WO2010037491A1 - Verfahren zum steuern der gewinnung in strebbetrieben mittels überwachung des bergeanteils in der förderung - Google Patents

Verfahren zum steuern der gewinnung in strebbetrieben mittels überwachung des bergeanteils in der förderung Download PDF

Info

Publication number
WO2010037491A1
WO2010037491A1 PCT/EP2009/006854 EP2009006854W WO2010037491A1 WO 2010037491 A1 WO2010037491 A1 WO 2010037491A1 EP 2009006854 W EP2009006854 W EP 2009006854W WO 2010037491 A1 WO2010037491 A1 WO 2010037491A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
longwall
loading section
conveyor
coal
Prior art date
Application number
PCT/EP2009/006854
Other languages
English (en)
French (fr)
Inventor
Martin Junker
Armin Mozar
Original Assignee
Rag Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rag Aktiengesellschaft filed Critical Rag Aktiengesellschaft
Priority to CN2009801395693A priority Critical patent/CN102187058A/zh
Publication of WO2010037491A1 publication Critical patent/WO2010037491A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/08Guiding the machine
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal

Definitions

  • the invention relates to a method for controlling the extraction in a longwall conveyor, a Walzenschrämlader and a hydraulic shield removal having Streb sesen in underground coal mining.
  • the invention is therefore based on the object of demonstrating a way for the minimization of the mountain share in the raw coal production for controlling the extraction in long-distance farms.
  • the invention provides a method in which the mountain portion in the raw coal delivery amount conveyed out of the face is determined by means of a measuring device arranged in the downstream section and calculates in a computer unit for a single location of the roll scraping loader in the longwall the desired amount of raw coal conveyed by the latter and in a for the location of the Schrämwalzenladers associated loading section applicable load of the longwall conveyor is converted, in which case both the time of passing each of a specific location of the Walzenschrämladers associated loading section and for the relevant loading section in the measuring device, the actual actual raw coal delivery and the mountain portion be determined in such a way that due to the continuously changing locations of the roller cutter in Streb associated mountain portions Streb Schemee mi In the event of a major mountain attack, measures to adjust the management of extraction work are initiated.
  • the invention has the advantage that it is possible due to the constant observation of the Berganteil in the raw coal production to draw conclusions about the operating conditions in the longwall, since observed fluctuations in Bergengerteil each specific locations assigned to the roller cutter in the strut. Since it is known that the mountain portion changes with the cut of the cutting rollers in a roller cutter, the mountain portion can be used as a control variable for the cutting of the cutting rollers. Thus, a minimum mountain portion is realized in a cutting along the prone horizon of the seam. On the other hand, a larger portion of the mountain identified may indicate too much lying incision so that the cut can then be corrected.
  • An advantage of the method according to the invention is that no specific absolute value for the mountain portion is used as the reference variable for the extraction control, but that the respective minimum of the mountain portion is used to identify a mountain minimum target section line. Although such a minimum rock content changes depending on the seam quality, for example, in terms of thickness or stored in the seam funds, but a mountain-minimal cut for the cutting rollers is always found at the prone horizon of the seam. Therefore, no high absolute accuracy in the measurement of Bergengeteil is required, but sufficient a high repeat accuracy.
  • the method according to the invention makes it possible to detect and localize a fall of the mountain in the longwall, with a demarcation of the Bergenachfalls of a previously mentioned prone incision of the cutting rollers due to tracking the cutting movements of the cutting rollers and the Schild Eckndig is possible.
  • the procedure according to the invention can advantageously be used as a control instrument for the automatic cutting work for producing a defined reach height in a boundary layer-guided roll skid loader as a recovery machine and finally an indirect boundary layer guide the extraction work.
  • the target crude coal delivery amount to be recovered on the basis of the respectively determined cutting conditions is determined and set in relation to the raw coal production actually incurred in the production, further conclusions on the operating conditions in the longwall are possible.
  • outbreaks from the hanging temporarily increase the crude coal production, without any such increase in volume is due to the data recording of the cutting work of the Walzenschrämladers to explain.
  • a sudden, not explainable by the Schrämarbeit increase in raw coal production with a sudden, not explained by the cutting work, for example, driving through a prone cut increased mountain portion can thus be identified as a drop from the hanging wall.
  • embankments from the coalburst can briefly increase the crude coal production, without this increase being explained by the cutting work.
  • the measuring device consists of a loading cross section of a track conveyor used in the line conveyor, in particular a conveyor belt detecting scanner and a downstream belt weigher, taking into account the to be applied for the coal and for the adjacent rock values for the material density of the mountain portion is calculated in the raw coal delivery ,
  • the method provides that the differential speed of the drum scraper loader and the longwall conveyor and the bulk factor of the release volume engaged by the cutting rollers on the collarbone are used for the conversion of the set raw coal delivery rate applicable to a defined loading section of the longwall conveyor.
  • the respective distance of the roller scraper loader from the measuring device and the speeds of the longwall conveyor and the line conveying means are used to determine the time of passage of a predetermined loading section on the measuring device.
  • the determination of the time of passage of a predetermined loading section on the measuring device on the basis of the real speeds of the funds used for example, due to fluctuations in the speed of the funding can lead to inaccuracies
  • on the longwall conveyor and the line conveying a Set up speed measurement and thus integrate individual, proportional to the number of speed pulses path sections to determine the total, covered by the predetermined loading section path length.
  • a time base is no longer necessary for the allocation calculation of the mountain portion measurement to the location of the roller cutter, since only the path lengths traveled by the loading section can be expected.
  • the roller skid loader stops in its feed at intervals is subsequently approached in full section, so that a remote from the continuous loading of the longwall conveyor loading section is created.
  • the measuring device is arranged for the determination of the mountain content in the smallest possible distance from the long-distance transition. Furthermore, it can be provided that the drives of longwall conveyor and laid to the measuring device track conveyors are equipped with a precise speed detection.
  • conveyor belt system may be equipped with a slip monitoring.
  • FIG. 1 is a schematic, fragmentary plan view of a strut with downstream section
  • Fig. 2 is a longwall equipment in a schematic side view with applied in the direction of Verhiebscardi course of the cutting position of the horizontal side cutting roller and this determined course of the characteristic for the mountain portion in the raw coal delivery.
  • a longwall conveyor 1 1 is laid in a conventional longwall operation along a coal pile 10, on which a Schrämwalzenlader 12 is guided.
  • the longwall equipment is completed by Schildausbauticianen 13.
  • right end of the strut is a long-distance crossing with a transfer of raw coal delivery from the longwall conveyor 1 1 arranged on a track conveyor 15, which in turn in the course of not further shown degradation route by means of a transfer 16 to a Conveyor belt 17 passes.
  • the measuring device 18 is arranged for determining the Berganteil in the raw coal delivery.
  • this measuring device consists of a laser scanner which detects the loading cross section lying on the conveyor belt with the actual raw coal conveyance.
  • a downstream belt weigher it is possible to first determine the running through the measuring device 1 8 actual crude coal production and also to calculate the mountain portion of the raw coal delivery in knowledge of the density and density of the mountain.
  • a calculable nominal crude coal delivery amount is released or loaded at a respective location of the Schrämwalzenladers 12, resulting from the cutting height of the two Schrämwalzen or derived from a measurement of the shield height Strebière on coalburst, derived from the measurement of the back dimension of the longwall cutting depth which determines the marching speed of the drum cutter and the seam thickness derived from known depository data.
  • the determined target crude coal production amount is assigned to a loading section of the longwall conveyor 1 1 assigned to the location of the roller skid loader 12, whereby the differential speed of roller skid loader 12 and longwall conveyor 11 and the bulk factor of the dissolving volume taken up by the cutting rollers on the coal pile are used ,
  • the loading of a section of the longwall conveyor 1 1 with the determined target amount of raw coal is dependent on whether the Schrämwalzenlader in the longwall on uphill, that is with a direction of conveyance of the longwall conveyor 1 1 opposite direction of movement, moved, or is on descent, that is in harmony with the conveying direction of the longwall conveyor, is located.
  • the respective distance of the Walzenschrämladers from the measuring device and the speeds of longwall conveyor 1 1, 15 and conveyor belt conveyor belt system can be used.
  • the loading of the loading section under consideration changes as a result of the intermediate transfers and also different speeds of the conveying means used, so that the successive loading sections to be assigned to different locations of the roller cutter 12 can no longer be kept apart with sufficient accuracy.
  • the drives of the respective funding should be equipped with a precise speed measurement, for example on the basis of pulse generators, which make it possible to use the well-bridged by the conveying path per revolution of the motor with the known translation, because thereby also speed fluctuations are considered correctly.
  • an additional slip monitoring of the conveyor belts can further improve the accuracy of the speed detection. This can be done for example by integrated into the tape fabric, arranged transversely to the direction of wire deposits, which are detected inductively. Alternatively, for example, but also the speed difference of the head drive of a conveyor belt system against the sweeping roller can be used. Overall, the evaluation should therefore determine and take into account delay and equalization effects on the transfers and slip effects on conveyor systems, with automatic synchronization being set up during the ongoing production operation.
  • Such an automatic synchronization can be set up, for example, by temporarily stopping the drum skid loader 12 in its feed, so that the drum skid loader 12 is stationary with rotating cutting drums without intervention in the coal burst, and then continues in full cut.
  • a zero load quickly changes to a full load at the loading sections of the longwall conveyor to be considered, wherein such set by the Walzenschrämlader 12 loading profile mark is assigned to a defined roller location.
  • the passage of such a sharp load profile mark on the measuring device 1 8 can with appropriate Accuracy can be captured so that the real-life of the
  • Loading profile mark between the location of the Walzenschrämladers 12 and the measuring device 18 for automatically calibrating the respective term of a loading section between the location of the Walzenschrämladers 12 and measuring device 18 are used.
  • This automatic measuring method takes into account all the particularities of the discharge path via the conveying speeds and the conveying path length including the acceleration processes at the transfers and the average slippage of the conveyor belt systems.
  • An alternative or additionally usable possibility is to give an RFID chip in the flow during production at a location of the Schrämwalzenladers 12 and document the location of the Walzenschrämladers 12. From this moment on, the conveying path of the RFID chip is recorded via all conveying means until the RFID chip has reached the measuring device 18. There, the chip is identified on arrival with a correspondingly provided reader. The conveyance paths detected by the chip can then be compared with the actual path from the chip discharge point to the reader, and a detected deviation used for correction. Thus, if necessary, a regular system balance is possible.
  • This solution can also be automated by installing an automatic RFID chip dispenser on the cutting drum loader 12. This allows remote-controlled or automatic discarding of RFID chips whose Abschort be recorded according to the location of the Walzenschrämladers 12. A drop should only take place when the longwall conveyor 1 1 is sufficiently loaded so that the RFID chip can run in the flow and is not destroyed when the conveyor is empty.
  • the computer unit detects from the moment of dropping to all passed through conveyor routes until the RFID chip on the Measuring device 1 8 arrives and makes an automatic correction based on the deviations between calculated strategicallystoffweg and measured speciallystoffweg by deviations learned and will be used in future calculations to determine the location of the origin of the detected raw coal delivery.
  • FIG. 2 illustrates one of the possible inferences that are possible from the determination of the mountain portion in the raw coal delivery quantity, taking into account the further acquired production data.
  • the given in individual Schräm marsen positions of the horizontal roller 23 of the Schrämwalzenladers 12 are shown in relation to the horizontal end 21 of the coal joint 10 schematically.
  • the respective positions of the horizontal roller 23 are shown on the coal joint 10 during 16 consecutive recovery runs.
  • the characteristic curves for the course of the cutting guide of the horizontal roller 23 on the one hand and the course of the mountain portion in the raw coal delivery amount are shown on the other hand, wherein the characteristic for the cutting guide by the reference numeral 25 and the characteristic curve for the Bergeanteil are denoted by the reference numeral 26.
  • the lying roller 23 cuts into the lying 21.
  • the proportion of mountains corresponding to characteristic curve 26 increases accordingly.
  • the horizontal roller 23 cuts above the horizontal 21, so that a narrow coal strip is grown.
  • the characteristic curve 25 shows a higher position of the couch roll 23, while the characteristic curve 26 shows a greater decrease in the mountain portion, which shows that in this recovery run at the relevant location of the roller skid loader 12, the horizontal roller 23 is above the horizontal 21 and at the next Recovery trip is to be corrected accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Control Of Conveyors (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

