ましくは20.0%以上であり、そして、同様の観点から、35.0%以下が好ましく、より好ましくは32.0%以下、更に好ましくは30.0%以下である。球状シリカ粒子BのCV90は、一又は複数の実施形態において、同様の観点から、10.0%以上35.0%以下であって、好ましくは15.0%以上32.0%以下、より好ましくは20.0%以上30.0%以下である。
 [研磨液組成物I中の球状シリカ粒子Bの含有量]
 研磨液組成物I中の球状シリカ粒子Bの含有量は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が更により好ましい。前記含有量は、経済性の観点から、3質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましく、1.5質量%以下が更により好ましい。
 [球状シリカ粒子Bの製造方法]
 球状シリカ粒子Bは、粗研磨における研磨速度の低下抑制及び長周期欠陥除去率並びに粗研磨及び仕上げ研磨後の突起欠陥低減の観点から、火炎溶融法やゾルゲル法、及び粉砕法で製造されたものでなく、珪酸アルカリ水溶液を出発原料とする粒子成長法により製造されたシリカ粒子であることが好ましい。球状シリカ粒子Bの使用形態としては、スラリー状であることが好ましい。
 [非球状シリカ粒子Aと球状シリカ粒子Bとの体積粒度分布の重なり頻度]
 研磨液組成物I中の非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度の合計は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0%以上50%以下が好ましく、より好ましくは10%以上45%以下、更に好ましくは15%以上40%以下、更により好ましくは20%以上35%以下である。非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度は、具体的には実施例に記載の方法により得ることができる。異なる大きさのシリカ粒子混合物内において空隙率及びその空隙に存在する小さい粒子が適切なバランスをとることにより上記効果が発生するものと推察される。
 [研磨液組成物I中の非球状シリカ粒子Aと球状シリカ粒子Bの質量比]
 研磨液組成物I中の非球状シリカ粒子Aと球状シリカ粒子Bの含有量の比である質量比(A/B)は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、80/20以上であって、好ましくは85/15以上、より好ましくは88/12以上である。非球状シリカ粒子Aと球状シリカ粒子Bの質量比(A/B)は、一又は複数の実施形態において、同様の観点から、99/1以下であって、好ましくは95/5以下、より好ましくは92/8以下である。球状シリカ粒子Bが2種類又はそれ以上の球状シリカ粒子の組み合わせの場合、球状シリカ粒子Bの含有量はそれらの合計の含有量をいう。非球状シリカ粒子Aの含有量も同様である。
 [研磨液組成物I中のその他のシリカ粒子の含有量]
 一又は複数の実施形態において、研磨液組成物Iが非球状シリカ粒子A及び球状シリカ粒子B以外にシリカ粒子を含有する場合、研磨液組成物I中のシリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の含有量は、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、98.0質量%を超え、好ましくは98.5質量%以上、より好ましくは99.0質量%以上、更に好ましくは99.5質量%以上、更により好ましくは99.8質量%以上であり、更により好ましくは実質的に100質量%である。
 [酸]
 研磨液組成物Iは、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される少なくとも1種の酸を含有する。研磨液組成物Iにおける酸の使用は、酸及び又はその塩の使用を含む。
 本開示において「リン酸類」は、リン酸、及び、リン酸骨格を持つ他の類似化合物群をいう。前記類似化合物群としては、一又は複数の実施形態において、ピロリン酸が挙げられる。本開示において、特に説明のない場合「リン酸」は、一又は複数の実施形態において、無機リン酸が挙げられる。本開示において、特に説明のない場合「ホスホン酸」は、一又は複数の実施形態において、無機ホスホン酸が挙げられる。
 本開示において「有機ホスホン酸」は、一又は複数の実施形態において、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸(HEDP)、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸、及びこれらの組み合わせが挙げられる。
 リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの塩は単独で又は2種以上を混合して用いてもよい。研磨液組成物Iの酸としては、一又は複数の実施形態において、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、リン酸、又はHEDPが好ましい。
 これらの酸の塩を用いる場合は、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等が挙げられる。上記金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。
 研磨液組成物I中の前記酸の含有量は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、0.001質量%以上5.0質量%以下が好ましく、より好ましくは0.01質量%以上4.0質量%以下、更に好ましくは0.05質量%以上3.0質量%以下、更により好ましくは0.1質量%以上2.5質量%以下である。
 研磨液組成物Iは、その効果を損なわない範囲で、一又は複数の実施形態において、リン酸類、ホスホン酸、及び有機ホスホン酸とは異なる酸を含んでもよい。
 リン酸類、ホスホン酸、及び有機ホスホン酸とは異なる酸としてはその他の無機酸が好ましい。本開示において「その他の無機酸」としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、アミド硫酸等が挙げられる。一又は複数の実施形態において、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、硫酸が好ましい。
 研磨液組成物I中の前記その他の無機酸の含有量は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、0.001質量%以上0.6質量%以下が好ましく、より好ましくは0.01質量%以上0.5質量%以下、更に好ましくは0.05質量%以上0.4質量%以下、更により好ましくは0.1質量%以上0.3質量%以下である。
 [酸化剤]
 研磨液組成物Iは、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、酸化剤を含有する。酸化剤としては、同様の観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩等が挙げられる。これらの中でも、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が好ましく、研磨速度向上の観点、表面に金属イオンが付着せず汎用に使用され安価であるという観点から、過酸化水素がより好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
 研磨液組成物I中の前記酸化剤の含有量は、研磨速度向上の観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、そして、前記含有量は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、好ましくは4.0質量%以下、より好ましくは2.0質量%以下、更に好ましくは1.5質量%以下である。研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、前記含有量は、好ましくは0.01質量%以上4.0質量%以下、より好ましくは0.05質量%以上2.0質量%以下、更に好ましくは0.1質量%以上1.5質量%以下である。
 [その他の成分]
 研磨液組成物Iには、必要に応じて他の成分を配合することができる。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。これら他の任意成分は、本開示の効果を損なわない範囲で研磨液組成物I中に配合されることが好ましく、研磨液組成物I中の任意成分の総含有量は、10質量%以下が好ましく、5質量%以下がより好ましい。
 [水]
 研磨液組成物Iは、媒体として水を含有する。水としては、蒸留水、イオン交換水、純水及び超純水等が使用され得る。研磨液組成物I中の水の含有量は、研磨液組成物の取扱いが容易になるため、61質量%以上99質量%以下が好ましく、より好ましくは70質量%以上98質量%以下、更に好ましくは80質量%以上97質量%以下、更により好ましくは85質量%以上97質量%以下である。
 [アルミナ砥粒]
 研磨液組成物Iは、突起欠陥低減の観点からアルミナ砥粒を実質的に含まないことが好ましい。本開示において「アルミナ砥粒を実質的に含まない」とは、一又は複数の実施形態において、アルミナ粒子を含まないこと、砥粒として機能する量のアルミナ粒子を含まないこと、又は、研磨結果に影響を与える量のアルミナ粒子を含まないこと、を含みうる。具体的なアルミナ粒子の研磨液組成物I中の含有量は、特に限定されるわけではないが、砥粒全体として5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましく、実質的に0%であることが更により好ましい。
 [pH]
 研磨液組成物IのpHは、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、前述の酸や公知のpH調整剤を用いて、0.5以上6.0以下に調整することが好ましく、より好ましくは0.7以上4.0以下、更に好ましくは0.9以上3.0以下、更により好ましくは1.0以上3.0以下、更により好ましくは1.2以上2.5以下、更により好ましくは1.4以上2.0以下である。上記のpHは、25℃における研磨液組成物のpHであり、pHメータを用いて測定でき、電極の研磨液組成物への浸漬後2分後の数値である。
