EP0321383B1 - Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen - Google Patents

Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen Download PDF

Info

Publication number
EP0321383B1
EP0321383B1 EP88630229A EP88630229A EP0321383B1 EP 0321383 B1 EP0321383 B1 EP 0321383B1 EP 88630229 A EP88630229 A EP 88630229A EP 88630229 A EP88630229 A EP 88630229A EP 0321383 B1 EP0321383 B1 EP 0321383B1
Authority
EP
European Patent Office
Prior art keywords
sensor head
optical waveguide
wear plate
receiving
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88630229A
Other languages
English (en)
French (fr)
Other versions
EP0321383A1 (de
Inventor
Günter Reisner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of EP0321383A1 publication Critical patent/EP0321383A1/de
Application granted granted Critical
Publication of EP0321383B1 publication Critical patent/EP0321383B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/08Guiding the machine

Definitions

  • the invention relates to a device for recognizing the cutting horizon for mining machines, such as coal planers and roller loaders, in particular for detecting the position of the coal-rock boundary layer with the aid of light signals of selected wavelengths on reflection surfaces, with at least one sensor head on the mining machine with one lying on the lying surface is provided to the leading lower surface and a transmitting and receiving station are arranged on the machine body, and wherein between the transmitting and receiving station and the sensor head designed as a light transmitter and receiver and guided in a channel of the sensor head bundles of optical fibers are arranged, which channel through a Crystal window is closed, the lower surface of which lies in the plane of the lower surface of the sensor head.
  • DE-C-35 09 868 an automatic control for the height-adjustable chisel of a coal plane is described in more detail.
  • the coal-rock boundary layer is detected by means of pulsed light by means of at least one transducer, and the different reflection properties of coal and bedrock are used to control the tools.
  • the measuring probes in the sensor head which are dragged on the lying surface, are formed by the ends of optical fiber bundles which are connected to a light transmitter and a light receiver.
  • the optical fiber bundles are embedded in a solid ceramic layer in the sensor head and extend to the outer surface of a ceramic body.
  • a device for detecting the cutting horizon for mining machines is known from the report DE research project "Measuring system for coal planes" interim report for the period from January 1, 1987 to March 31, 1987 for Ruhrkohle AG, Batelle Institute in Frankfurt am Main, 4. 1987 work package 4000 pages 10 and 11.
  • the optical waveguide fibers were sealed with an optical window in the form of a sapphire, this window withstood the mechanical stresses caused by grinding over coal and rock.
  • a measuring device for surfaces with colored gloss effects having an illuminating device and three radiation sensors separate from the illuminating device.
  • the transducers are arranged at a different angle from the lighting device and each The sensor is arranged at a different angle to the regularly reflected radiation.
  • the invention has for its object to provide a device for recognizing the cutting horizon for mining machines such as coal planer and shearer loader, which enables a clear identification of the coal-rock boundary layer due to the radiation components that get from coal and rock into the receiving fibers.
  • this object is achieved in that the channel receiving the optical waveguide bundles extends at an angle of 20 to 45, preferably 30, degrees to the lower surface of the crystal window in the outlet of the sensor head.
  • wavelength combinations are also conceivable within the scope of the invention.
  • Powerful light sources namely a light-emitting diode (LED) or a laser diode for the wavelength of 850 nm and a laser diode for the wavelength of 1550 nm, are provided for the selected wavelengths.
  • LED light-emitting diode
  • laser diode for the wavelength of 850 nm
  • 1550 nm a laser diode for the wavelength of 1550 nm
  • Another advantage of these wavelengths is that the water represents an optical window for these wavelengths and therefore moisture has no influence on the measurements.
  • the sapphire selected for the window has the advantage that it is optically transparent in the range of the measuring wavelengths and can be mechanically loaded due to its hardness.
  • the light is transmitted to the patient from the light sources via a two-arm fiber optic bundle.
  • the optical window is located at the end of the optical waveguide bundle facing towards the lying surface.
  • the portions of the transmitted radiation reflected by the person lying down are received again by the individual fibers of the receiving arm.
  • the optical fiber bundles it proves to be particularly advantageous in the context of the invention that they run over the entire length in a flexible jacket and plug inserts are provided at the ends of the jacket, in which the optical fiber bundles end in the form of eyes.
  • the fiber optic bundles composed of a large number of individual fibers with a diameter of, for example, 70 ⁇ open into two eyes on the upper side of the upper plug-in insert on the transmission side for the wavelengths of 850 nm and 1550 nm to be used, in this plug-in insert another eye for the Receiving arm of the fiber optic bundle is provided.
  • Another particular advantage is the fact that the two wavelengths of 850 and 1550 nm of individual fibers of the optical fiber bundle used as transmitter arms, statistically mixed, bundled into a branch, on the lower side of the plug-in insert lying to form an eye, around which the individual fibers of the receiving arm are arranged concentrically.