Verfahren zum Steuern der Gewinnung in einen Strebförderer (11), einen Walzenschrämlader (12) sowie einen hydraulischen Schildausbau (13) aufweisenden Strebbetrieben im untertägigen Steinkohlenbergbau, bei welchem der Bergeanteil in der aus dem Streb abgeförderten Rohkohlenfördermenge mittels einer im nachgeschalteten Streckenbereich angeordneten Messvorrichtung (18) ermittelt wird und in einer Rechnereinheit für einen einzelnen Standort des Walzenschrämladers (12) im Streb die von diesem jeweils hereinzugewinnende Soll-Rohkohlenfördermenge berechnet und in eine für einen dem Standort des Walzenschrämladers (12) zugeordneten Beladungsabschnitt geltende Beladung des Strebförderers (11) umgerechnet wird, wobei anschließend sowohl der Zeitpunkt des Vorbeilaufs jedes einem bestimmten Standort des Walzenschrämladers (12) zugeordneten Beladungsabschnittes als auch für den betreffenden Beladungsabschnitt in der Messvorrichtung (18) die tatsächliche Ist-Rohkohlenfördermenge sowie der Bergeanteil darin ermittelt werden derart, dass aufgrund der den fortlaufend wechselnden Standorten des Walzenschrämladers (12) im Streb zugeordneten Bergeanteile Strebbereiche mit einem höheren bzw. niedrigeren Bergeanfall ausgewiesen und Maßnahmen zur Anpassung der Steuerung der Gewinnungsarbeit eingeleitet werden.