 [研磨液組成物Iの調製方法]
 研磨液組成物Iは、例えば、非球状シリカ粒子A、球状シリカ粒子B、前述の酸、前述の酸化剤、及び水と、更に所望により、他の成分とを公知の方法で混合することにより調製できる。本開示において「研磨液組成物中の含有成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記成分の含有量をいう。したがって、研磨液組成物が濃縮物として作製された場合には、前記成分の含有量はその濃縮分だけ高くなりうる。前記混合は、特に制限されず、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の撹拌機等を用いて行うことができる。
 したがって、本開示は、その他の態様において、研磨液組成物Iの製造方法であって、
(1)ΔCV値が0.0%より上10%未満であり、動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が2.00以上4.00以下である非球状シリカ粒子Aと、(2)体積平均粒径(D1)が6.0nm以上80.0nm以下である球状シリカ粒子Bと、(3)リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの塩、並びにこれらの組み合わせからなる群から選択される少なくとも1種の酸と、(4)酸化剤と、(5)水とを、非球状シリカ粒子Aと球状シリカ粒子Bの質量比(A/B)が80/20以上99/1以下であり、シリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の含有量が98.0質量%を超えるように混合すること、を含む製造方法に関する。それぞれの成分の含有量は、上述のとおりとすることができる。
 [被研磨基板]
 研磨液組成物Iを用いて粗研磨される被研磨基板は、磁気ディスク基板又は磁気ディスク基板に用いられる基板であり、例えば、Ni-Pめっきされたアルミニウム合金基板や、珪酸ガラス、アルミノ珪酸ガラス、結晶化ガラス、強化ガラス等のガラス基板が挙げられる。中でも、本開示で使用される被研磨基板としては、強度と扱いやすさの観点からNi-Pめっきアルミニウム合金基板が好ましい。上記被研磨基板の形状には特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状であればよい。中でも、ディスク状の被研磨基板が適している。ディスク状の被研磨基板の場合、その外径は例えば2~95mm程度であり、その厚みは例えば0.5~2mm程度である。
 [磁気ディスク基板の製造方法]
 一般に、磁気ディスクは、精研削工程を経たガラス基板や、Ni-Pメッキ工程を経たアルミニウム合金基板が、粗研磨工程、仕上げ研磨工程を経て研磨され、記録部形成工程にて磁気ディスク化されて製造される。本開示に係る磁気ディスク基板の製造方法は、下記(1)~(3)の工程を有し、工程(1)と(3)とは別の研磨機で行う製造方法である。
(1)粗研磨工程:上述の研磨液組成物Iを用いて被研磨基板を研磨する工程。
(2)洗浄工程:工程(1)で得られた基板を洗浄する工程。
(3)仕上げ研磨:工程(2)で得られた基板を、シリカ粒子Cを含有する研磨液組成物(以下、「研磨液組成物II」ともいう)を用いて工程(2)を用いて研磨する工程。
 [工程(1):粗研磨工程]
 工程(1)は、一又は複数の実施形態において、研磨液組成物Iを用いて被研磨基板の研磨対象面を研磨する工程であって、その他一又は複数の実施形態において、研磨液組成物Iを被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッド(以下、「研磨パッドA」ともいう。)を接触させ、前記研磨パッド及び前記被研磨基板の少なくとも一方を動かして前記研磨対象面を研磨する工程である。工程(1)で使用される研磨機としては、特に限定されず、磁気ディスク基板研磨用の公知の研磨機が使用できる。工程(1)における被研磨基板としては、上述の被研磨基板が挙げられる。
 [工程(1)の研磨パッドA]
 本開示に係る製造方法の工程(1)に使用される研磨パッドAとしては、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、ベース層と発泡した表面層とを有するスエードタイプの研磨パッドであり、前記表面層の圧縮率が2.5%以上である。
 <研磨パッドAの構造>
 研磨パッドAの表面層である発泡層としては、一又は複数の実施形態において、独立発泡タイプと連続発泡タイプのものが使用できるが、研磨屑の排出性の観点から連続発泡タイプのものが好ましく使用される。連続発泡タイプの研磨パッドとしては、例えば、「CMP技術基礎実例講座シリーズ第2回メカノケミカルポリシング(CMP)の基礎と実例(ポリシングパッド編)1998年5月27日資料 グローバルネット株式会社編」、或いは「CMPのサイエンス 柏木正広編 株式会社サイエンスフォーラム 第4章」に記載されたような研磨パッドが使用できる。ここでスエードタイプとは、一又は複数の実施形態において、特開平11-335979号公報に記載されているような、ベース層とベース層に対して垂直な紡錘状気孔を有する発泡層とを有する構造のことをいう。
 上記スエードタイプの研磨パッドは、一又は複数の実施形態において、以下の方法により製造される。ポリエチレンテレフタレート(PET)からなるベース層上に、ジメチルホルムアミド(DMF)等の溶剤にポリウレタンエラストマーを溶解させた溶液を塗布し、これを水或いは水とポリウレタンエラストマー溶液の溶剤との混合溶液中に浸漬して湿式凝固を行い、脱溶剤のための水洗、乾燥を行なう。これにより、ベース層に対して垂直な紡錘状気孔を有する発泡層がベース層上に形成される。そして、得られた発泡層の表面をサンドペーパー等で研磨することによって、表面に気孔部を有し、かつ、ベース層に対して垂直な紡錘状気孔を有する発泡層を備えたスエードタイプ研磨パッドが得られる。
 <研磨パッドAの材質>
 研磨パッドAのベース層の材質としては、一又は複数の実施形態において、綿等の天然繊維や合成繊維からなる不織布、スチレンブタジエンゴム等のゴム状物質を充填して得られるベース層等が挙げられるが、微小うねりの低減、及び高硬度な樹脂フィルムが得られる観点から、ポリエチレンテレフタレート(PET)フィルムやポリエステルフィルムが好ましく、PETフィルムがより好ましい。研磨パッドAの発泡層(表面層)の材質としては、一又は複数の実施形態において、ポリウレタンエラストマー、ポリスチレン、ポリエステル、ポリ塩化ビニル、天然ゴム、合成ゴム等があげられるが、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、ポリウレタンエラストマーが好ましい。本明細書において、基板の「うねり」とは、粗さよりも波長の長い基板表面の凹凸をいう。
 <研磨パッドAの圧縮率>
 研磨パッドAの発砲層(表面層)の圧縮率は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、2.5%以上であって、好ましくは20.0%以下、より好ましくは15.0%以下、更に好ましくは10.0%以下、更により好ましくは7.0%以下、更により好ましくは5.0%以下である。
 研磨パッドの圧縮率は、日本工業規格(JIS) L1096記載の圧縮率測定方法に基づき、圧縮試験機により測定することが出来る。即ち標準圧力(100g/cm2)の下で測定した研磨パッドの厚み(T0)から、1000g/cm2の下で測定した研磨パッドの厚み(T1)を引いた値をT0で除し、その値に100を乗じることによって求めることが出来る。研磨パッドの圧縮率は、例えば、発泡層の厚みや発泡層のベース層側の気孔径サイズ、あるいはベース層の材質等によって制御できる。
 <研磨パッドAの平均気孔径>
 研磨パッドAの表面の気孔部の平均気孔径は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、10μm以上100μm以下が好ましく、より好ましくは15μm以上80μm以下、更に好ましくは20μm以上60μm以下、更により好ましくは25μm以上55μm以下である。
 研磨パッド表面の気孔部の平均気孔径は、ポリウレタンエラストマー原料に対し、カーボンブラック等の顔料や、発泡を促進させる親水性活性剤、あるいはポリウレタンエラストマーの湿式凝固を安定化させる疎水性活性剤等の添加剤を添加することにより制御することが出来る。そして、上記平均気孔径は、以下の方法で求めることが出来る。先ず、研磨パッド表面を走査型電子顕微鏡で観察(好適には100~300倍)して、画像をパーソナルコンピュータ(PC)に取り込む。そして、取り込んだ画像についてPCにて画像解析ソフトにより解析を行い、気孔部の円相当径の平均径として平均気孔径を求めることが出来る。上記画像解析ソフトとしては、例えばWinROOF(三谷商事)を用いることが出来る。
 <研磨パッドAの厚み>
 研磨パッドAの厚みは、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、0.7mm以上1.5mm以下が好ましく、より好ましくは0.8mm以上1.4mm以下、更に好ましくは0.8mm以上1.3mm以下、更により好ましくは0.9mm以上1.3mm以下である。
 [工程(1)の研磨荷重]
 本開示において研磨荷重とは、研磨時に被研磨基板の研磨面に加えられる定盤の圧力を意味する。工程(1)における研磨荷重は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、30kPa以下が好ましく、より好ましくは25kPa以下、更に好ましくは20kPa以下、更により好ましくは18kPa以下、更により好ましくは16kPa以下、更により好ましくは14kPa以下である。前記研磨荷重は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、3kPa以上が好ましく、より好ましくは5kPa以上、更に好ましくは7kPa以上、更により好ましくは8kPa以上、更により好ましくは9kPa以上である。前記研磨荷重は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、好ましくは3kPa以上30kPa以下、より好ましくは5kPa以上25kPa以下、更に好ましくは7kPa以上20kPa以下、更により好ましくは8kPa以上18kPa以下、更により好ましくは9kPa以上16kPa以下、更により好ましくは9kPa以上14kPa以下である。前記研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。