  • the fiber optic bundles sit snugly on the lower side of the lower insert on the inside of the sapphire window.
  • the fiber optic fiber bundle on the side of the multi-gym, with two transmitter arms - one for each wavelength - concentrates on the contact surface to the inside of the sapphire window to form a transmitter arm.
  • the individual fibers of the transmitter arms are statistically mixed in the middle.
  • the individual fibers of the receiver arm concentrically enclose the transmitter arm. With this arrangement, a more punctiform exit of the transmission radiation and a proportionate uniform reflection radiation of both wavelengths are fed to the receiving arm.
  • the outside of the sapphire crystal is ground at an angle of 30 degrees with respect to the inside.
  • the entry angle is the same as the exit angle in the optics, the majority of the reflection from the exit side of the sapphire crystal, which is not to be detected, is not detected by the fibers of the receiving arm, but only their diffuse components. Of coal and bedrock however, the same proportion of the transmitted radiation is reflected by both wavelengths and detected by the receiving arm. If the diffuse reflection from the exit and entry surface of the sapphire crystal is used as a constant and the ratio of the desired measurement signal of coal or bedrock at 850 nm and 1550 nm is obtained, the result is an evaluable signal, the ratio value: The size of the scattering level depends primarily on the surface quality of the crystal window.
  • the crystal window has ground and polished surfaces on the side that receives the eye and the side that grinds on the lying surface.
  • the required transmitter and receiver unit is installed on the planer body in appropriate free spaces.
  • the sensor head is fastened in the lower guide of the so-called wobble head and pressed onto the bed using a suspension system.
  • the sensor head In order to be able to compensate for the horizontal and vertical movements that necessarily occur during planing, the sensor head must be pressed onto the surface.
  • the sensor head must not vibrate naturally due to the springs.
  • several, for example, three guide bolts are provided next to each other in the direction of travel between the sensor head and the sensor head holder, the ends of which are guided by prestressing springs in bores in the sensor head.
  • the prestressing force or suspension required depends on the play in the planing system, because this changes the vertical and horizontal movements of the planer.
  • a measuring insert is interchangeably arranged in the end face of the sensor head and, in addition to the crystal window, also receives the plug-in insert for the optical fiber bundles displaced in a flexible sheathing.
  • the measuring insert is advantageously divided into two and consists of the wear plate guided on the lying surface and the wear plate holder. In this way it is possible to replace the wear plate, which is subject to considerable wear, if necessary.
  • the plug insert or the lower end of the casing is fixed in its seat by a specially designed molded flange so that the optical fiber bundle always lies exactly on the inner surface of the crystal window.
  • An O-ring provides a hermetic seal against dust between the contact surface of the eye receiving the optical fiber bundle and the crystal window.
  • the joint-free sealing surface between the wear plate and the wear plate holder is achieved by the special shape of these parts of the measuring insert.
  • the connecting screws for connecting the two parts of the measuring insert are located at unloaded points on the measuring insert.
  • a comparable connection is also provided for locking the measuring insert in the sensor head.
  • clearing shoes which can be detachably connected to the sensor head are articulated on both sides of the sensor head facing the respective direction of travel. These clearing shoes prevent that during the journey between a carbon film is rolled onto the face of the sensor head and the reflective surface, making exact identification of the horizon impossible.
  • the clearing shoes are accommodated in a form-fitting manner in the sensor head and are held by screws which are inserted or screwed inside the recess provided for the measuring insert.
  • the technical progress of the invention is essentially based on the fact that, based on the reflective properties of coal and rock, it is possible to clearly identify the boundary layer, which is of immense importance in view of the possibility of recording or extracting unnecessary rock layers.
  • the identification not only concerns the exact determination of the coal / bedrock boundary layer, but could also be used to identify coal and bedrock or stored mining materials.
  • the coal planer 1 shown in FIG. 1 as an exemplary embodiment and only partially shown has a sensor head 3 on one side towards the lying surface 2 in a guide 8 indicated schematically.
  • the sensor head 3 is dragged along the lying surface 2 by means of a spring element 9.
  • the dashed lines surround the transmitting station 10, receiving station 11, power station 12 required on a plane 1 for functionality, and, if necessary, a memory module. All stations are vibration-damped, preferably housed in a common housing, the common housing being additionally dampened on vibrating metals.
  • a common optical fiber bundle 5 in a flexible sheathing leads from the transmitting station 10 or to the receiving station 11 to the sensor head 3.
  • the sensor head 3 grinds with the end face 4 on the lying surface 2.