Description

Verfahren zum Steuern der Gewinnung in Strebbetrieben mittels Überwachung des Bergeanteils in der Förderung
B e s c h r e i b u n g
Die Erfindung betrifft ein Verfahren zum Steuern der Gewinnung in einen Strebförderer, einen Walzenschrämlader sowie einen hydraulischen Schildausbau aufweisenden Strebbetrieben im untertägigen Steinkohlenbergbau.
Soweit in untertägigen Gewinnungsbetrieben des Steinkohlenbergbaus eine Automatisierung der Gewinnungsarbeit angestrebt wird, besteht eine Zielrichtung darin, einen möglichst geringen Bergeanteil in der Rohkohlenförderung zu realisieren. Dieser Bergeanteil hängt maßgeblich von der Schnittführung der Schrämwalzen eines für die Gewinnungsarbeit im Streb eingesetzten Walzenschrämladers ab, wobei es insbesondere darauf ankommt, bei einer definierten Strebhöhe möglichst das Hangende des Kohlenflözes nicht anzuschneiden und den aus betrieblichen Gründen gegebenenfalls erforderlichen Liegendmitschnitt auf ein Mindestmaß zu beschränken. Bemühungen einer unmittelbaren Erfassung der Grenzschicht zwischen Kohlenflöz und Nebengestein haben sich bisher noch nicht als ausreichend erfolgreich erwiesen, insbesondere im Hinblick auf die Genauigkeit der Grenzschichterkennung.
Der Erfindung liegt daher die Aufgabe zugrunde, für die Steuerung der Gewinnung in Strebbetrieben einen Weg für die Minimierung des Bergeanteils in der Rohkohlenförderung aufzuzeigen.
Die Lösung dieser Aufgabe ergibt sich einschließlich vorteilhafter Ausgestaltungen und Weiterbildungen der Erfindung aus dem Inhalt der Patentansprüche, welche dieser Beschreibung nachgestellt sind.
Die Erfindung sieht im einzelnen ein Verfahren vor, bei welchem der Bergeanteil in der aus dem Streb abgeförderten Rohkohlenfördermenge mittels einer im nachgeschalteten Streckenbereich angeordneten Messvorrichtung ermittelt wird und in einer Rechnereinheit für einen einzelnen Standort des Walzenschrämladers im Streb die von diesem jeweils hereinzugewinnende Soll-Rohkohlenfördermenge berechnet und in eine für einen dem Standort des Schrämwalzenladers zugeordneten Beladungsabschnitt geltende Beladung des Strebförderers umgerechnet wird, wobei anschließend sowohl der Zeitpunkt des Vorbeilaufs jedes einem bestimmten Standort des Walzenschrämladers zugeordneten Beladungsabschnittes als auch für den betreffenden Beladungsabschnitt in der Messvorrichtung die tatsächliche Ist- Rohkohlenfördermenge sowie der Bergeanteil darin ermittelt werden derart, dass aufgrund der den fortlaufend wechselnden Standorten des Walzenschrämladers im Streb zugeordneten Bergeanteile Strebbereiche mit einem höheren Bergeanfall ausgewiesen und Maßnahmen zur Anpassung der Steuerung der Gewinnungsarbeit eingeleitet werden.
Mit der Erfindung ist der Vorteil verbunden, dass es aufgrund der ständigen Beobachtung des Bergeanteils in der Rohkohlenfördermenge möglich ist, Rückschlüsse auf die Betriebsbedingungen im Streb zu ziehen, da festgestellte Schwankungen des Bergeanteils jeweils bestimmten Standorten des Walzenschrämladers im Streb zugeordnet werden. Da sich bekanntermaßen der Bergeanteil mit der Schnittführung der Schrämwalzen bei einem Walzenschrämlader ändert, kann der Bergeanteil als Steuergröße für die Schnittführung der Schrämwalzen herangezogen werden. So wird ein minimaler Bergeanteil bei einer Schnittführung entlang des Liegendhorizontes des Flözes realisiert. Dagegen kann ein festgestellter größerer Bergeanteil zu viel Liegendeinschnitt anzeigen, so dass daraufhin die Schnittführung korrigiert werden kann. Ein Vorteil der erfindungsgemäßen Verfahrensweise besteht darin, dass kein bestimmter absoluter Wert für den Bergeanteil als Führungsgröße für die Gewinnungssteuerung herangezogen wird, sondern dass das jeweilige Minimum des Bergeanteils genutzt wird, um eine bergeminimale Sollschnittlinie zu identifizieren. Ein derartiges Bergeanteilsminimum verändert sich zwar in Abhängigkeit von der Flözbeschaffenheit, beispielsweise im Hinblick auf die Mächtigkeit oder im Flöz eingelagerte Bergemittel, jedoch wird eine bergeminimale Schnittführung für die Schrämwalzen immer am Liegendhorizont des Flözes gefunden. Daher ist auch keine hohe Absolutgenauigkeit bei der Messung des Bergeanteils erforderlich, vielmehr reicht eine hohe Wiederholgenauigkeit aus.
Insgesamt wird es bei Anwendung des erfindungsgemäßen Verfahrens ermöglicht, anhand des j eweils festgestellten Bergeanteils in der Rohkohlen- fördermenge zu erkennen, ob die Schnittführung der Schrämwalzen bergeminimal am Flözliegenden erfolgt, oder ob die Schnittführung zu tief mit einem Liegendeinschnitt oder zu hoch mit dem Anbauen von Kohle erfolgt. Bei Erkennung einer Abweichung kann die Schnittführung der Liegendwalze für die nächste Walzenfahrt situationsgerecht in Richtung einer Bergeanteilsminimierung angepasst werden. Hierdurch wird von Schnitt zu Schnitt des Walzenschrämladers ein Regelkreis zur grenzschichtnahen Führung der Schneidarbeit gebildet.
Weiterhin ermöglicht die erfindungsgemäße Verfahrensweise die Erkennung und Lokalisierung eines Bergenachfalls im Streb, wobei eine Abgrenzung des Bergenachfalls von einem zuvor angesprochenen Liegendeinschnitt der Schrämwalzen aufgrund einer Verfolgung der Schneidbewegungen der Schneidwalzen und der Schildhöhenmessung möglich ist. Damit kann in vorteilhafter Weise die erfindungsgemäße Verfahrensweise als Kontrollinstrument für die automatische Schneidarbeit zur Herstellung einer definierten Strebhöhe bei einem grenzschichtgeführten Walzenschrämlader als Gewinnungsmaschine und schließlich eine indirekte Grenzschichtführung der Gewinnungsarbeit herangezogen werden.