 [工程(1)の研磨量]
 工程(1)における、被研磨基板(直径95mm)1枚当たりの研磨量は、一又は複数の実施形態において、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、110mg以上160mg以下が好ましく、より好ましくは115mg以上155mg以下、さらに好ましくは120mg以上150mg以下である。直径の異なる被研磨基板については、その面積に応じて上記範囲に準じるものとする。本開示に係る製造方法における工程(1)の研磨には、上述した所定の非球状シリカ粒子A、球状シリカ粒子B、酸、酸化剤及び水を含む研磨液組成物Iを用いるから、上述の範囲の研磨量で、効果的に長周期欠陥を除去することができる。
 [工程(1)における研磨液組成物Iの供給速度]
 工程(1)における研磨液組成物Iの供給速度は、経済性の観点から、被研磨基板1cm2あたり2.5mL/分以下が好ましく、より好ましくは2.0mL/分以下、更に好ましくは1.5mL/分以下、更により好ましくは1.0mL/分以下、更により好ましくは0.5mL/分以下、更により好ましくは0.2mL/分以下である。前記供給速度は、研磨速度の向上の観点から、被研磨基板1cm2あたり0.01mL/分以上が好ましく、より好ましくは0.03mL/分以上、更に好ましくは0.05mL/分以上である。前記供給速度は、経済性の観点及び研磨速度の向上の観点から、被研磨基板1cm2あたり0.01mL/分以上2.5mL/分以下が好ましく、より好ましくは0.03mL/分以上2.0mL/分以下、更に好ましくは0.03mL/分以上1.5mL/分以下、更により好ましくは0.03mL/分以上1.0mL/分以下、更により好ましくは0.05mL/分以上0.5mL/分以下、更により好ましくは0.05mL/分以上0.2mL/分以下である。
 [工程(1)における研磨液組成物Iの供給量]
 工程(1)における研磨液組成物Iの供給量は、前記研磨液組成物Iの供給速度に依存するが、経済性の観点から、さらに低減することが好ましい。本開示は、一又は複数の実施形態において、より効率良く基板に研磨液組成物Iが作用しうるため、研磨液の供給量を従来の供給量より減らし得ることが考えられる。本開示における研磨液供給量の低減効率は、具体的には実施例に記載した方法で評価できる。
 [工程(1)における研磨液組成物Iを研磨機へ供給する方法]
 研磨液組成物Iを研磨機へ供給する方法としては、例えばポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物Iを研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物Iの保存安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、研磨液組成物Iとなる。
 [工程(2):洗浄工程]
 工程(2)は、工程(1)で得られた基板を洗浄する工程である。工程(2)は、一又は複数の実施形態において、工程(1)の粗研磨が施された基板を、洗浄剤組成物を用いて洗浄する工程である。工程(2)における洗浄方法は、特に限定されないが、一又は複数の実施形態において、工程(1)で得られた基板を洗浄剤組成物に浸漬する方法(洗浄方法a)、及び、洗浄剤組成物を射出して工程(1)で得られた基板の表面上に洗浄剤組成物を供給する方法(洗浄方法b)が挙げられる。
 <洗浄方法a>
 前記洗浄方法aにおいて、基板の洗浄剤組成物への浸漬条件としては、特に制限はないが、例えば、洗浄剤組成物の温度は、安全性及び操業性の観点から20~100℃であることが好ましく、浸漬時間は、洗浄剤組成物による洗浄性と生産効率の観点から10秒~30分間であることが好ましい。残留物の除去性及び残留物の分散性(残留物に対する洗浄性)を高める観点から、洗浄剤組成物には超音波振動が付与されていると好ましい。超音波の周波数としては、好ましくは20kHz以上2000kHz以下、より好ましくは40kHz以上2000kHz以下、更に好ましくは40kHz以上1500kHz以下である。
 <洗浄方法b>
 前記洗浄方法bでは、残留物に対する洗浄性や油分の溶解性を促進させる観点から、超音波振動が与えられている洗浄剤組成物を射出して、基板の表面に洗浄剤組成物を接触させて当該表面を洗浄するか、又は、洗浄剤組成物を被洗浄基板の表面上に射出により供給し、洗浄剤組成物が供給された当該表面を洗浄用ブラシでこすることにより洗浄することが好ましい。更には、前記洗浄方法bでは、超音波振動が与えられている洗浄剤組成物を射出により洗浄対象の表面に供給し、かつ、洗浄剤組成物が供給された当該表面を洗浄用ブラシでこすることにより洗浄することが好ましい。
 洗浄剤組成物を被洗浄基板の表面上に供給する手段としては、スプレーノズル等の公知の手段を用いることができる。洗浄用ブラシとしては、特に制限はなく、例えばナイロンブラシやPVA(ポリビニルアルコール)スポンジブラシ等の公知のものを使用することができる。超音波の周波数としては、前記洗浄方法aで好ましく採用される値と同様であればよい。
 工程(2)では、洗浄方法a及び/又は洗浄方法bに加えて、揺動洗浄、スピンナー等の回転を利用した洗浄、パドル洗浄、スクラブ洗浄等の公知の洗浄を用いる工程を1つ以上含んでもよい。
 [工程(2)の洗浄剤組成物]
 工程(2)の洗浄剤組成物としては、一又は複数の実施形態において、アルカリ剤、水、及び必要に応じて各種添加剤を含有するものが使用できる。
 <洗浄剤組成物中のアルカリ剤>
 前記洗浄剤組成物で使用されるアルカリ剤は、無機アルカリ剤及び有機アルカリ剤のいずれであってもよい。無機アルカリ剤としては、例えば、アンモニア、水酸化カリウム、及び水酸化ナトリウム等が挙げられる。有機アルカリ剤としては、例えば、ヒドロキシアルキルアミン、テトラメチルアンモニウムハイドロオキサイド、及びコリンからなる群より選ばれる一種以上が挙げられる。これらのアルカリ剤は、単独で用いてもよく、二種以上を混合して用いてもよい。洗浄剤組成物の基板上の残留物に対する洗浄性の向上、及び保存安定性の向上の観点から、前記アルカリ剤としては、水酸化カリウム、水酸化ナトリウム、モノエタノールアミン、メチルジエタノールアミン、及びアミノエチルエタノールアミンからなる群から選ばれる少なくとも1種が好ましく、水酸化カリウム及び水酸化ナトリウムからなる群から選ばれる少なくとも1種がより好ましい。
 洗浄剤組成物中のアルカリ剤の含有量は、洗浄剤組成物の基板上の残留物に対する洗浄性を向上させ、かつ、洗浄剤組成物の取扱時の安全性を高める観点から、0.05質量%以上10質量%以下であると好ましく、0.08質量%以上5質量%以下であるとより好ましく、0.1質量%以上3質量%以下であると更に好ましい。
 洗浄剤組成物のpHは、基板上の残留物に対する洗浄性を向上させる観点から、8以上14以下であることが好ましく、より好ましくは9以上13以下、更に好ましくは10以上13以下、更により好ましくは11以上13以下である。なお、上記のpHは、25℃における洗浄剤組成物のpHであり、pHメータを用いて測定でき、電極の洗浄剤組成物への浸漬後2分後の数値である。
 <洗浄剤組成物中の各種添加剤>
 洗浄剤組成物には、アルカリ剤以外に、非イオン界面活性剤、キレート剤、エーテルカルボキシレートもしくは脂肪酸、アニオン性界面活性剤、水溶性高分子、消泡剤(成分に該当する界面活性剤は除く。)、アルコール類、防腐剤、酸化防止剤等が含まれていてもよい。
 洗浄剤組成物中の水以外の成分の含有量は、作業性、経済性や保存安定性向上に対し充分な効果が発現される濃縮度である事と保存安定性向上との両立の観点から、水の含有量と水以外の成分の含有量の合計を100質量%とすると、好ましくは10質量%以上60質量%以下であり、より好ましくは15質量%以上50質量%以下であり、更に好ましくは15質量%以上40質量%以下である。
 洗浄剤組成物は、希釈して用いられる。希釈倍率は、洗浄効率を考慮すると、好ましくは10倍以上500倍以下、より好ましくは20倍以上200倍以下、更に好ましくは50倍以上100倍以下である。希釈用の水は、前述の研磨液組成物Iと同様のものでよい。洗浄剤組成物は、前記希釈倍率を前提とした濃縮物とすることができる。よって、濃縮物の場合には、洗浄剤組成物中の水以外の成分の含有量は、水の含有量と水以外の成分の含有量の合計を100質量%とすると、好ましくは0.02質量%以上6質量%以下であり、より好ましくは0.1質量%以上3質量%以下であり、更に好ましくは0.15質量%以上1質量%以下である。
 [工程(3):仕上げ研磨工程]
 工程(3)は、一又は複数の実施形態において、シリカ粒子Cを含有する研磨液組成物IIを用いて工程(2)で得られた基板の研磨対象面を研磨する工程である。工程(3)は、その他の一又は複数の実施形態において、シリカ粒子Cを含有する研磨液組成物IIを工程(2)で得られた基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び前記被研磨基板の少なくとも一方を動かして前記研磨対象面を研磨する工程である。工程(3)で使用される研磨機は、突起欠陥低減の観点、及び、その他の表面欠陥を効率よく低減するため粗研磨とポア径の異なるパッドを使用する観点から、工程(1)で用いた研磨機とは別の研磨機である。
 本開示に係る製造方法は、工程(1)の粗研磨工程、工程(2)の洗浄工程、及び、工程(3)の仕上げ研磨工程を含むことにより、粗研磨の研磨速度を大幅に損なうことなく長周期欠陥が低減され、仕上げ研磨後の突起欠陥が低減された基板を効率的に製造することができる。
 [工程(3)の研磨液組成物II]
 工程(3)で使用される研磨液組成物IIは、仕上げ研磨後の突起欠陥低減の観点から砥粒としてシリカ粒子Cを含有する。使用されるシリカ粒子Cは、仕上げ研磨後の長波長うねり低減の観点から、好ましくはコロイダルシリカである。研磨液組成物IIは、仕上げ研磨後の突起欠陥を低減する観点から、アルミナ砥粒を実質的に含まないことが好ましい。シリカ粒子Cは、一又は複数の実施形態において、球状である。本明細書において「長波長うねり」とは、500~5000μmの波長により観測されるうねりをいう。研磨後の基板表面のうねりが低減されることにより、磁気ヘッドの浮上量が低減でき、磁気ディスク基板の記録密度向上が可能となる。