  • the spring element 9 shown schematically is based on an exemplary embodiment in FIG. 4 described in more detail.
  • the bundle of optical fibers extends at the exit of the sensor head 3, namely the transmitter arm 5 or receiver arm 5 'in connection with the crystal window 7 at an angle of 30 degrees to the lying position 2.
  • FIG. 3 shows a view of the sensor head 3 with a view of the conveying means.
  • the sensor head 3 is shown cut at least in the left half of the picture.
  • a recess 24 is provided in which a measuring insert 25 can be detachably inserted.
  • the measuring insert 25 is held by two screws 35 in corresponding bores 36, one screw of which is shown.
  • the optical waveguide bundles run within a protected and flexibly designed sheathing 14.
  • the sheathing 14 receiving the optical fiber bundles 5, 5 ′ is provided with a plug insert 17 at the lower end 15.
  • the optical fiber bundles 5, 5 ′ end in the plug insert 17, as already mentioned in the basic sketch according to FIG. 2, in one Eye 19.
  • An adapter plug 18 is provided for locking the optical fiber bundles at the kink point 48.
  • the lower plug insert 17 is fastened in a dust-tight manner within the insert 25 by means of a special flange arrangement and with the aid of an O-ring 46.
  • the measuring insert 25 consists of two parts which can be detachably connected to one another, namely the wear plate 26 and the wear plate holder 27. Before the measuring insert 25 is mounted, broaching shoes 39 can be mounted on the narrow sides of the sensor head 3 in the respective direction of travel. The clearing shoes are fastened with the aid of countersunk screws 40 from the recess 24 for the measuring insert and can be replaced when worn.
  • the measuring insert 25 is shown in detail in FIGS. 5 to 8.
  • the wear plate 26 of the measuring insert 25 has a flat section 30 and a larger section 31, the two sections 30, 31 being connected to one another via an inclined surface 32.
  • a bore 33 is provided in the inclined surface 32, a bore 33 is provided at an angle of 20 to 45 degrees, but preferably at 30 degrees, which in an expanded form merges into a recess 22 receiving the crystal window 7.
  • the corresponding wear plate holder 27 in the assembled state with the wear plate 26 has a stepped bore 34, the axis of which lies in the axis of the bore 33 within the wear plate 26.
  • the two parts 26, 27 forming the measuring insert 25 are connected to one another by countersunk screws 28 in correspondingly provided bores 29. In this way, the wear plate 26, which is exposed to great wear, can be quickly replaced if necessary.
  • the crystal window 7 has the shape shown in FIG. 2 and is glued into the receptacle 22.
  • the crystal window 7 ends before the gradation, which limits the bore 33.
  • the sensor head 3 is made of a resistant and low-wear material such as hardened steel and is pressed against the sensor 2 against a sensor head holder 41 by a spring element 9.
  • FIG. 1 the exemplary embodiment shown in FIG.
  • the spring element 9 consists of, for example, three guide bolts 42 arranged next to one another in the direction of travel, of which the middle one is designed as a preload screw, which are surrounded by preload springs 43 and are guided with their ends 44 into bores 45 of the sensor head 3.
  • the preload screw can deflect upwards with the screw head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen, wie Kohlenhobel und Walzenlader, insbesondere zum Erfassen der Lage der Kohle-Gesteins-Grenzschicht mit Hilfe von Lichtsignalen ausgewählter Wellenlängen an Reflexionsflächen, wobei an der Gewinnungsmaschine mindestens ein Sensorkopf mit einer auf dem Liegenden schleifend zu führender unteren Fläche vorgesehen ist und auf dem Maschinenkörper eine Sende- und Empfangsstation angeordnet sind, und wobei zwischen der Sende- und Empfangsstation und dem Sensorkopf als Lichtsender und -empfänger ausgebildete und in einem Kanal des Sensorkopfes geführte Lichtwellenleiterbündel angeordnet sind, welcher Kanal durch ein Kristallfenster verschlossen ist, dessen untere Fläche in der Ebene der unteren Fläche des Sensorkopfes liegt.
  • In der DE-C-35 09 868 ist eine automatische Steuerung für die höhenverstellbaren Meißel eines Kohlenhobels näher beschrieben. Dabei wird mittels mindestens eines Meßwertaufnehmers die Kohle-Gesteins-Grenzschicht über gepulstes Licht erfaßt und die unterschiedlichen Reflexionseigenschaften von Kohle und Liegendgestein werden zur Steuerung der Werkzeuge genutzt. Die in dem auf dem Liegenden schleifend mitgeführten im Sensorkopf befindlichen Meßsonden werden durch die Enden von Lichtwellenleiterbündeln gebildet, die mit einem Lichtsender und einem Lichtempfänger verbunden sind. Die Lichtwellenleiterbündel sind in eine feste Keramikschicht im Sensorkopf eingebettet und reichen bis an die Außenfläche eines Keramikkörpers.
  • Obwohl die Versuche hinsichtlich der Reflexionsmessungen an Kohle- und Liegendgestein, insbesondere unter Verwendung von ausgewählten Wellenlängen deutlich erkennbare und gut differenzierbare sowie für eine entsprechende Steuerung ausreichende Maßergebnisse brachten, scheiterten die praktischen Versuche daran, daß der probeweise an einem Meßstand schleifend auf einbetonierter Kohle und Liegendgestein liegend mitgeführte Sensorkopf und die darin in einer Keramikplatte eingebetteten Lichtwellenleiterbündel schon im Labor durch Verschleiß des Sensorkopfbodens und dem damit verbundenen Abknicken und Umbiegen von einzelnen Lichtwellenleiterfasern Streuwerte ergaben, die eine eindeutige Identifizierung des wichtigen Horizontes nicht zuließen.