Da bei der Durchführung des erfindungsgemäßen Verfahrens auch die aufgrund der jeweils festgestellten Schneidbedingungen hereinzugewinnende Soll-Rohkohlenfördermenge ermittelt und in ein Verhältnis zu der tatsächlich bei der Gewinnung angefallenen Rohkohlenfördermenge gesetzt wird, sind weitere Rückschlüsse auf die Betriebsverhältnisse im Streb möglich. So erhöhen beispielsweise Ausbrüche aus dem Hangenden kurzzeitig die Rohkohlenfördermenge, ohne dass eine derartige Mengenerhöhung durch die datenmäßige Aufnahme der Schrämarbeit des Walzenschrämladers zu erklären ist. Eine plötzliche, nicht durch die Schrämarbeit erklärbare Erhöhung der Rohkohlenfördermenge mit einer plötzlichen, nicht durch die Schrämarbeit beispielsweise mit Durchfahren eines Liegendeinschnittes erklärbarem erhöhten Bergeanteil kann somit als Nachfall aus dem Hangenden identifiziert werden. Weiterhin können Ausböschungen aus dem Kohlenstoß kurzzeitig die Rohkohlenfördermenge erhöhen, ohne dass diese Erhöhung durch die Schrämarbeit zu erklären ist. Eine derartige plötzliche Erhöhung der Rohkohlenfördermenge mit einer plötzlichen, nicht erklärbaren Verringerung des Bergeanteils kann somit als Ausböschen des Kohlenstoßes identifiziert werden. Schließlich können auch der Rohkohlenfördermenge aus dem Streb beigegebene Senkberge und Ortsberge zu kurzzeitigen wiederkehrenden und nicht durch die Schrämarbeiten zu erklärenden Spitzen bei der Rohkohlenfördermenge führen; dabei kann der Bergeanteil Undefiniert schwanken, weil Ortsberge beispielsweise einen hohen Kohleanteil aufweisen können beziehungsweise Senkberge in der Regel einen hohen Gesteinsanteil aufweisen. Gemessen an einer kontinuierlichen Rohkohlenförderung stören derartige Zusatzmengen nur kurzzeitig und haben am Gesamtvolumen auch nur einen geringen Anteil.
Nach einem Ausführungsbeispiel besteht die Messvorrichtung aus einem den Beladungsquerschnitt eines im Streckenbereich eingesetzten Streckenfördermittels, insbesondere einer Förderbandanlage erfassenden Scanner und aus einer nachgeschalteten Bandwaage , wobei unter Berücksichtigung der für die Steinkohle und für das Nebengestein anzusetzenden Werte für die Materialdichte der Bergeanteil in der Rohkohlenfördermenge berechnet wird.
Verfahrensgemäß wird für die Ermittlung der von dem Walzenschrämlader hereingewonnenen Rohkohlenfördermenge die Schnitthöhe der beiden Schrämwalzen beziehungsweise die aus einer Messung der Schildhöhe abgeleitete Strebhöhe am Kohlenstoß, die gegebenenfalls aus der Messung des Rückmaßes des Strebförderers abgeleitete Schnitttiefe der Schrämwalzen, die die Marschgeschwindigkeit des Walzenschrämladers und die aus bekannten Lagerstättendaten abgeleitete Flözmächtigkeit herangezogen.
In einem Ausführungsbeispiel sieht das Verfahren vor, dass für die Umrechnung der für einen definierten Beladungsabschnitt des Strebförderers geltenden Soll-Rohkohlenfördermenge die Differenzgeschwindigkeit von Walzenschrämlader und Strebförderer und der Schüttfaktor des von den Schrämwalzen in Eingriff genommenen Lösevolumens am Kohlenstoß herangezogen werden.
Nach einem Ausführungsbeispiel der Erfindung ist vorgesehen, dass für die Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnitts an der Messvorrichtung die jeweilige Entfernung des Walzenschrämladers von der Messvorrichtung sowie die Geschwindigkeiten von Strebförderer und Streckenfördermitteln herangezogen werden. Soweit die Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnittes an der Messvorrichtung auf der Basis der realen Geschwindigkeiten der eingesetzten Fördermittel beispielsweise wegen Schwankungen der Geschwindigkeit der Fördermittel zu Ungenauigkeiten führen kann, kann nach einem Ausführungsbeispiel der Erfindung vorgesehen sein, an dem Strebförderer und den Streckenfördermitteln eine Drehzahlmessung einzurichten und somit einzelne, zur Anzahl der Drehzahlimpulse proportionale Wegabschnitte zu integrieren, um die gesamte, von dem vorgegebenen Beladungsabschnitt zurückgelegte Weglänge zu ermitteln. Eine Zeitbasis ist in diesem Fall für die Zuordnungsrechnung der Bergeanteilsmessung zu dem Standort des Walzenschrämladers nicht mehr erforderlich, da allein über die von dem Beladungsabschnitt zurückgelegten Weglängen gerechnet werden kann.
Alternativ kann vorgesehen sein, dass für die Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnitts an der Messvorrichtung in wenigstens einem Beladungsabschnitt ein RFID-Chip eingebracht und zum Zeitpunkt der Erfassung des Vorbeilaufes des den Standort des Walzenschrämladers beinhaltenden RFID-Chips an der Messvorrichtung mittels einer an der Messvorrichtung angebrachten RFID-Lesevorrichtung der für diesen Beladungsabschnitt geltende Bergeanteil ermittelt wird. Mit einer derartigen Verfahrensweise soll bewirkt werden, dass die berechnete Weglänge zwischen dem Standort des Walzenschrämladers und der Messvorrichtung für den Bergeanteil auch mit dem tatsächlichen Weg der Fördermittel in dem betrachteten Zeitintervall übereinstimmt. Hierdurch soll der Gesamtschlupf im Förderweg bis zur Bergeanteilsmessvorrichtung erfasst und per Korrekturfaktor eliminiert werden können.
Zur Verbesserung der Genauigkeit des erfindungsgemäßen Verfahrens kann vorgesehen sein, dass zur Kalibrierung der Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnitts an der Messvorrichtung in Zeitabständen der Walzenschrämlader in seinem Vorschub stillgesetzt und anschließend im Vollschnitt weiter angefahren wird, so dass ein von der fortlaufenden Beladung des Strebförderers abgesetzter Beladungsabschnitt geschaffen wird.
Nach Ausführungsbeispielen der Erfindung kann vorgesehen sein, dass die Messvorrichtung für die Ermittlung des Bergegehalts in einer möglichst geringen Entfernung von dem Streb-Strecken-Übergang angeordnet wird. Weiterhin kann vorgesehen sein, dass die Antriebe von Strebförderer und bis zur Messvorrichtung verlegten Streckenfördermitteln mit einer präzisen Drehzahlerfassung ausgerüstet sind.