 研磨液組成物IIに用いられるシリカ粒子Cの動的光散乱法による体積平均粒径(D1)は、仕上げ研磨後の突起欠陥を低減する観点から、5nm以上50nm以下が好ましく、より好ましくは10nm以上45nm以下、更に好ましくは15nm以上40nm以下、更により好ましくは20nm以上35nm以下である。シリカ粒子Cの動的光散乱法による体積平均粒径(D1)は、仕上げ研磨後の突起欠陥を低減する観点から、非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)より小さいことが好ましい。
 シリカ粒子CのCV90は、一又は複数の実施形態において、研磨速度の低下抑制及び仕上げ研磨後の突起欠陥を低減する観点から、10.0%以上が好ましく、より好ましくは15.0%以上、更に好ましくは20.0%以上であり、そして、同様の観点から、35.0%以下が好ましく、より好ましくは32.0%以下、更に好ましくは30.0%以下である。球状シリカ粒子BのCV90は、一又は複数の実施形態において、同様の観点から、10.0%以上35.0%以下であって、好ましくは15.0%以上32.0%以下、より好ましくは20.0%以上30.0%以下である。
 研磨液組成物II中のシリカ粒子Cの含有量は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、0.5質量%以上20質量%以下が好ましく、1.0質量%以上15質量%以下がより好ましく、3.0質量%以上13質量%以下が更に好ましく、4.0質量%以上10質量%以下が更により好ましい。
 研磨液組成物IIは、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、複素環芳香族化合物、多価アミン化合物、及びアニオン性基を有する高分子から選ばれる1種以上を含有することが好ましく、2種以上含有することがより好ましく、複素環芳香族化合物、多価アミン化合物、及びアニオン性基を有する高分子を含有することが更に好ましい。
 研磨液組成物IIは、研磨速度を向上する観点から、酸、酸化剤を含有することが好ましい。酸、酸化剤の好ましい使用態様については、前述の研磨液組成物Iの場合と同様である。研磨液組成物IIに用いられる水、研磨液組成物IIのpH、研磨液組成物IIの調製方法については、前述の研磨液組成物Iの場合と同様である。
 [工程(3)の研磨パッド]
 工程(3)で使用される研磨パッドは、工程(1)で使用される研磨パッドと同種の研磨パッドが使用されうる。工程(3)で使用される研磨パッドの平均気孔径は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、1μm以上50μm以下が好ましく、より好ましくは2μm以上40μm以下、更に好ましくは3μm以上30μm以下である。
 [工程(3)の研磨荷重]
 工程(3)における研磨荷重は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、16kPa以下が好ましく、より好ましくは14kPa以下、更に好ましくは13kPa以下である。前記研磨荷重は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、7.5kPa以上が好ましく、より好ましくは8.5kPa以上、更に好ましくは9.5kPa以上である。前記研磨荷重は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、7.5kPa以上16kPa以下が好ましく、より好ましくは8.5kPa以上14kPa以下、更に好ましくは9.5kPa以上13kPa以下である。
 [工程(3)の研磨量]
 工程(3)における、被研磨基板の単位面積(1cm2)あたりかつ研磨時間1分あたりの研磨量は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、0.02mg以上が好ましく、より好ましくは0.03mg以上、更に好ましくは0.04mg以上である。前記研磨量は、生産性向上の観点からは、0.15mg以下が好ましく、より好ましくは0.12mg以下、更に好ましくは0.10mg以下である。したがって、前記研磨量は、前記と同様の観点から、0.02mg以上0.15mg以下が好ましく、より好ましくは0.03mg以上0.12mg以下、更に好ましくは0.04mg以上0.10mg以下である。
 工程(3)における研磨液組成物IIの供給速度及び研磨液組成物IIを研磨機へ供給する方法については、前述の研磨液組成物Iの場合と同様である。
 本開示の製造方法によれば、一又は複数の実施形態において、粗研磨において研磨速度を大幅に損なうことなく長周期欠陥を低減できるから、突起欠陥が低減された磁気ディスク基板を高い基板収率で、生産性よく製造できるという効果が奏されうる。
 [研磨方法]
 本開示は、その他の態様として、上述した工程(1)、工程(2)、工程(3)を有する研磨方法に関する。工程(1)~(3)における被研磨基板、研磨液組成物I、非球状シリカ粒子A、球状シリカ粒子B、研磨液組成物II、シリカ粒子C、研磨方法及び条件、洗浄剤組成物、並びに洗浄方法については、上述の本開示に係る磁気ディスク基板の製造方法と同様とすることができる。
 本開示の研磨方法を使用することにより、一又は複数の実施形態において、粗研磨において研磨速度を大幅に損なうことなく長周期欠陥を低減できるから、突起欠陥が低減された磁気ディスク基板を高い基板収率で、生産性よく製造できるという効果が奏されうる。
 本開示に係る製造方法及び研磨方法は、一又は複数の実施形態において、図5に示すような、研磨液組成物Iを用いて被研磨基板の研磨(粗研磨)する第一の研磨機51と、前記第一研磨機51で研磨した基板を洗浄する洗浄ユニット52と、研磨液組成物IIを用いて洗浄後の基板を研磨する第二の研磨機53とを備える磁気ディスク基板の研磨システムにより行うことができる。したがって、本開示は、一態様において、前記工程(1)の研磨を行う第一の研磨機と、前記工程(2)の洗浄を行う洗浄ユニットと、前記工程(3)の研磨を行う第二の研磨機とを備える磁気ディスク基板の研磨システムに関する。研磨液組成物I及び研磨液組成物IIは前述のとおりであり、被研磨基板、各研磨機で使用される研磨パッド、研磨方法及び条件、洗浄剤組成物、並びに洗浄方法については、上述の本開示に係る磁気ディスク基板の製造方法と同様とすることができる。
 本開示にかかる研磨システムは、一又は複数の実施形態において、第一研磨機51で研磨された被研磨基板の少なくとも1枚(直径;95mmとして)に対する研磨量が好ましくは110mg以上160mg以下、より好ましくは115mg以上155mg以下、さらに好ましくは120mg以上150mg以下であることを確認する手段(研磨制御部)(図示せず)を有してもよい。該手段(研磨制御部)は、一又は複数の実施形態において、基板の研磨量に基づいて第一研磨機51を制御する。ここで、本開示に係る研磨システムの動作(磁気ディスク基板の製造方法の研磨工程)の一実施形態を図5を参照しながら図6を用いて説明する。まず、第一研磨機51によって被研磨基板を研磨(粗研磨)する(ステップS61)。そして、第一研磨機51による基板の研磨量が所定の研磨量の範囲内(ここでは110~160mg)であるか否かを研磨制御部によって判断する(ステップS62)。前記研磨量が所定の研磨量の範囲内である場合、粗研磨後の基板を洗浄ユニット52によって洗浄し(ステップS62)、洗浄後の基板を第二研磨機53によって研磨する(ステップS63)。一方、前記研磨量が所定の研磨量の範囲内ではない場合、第一研磨機51における研磨の継続または研磨の中止を実行する(ステップS65)。
 本開示は更に以下の一又は複数の実施形態に関する。
 <1> (1)研磨液組成物Iを用いて被研磨基板の研磨対象面を研磨する工程、(2)工程(1)で得られた基板を洗浄する工程、及び、(3)工程(2)で得られた基板を、シリカ粒子Cを含有する研磨液組成物IIを用いて研磨する工程を有し、前記工程(1)と(3)を別の研磨機で行う磁気ディスク基板の製造方法であって、(i)前記工程(1)の前記研磨液組成物Iは、非球状シリカ粒子A、球状シリカ粒子B、酸、酸化剤及び水を含有し、(ii)前記工程(1)の前記研磨液組成物Iにおいて、前記非球状シリカ粒子Aと前記球状シリカ粒子Bの質量比(A/B)が80/20以上99/1以下であり、シリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の含有量が98.0質量%を超え、(iii)前記非球状シリカ粒子AのΔCV値が0.0%より上10%未満であり、ここで、ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30-CV90)であり、(iv)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が2.00以上4.00以下であり、(v)前記球状シリカ粒子Bが、動的光散乱法による体積平均粒径(D1)が6.0nm以上80.0nm以下であり、(vi)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される、磁気ディスク基板の製造方法。
 <2> 前記非球状シリカ粒子Aが、金平糖型のシリカ粒子A1、異形型のシリカ粒子A2、異形かつ金平糖型のシリカ粒子A3、及びこれらの組み合わせからなる群から選択される少なくとも1種である、<1>記載の製造方法。
 <3> 前記非球状シリカ粒子AのΔCV値が、好ましくは0.0%より上、より好ましくは0.2%以上、更に好ましくは0.3%以上、更により好ましくは0.4%以上である、<1>又は<2>に記載の製造方法。
 <4> 前記非球状シリカ粒子AのΔCV値が、10.0%未満であることが好ましく、より好ましくは8.0%以下、更に好ましくは7.0%以下、更により好ましくは4.0%以下である、<1>から<3>のいずれかに記載の製造方法。