  • Eine Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen, nach dem Oberbegriff des unabhängigen Anspruches 1 ist bekannt aus dem Bericht DE-Forschungsvorhaben "Meßsystem für Kohlenhobel" Zwischenbericht für die Zeit vom 1. Jan. 1987 bis 31. März 1987 für Ruhrkohle AG, Batelle Institut in Frankfurt am Main, 4. 1987 Arbeitspaket 4000 Seiten 10 und 11. Wie aus diesem Bericht hervorgeht hat man zur Herabsetzung der durch Verschleiß der Lichtwellenleiterfasern sich ergebenden Streuwerte im Hinblick auf eine bessere Identifizierung die Lichtwellenleiterfasern mit einem optischen Fenster in Form eines Saphires verschlossen, wobei dieses Fenster den auftretenden mechanischen Beanspruchungen durch Schleifen über Kohle und Nebengestein standhielt.
  • Der Einsatz eines Kristallfensters ließ jedoch bei der Durchführung von Versuchen aufgrund rückreflektierter Strahlungsanteile von der Ein- und Austrittsfläche des Kristallfensters keine deutlichen Ergebnisse zu, da die Signale der direkten Reflektoren von der Ein- und Austrittsfläche aus Saphirkristall größer waren, als das Meßsignal von Kohle und Gestein unter dem Saphirkristall.
  • Aus dem DE-U-87 04 679 ist ein Meßgerät für Oberflächen mit bunten Glanzeffekten bekannt, wobei der Meßkopf eine Beleuchtungseinrichtung sowie drei von der Beleuchtungseinrichtung getrennte Strahlungsaufnehmer aufweist. Die Aufnehmer sind in einem anderen Winkel als die Beleuchtungseinrichtung angeordnet und jeder Aufnehmer ist in einem verschiedenen Winkel zur regulär reflektierten Strahlung angeordnet.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen wie Kohlenhobel und Walzenlader zu schaffen, welche aufgrund der Strahlungsanteile, die von Kohle und Gestein in die Empfangsfasern gelangen, eine eindeutige Identifizierung der Kohle-Gestein-Grenzschicht ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der die Lichtwellenleiterbündel aufnehmende Kanal im Austritt des Sensorkopfes unter einem Winkel von 20 bis 45, vorzugsweise 30 Grad zur unteren Fläche des Kristallfensters verläuft.
  • Aufgrund des spektralen Verhaltens von Kohle und Nebengestein bildet man ein rechnerisches Verhältnis der Meßwerte bei 850 nm und 1550 nm und erreicht eine eindeutige Unterscheidung.
  • Im Rahmen der Erfindung sind auch andere Wellenlängenkombinationen vorstellbar. Für die ausgewählten Wellenlängen sind leistungsstarke Lichtquellen, nämlich eine lichtemittierende Diode (LED) oder eine Laserdiode für die Wellenlänge von 850 nm und eine Laserdiode für die Wellenlänge von 1550 nm vorgesehen. Ein weiterer Vorteil dieser Wellenlängen besteht darin, daß das Wasser für diese Wellenlängen ein optisches Fenster darstellt und somit Feuchtigkeit keinen Einfluß auf die Messungen hat.
  • Der für das Fenster ausgesuchte Saphir hat den Vorteil, daß er im Bereich der Meßwellenlängen optisch transparent und durch seine Härte mechanisch belastbar ist. Die Übertragung des Lichtes zum Liegenden von den Lichtquellen aus erfolgt über ein zweiarmiges Lichtwellenleiterbündel. An dem zum Liegenden zugewandten Ende der Lichtwellenleiterbündel befindet sich das optische Fenster. Die vom Liegenden reflektierten Anteile der Sendestrahlung werden von den Einzelfasern des Empfangsarmes wieder empfangen. Für die Führung der Lichtwellenleiterbündel erweist es sich im Rahmen der Erfindung als besonders vorteilhaft, daß diese über die gesamte Länge in einer flexiblen Ummantelung verlaufen und an den Enden der Ummantelung Steckeinsätze vorgesehen sind, in welchen die Lichtwellenleiterbündel in Form von Augen enden. Die aus einer Vielzahl von Einzelfasern mit einem Durchmesser von beispielsweise 70 µ zusammengesetzten Lichtwellenleiterbündel münden an der oberen Seite des oberen Steckeinsatzes auf der Sendeseite für die zu verwendenden Wellenlängen von 850 nm und 1550 nm in zwei Augen, wobei in diesem Steckeinsatz ein weiteres Auge für den Empfangsarm der Lichtwellenleiterbündel vorgesehen ist. Ein besonderer Vorteil ist weiterhin darin zu sehen, daß die für zwei Wellenlängen von 850 und 1550 nm als Sendearme verwendeten Einzelfasern des Lichtwellenleiterbündel statistisch gemischt, zu einem Ast gebündelt, an der unteren Seite des zum Liegenden gerichteten Steckeinsatzes ein Auge bilden, um welches konzentrisch die Einzelfasern des Empfangsarmes angeordnet sind.
  • Die Lichtwellenleiterbündel sitzen satt an der unteren Seite des unteren Steckeinsatzes auf der Innenseite des Saphirfensters auf. Das auf der Seite zur Kraftstation noch mit zwei Sendearmen - für jede Wellenlänge ein Arm - versehene Lichtwellenleiterfaserbündel konzentriert sich an der Berührungsfläche zur Innenseite des Saphirfensters dabei zu einem Sendearm. Die Einzelfasern der Sendearme werden statistisch gemischt in der Mitte angeordnet.
  • Die Einzelfasern des Empfangsarmes umschließen konzentrisch den Sendearm. Mit dieser Anordnung wird ein mehr punktförmiger Austritt der Sendestrahlung und eine anteilige gleichmäßige Reflexionsstrahlung beider Wellenlängen dem Empfangsarm zugeführt. Um den von der Ein- und Austrittsfläche des Saphirkristalls direkt reflektierte Strahlungsanteil relativ klein zu halten, wird der Saphirkristall auf seiner Außenseite unter einem Winkel von 30 Grad angeschliffen bezogen auf seine Innenseite.
  • Weil in der Optik der Eintrittswinkel gleich Austrittswinkel ist, wird der größte Teil der Reflexion von der Austrittsseite des Saphirkristalls, die ja nicht erfaßt werden soll, von den Fasern des Empfangsarmes nicht erfaßt, sondern nur deren diffuse Anteile. Von Kohle und Nebengestein werden jedoch von beiden Wellenlängen gleichviele Anteile der Sendestrahlung reflektiert und von dem Empfangsarm erfaßt. Setzt man die diffuse Reflexion von der Aus- und Eintrittsfläche des Saphirkristalls als Konstante ein und bildet das Verhältnis des gewollten Meßsignals von Kohle bzw. Nebengestein bei 850 nm und 1550 nm, ergibt sich ein auswertbares Signal, der Ratiowert:
    Figure imgb0001