Schließlich kann bei Einsatz einer Förderbandanlage als Streckenfördermittel die Förderbandanlage mit einer Schlupfüberwachung ausgerüstet sein.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung wiedergegeben, welches nachstehend beschrieben ist. Es zeigen:
Fig. 1 eine schematische, ausschnittsweise Draufsicht auf einen Streb mit nachgeschaltetem Streckenbereich,
Fig. 2 eine Strebausrüstung in einer schematischen Seitenansicht mit in Verhiebsrichtung aufgetragenem Verlauf der Schneidstellung der liegendseitigen Schrämwalze und dazu ermitteltem Verlauf der Kennlinie für den Bergeanteil in der Rohkohlenfördermenge.
Wie sich aus Figur 1 ergibt, ist in einem herkömmlichen Strebbetrieb längs eines Kohlenstoßes 10 ein Strebförderer 1 1 verlegt, an dem ein Schrämwalzenlader 12 geführt ist. Die Strebausrüstung wird vervollständigt durch Schildausbaueinheiten 13. Am im Falle der Darstellung in Figur 1 rechten Ende des Strebes ist ein Streb-Strecken-Übergang mit einer Übergabe der Rohkohlenfördermenge von dem Strebförderer 1 1 auf einen Streckenförderer 15 angeordnet, der seinerseits im weiteren Verlauf der nicht weiter dargestellten Abbaustrecke mittels einer Übergabe 16 auf eine Förderbandanlage 17 übergibt. An der Förderbandanlage 17 ist die Messeinrichtung 18 für die Ermittlung des Bergeanteils in der Rohkohlenfördermenge angeordnet.
Diese Messeinrichtung besteht nach einem Ausführungsbeispiel der Erfindung aus einem Laserscanner, der den auf dem Förderband liegenden Beladungsquerschnitt mit der Ist-Rohkohleförderung erfasst. Im Zusammenspiel mit einer nachgeschalteten Bandwaage ist es möglich, zunächst die durch die Messvorrichtung 1 8 laufende Ist- Rohkohlenfördermenge zu bestimmen und ferner in Kenntnis der Kohlendichte und der Bergedichte den Bergeanteil der Rohkohlenfördermenge zu errechnen.
Bei der Gewinnungsarbeit wird an einem jeweiligen Standort des Schrämwalzenladers 12 eine errechenbare Soll-Rohkohlenfördermenge gelöst beziehungsweise geladen, die sich aus der Schnitthöhe der beiden Schrämwalzen beziehungsweise der aus einer Messung der Schildhöhe abgeleiteten Strebhöhe am Kohlenstoß, der aus der Messung des Rückmaßes des Strebförderers abgeleiten Schnitttiefe, der Marschgeschwindigkeit des Walzenschrämladers und der aus bekannten Lagerstättendaten abgeleiteten Flözmächtigkeit ermitteln lässt.
In einem weiteren Rechenschritt wird die ermittelte Soll-Rohkohlenfördermenge einem dem Standort des Walzenschrämladers 12 zugeordneten Beladungsabschnitt des Strebförderers 1 1 zugewiesen, wobei hierfür die Differenzgeschwindigkeit von Walzenschrämlader 12 und Strebförderer 1 1 sowie der Schüttfaktor des von den Schrämwalzen in Eingriff genommenen Lösevolumens am Kohlenstoß herangezogen werden. Die Beladung eines Abschnitts des Strebförderers 1 1 mit der ermittelten Soll-Rohkohlenfördermenge ist nämlich insbesondere davon abhängig, ob sich der Schrämwalzenlader im Streb auf Bergfahrt, dass heißt mit einer zur Förderrichtung des Strebförderers 1 1 entgegengesetzten Bewegungsrichtung, bewegt, oder sich auf Talfahrt, dass heißt im Gleichklang mit der Förderrichtung des Strebförderers, befindet. Bei der Umrechnung wird das Ein- und Ausspeicherverhalten des Ladens von Haufwerk im Bereich der Gasse zwischen dem Schrämwalzenlader 12 und dem Kohlenstoß 10 vernachlässigt, was bei entsprechend langen Gewinnungsfahrten längs des Strebs zulässig ist. Im Strebrandbereich, in welchem zum Einschneiden des Walzenschrämladers 12 in den Kohlenstoß 10 eine Schleife gefahren wird, ist eine Auswertung der beim Schleifenfahren hereingewonnenen Rohkohlenfördermenge nicht unbedingt sinnvoll, jedoch auch für die Steuerung der Gewinnungsarbeit nicht erforderlich, da bei diesem Verhieb bevorzugt manuell gefahren wird.
Damit die zu einem späteren Zeitpunkt erfolgende Bestimmung des Bergeanteils in der Rohkohlenfördermenge demj enigen Standort des Walzenschrämladers 12 im Streb zugeordnet werden kann, an welchem die in ihrem Bergeanteil bestimmte Rohkohlenfördermenge hereingewonnen worden ist, ist der Zeitbedarf für den von dem definierten Beladungsabschnitt zwischen dem Standort des Walzenschrämladers und der Messvorrichtung zurückgelegten Weg zu ermitteln. Hierzu können die jeweilige Entfernung des Walzenschrämladers von der Messvorrichtung sowie die Geschwindigkeiten von Strebförderer 1 1 , Streckenförderer 15 und Förderbandanlage 17 herangezogen werden. Allerdings ist zu berücksichtigen, dass sich die Beladung des betrachteten Beladungsabschnitts durch die zwischengeschalteten Übergaben und auch unterschiedliche Geschwindigkeiten der eingesetzten Fördermittel verändert, so dass die aufeinanderfolgenden, unterschiedlichen Standorten des Walzenschrämladers 12 zuzuordnenden Beladungsabschnitte nicht mehr genau genug auseinander gehalten werden können. Mit jeder Übergabe tritt ein gewisser Vergleichmäßigungseffekt ein, der die Grenzen der einzelnen Beladungsmarken unschärfer macht. Daher ist im Einzelfall die in einem bestimmten Strebbetrieb anhand der eingesetzten Betriebsmittel herzustellende Genauigkeit für die Zuordnung des ermittelten Bergeanteils zu dem Standort des Walzenschrämladers in Abhängigkeit von den eingesetzten Betriebsmitteln zu ermitteln.
Um diese Ungenauigkeiten möglichst gering zu halten, sollten die Antriebe der jeweiligen Fördermittel mit einer präzisen Drehzahlmessung, beispielsweise auf Basis von Impulsgebern ausgestattet sein, die es ermöglichen, mit der bekannten Übersetzung exakt den vom Fördermittel überbrückten Weg j e Umdrehung des Motors zu verwenden, weil hierdurch auch Drehzahlschwankungen korrekt berücksichtigt werden.