 <5> 前記非球状シリカ粒子AのΔCV値が、好ましくは0.0%より上10.0%未満が好ましく、より好ましくは0.2%以上8.0%以下、更にこのましくは0.3%以上7.0%以下、更により好ましくは0.4%以上4.0%以下である、<1>から<4>のいずれかに記載の製造方法。
 <6> 前記非球状シリカ粒子Aの体積平均粒径(D1)が、好ましくは120.0nm以上、より好ましくは150.0nm以上、更に好ましくは160.0nm以上、更により好ましくは170.0nm以上、更により好ましくは180.0nm以上、更により好ましくは190.0nm以上、更により好ましくは200.0nm以上である、<1>から<5>のいずれかに記載の製造方法。
 <7> 前記非球状シリカ粒子Aの体積平均粒径(D1)が、好ましくは300.0nm未満、より好ましくは260.0nm未満、更に好ましくは250.0nm未満、更により好ましくは220.0nm未満、更により好ましくは210.0nm未満である、<1>から<6>のいずれかに記載の製造方法。
 <8> 前記非球状シリカ粒子Aの体積平均粒径(D1)が、好ましくは120.0nm以上300.0nm未満、より好ましくは120.0nm以上260.0nm未満、更に好ましくは150.0nm以上260.0nm未満、更により好ましくは160.0nm以上260.0nm未満、更により好ましくは170.0nm以上260.0nm未満、更により好ましくは180.0nm以上250.0nm未満、更により好ましくは190.0nm以上220.0nm未満、更により好ましくは200.0nm以上210.0nm未満である、<1>から<7>のいずれかに記載の製造方法。
 <9> 前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が、好ましくは2.00以上、より好ましくは2.50以上、更に好ましくは3.00以上、更により好ましくは3.50以上である、<1>から<8>のいずれかに記載の製造方法。
 <10> 前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が、好ましくは4.00以下、より好ましくは3.90以下、更に好ましくは3.80以下である、<1>から<9>のいずれかに記載の製造方法。
 <11> 前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が、好ましくは2.00以上4.00以下、より好ましくは2.50以上3.90以下、更に好ましくは3.00以上3.90以下、更により好ましくは3.50以上3.80以下である、<1>から<10>のいずれかに記載の製造方法。
 <12> 前記非球状シリカ粒子AのCV90は、好ましくは20.0%以上、より好ましくは25.0%以上、更に好ましくは27.0%以上である、<1>から<11>のいずれかに記載の製造方法。
 <13> 前記非球状シリカ粒子AのCV90は、好ましくは40.0%以下、より好ましくは38.0%以下、更に好ましくは35.0%以下、更により好ましくは32.0%以下である、<1>から<12>のいずれかに記載の製造方法。
 <14> 前記非球状シリカ粒子AのCV90は、好ましくは20.0%以上40.0%以下、より好ましくは25.0%以上38.0%以下、更に好ましくは25.0以上35.0%以下、更により好ましくは27.0%以上32.0%以下である、<1>から<13>のいずれかに記載の製造方法。
 <15> 前記研磨液組成物I中の非球状シリカ粒子Aの含有量が、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、更により好ましは2質量%以上である、<1>から<14>のいずれかに記載の製造方法。
 <16> 前記研磨液組成物I中の非球状シリカ粒子Aの含有量が、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下、更により好ましくは15質量%以下である、<1>から<15>のいずれかに記載の製造方法。
 <17> 前記研磨液組成物I中の非球状シリカ粒子Aの含有量が、好ましくは0.1質量%以上30質量%以下、より好ましくは0.5質量%以上25質量%以下、更に好ましくは1質量%以上20質量%以下、更により好ましくは2質量%以上15質量%以下である、<1>から<16>のいずれかに記載の製造方法。
 <18> 前記非球状シリカ粒子Aが、水ガラスを原料とする粒子成長法により製造されたシリカ粒子である、<1>から<17>のいずれかに記載の製造方法。
 <19> 前記球状シリカ粒子BのΔCV値が、好ましくは0.0%より上、より好ましくは0.2%以上、更に好ましくは0.3%以上、更により好ましくは0.4%以上である、<1>から<18>のいずれかに記載の製造方法。
 <20> 前記球状シリカ粒子BのΔCV値が、10.0%未満であることが好ましく、より好ましくは8.0%以下、更に好ましくは7.0%以下、更により好ましくは4.0%以下である、<1>から<19>のいずれかに記載の製造方法。
 <21> 前記球状シリカ粒子BのΔCV値が、好ましくは0.0%より上10.0%未満が好ましく、より好ましくは0.2%以上8.0%以下、更にこのましくは0.3%以上7.0%以下、更により好ましくは0.4%以上4.0%以下である、<1>から<20>のいずれかに記載の製造方法。
 <22> 前記球状シリカ粒子Bの体積平均粒径(D1)が、好ましくは6.0nm以上、より好ましくは7.0nm以上である、<1>から<21>のいずれかに記載の製造方法。
 <23> 前記球状シリカ粒子Bの体積平均粒径(D1)が、好ましくは80.0nm以下、より好ましくは70.0nm以下、より好ましくは60.0nm以下である、<1>から<22>のいずれかに記載の製造方法。
 <24> 前記球状シリカ粒子Bの体積平均粒径(D1)が、好ましくは6.0nm以上80.0nm以下、より好ましくは6.0nm以上70.0nm以下、更に好ましくは7.0nm以上60.0nm以下である、<1>から<23>のいずれかに記載の製造方法。
 <25> 前記球状シリカ粒子Bが粒径が異なる2種類の粒子であり、前記2種類の粒子が、6.0nm以上15.0nm以下の球状粒子と15.5nm以上70.0nm以下の球状粒子との組み合わせ、又は、15.5nm以上30.0nm以下の球状粒子と30.5nm以上70.0nm以下の球状粒子との組み合わせである、<1>から<24>のいずれかに記載の製造方法。
 <26> 前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が、好ましくは1.00以上、より好ましくは1.10以上、更に好ましくは1.15以上である、<1>から<25>のいずれかに記載の製造方法。
 <27> 前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が、好ましくは1.50以下、より好ましくは1.40以下、更に好ましくは1.30以下である、<1>から<26>のいずれかに記載の製造方法。
 <28> 前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が、好ましくは1.00以上1.50以下、好ましくは1.10以上1.40以下、より好ましくは1.15以上1.30以下である、<1>から<27>のいずれかに記載の製造方法。
 <29> 前記球状シリカ粒子BのCV90が、好ましくは10.0%以上、より好ましくは15.0%以上、更に好ましくは20.0%以上である、<1>から<28>のいずれかに記載の製造方法。
 <30> 前記球状シリカ粒子BのCV90が、好ましくは35.0%以下、より好ましくは32.0%以下、更に好ましくは30.0%以下である、<1>から<29>のいずれかに記載の製造方法。
 <31> 前記球状シリカ粒子BのCV90は、好ましくは10.0%以上35.0%以下であって、より好ましくは15.0%以上32.0%以下、更に好ましくは20.0%以上30.0%以下である、<1>から<30>のいずれかに記載の製造方法。
 <32> 前記研磨液組成物I中の球状シリカ粒子Bの含有量が、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上、更により好ましくは0.2質量%以上である、<1>から<31>のいずれかに記載の製造方法。
 <33> 前記研磨液組成物I中の球状シリカ粒子Bの含有量が、好ましくは3質量%以下、より好ましくは2.5質量%以下、更に好ましくは2質量%以下、更により好ましくは1.5質量%以下である、<1>から<32>のいずれかに記載の製造方法。
 <34> 前記研磨液組成物I中の非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度の合計が、好ましくは0%以上50%以下、より好ましくは10%以上45%以下、更に好ましくは15%以上40%以下、更により好ましくは20%以上35%以下である、<1>から<33>のいずれかに記載の製造方法。
 <35> 前記研磨液組成物I中の非球状シリカ粒子Aと球状シリカ粒子Bの含有量の質量比(A/B)が、好ましくは80/20以上、より好ましくは85/15以上、更に好ましくは90/10以上である、<1>から<34>のいずれかに記載の製造方法。
 <36> 前記研磨液組成物I中の非球状シリカ粒子Aと球状シリカ粒子Bの含有量の質量比(A/B)が、好ましくは99/1以下、より好ましくは95/5以下、更に好ましくは92/8以下である、<1>から<35>のいずれかに記載の製造方法。
 <37> 前記研磨液組成物Iにおけるシリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の含有量が、好ましくは98.0質量%を超え、より好ましくは98.5質量%以上、更に好ましくは99.0質量%以上、更により好ましくは99.5質量%以上、更により好ましくは99.8質量%以上であり、更により好ましくは実質的に100質量%である、<1>から<36>のいずれかに記載の製造方法。
 <38> 前記研磨液組成物I中の前記酸の含有量が、好ましくは0.001質量%以上5質量%以下、より好ましくは0.01質量%以上4質量%以下、更に好ましくは0.05質量%以上3質量%以下、更により好ましくは0.1質量%以上2.5質量%以下である、<1>から<37>のいずれかに記載の製造方法。
 <39> 前記研磨液組成物Iが、アルミナ粒子を実質含まない、<1>から<38>のいずれかに記載の製造方法。