    Die Größe des Streupegels ist in erster Linie von der Oberflächengüte des Kristallfensters abhängig. Aus diesem Grunde weist das Kristallfenster auf der das Auge aufnehmenden Seite und der auf dem Liegenden schleifenden Seite jeweils geschliffene und polierte Oberflächen auf. Die erforderliche Sende- und Empfangseinheit ist auf dem Hobelkörper in entsprechenden Freiräumen angebaut. Der Sensorkopf ist in der unteren Führung des sogenannten Wackelkopfes befestigt und über ein Federungssystem auf das Liegende gedrückt. Um die während des Hobelns zwangsläufig auftretenden horizontalen und vertikalen Bewegungen mit dem Sensorkopf ausgleichen zu können, muß dieser auf das Liegende gedrückt werden. Es darf hierbei nicht zu Eigenschwingungen des Sensorkopfes durch die Federn kommen. Aus diesem Grund sind zwischen Sensorkopf und Sensorkopfhalter in Fahrtrichtung nebeneinander mehrere beispielsweise drei Führungsbolzen vorgesehen, die von Vorspannfedern umgeben mit ihren Enden in Bohrungen des Sensorkopfes geführt sind. Die jeweils benötigte Vorspannkraft bzw. Federung ist vom Spiel in der Hobelanlage abhängig, weil sich dadurch die vertikalen und horizontalen Bewegungen des Hobels verändern.
  • Erfindungsgemäß ist in der Stirnfläche des Sensorkopfes ein Meßeinsatz auswechselbar angeordnet, der neben dem Kristallfenster auch den Steckeinsatz für die in einer flexiblen Ummantelung verlagerten Lichtwellenleiterbündel aufnimmt. Der Meßeinsatz ist vorteilhafterweise zweigeteilt und besteht aus der auf dem Liegenden geführten Schleißplatte und dem Schleißplattenhalter. Auf diese Weise ist es möglich, die Schleißplatte, die erheblichem Verschleiß unterliegt, bei Bedarf auszutauschen. Innerhalb des Schleißplattenhalters wird der Steckeinsatz bzw. das untere Ende der Ummantelung durch einen besonders konstruierten Formflansch in seinem Sitz so fixiert, daß das Lichtwellenleiterbündel immer exakt auf der Innenfläche des Kristallfensters aufliegt. Ein O-Ring sorgt dabei für eine hermethische Abdichtung gegen Staub zwischen der Kontaktfläche des die Lichtwellenleiterbündel aufnehmenden Auges und dem Kristallfenster.
  • Die fugenfreie Dichtfläche zwischen der Schleißplatte und dem Schleißplattenhalter wird durch die besondere Form dieser Teile des Meßeinsatzes erzielt. Die Verbindungsschrauben zur Verbindung der beiden Teile des Meßeinsatzes befinden sich an unbelasteten Stellen des Meßeinsatzes. Eine vergleichbare Verbindung ist auch für das Arretieren des Meßeinsatzes im Sensorkopf vorgesehen.
  • Ein weiterer Vorteil für die Funktionsfähigkeit des Sensorkopfes ist darin zu sehen, daß an beiden zur jeweiligen Fahrtrichtung gelegenen Seite des Sensorkopfes lösbar mit dem Sensorkopf verbindbare Räumschuhe angelenkt sind. Diese Räumschuhe verhindern dass während der Fahrt zwischen der Stirnfläche des Sensorkopfes und dem reflektierenden Untergrund ein Kohlefilm auf das Liegende gewalzt wird und somit eine exakte Identifizierung des Horizontes unmöglich macht. Die Räumschuhe sind formschlüssig im Sensorkopf untergebracht und werden durch Schrauben gehalten, die innerhalb der für den Meßeinsatz vorgesehenen Ausnehmung eingesetzt bzw. verschraubt werden.
  • Der technische Fortschritt der Erfindung ist im wesentlichen darin begründet, daß ausgehend von den Reflexionseigenschaften von Kohle und Gestein eine eindeutige Identifizierung der Grenzschicht möglich ist, die im Hinblick auf die Möglichkeit unnötige Gesteinsschichten mitzuschneiden bzw. hereinzugewinnen, von ungeheuerer Bedeutung ist.
  • Die Indentifizierung betrifft nicht nur die genaue Ermittlung der Grenzschicht Kohle/Liegendgestein, sondern könnte auch zur Identifizierung von Kohle und Hangendgestein oder eingelagerten Bergemitteln verwendet werden.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher erläutert.
  • Es zeigen:
  • Figur 1
    eine teilweise und schematisiert wiedergegebene Seitenansicht eines Kohlenhobels in Verbindung mit einem schleifend mitgeführten Sensorkopf
    Figur 2
    eine Prinzipsskizze der unter einem bestimmten Winkel endenden Lichtwellenleiterbündel in Verbindung mit dem Kristallfenster
    Figur 3
    eine teilweise geschnittene Wiedergabe eines Sensorkopfes
    Figur 4
    eine Seitendarstellung des Sensorkopfes in Verbindung mit einem Sensorkopfhalter
    Figur 5
    eine Seitenansicht des Schleißplattenhalters im Schnitt
    Figur 6
    eine Seitenansicht der Schleißplatte im Schnitt
    Figur 7
    eine Draufsicht auf den Schleißplattenhalter
    Figur 8
    eine Draufsicht auf die Schleißplatte und
    Figur 9
    ein Diagramm über das Reflektionsverhalten von Kohle/Nebengestein unter Berücksichtigung der ausgewählten Wellenlängen.
  • Der in Figur 1 als Ausführungsbeispiel und nur teilweise dargestellte Kohlenhobel 1 weist einseitig zum Liegenden 2 hin gerichtet in einer schematisiert angedeuteten Führung 8 einen Sensorkopf 3 auf. Der Sensorkopf 3 wird mittels eines Federelementes 9 schleifend auf dem Liegenden 2 mitgeführt. Die gestrichelten Linien umgeben die auf einem Hobel 1 für die Funktionsfähigkeit erforderliche Sendestation 10, Empfangsstation 11, Kraftstation 12, sowie bei Bedarf ein Speichermodul. Alle Stationen sind schwingungsgedämpft, vorzugsweise in einem gemeinsamen Gehäuse untergebracht, wobei das gemeinsame Gehäuse zusätzlich auf Schwingmetallen gedämpft gelagert ist. Von der Sendestation 10 bzw. zu der Empfangsstation 11 führt ein gemeinsames Lichtwellenleiterbündel 5 in einer flexiblen Ummantelung zu dem Sensorkopf 3. Der Sensorkopf 3 schleift mit der Stirnfläche 4 auf dem Liegenden 2. Das schematisiert dargestellte Federelement 9 ist anhand eines Ausführungsbeispiels in Fig. 4 näher beschrieben.