Soweit Förderbandanlagen eingeschaltet sind, kann eine zusätzliche Schlupfüberwachung der Förderbänder die Genauigkeit der Geschwindigkeitserfassung weiter verbessern. Dies kann zum Beispiel durch in das Bandgewebe integrierte, quer zur Laufrichtung angeordnete Drahteinlagen geschehen, die induktiv erfasst werden. Alternativ könnte beispielsweise aber auch die Drehzahldifferenz des Kopfantriebes einer Förderbandanlage gegen deren Kehrrolle verwendet werden. Insgesamt sollten also bei der Auswertung Verzögerungs- und Vergleichmäßigungseffekte an den Übergaben und Schlupfeffekte an Förderbandanlagen ermittelt und berücksichtigt werden, wobei eine automatische Synchronisierung im laufenden Förderbetrieb eingerichtet sein sollte.
Eine derartige automatische Synchronisierung kann beispielsweise dadurch eingerichtet werden, dass der Walzenschrämlader 12 in seinem Vorschub kurzzeitig stillgesetzt wird, so dass der Walzenschrämlader 12 mit rotierenden Schneidwalzen ohne Eingriff in den Kohlenstoß stillsteht, und anschließend im Vollschnitt weiterfährt. Hierdurch wechselt eine Null- Beladung schnell in eine volle Beladung bei den zu betrachtenden Beladungsabschnitten des Strebförderers, wobei eine derartige von dem Walzenschrämlader 12 gesetzte Beladungsprofilmarke einem definierten Walzenstandort zuzuordnen ist. Der Vorbeilauf einer derartigen scharfen Beladungsprofilmarke an der Messvorrichtung 1 8 kann mit entsprechender Genauigkeit erfasst werden, so dass die Echt-Laufzeit der
Beladungsprofilmarke zwischen dem Standort des Walzenschrämladers 12 und der Messvorrichtung 18 zur automatischen Kalibrierung der jeweiligen Laufzeit eines Beladungsabschnittes zwischen Standort des Walzenschrämladers 12 und Messvorrichtung 18 genutzt werden. Diese automatische Einmessmethode berücksichtigt alle Besonderheiten des Abförderweges über die Fördergeschwindigkeiten und die Förderweglänge einschließlich der Beschleunigungsvorgänge an den Übergaben und dem mittleren Schlupf der Förderbandanlagen.
Eine alternative beziehungsweise auch zusätzlich einsetzbare Möglichkeit besteht darin, bei laufender Gewinnung an einem Standort des Schrämwalzenladers 12 einen RFID-Chip in den Förderstrom zu geben und den Standort des Walzenschrämladers 12 zu dokumentieren. Von diesem Augenblick an wird der Förderweg des RFID-Chips über alle Fördermittel aufgezeichnet, bis der RFID-Chip die Messvorrichtung 18 erreicht hat. Dort wird der Chip bei seiner Ankunft mit einem entsprechend vorgesehenen Lesegerät identifiziert. Die von dem Chip erfassten Fördermittelwege können dann mit dem tatsächlich durchlaufenden Weg von der Abwurfstelle des Chips bis zum Lesegerät verglichen und eine festgestellte Abweichung zur Korrektur verwendet werden. Somit ist bei Bedarf ein regelmäßiger Systemabgleich möglich.
Diese Lösung lässt sich auch automatisieren, indem an dem Schrämwalzenlader 12 ein automatischer RFID-Chip-Spender installiert wird. Dieser erlaubt ferngesteuerte oder automatische Abwürfe von RFID-Chips, deren Abwurfort entsprechend dem Standort des Walzenschrämladers 12 aufgezeichnet werden. Ein Abwurf soll dabei nur dann erfolgen, wenn der Strebförderer 1 1 ausreichend beladen ist, damit der RFID-Chip im Förderstrom mitlaufen kann und nicht bei leerem Förderer zerstört wird.
Die Rechnereinheit erfasst vom Moment des Abwurfes an alle durchschrittenen Fördermittelwege, bis der RFID-Chip an der Messvorrichtung 1 8 eintrifft und nimmt anhand der Abweichungen zwischen berechnetem Fördermittelweg und gemessenem Fördermittelweg eine automatische Korrektur vor, indem Abweichungen erlernt und bei zukünftigen Berechnungen zur Ortsbestimmung der Herkunft der erfassten Rohkohlenfördermenge genutzt wird.
Zur Perfektionierung der Genauigkeit kann an einer Schrämwalze des Walzenschrämladers 12 zusätzlich ein RFID-Lesegerät installiert werden, welches den abgeworfenen RFID-Chip bei der Walzenpassage im Förderstrom erfasst, wenn der Chip bereits die Geschwindigkeit des Strebförderers 1 1 angenommen hat. Hierdurch könnte der Schlupf, den der RFID-Chip beim Abwurf selbst erfährt, bis er die volle Förderergeschwindigkeit erreicht hat, messtechnisch aus dem Synchronisiervorgang eliminiert werden.
Figur 2 verdeutlicht einen der möglichen Rückschlüsse, die aus der Erfassung des Bergeanteils in der Rohkohlenfördermenge unter Berücksichtigung der weiterhin erfassten Gewinnungsdaten möglich sind. In Figur 2 sind schematisch die in einzelnen Schrämfahrten gegebenen Stellungen der Liegendwalze 23 des Schrämwalzenladers 12 im Verhältnis zum Liegenden 21 des Kohlenstoßes 10 dargestellt. Es sind in der oberen Darstellung von Figur 2 die jeweiligen Stellungen der Liegendwalze 23 bei 16 aufeinander folgenden Gewinnungsfahrten an dem Kohlenstoß 10 dargestellt. In der unteren Darstellung sind die Kennlinien für den Verlauf der Schnittführung der Liegendwalze 23 einerseits und den Verlauf des Bergeanteils in der Rohkohlenfördermenge andererseits dargestellt, wobei die Kennlinie für die Schnittführung mit dem Bezugszeichen 25 und die Kennlinie für den Bergeanteil mit den Bezugszeichen 26 bezeichnet sind. Es ist zu erkennen, dass bei der zweiten Gewinnungsfahrt die Liegendwalze 23 in das Liegende 21 einschneidet. Zum gleichen Zeitpunkt beziehungsweise an der gleichen Stelle steigt entsprechend der Bergeanteil gemäß Kennlinie 26 an. In der zwölften Gewinnungsfahrt ist erkennbar, dass die Liegendwalze 23 oberhalb des Liegenden 21 schneidet, so dass ein schmaler Kohlestreifen angebaut wird. Entsprechend zeigt die Kennlinie 25 eine höhere Stellung der Liegenwalze 23, während die Kennlinie 26 ein stärkeres Absinken der Bergeanteils zeigt, was erkennen lässt, dass bei dieser Gewinnungsfahrt an dem betreffenden Standort des Walzenschrämladers 12 die Liegendwalze 23 oberhalb des Liegenden 21 steht und bei der nächsten Gewinnungsfahrt entsprechend zu korrigieren ist.
Die in der vorstehenden Beschreibung, den Patentansprüchen, der Zusammenfassung und der Zeichnung offenbarten Merkmale des Gegenstandes dieser Unterlagen können einzeln als auch in beliebigen Kombinationen untereinander für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