 <40> 前記研磨液組成物IのpHが、好ましくは0.5以上6.0以下、より好ましくは0.7以上4.0以下、更に好ましくは0.9以上3.0以下、更により好ましくは1.0以上3.0以下、更により好ましくは1.2以上2.5以下、更により好ましくは1.4以上2.0以下である、<1>から<39>のいずれかに記載の製造方法。
 <41> 前記研磨液組成物Iの研磨対象が、Ni-Pめっきアルミニウム合金基板である、<1>から<40>のいずれかに記載の製造方法。
 <42> 前記工程(1)における被研磨基板(直径95mm)1枚当たりの研磨量が、好ましくは110mg以上160mg以下、より好ましくは115mg以上155mg以下、さらに好ましくは120mg以上150mg以下である、<1>から<41>のいずれかに記載の製造方法。
 <43> <1>から<42>のいずれかに記載の磁気ディスク基板の製造方法における工程(1)~(3)を含む、磁気ディスク基板の研磨方法。
 <44> <1>から<42>のいずれかに記載の磁気ディスク基板の製造方法における工程(1)の研磨を行う第一の研磨機と、<1>から<42>のいずれかに記載の磁気ディスク基板の製造方法における工程(2)の洗浄を行う洗浄ユニットと、<1>から<42>のいずれかに記載の磁気ディスク基板の製造方法における工程(3)の研磨を行う第二の研磨機とを備える磁気ディスク基板の研磨システム。
 以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。
 下記のとおりに工程(1)に用いる研磨液組成物I及び工程(3)に用いる研磨液組成物IIを調製し、工程(1)~(3)を含む下記の条件の被研磨基板の研磨を行った。研磨液組成物の調製方法、使用した添加剤、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は以下のとおりである。
 1.研磨液組成物の調製
 [工程(1)(粗研磨)に用いる研磨液組成物Iの調製]
 表1の非球状シリカ砥粒A及び球状シリカ粒子B(共に、コロイダルシリカ粒子)、表2の酸、過酸化水素、並びに水を用い、工程(1)に用いる研磨液組成物Iを調製した(実施例1~16、参考例1~9、比較例1~6)(表2)。研磨液組成物I中の各成分の含有量は、コロイダルシリカ粒子:6.0質量%、酸:1.0-2.4質量%、過酸化水素:1.0質量%とした。研磨液組成物IのpHは1.2-1.9であった。表1のシリカ砥粒のコロイダルシリカ粒子は水ガラス法で製造されたものである。pHは、pHメータを用いて測定した(東亜ディーケーケー社製)。電極を研磨液組成物へ浸漬して2分後の数値を採用した(以下、同様)。
 表1の非球状シリカ砥粒Aのタイプは、一又は複数の実施形態において、透過型電子顕微鏡(TEM)の観察写真及びそれを用いた分析で判別されうる分類である。
 「異形型シリカ粒子」とは、2つ以上の粒子が凝集又は融着したような形状の非球状シリカ粒子をいう。異形型シリカ粒子は、一又は複数の実施形態において、粒径が1.5倍以内の2つ以上の粒子が凝集又は融着した形状の粒子をいう。
 「金平糖型シリカ粒子」とは、球状の粒子表面に特異な疣状突起を有する非球状シリカ粒子をいう。金平糖型シリカ粒子は、一又は複数の実施形態において、粒径が5倍以上異なる2つ以上の粒子が凝集又は融着した形状の粒子をいう。
 異形型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例を図1に、金平糖型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例を図2に示す。
 表1の球状シリカ砥粒Bの「球状シリカ粒子」とは、真球に近い球形状の粒子(一般的に市販されているコロイダルシリカ)をいう。
 なお、シリカ粒子の粒径は、電子顕微鏡(TEM)観察画像において1つの粒子内で測定される円相当径、すなわち、粒子の投影面積と同じ面積の等価円の長径として求められる粒径である。
Figure JPOXMLDOC01-appb-T000001
 [工程(3)(仕上げ研磨)に用いる研磨液組成物IIの調製]
 表1のコロイダルシリカ粒子(砥粒f)、硫酸、過酸化水素、及び水を用い、研磨液組成物IIを調製した。研磨液組成物II中の各成分の含有量は、コロイダルシリカ粒子:5.0質量%、硫酸:0.5質量%、過酸化水素:0.5質量%とした。研磨液組成物IIのpHは1.4であった。研磨液組成物IIを実施例1~16、参考例1~9、比較例1~6の研磨における工程(3)で使用した。
 2.各パラメータの測定方法
 [動的光散乱法で測定される砥粒a~kの体積平均粒径(D1)及びCV90]
 砥粒、硫酸、過酸化水素をイオン交換水に添加し、これらを混合することにより、標準試料を作製した。標準試料中における砥粒、硫酸、過酸化水素の含有量は、それぞれ0.1~5.0質量%、0.2~0.4質量%、0.2~0.4質量%であり、用いるシリカ砥粒のタイプに合わせて適宜調整を行った。この標準試料を大塚電子社製の動的光散乱装置DLS-6500により、同メーカーが添付した説明書に従って、200回積算した際の検出角90°におけるMarquardt法によって得られる散乱強度分布の面積が全体の50%となる粒径を求め、シリカ粒子の体積平均粒径(D1)とした。検出角90°におけるシリカ粒子のCV値(CV90)を、上記測定法に従って測定した散乱強度分布における標準偏差を前記体積平均粒径で除して100をかけた値として算出した。
 [ΔCV値]
 上記CV90の測定法と同様に、検出角30°におけるシリカ粒子のCV値(CV30)を測定し、CV30からCV90を引いた値を求め、シリカ粒子A又はBのΔCV値とした。
 (DLS-6500の測定条件)
 検出角90°
 Sampling time       :2-10(μm)で適宜調整
 Correlation Channel :256-512(ch)で適宜調整
 Correlation Method  :TI
 Sampling temprature :25.0℃
 検出角30°
 Sampling time       :4-20(μm)で適宜調整
 Correlation Channel :512-2048(ch)で適宜調整
 Correlation Method  :TI
 Sampling temprature :25℃
 [砥粒a~kのBET法による比表面積換算粒径(D2)の測定]
 砥粒の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置「フローソーブIII2305」(島津製作所製))を用いて窒素吸着法(BET法)により測定した。
[前処理]
(a)スラリー状の砥粒を硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状の砥粒をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、1μmのメンブランフィルターで濾過する。
(e)フィルター上の濾過物を20gのイオン交換水(40℃)で十分洗浄する。
(f)濾過物が付着したフィルターを110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物をフィルター屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
 [シリカ砥粒のD10、D50、及びD90]
 シリカ砥粒をイオン交換水で希釈して得られる1質量%分散液を、下記測定装置内に投入し、シリカ砥粒の体積粒度分布を得た。
測定機器 :マルバーン  ゼータサイザー ナノ「Nano S」
測定条件 :サンプル量  1.5mL
     :レーザー   He―Ne、3.0mW、633nm
     :散乱光検出角 173°
 そして、得られた体積粒度分布の累積体積頻度が10%、50%及び90%となる粒径を、それぞれ、D10、D50(体積平均粒子径)、及びD90とした。
 [シリカ粒子の体積粒度分布の重なり頻度の合計]
 シリカ砥粒のD10、D50、及びD90と同様の測定法により、シリカ粒子成分(砥粒a~k)のそれぞれの体積粒度分布を得た。実施例1~16及び参考例3~9で使用する砥粒の組み合わせ(表2)において重なった粒径範囲の累積体積頻度の合計を全シリカ粒子成分の累積体積頻度(2成分混合系では200、3成分混合系では300)で除して100をかけた値を重なり頻度[%]として算出した。実施例8~11における砥粒の組み合わせの体積粒度分布を重ねたグラフの一例を図3に示す。
 [シリカ砥粒の形状]
 シリカ砥粒を日本電子製透過型電子顕微鏡(TEM)(商品名「JEM-2000FX」、80kV、1~5万倍)で観察した写真をパソコンにスキャナで画像データとして取込み、解析ソフト「WinROOF(Ver.3.6)」(販売元:三谷商事)を用いて1000~2000個のシリカ粒子データについて形状を観察した。
 [砥粒の平均二次粒子径の測定]
 ポイズ530(花王社製)を0.5質量%含有する水溶液を分散媒として、下記測定装置内に投入し、続いて透過率が75~95%になるようにサンプルを投入し、その後、5分間超音波を掛けた後、砥粒の平均二次粒子径を測定した。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置 LA920
循環強度 :4
超音波強度:4
 3.研磨条件
 被研磨基板の研磨を工程(1)~(3)に従い行った。各工程の条件を以下に示す。工程(3)は、工程(1)で使用した研磨機とは別個の研磨機で行った。
 [被研磨基板]
 被研磨基板は、Ni-Pメッキされたアルミニウム合金基板を用いた。被研磨基板は、厚み1.27mm、直径95mmであった。
 [工程(1):粗研磨]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
研磨液:研磨液組成物I
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み0.82-1.26mm、平均気孔径20-30μm、表面層の圧縮率:2.5%(Filwel、Fujibo社製)
定盤回転数:35rpm
研磨荷重:9.8kPa(設定値)
研磨液供給量:100mL/分(0.076mL/(cm2・分))
研磨時間:5分
研磨量:110mg以上160mg以下(直径95mmディスク1枚当たり)
投入した基板の枚数:10枚
 [工程(2):洗浄]
 工程(1)で得られた基板を、下記条件で洗浄した。