  • Wie jedoch bereits in Figur 1 innerhalb des Sensorkopfes mit gestrichelten Linien angedeutet und im Prinzip in Figur 2 näher dargestellt, verläuft am Austritt des Sensorkopfes 3 das Lichtwellenleiterbündel und zwar der Sendearm 5 bzw. Empfangsarm 5' in Verbindung mit dem Kristallfenster 7 in einem Winkel von 30 Grad zum Liegenden 2. Das die Lichtwellenleiterbündel in Form eines Sendarmes 5, in welchem die Einzelfasern der unterschiedlichen Wellenlängen statistisch gemischt angeordnet sind, aufnehmende Auge 19, nimmt die Lichtwellenleiterbündel des Empfangsarmes 5' konzentrisch um das Lichtwellenleiterbündel des Sendearmes 5 auf und liegt satt auf dem Kristallfenster 7 auf. Die innerhalb des Kristallfensters angedeutenden Pfeile verdeutlichen, daß die wesentliche Reflexion, die durch die untere Fläche 13 des Kristallfensters 7 unerwünscht hervorgerufen wird, zur Seite abgelenkt wird und somit nur ein Teil der störenden Reflexion vom Empfangsarm 5' aufgenommen wird. Die untere Fläche 13 des Kristallfensters 7 liegt in der Ebene der unteren Fläche oder Stirnfläche 4 des Sensorkopfes 3. In Figur 3 ist eine Ansicht des Sensorkopfes 3 mit Blick vom Fördermittel her wiedergegeben. Der Sensorkopf 3 ist zumindest in der linken Bildhälfte geschnitten dargestellt. In der Stirnfläche 4 des Sensorkopfes 3, die auf dem Liegenden 2 schleifend geführt wird, ist eine Ausnehmung 24 vorgesehen, in welchem ein Meßeinsatz 25 lösbar einsetzbar ist. Der Meßeinsatz 25 wird über zwei Schrauben 35 in entsprechenden Bohrungen 36 gehalten, von denen eine Schraube dargestellt ist. Innerhalb des Sensorkopfes 3 verlaufen die Lichtwellenleiterbündel innerhalb einer geschützten und flexibel ausgebildeten Ummantelung 14. Innerhalb des Sensorkopfes 3 ist die die Lichtleiterbündel 5, 5' aufnehmende Ummantelung 14 am unteren Ende 15 mit einem Steckeinsatz 17 versehen. In dem Steckeinsatz 17 enden die Lichtwellenleiterbündel 5, 5', wie bereits in der Prinzipsskizze nach Figur 2 erwähnt in einem Auge 19. Zur Arretierung der Lichtwellenleiterbündel am Abknickungspunkt 48 ist ein Zwischenstecker 18 vorgesehen. Der untere Steckeinsatz 17 ist mittels einer besonderen Flanschanordnung und mit Hilfe eines O-Ringes 46 staubdicht innerhalb des Einsatzes 25 befestigt.
  • Der Meßeinsatz 25 besteht aus zwei lösbar miteinander verbindbaren Teilen und zwar der Schleißplatte 26 und dem Schleißplattenhalter 27. Bevor der Meßeinsatz 25 montiert wird, können an den Schmalseiten des Sensorkopfes 3 in der jeweiligen Fahrtrichtung Räumschuhe 39 montiert werden. Die Räumschuhe werden mit Hilfe von Senkschrauben 40 von der Ausnehmung 24 für den Meßeinsatz befestigt und können bei entsprechendem Verschleiß gewechselt werden.
  • In den Figuren 5 bis 8 ist der Meßeinsatz 25 detailliert dargestellt. Die Schleißplatte 26 des Meßeinsatzes 25 weist einen flachen Abschnitt 30 und einen stärker bemessenen Abschnitt 31 auf, wobei die beiden Abschnitte 30, 31 über eine schräge Fläche 32 miteinander verbunden sind. In der schrägen Fläche 32 ist unter einem Winkel von 20 bis 45 Grad vorzugsweise aber unter 30 Grad eine Bohrung 33 vorgesehen, die in erweiterter Form in eine das Kristallfenster 7 aufnehmende Ausnehmung 22 übergeht. Der in zusammengesetztem Zustand mit der Schleißplatte 26 korrespondierende Schleißplattenhalter 27 weist eine abgesetzte Bohrung 34 auf, deren Achse in der Achse der Bohrung 33 innerhalb der Schleißplatte 26 liegt. Wie aus den Draufsichten nach Figur 8 und 9 zu entnehmen ist, werden die beiden den Meßeinsatz 25 bildenden Teile 26, 27 durch Senkschrauben 28 in entsprechend dafür vorgesehenen Bohrungen 29 miteinander verbunden. Auf diese Weise ist die einem großen Verschleiß ausgesetzte Schleißplatte 26 bei Bedarf schnell auswechselbar.
  • Das Kristallfenster 7 weist im Prinzip die in Figur 2 dargestellte Form auf und wird in die Aufnahme 22 eingeklebt. Das Kristallfenster 7 endet vor der Abstufung, welche die Bohrung 33 begrenzt. Der nahe dem Fördermittel am Kohlenhobel 1 angeordnete und auf dem Liegenden 2 schleifend geführte Sensorkopf 3 ist im Querschnitt betrachtet zum Fördermittel hin stufenartig abgesetzt ausgebildet, wie das aus Figur 4 zu entnehmen ist und mittels eines Schutzbleches 38 versehen. Der Sensorkopf 3 ist aus widerstandsfähigem und verschleißarmen Material wie beispielsweise gehärtetem Stahl hergestellt und wird gegenüber einem Sensorkopfhalter 41 über ein Federelement 9 gegen das Liegende 2 gedrückt. In dem in Figur 4 gezeigten Ausführungsbeispiel besteht das Federelement 9 aus in Fahrtrichtung nebeneinander angeordneten beispielsweise drei Führungsbolzen 42, von denen der mittlere als Vorspannschraube ausgebildet ist, die von Vorspannfedern 43 umgeben mit ihren Enden 44 in Bohrungen 45 des Sensorkopfes 3 geführt sind. Im Gegensatz zu den Führungsbolzen kann die Vorspannschraube mit dem Schraubenkopf nach oben ausweichen.
  • In Figur 9 sind in einem Diagramm die Meßergebnisse der spektralen Übersichtsmessungen zusammengefaßt und graphisch dargestellt. Man kann daraus erkennen, daß die Nebengesteine bei allen Farben bzw. Wellenlängen deutlich stärker reflektieren, als Kohle. Ein weiterer Unterschied besteht darin, daß die Reflexion von Nebengestein mit zunehmender Wellenlänge fast gleichmäßig ansteigt. Die Reflektion von Kohle dagegen bleibt in sichtbarem Bereich des Spektrums relativ konstant und steigt im mittleren Bereich rasch auf den doppelten Wert an. Dieser Umstand läßt eine sichere Auswertung der Meßsignale zu.