Claims

P a t e n t a n s p r ü c h e
Verfahren zum Steuern der Gewinnung in einen Strebförderer (1 1 ), einen Walzenschrämlader ( 12) sowie einen hydraulischen Schildausbau ( 13) aufweisenden Strebbetrieben im untertägigen Steinkohlenbergbau, bei welchem der Bergeanteil in der aus dem Streb abgeförderten Rohkohlenfördermenge mittels einer im nachgeschalteten Streckenbereich angeordneten Messvorrichtung ( 18) ermittelt wird und in einer Rechnereinheit für einen einzelnen Standort des Walzenschrämladers ( 12) im Streb die von diesem jeweils hereinzugewinnende Soll-Rohkohlenfördermenge berechnet und in eine für einen dem Standort des Walzenschrämladers ( 12) zugeordneten Beladungsabschnitt geltende Beladung des Strebförderers (1 1 ) umgerechnet wird, wobei anschließend sowohl der Zeitpunkt des Vorbeilaufs jedes einem bestimmten Standort des Walzenschrämladers ( 12) zugeordneten Beladungsabschnittes als auch für den betreffenden Beladungsabschnitt in der Messvorrichtung ( 18) die tatsächliche Ist- Rohkohlenfördermenge sowie der Bergeanteil darin ermittelt werden derart, dass aufgrund der den fortlaufend wechselnden Standorten des Walzenschrämladers ( 12) im Streb zugeordneten Bergeanteile Strebbereiche mit einem höheren bzw. niedrigeren Bergeanfall ausgewiesen und Maßnahmen zur Anpassung der Steuerung der Gewinnungsarbeit eingeleitet werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Messvorrichtung ( 1 8) aus einem den Beladungsquerschnitt eines im Streckenbereich eingesetzten Streckenfördermittels ( 1 5, 17) erfassenden Scanner und aus einer nachgeschalteten Bandwaage besteht, und dass unter Berücksichtigung der für die Steinkohle und für das Nebengestein anzusetzenden Werte für die Materialdichte der Bergeanteil in der Rohkohlenfördermenge berechnet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für die Ermittlung der von dem Walzenschrämlader ( 12) hereingewonnenen Rohkohlenfördermenge die Schnitthöhe der beiden Schrämwalzen (22, 23) beziehungsweise die aus einer Messung der Schildhöhe abgeleitete Strebhöhe am Kohlenstoß, die ermittelte Schnitttiefe der Schrämwalzen (22, 23), die Marschgeschwindigkeit des Walzenschrämladers (12) sowie die aus bekannten Lagerstättendaten abgeleitete Flözmächtigkeit herangezogen werden.
4. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass für die Umrechnung der für einen definierten Beladungsabschnitt des Strebförderers ( 1 1 ) geltenden Soll-Rohkohlenfördermenge die Differenzgeschwindigkeit von Walzenschrämlader (12) und Strebförderer ( 1 1 ) und der Schüttfaktor des von den Schrämwalzen (22, 23) in Eingriff genommenen Lösevolumens am Kohlenstoß ( 10) herangezogen werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass für die Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnitts an der Messvorrichtung ( 18) die jeweilige Entfernung des Walzenschrämladers ( 12) von der Messvorrichtung ( 18) sowie die Geschwindigkeiten von Strebförderer ( 1 1 ) und Streckenfördermitteln ( 15, 17) herangezogen werden.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass für die Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnitts an der Messvorrichtung ( 18) die von einer an den Antrieben der eingesetzten Fördermittel ( 1 1 , 15 , 17) eingerichteten Drehzahlerfassungsvorrichtung abgesetzten Drehzahlimpulse jeweils proportionalen Wegabschnitten zugerechnet und die Wegabschnitte zu einer von dem Beladungsabschnitt zwischen dem Standort des Walzenschrämladers ( 12) und der Messvorrichtung ( 18) durchschrittenen Weglänge integriert werden.
7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass für die Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnitts an der Messvorrichtung (18) in wenigstens einen Beladungsabschnitt ein RFID-Chip eingebracht und zum Zeitpunkt der Erfassung des Vorbeilaufes des den Standort des Walzenschrämladers ( 12) beinhaltenden RFID-Chips an der Messvorrichtung ( 18) mittels einer an der Messvorrichtung ( 18) angebrachten RFID-Lesevorrichtung der für diesen Beladungsabschnitt geltende Bergeanteil ermittelt wird.
8. Verfahren einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass zur Kalibrierung der Ermittlung des Zeitpunktes des Vorbeilaufes eines vorgegebenen Beladungsabschnitts an der Messvorrichtung ( 18) in Zeitabständen der Walzenschrämlader ( 12) in seinem Vorschub stillgesetzt und anschließend im Vollschnitt wieder angefahren wird, so dass ein von der fortlaufenden Beladung des Strebförderers ( 1 1 ) abgesetzter Beladungsabschnitt geschaffen wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Messvorrichtung ( 18) für die Ermittlung des Bergegehalts in einer möglichst geringen Entfernung von dem Streb-Strecken- Übergang angeordnet wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Antriebe von Strebförderer (1 1 ) und bis zur Messvorrichtung ( 18) verlegten Streckenfördermitteln (15, 17) mit einer präzisen Drehzahlerfassung ausgerüstet sind.
1 1 . Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass bei Einsatz einer Förderbandanlage (17) als Streckenfördermittel die Förderbandanlage ( 17) mit einer Schlupfüberwachung ausgerüstet ist.
PCT/EP2009/006854 2008-10-01 2009-09-23 Verfahren zum steuern der gewinnung in strebbetrieben mittels überwachung des bergeanteils in der förderung WO2010037491A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801395693A CN102187058A (zh) 2008-10-01 2009-09-23 用于通过监测运输中的废矿份额来控制工作面操作中的开采的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008050068.2 2008-10-01
DE200810050068 DE102008050068B3 (de) 2008-10-01 2008-10-01 Verfahren zum Steuern der Gewinnung in Strebbetrieben mittels Überwachung des Bergeanteils in der Förderung

Publications (1)

Publication Number Publication Date
WO2010037491A1 true WO2010037491A1 (de) 2010-04-08

Family

ID=41428983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/006854 WO2010037491A1 (de) 2008-10-01 2009-09-23 Verfahren zum steuern der gewinnung in strebbetrieben mittels überwachung des bergeanteils in der förderung

Country Status (6)

Country Link
CN (1) CN102187058A (de)
DE (1) DE102008050068B3 (de)
PL (1) PL394861A1 (de)
RU (1) RU2011111122A (de)
UA (1) UA99207C2 (de)
WO (1) WO2010037491A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016091020A1 (zh) * 2014-12-09 2016-06-16 中国矿业大学 一种基于uwb采煤机绝对位置精确校准方法及装置
US9810065B2 (en) * 2015-05-29 2017-11-07 Joy Mm Delaware, Inc. Controlling an output of a mining system
US20180347357A1 (en) * 2017-06-02 2018-12-06 Joy Global Underground Mining Llc Adaptive pitch steering in a longwall shearing system
US10655468B2 (en) 2014-08-28 2020-05-19 Joy Global Underground Mining Llc Horizon monitoring for longwall system
US11143025B2 (en) * 2018-09-30 2021-10-12 China University Of Mining And Technology Mine exploitation based on stoping, separation and filling control