1. 0.1質量%のKOH水溶液からなるpH12のアルカリ性洗浄剤組成物の入った槽内に、工程(1)で得られた基板を5分間浸漬する。
2. 浸漬後の基板を、イオン交換水で20秒間すすぎを行う。
3. すすぎ後の基板を洗浄ブラシがセットされたスクラブ洗浄ユニットに移送し洗浄する。
 [工程(3):仕上げ研磨]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)、工程(1)で使用した研磨機とは別個の研磨機
研磨液:研磨液組成物II
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み0.9mm、平均気孔径5μm、表面層の圧縮率:10.2%(Fujibo社製)
定盤回転数:40rpm
研磨荷重:9.8kPa
研磨液供給量:100mL/分(0.076mL/(cm2・分))
研磨時間:2分
研磨量:0.04~0.10mg/(cm2・分)
投入した基板の枚数:10枚
工程(3)後に、洗浄を行った。洗浄条件は、前記工程(2)と同条件で行った。
 4.評価方法
 [工程(1)の研磨速度、研磨量の測定方法及び評価]
 研磨前後の各基板の重さを計り(Sartorius社製、「BP-210S」)を用いて測定し、下記式に導入することにより研磨量を求め、比較例1を100とした研磨速度の相対値を算出した。その結果を、表2に示す。
 重量減少量(g)={研磨前の重量(g)-研磨後の重量(g)}
 研磨量(μm)=重量減少量(g)/基板片面面積(mm2)/2/Ni-Pメッキ密度(g/cm3)×106
(基板片面面積は、6597mm2、Ni-Pメッキ密度8.4g/cm3として算出)
 [工程(1)後の基板表面の長周期欠陥(PED)の評価方法]
 工程(1)の研磨後の10枚の基板の両面(計20点)について、下記の条件で測定し発生率(%)を求めた。図4に示す様に基板表面に確認できる小さな斑点がPEDであり、基板表面にPEDが1点でも目視で確認できた場合、その面は長周期欠陥有りとみなした。
 長周期欠陥発生率(%)
=(長周期欠陥が発生している基板面の数/20)×100
 長周期欠陥発生率を下記基準で5段階評価した。すなわち、値が大きいほど長周期欠陥の発生率が低いことを意味する。その結果を、表2に示す。
[評価基準]
 長周期欠陥発生率:評価
 10%以下    :5「極めて発生が抑制され、基板収率向上が期待できる」
 10%越20%以下:4「実生産可能」
 20%越30%以下:3「実生産には改良が必要」
 30%越50%以下:2「基板収率が大幅に低下する」
 50%以上    :1「実生産には程遠い(一般的なシリカ砥粒を用いた場合と同じレベル)」
[測定機器]
光干渉型表面形状測定機:OptiFLAT III(KLA Tencor社製)
Radius Inside/Out:14.87mm/47.83mm
Center X/Y:55.44mm/53.38mm
Low Cutoff:2.5mm
Inner Mask:18.50mm、Outer Mask:45.5mm
Long Period:2.5mm、Wa Correction:0.9、Rn Correction:1.0
No Zernike Terms:8
 [工程(1)における研磨液供給量の低減効率の評価方法]
 工程(1)の研磨は、研磨液供給量を100mL/分(0.076mL/(cm2・分))にて行っているが、別途、この研磨液供給量を下記の条件で減らした際に、研磨速度の低下が10%以内で抑えられるかについて求めた。すなわち、研磨速度の低下が10%以内で抑えられる場合、生産性を大幅に損なわずに研磨液供給量の低減が可能とみなし、経済性の観点から優れることを意味する。
 研磨速度の低下(%)
=(研磨液供給量を低減した条件での研磨速度)/(研磨液供給量を100mL/分での研磨速度)×100
 研磨液供給量の低減効率を下記基準で4段階評価した結果を、表2に示す。
[評価基準]
 研磨液供給量の低減効率(相対値):評価
 30%低減可能(70mL/分で研磨速度の低下が10%以内):A「極めて経済性に優れる」
 20%低減可能(80mL/分で研磨速度の低下が10%以内):B「経済性に優れる」
 10%低減可能(90mL/分で研磨速度の低下が10%以内):C「経済性にやや優れる」
 10%低減不可(90mL/分で研磨速度の低下が10%より上):D「実生産では研磨液供給量の低減は困難」
 [工程(3)後の突起欠陥の評価方法]
測定機器:OSA7100(KLA Tencor社製)
評価:研磨液組成物IIを用いて研磨を行い、その後、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射して砥粒突き刺さり数を測定した。その4枚の基板の各々両面にある砥粒突き刺さり数(個)の合計を8で除して、基板面当たりの砥粒突き刺さり数(突起欠陥数)(比較例1を100とした相対値)を算出した。突起欠陥数の相対値、及び、突起欠陥数を下記基準で評価した結果を、表2に示す。
[評価基準]
 突起欠陥数(相対値):評価
 95未満      :A「極めて発生が抑制され、基板収率向上が期待できる」
 95以上110未満 :B「実生産可能」
 110以上125未満:C「実生産には改良が必要」
 125以上     :D「基板収率が大幅に低下する」
 5.結果
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、実施例1~16では、比較例1~6、参考例1~9に比べて、工程(1)における粗研磨の研磨速度を大きく損ねることなく、そして、工程(3)の仕上げ研磨後の基板の突起欠陥数を悪化させることなく、工程(1)における粗研磨後の長周期欠陥(PED)を低減できた。
 さらに表2が示すとおり、実施例1~16では、比較例1~6、参考例1~9に比べて、工程(1)での研磨液供給量をより低減できうる。
 本開示によれば、一又は複数の実施形態において、研磨速度を維持しつつ長周期欠陥を低減できるから、磁気ディスク基板製造の生産性を維持しつつ基板収率を向上できる。本開示は、一又は複数の実施形態において、磁気ディスク基板の製造に好適に用いることができる。
 51…第一研磨機、52…洗浄ユニット、53…第二研磨機

Claims (14)

  1.  (1)研磨液組成物Iを用いて被研磨基板の研磨対象面を研磨する工程、
     (2)工程(1)で得られた基板を洗浄する工程、及び、
     (3)工程(2)で得られた基板を、シリカ粒子Cを含有する研磨液組成物IIを用いて研磨する工程を有し、
     前記工程(1)と(3)を別の研磨機で行う磁気ディスク基板の製造方法であって、
     (i)前記工程(1)の前記研磨液組成物Iは、非球状シリカ粒子A、球状シリカ粒子B、酸、酸化剤及び水を含有し、
     (ii)前記工程(1)の前記研磨液組成物Iにおいて、前記非球状シリカ粒子Aと前記球状シリカ粒子Bの質量比(A/B)が80/20以上99/1以下であり、シリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の含有量が98.0質量%を超え、
     (iii)前記非球状シリカ粒子AのΔCV値が0.0%より上10%未満であり、
     (iv)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が2.00以上4.00以下であり、
     (v)前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)が6.0nm以上80.0nm以下であり、
     (vi)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される少なくとも1種である、磁気ディスク基板の製造方法。
  2.  前記非球状シリカ粒子Aが、金平糖型のシリカ粒子A1、異形型のシリカ粒子A2、異形かつ金平糖型のシリカ粒子A3、及びこれらの組み合わせからなる群から選択される少なくとも1種である、請求項1に記載の磁気ディスク基板の製造方法。
  3.  前記非球状シリカ粒子AのCV90が、20.0%以上40.0%以下である、請求項1又は2記載の磁気ディスク基板の製造方法。
  4.  前記球状シリカ粒子BのΔCV値が0%より上10%以下、かつ、CV90が10.0%以上35.0%以下である、請求項1から3のいずれかに記載の磁気ディスク基板の製造方法。
  5.  前記工程(1)における被研磨基板1枚当たりの研磨量が110mg以上160mg以下である、請求項1から4のいずれかに記載の磁気ディスク基板の製造方法。
  6.  前記研磨液組成物Iが、アルミナ砥粒を実質含まない、請求項1から5のいずれかに記載の磁気ディスク基板の製造方法。
  7.  前記非球状シリカ粒子Aが、水ガラス法により製造されたシリカ粒子である、請求項1から6のいずれかに記載の磁気ディスク基板の製造方法。
  8.  前記球状シリカ粒子Bは、粒径が異なる2種類の粒子であり、
     前記2種類の粒子が、6.0nm以上15.0nm以下の球状粒子と15.5nm以上70.0nm以下の球状粒子との組み合わせ、又は、15.5nm以上30.0nm以下の球状粒子と30.5nm以上70.0nm以下の球状粒子との組み合わせである、請求項1から7のいずれかに記載の磁気ディスク基板の製造方法。
  9.  前記研磨液組成物I中の非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度の合計が、0%以上50%以下である、請求項1から8のいずれかに記載の磁気ディスク基板の製造方法。
  10.  前記研磨液組成物IのpHが、0.5以上6.0以下である、請求項1から9のいずれかに記載の磁気ディスク基板の製造方法。
  11.  被研磨基板が、Ni-Pめっきアルミニウム合金基板である、請求項1から10のいずれかに記載された磁気ディスク基板の製造方法。
  12.  請求項1から11のいずれかに記載の磁気ディスク基板の製造方法における工程(1)~(3)を含む、磁気ディスク基板の研磨方法。
  13.  請求項1から11のいずれかに記載の磁気ディスク基板の製造方法における工程(1)の研磨を行う第一の研磨機と、
     請求項1から11のいずれかに記載の磁気ディスク基板の製造方法における工程(2)の洗浄を行う洗浄ユニットと、
     請求項1から11のいずれかに記載の磁気ディスク基板の製造方法における工程(3)の研磨を行う第二の研磨機とを備える磁気ディスク基板の研磨システム。