Claims (20)

  1. Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen, wie Kohlenhobel und Walzenlader, insbesondere zum Erfassen der Lage der Kohle-Gesteins-Grenzschicht mit Hilfe von Lichtsignalen ausgewählter Längenwellen an Reflexionsflächen, wobei an der Gewinnungsmaschine (1) mindestens ein Sensorkopf (3) mit einer auf dem Liegenden (2) schleifend zu führenden unteren Fläche (4) vorgesehen ist und auf dem Maschinenkörper eine Sende- und Empfangsstation (10, 11) angeordnet sind, und wobei zwischen der Sende- und Empfangsstation (10, 11) und dem Sensorkopf (3) als Lichtsender und -empfänger ausgebildete und in einem Kanal (6) des Sensorkopfes (3) geführte Lichtwellenleiterbündel (5, 5') angeordnet sind, welcher Kanal (6) durch ein Kristallfenster (7) verschlossen ist, dessen untere Fläche (13) in der Ebene der unteren Fläche (4) des Sensorkopfes (3) liegt, dadurch gekennzeichnet, daß der die Lichtwellenleiterbündel (5, 5') aufnehmende Kanal (6) im Austritt des Sensorkopfes (3) unter einem Winkel von 20 bis 45, vorzugsweise 30 Grad zur unteren Fläche (13) des Kristallfensters (7) verläuft.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Lichtwellenleiterbündel (5, 5') innerhalb des Sensorkopfes (3) in einer flexiblen Ummantelung (14) verlaufen und an den Enden (15, 16) der Ummantelung (14) Steckeinsätze (17, 18) vorgesehen sind, in welchen die Lichtwellenleiterbündel (5, 5') in Form von Augen enden.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichet, daß die aus einer Vielzahl von Einzelfasern mit einem Durchmesser von 70 µ zusammengesetzten Lichtwellenleiterbündel (5) an der oberen Seite des oberen Steckeinsatzes (18) auf der Sendeseite für die zu verwendenden Wellenlängen 850 nm und 1550 nm in zwei Augen münden und ein weiteres Auge für das Lichtwellenleiterbündel (5') des Empfangsarms vorgesehen ist.
  4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Einzelfasern der für zwei Wellenlängen von 850 und 1550 nm als Sendearme verwendeten Lichtwellenleiter (5) statistisch gemischt zu einem Ast an der unteren Seite des zum Liegenden (2) gerichteten Steckeinsatzes (17) ein Auge bilden, um welches konzentrisch die Einzelfasern des Lichtwellenleiterbündels (5') des Empfangsarmes angeordnet sind.
  5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das die Einzelfasern der Lichtwellenleiterbündel (5) beider Wellenlängen statistisch gemischt, zentral und die Einzelfasern des Lichtwellenleiterbündels (5') des Empfangsarmes konzentrisch um die Lichtwellenleiterbündel (5) aufnehmende Auge (19, 20) an der Unterseite des unteren Steckeinsatzes (17) satt auf der Innenseite (21) des Kristallfensters (7) aufliegt.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das beispielsweise mittels Kleben auswechselbar in einer Ausnehmung (22) befestigte Kristallfenster (7) auf der das Auge (19) aufnehmenden Seite (21) und der auf dem Liegenden (2) schleifenden Seite (13) geschliffene und polierte Oberflächen aufweist.
  7. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß als Lichtquellen auf der Sendeseite für die Wellenlängen von 850 nm eine lichtinitierenden Diode (LED) oder Laserdiode und für die Wellenlänge von 1550 nm eine Laserdiode vorgesehen sind.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß als Auswertesignal ein rechnischer Wert (Ratiowert) vorgesehen ist, der durch den nachfolgenden Quozienten
    Figure imgb0002
    gebildet wird.
  9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß in der auf dem Liegenden (2) schleifenden Stirnfläche (4) des Sensorkopfes (3) eine Ausnehmung (24) für einen, den unteren Steckeinsatz (17) und das Kristallfenster (7) aufnehmenden Meßeinsatz (25) vorgesehen ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Meßeinsatz (25) aus zwei lösbar miteinander verbindbaren Teilen einer unteren mit der Stirnfläche (4) des Sensorkopfes (3) abschließenden Schleißplatte (26) und einem darüber liegenden Schleißplattenhalter (27) besteht.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Schleißplatte (26) und der Schleißplattenhalter (27) über durch den Schleißplattenhalter (27) geführte Senkschrauben (28) von oben her miteinander verbunden sind.
  12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Schleißplatte (26) des Meßeinsatzes (25) einen flachen Abschnitt (30) und einen stärker bemessenen Abschnitt (31) aufweist, wobei die beiden Abschnitte (30, 31) über eine schräge Fläche (32) miteinander verbunden sind, in welcher in einem Winkel von 20 bis 45 Grad vorzugsweise 30 Grad eine Bohrung (33) vorgesehen ist, die abgestuft in eine das Kristallfenster (7) aufnehmende Ausnehmung (22) übergeht.
  13. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der in zusammengesetzem Zustand mit der Schleißplatte (26) korrespondierende Schleißplattenhalter (27) eine abgesetzte Bohrung (34) aufweist, deren Achse in der Achse der Bohrung (33) in der Schleißplatte (26) liegt.
  14. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der in der Ausnehmung (24) einsetzbare, zweigeteilt ausgebildete Meßeinsatz (25) über durch den Sensorkopf (3) geführte Schrauben (35) lösbar gehalten ist.
  15. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der nahe dem Fördermittel am Kohlenhobel (1) angeordnete und auf dem Liegenden (2) schleifende Sensorkopf (3) im Querschnitt betrachtet zum Fördermittel hin stufenartig abgesetzt ausgebildet ist.
  16. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Sensorkopf (3) an beiden in Fahrtrichtung gelegenen Seiten mit Räumschuhen (39) versehen ist.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Räumschuhe (39) lösbar mit dem Sensorkopf (3) verbunden sind.
  18. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Räumschuhe (39) über innerhalb einer Ausnehmung (24) im Sensorkopf (3) einsetzbare Schrauben (40) lösbar am Sensorkopf (3) befestigt sind.
  19. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der aus widerstandsfähigem und verschleißarmen Material wie beispielsweise aus gehärtetem Stahl hergestellten Sensorkopf (3) gegenüber einem Sensorkopfhalter (41) mittels Federkraft gegen das Liegende (2) gedrückt geführt ist.
  20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, daß im Sensorkopfhalter (41) in Fahrtrichtung nebeneinander mehrere beispielsweise drei Führungsbolzen (42) vorgesehen sind, die von Vorspannfedern (43) umgeben, mit ihren Enden (44) in Bohrungen (45) des Sensorkopfes (3) geführt sind.
EP88630229A 1987-12-17 1988-12-14 Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen Expired - Lifetime EP0321383B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3742753 1987-12-17
DE3742753 1987-12-17