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168131B (zh) 2015-06-24 2018-05-18 北京中矿创新联盟能源环境科学研究院 无巷道无煤柱自留巷开采工法的装备系统
CN107905790B (zh) * 2015-06-24 2019-05-31 何满潮 长壁开采n00工法
RU2675807C2 (ru) * 2017-02-03 2018-12-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ сортировки породы

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624110A1 (de) * 1986-07-17 1988-01-21 Gewerk Eisenhuette Westfalia Einrichtung zur schnittniveauanzeige einer rueckbaren untertaegigen gewinnungsanlage, insbesondere einer hobelanlage
DE4025551A1 (de) * 1989-09-25 1991-04-04 Spies Klaus Verfahren und vorrichtung zum steuern von gewinnungs- und vortriebsmaschinen laengs eines schnitthorizontes zwischen kohle und gestein
DE4029895A1 (de) * 1990-09-21 1992-03-26 Bergwerksverband Gmbh Hoehensteuerung fuer eine gewinnungsmaschine
EP0321383B1 (de) * 1987-12-17 1993-06-23 Ruhrkohle Aktiengesellschaft Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA011331B1 (ru) * 2005-05-11 2009-02-27 Коммонвелт Сайентифик Энд Индастриал Рисерч Организейшн Способы и устройство для добычи полезных ископаемых

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624110A1 (de) * 1986-07-17 1988-01-21 Gewerk Eisenhuette Westfalia Einrichtung zur schnittniveauanzeige einer rueckbaren untertaegigen gewinnungsanlage, insbesondere einer hobelanlage
EP0321383B1 (de) * 1987-12-17 1993-06-23 Ruhrkohle Aktiengesellschaft Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen
DE4025551A1 (de) * 1989-09-25 1991-04-04 Spies Klaus Verfahren und vorrichtung zum steuern von gewinnungs- und vortriebsmaschinen laengs eines schnitthorizontes zwischen kohle und gestein
DE4029895A1 (de) * 1990-09-21 1992-03-26 Bergwerksverband Gmbh Hoehensteuerung fuer eine gewinnungsmaschine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655468B2 (en) 2014-08-28 2020-05-19 Joy Global Underground Mining Llc Horizon monitoring for longwall system
WO2016091020A1 (zh) * 2014-12-09 2016-06-16 中国矿业大学 一种基于uwb采煤机绝对位置精确校准方法及装置
US9810065B2 (en) * 2015-05-29 2017-11-07 Joy Mm Delaware, Inc. Controlling an output of a mining system
US20180347357A1 (en) * 2017-06-02 2018-12-06 Joy Global Underground Mining Llc Adaptive pitch steering in a longwall shearing system
US10920588B2 (en) * 2017-06-02 2021-02-16 Joy Global Underground Mining Llc Adaptive pitch steering in a longwall shearing system
US11143025B2 (en) * 2018-09-30 2021-10-12 China University Of Mining And Technology Mine exploitation based on stoping, separation and filling control

Also Published As

Publication number Publication date
CN102187058A (zh) 2011-09-14
RU2011111122A (ru) 2012-11-10
DE102008050068B3 (de) 2010-01-28
UA99207C2 (ru) 2012-07-25
PL394861A1 (pl) 2011-09-26

Similar Documents

Publication Publication Date Title
WO2010037491A1 (de) Verfahren zum steuern der gewinnung in strebbetrieben mittels überwachung des bergeanteils in der förderung
EP2467577B1 (de) Verfahren zur herstellung einer streböffnung unter einsatz von automatisierungssystemen
DE102009030130B3 (de) Verfahren zur automatisierten Herstellung einer definierten Streböffnung durch neigungsgestützte Radarnavigation der Walze bei einem Walzenschrämlader und eine Vorrichtung hierfür
DE2714506C2 (de) Verfahren und Einrichtung zur Überwachung und Steuerung von Strebausrüstungen
DE102006062129B4 (de) Straßenbaumaschine sowie Verfahren zur Messung der Frästiefe
EP2366059B1 (de) Verfahren zur einstellung einer automatischen niveausteuerung des hobels in hobelbetrieben des steinkohlenbergbaus
EP2247825B1 (de) Verfahren zur automatischen herstellung einer definierten streböffnung in hobelbetrieben des steinkohlenbergbaus
EP2242900A1 (de) Verfahren zum steuern von strebbetrieben mittels grenzschichterkennung
EP2247824A1 (de) Verfahren zu einer automatischen herstellung einer definierten streböffnung bei strebbetrieben im untertägigen steinkohlenbergbau
DE4243631A1 (de) Verfahren zum Steuern einer Abraumförderbrücke und Abraumförderbrücke
DE102005005869B4 (de) Verfahren zum Steuern einer Gewinnungsmaschine in Betrieben des untertägigen Steinkohlenbergbaus
EP3253947B1 (de) Verfahren und anordnung zum betrieb einer förderung in einem bohrloch
DE102017004327A1 (de) Systeme und Verfahren für eine Fluidzufuhr in einem Langfrontabbausystem
EP2213794A2 (de) Verfahren zum Erstellen einer Entwässerungseinrichtung neben dem Gleis einer Bahnstrecke
DE102009009000A1 (de) Verfahren zur Regelung der Schnitthöhe bei Walzenschrämladern
DE3034704A1 (de) Schienenfahrzeug fuer gleiskoerperarbeiten
DE3338114C2 (de)
DE102007014662B4 (de) Verfahren zum Betreiben eines Abbaugerätes, Strebausbau zur Durchführung des Verfahrens und Steuerung für einen solchen Strebausbau
EP2102452B1 (de) Verfahren zur steuerung der produktenförderung im untertägigen bergbau
DE102006041570B4 (de) Verfahren zum Steuern eines Abbaugerätes, Strebausbau zur Durchführung des Verfahrens und Steuerung für einen solchen Strebausbau
DE1246647B (de) Verfahren zum Ausrichten eines Strebbetriebes
DE2145076C3 (de) Verfahren zum Auffahren von Abbaustrecken und Vortriebsmaschine zur Durchführung des Verfahrens
DE3534306A1 (de) Verfahren zur schaelenden gewinnung von steinkohle und vorrichtung
DE2544391A1 (de) Verfahren zur ermittlung der optimalen abbaurichtung, insbesondere zur vermeidung von gebirgsschlaegen, gasausbruechen und steinfall
DE3904279A1 (de) Walzenschraemlader mit selbstfreischneidender halterung fuer den schneidhorizont abtastende sensoren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139569.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 394861

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201103462

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2011111122

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09778662

Country of ref document: EP

Kind code of ref document: A1