  14.  砥粒、酸、酸化剤及び水を含み、
     前記砥粒は、非球状シリカ粒子A及び球状シリカ粒子Bを含有し、
     前記非球状シリカ粒子Aと前記球状シリカ粒子Bの質量比A/Bが80/20以上99/1以下であり、
     前記非球状シリカ粒子AのΔCV値が0.0%より上10%未満であり、
     前記非球状シリカ粒子AのCV90が、20.0%以上40.0%以下であり、
     前記球状シリカ粒子BのΔCV値が0%より上10%以下、かつ、前記球状シリカBのCV90が10.0%以上35.0%以下であり、
     前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の粒径比(D1/D2)が2.00以上4.00以下であり、
     前記球状シリカ粒子Bの動的光散乱法による体積平均粒径D1が6.0nm以上80.0nm以下であり、
     前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される少なくとも1種である、磁気ディスク基板用研磨液組成物。
PCT/JP2015/068308 2014-06-30 2015-06-25 磁気ディスク基板用研磨液組成物 WO2016002613A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2016001409A MY184290A (en) 2014-06-30 2015-06-25 Polishing liquid composition for magnetic disk substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-135360 2014-06-30
JP2014135360 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002613A1 true WO2016002613A1 (ja) 2016-01-07

Family

ID=53872425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068308 WO2016002613A1 (ja) 2014-06-30 2015-06-25 磁気ディスク基板用研磨液組成物

Country Status (5)

Country Link
JP (1) JP5853117B1 (ja)
GB (1) GB2528386A (ja)
MY (1) MY184290A (ja)
TW (1) TWI586795B (ja)
WO (1) WO2016002613A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065154A (ja) * 2017-09-29 2019-04-25 株式会社フジミインコーポレーテッド 研磨用組成物および磁気ディスク基板の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637816B2 (ja) * 2016-03-31 2020-01-29 株式会社フジミインコーポレーテッド 研磨用組成物、基板の研磨方法および基板の製造方法
JP6677558B2 (ja) * 2016-03-31 2020-04-08 株式会社フジミインコーポレーテッド 磁気ディスク基板研磨用組成物、磁気ディスク基板の製造方法および研磨方法
JP6637817B2 (ja) * 2016-03-31 2020-01-29 株式会社フジミインコーポレーテッド 磁気ディスク基板研磨用組成物、磁気ディスク基板の製造方法および研磨方法
JP6950151B2 (ja) * 2016-06-14 2021-10-13 住友ゴム工業株式会社 シリカの製造方法およびシリカ
JP6997083B2 (ja) * 2016-06-29 2022-01-17 花王株式会社 磁気ディスク基板の製造方法
JP6820723B2 (ja) * 2016-11-15 2021-01-27 花王株式会社 磁気ディスク基板用研磨液組成物
TWI755466B (zh) * 2016-12-28 2022-02-21 日商東洋鋼鈑股份有限公司 硬碟用基板及使用其之硬碟裝置
JP6957232B2 (ja) * 2017-06-27 2021-11-02 花王株式会社 研磨液組成物
JP7120780B2 (ja) * 2018-03-20 2022-08-17 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
JP7111492B2 (ja) * 2018-03-30 2022-08-02 株式会社フジミインコーポレーテッド 研磨用組成物、パッド表面調整用組成物およびその利用
CN112592663B (zh) * 2020-12-22 2022-02-08 郑州磨料磨具磨削研究所有限公司 一种SiC衬底加工用纳米金刚石抛光液及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170646A (ja) * 2008-12-22 2010-08-05 Kao Corp 磁気ディスク基板用研磨液組成物
JP2014116057A (ja) * 2012-12-12 2014-06-26 Fujimi Inc 磁気ディスク基板用研磨組成物
JP2015125792A (ja) * 2013-12-27 2015-07-06 花王株式会社 磁気ディスク基板用研磨液組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080406A (ja) * 2004-09-13 2006-03-23 Catalysts & Chem Ind Co Ltd 研磨用組成物
CN102265339B (zh) * 2008-12-22 2014-11-19 花王株式会社 磁盘基板用研磨液组合物
JP5657247B2 (ja) * 2009-12-25 2015-01-21 花王株式会社 研磨液組成物
JP2010192904A (ja) * 2010-03-01 2010-09-02 Jgc Catalysts & Chemicals Ltd 研磨用組成物
JP5979871B2 (ja) * 2011-03-09 2016-08-31 花王株式会社 磁気ディスク基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170646A (ja) * 2008-12-22 2010-08-05 Kao Corp 磁気ディスク基板用研磨液組成物
JP2014116057A (ja) * 2012-12-12 2014-06-26 Fujimi Inc 磁気ディスク基板用研磨組成物
JP2015125792A (ja) * 2013-12-27 2015-07-06 花王株式会社 磁気ディスク基板用研磨液組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065154A (ja) * 2017-09-29 2019-04-25 株式会社フジミインコーポレーテッド 研磨用組成物および磁気ディスク基板の製造方法
JP7061859B2 (ja) 2017-09-29 2022-05-02 株式会社フジミインコーポレーテッド 研磨用組成物および磁気ディスク基板の製造方法

Also Published As

Publication number Publication date
TWI586795B (zh) 2017-06-11
JP2016027517A (ja) 2016-02-18
MY184290A (en) 2021-03-30
GB2528386A (en) 2016-01-20
JP5853117B1 (ja) 2016-02-09
GB201511439D0 (en) 2015-08-12
TW201610125A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5853117B1 (ja) 磁気ディスク基板用研磨液組成物
JP6125814B2 (ja) 磁気ディスク基板の製造方法
JP6138677B2 (ja) 磁気ディスク基板用研磨液組成物
JP6125815B2 (ja) 磁気ディスク基板の製造方法
US9080080B2 (en) Method for producing polishing liquid composition
JP6110715B2 (ja) Ni−Pメッキされたアルミ磁気ディスク基板粗研磨用研磨剤組成物、Ni−Pメッキされたアルミ磁気ディスク基板の研磨方法、Ni−Pメッキされたアルミ磁気ディスク基板の製造方法、及びNi−Pメッキされたアルミ磁気ディスク基板
JP6820723B2 (ja) 磁気ディスク基板用研磨液組成物
JP6092623B2 (ja) 磁気ディスク基板の製造方法
JP6340267B2 (ja) 磁気ディスク基板の製造方法
WO2012057217A1 (ja) ガラスハードディスク基板の製造方法
JP6148932B2 (ja) 磁気ディスク基板用研磨液組成物
JP6495095B2 (ja) 磁気ディスク基板用研磨液組成物
JP6081317B2 (ja) 磁気ディスク基板の製造方法
JP6316680B2 (ja) 磁気ディスク基板用研磨液組成物
JP2007301721A (ja) 研磨液組成物
JP2013140647A (ja) 磁気ディスク基板の製造方法
JP7158889B2 (ja) ガラスハードディスク基板用研磨液組成物
JP6584935B2 (ja) 磁気ディスク基板用研磨液組成物
JP6997083B2 (ja) 磁気ディスク基板の製造方法
JP6177682B2 (ja) 研磨液組成物
JP2014029752A (ja) 磁気ディスク基板の製造方法
JP7460844B1 (ja) 磁気ディスク基板用研磨液組成物
JP2019007000A (ja) 研磨液組成物用シリカスラリー
JP2014130660A (ja) 磁気ディスク基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814193

Country of ref document: EP

Kind code of ref document: A1