Publications (2)

Publication Number Publication Date
EP0321383A1 EP0321383A1 (de) 1989-06-21
EP0321383B1 true EP0321383B1 (de) 1993-06-23

Family

ID=6342802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88630229A Expired - Lifetime EP0321383B1 (de) 1987-12-17 1988-12-14 Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen

Country Status (6)

Country Link
US (1) US4992657A (de)
EP (1) EP0321383B1 (de)
DE (1) DE3882028D1 (de)
ES (1) ES2041825T3 (de)
PL (1) PL160854B1 (de)
ZA (1) ZA889430B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010037491A1 (de) * 2008-10-01 2010-04-08 Rag Aktiengesellschaft Verfahren zum steuern der gewinnung in strebbetrieben mittels überwachung des bergeanteils in der förderung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301164B2 (en) * 2004-01-30 2007-11-27 Abb Inc. Measuring apparatus
US20080236046A1 (en) * 2007-03-30 2008-10-02 Caldwell Manufacturing Company, Inc. Tamper Proof Locking Device for Window Balance Carriers
DE202007014710U1 (de) * 2007-10-18 2008-11-27 Bucyrus Dbt Europe Gmbh Gewinnungseinrichtung für die Mineraliengewinnung und Aufnahmeeinrichtung für ein Sensorsystem hierfür
US8204689B2 (en) * 2007-10-24 2012-06-19 Veris Technologies, Inc. Mobile soil mapping system for collecting soil reflectance measurements
CN103149178B (zh) * 2013-02-26 2015-06-24 中国矿业大学(北京) 一种煤岩辨识光纤传感器
CN109519187B (zh) * 2018-12-17 2020-02-21 中煤华晋集团有限公司 切眼掘进施工工艺
CN110080766B (zh) * 2019-04-30 2024-03-01 中国矿业大学 综采工作面煤岩界面识别装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA741707B (en) * 1974-03-15 1975-07-30 Chamber Of Mines Services Ltd Determining heavy element concentration in ores
US4034218A (en) * 1975-10-09 1977-07-05 Schlumberger Technology Corporation Focused detection logging technique
US4165460A (en) * 1977-11-04 1979-08-21 Nasa Coal-rock interface detector
US4143552A (en) * 1978-03-01 1979-03-13 General Electric Company Coal seam sensor
US4266878A (en) * 1978-12-26 1981-05-12 Norlin Industries, Inc. Apparatus for measurement of soil moisture content
US4394573A (en) * 1980-12-15 1983-07-19 Conoco Inc. Method and apparatus for underwater detection of hydrocarbons
US4481418A (en) * 1982-09-30 1984-11-06 Vanzetti Systems, Inc. Fiber optic scanning system for laser/thermal inspection
DE3509868A1 (de) * 1984-03-24 1985-10-10 NLW Fördertechnik GmbH, 4232 Xanten Kohlenhobel, dessen hobelkoerper mit schaelwerkzeugen und hoehenverstellbaren bodenmeisseln ausgeruestet ist
US4655082A (en) * 1985-07-31 1987-04-07 Massachusetts Institute Of Technology Mining machine having vibration sensor
US4753484A (en) * 1986-10-24 1988-06-28 Stolar, Inc. Method for remote control of a coal shearer
DE8704679U1 (de) * 1987-03-30 1987-05-27 Fa. Carl Zeiss, 7920 Heidenheim Meßgerät für Oberflächen mit bunten Glanzeffekten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010037491A1 (de) * 2008-10-01 2010-04-08 Rag Aktiengesellschaft Verfahren zum steuern der gewinnung in strebbetrieben mittels überwachung des bergeanteils in der förderung
CN102187058A (zh) * 2008-10-01 2011-09-14 拉格股份公司 用于通过监测运输中的废矿份额来控制工作面操作中的开采的方法

Also Published As

Publication number Publication date
DE3882028D1 (de) 1993-07-29
ES2041825T3 (es) 1993-12-01
PL276460A1 (en) 1989-07-24
US4992657A (en) 1991-02-12
PL160854B1 (pl) 1993-04-30
EP0321383A1 (de) 1989-06-21
ZA889430B (en) 1989-09-27

Similar Documents

Publication Publication Date Title
EP2356432B1 (de) Sensoranordnung
EP0321383B1 (de) Vorrichtung zum Erkennen des Schneidhorizontes für Gewinnungsmaschinen
DE112008000670B4 (de) Einrichtung zur Ermittlung des Schnitthorizonts einer Bergbaugewinnungsanlage und Rinnenelement hierfür
DE2205996B2 (de) Faseroptische Lichtleiteranordnung, insbesondere Reflexionsschranke
DE1759760B2 (de) Vorrichtung zum Führen von Strecken-Vortriebsmaschinen
DE3841524C2 (de)
DE3887139T2 (de) Optischer flüssigkeitsspiegel-sensor.
DD142648A5 (de) Vorrichtung zur pruefung des fuellungsgrades von zigarettenenden
DE4414975C2 (de) Vorrichtung zur spektroskopischen Analyse von Prozeßgemischen
DE3422271A1 (de) Bohrlochuntersuchungsverfahren
DE1472181A1 (de) Optische Pruefvorrichtung
EP3569976A1 (de) Rauheitsmesstaster, vorrichtung mit rauheitsmesstaster und entsprechende verwendung
DE4421616C2 (de) Vorrichtung zur optischen Signalübertragung zwischen bewegten Teilen
DE3509868A1 (de) Kohlenhobel, dessen hobelkoerper mit schaelwerkzeugen und hoehenverstellbaren bodenmeisseln ausgeruestet ist
DE10108303A1 (de) Anordnung und Verfahren zum Detektieren eines optischen Signals an der Längsseite einer Glasfaser
DE19801961A1 (de) Detektionseinrichtung zur Schließkantenüberwachung, Verfahren zu ihrer Herstellung sowie Verfahren zum Überwachen des Schließvorganges mittels der Detektionseinrichtung
DE69721910T2 (de) Verfahren zur Kalibrierung eines spektroskopischen Gerätes
DE2847488A1 (de) Messgeraet zur untersuchung der daempfung von glasfasern bei verschiedenen wellenlaengen
DE3904279C2 (de)
DE3306046A1 (de) Einrichtung zum steuerbaren vorpressen von rohren zur herstellung eines unterirdischen rohrvortriebes
DE2842231A1 (de) Mess- und/oder ueberwachungseinrichtung fuer lagerverschleiss
EP3575776A1 (de) Messsystem für kleinvolumige schüttgüter
DE4029895C2 (de)
DE19925949B4 (de) Vorrichtung zur Ermittlung des Schneidhorizonts einer Bergbaugewinnungsmaschine
DE19712407A1 (de) Wegmeßvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB

17P Request for examination filed

Effective date: 19891129

17Q First examination report despatched

Effective date: 19911220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930630

REF Corresponds to:

Ref document number: 3882028

Country of ref document: DE

Date of ref document: 19930729

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041825

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071231

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071127

Year of fee payment: 20

Ref country code: FR

Payment date: 20071114

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071218

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *RUHRKOHLE A.G.

Effective date: 20081214

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081213

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081213