WO2010035680A1 - 単孔中空ポリマー微粒子の製造方法 - Google Patents

単孔中空ポリマー微粒子の製造方法 Download PDF

Info

Publication number
WO2010035680A1
WO2010035680A1 PCT/JP2009/066241 JP2009066241W WO2010035680A1 WO 2010035680 A1 WO2010035680 A1 WO 2010035680A1 JP 2009066241 W JP2009066241 W JP 2009066241W WO 2010035680 A1 WO2010035680 A1 WO 2010035680A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
oil
hole hollow
hollow polymer
particles
Prior art date
Application number
PCT/JP2009/066241
Other languages
English (en)
French (fr)
Inventor
山内博史
山田恭幸
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP09816095A priority Critical patent/EP2330145B1/en
Priority to US13/120,241 priority patent/US8470398B2/en
Priority to CN2009801379489A priority patent/CN102164988B/zh
Publication of WO2010035680A1 publication Critical patent/WO2010035680A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a method for producing single-hole hollow polymer microparticles that require no classification operation and have an extremely uniform outer diameter and inner diameter. Furthermore, the present invention relates to single-hole hollow polymer particles produced using the method for producing single-hole hollow polymer particles.
  • a monomer solution is prepared by uniformly dissolving a hydrophilic monomer, a crosslinkable monomer and an oil-soluble solvent together with a polymerization initiator, and the monomer solution is emulsified and dispersed in an aqueous phase. Then, there is a method of polymerizing.
  • This manufacturing method is a method of forming single pores in fine particles by utilizing the phase separation effect between the polymer to be produced and the oil-soluble solvent.
  • the hollow polymer fine particles having a single hole obtained by this method have a particle size distribution that depends on the mechanical operation method of emulsification and dispersion, and the outer diameter (particle diameter), inner diameter (single hole diameter), and outer diameter
  • the outer diameter particle diameter
  • inner diameter single hole diameter
  • outer diameter outer diameter
  • outer diameter inner diameter
  • outer diameter outer diameter
  • outer diameter inner diameter
  • outer diameter outer diameter
  • outer diameter inner diameter
  • outer diameter Even if the outer diameter is made uniform, the inner diameter cannot be made uniform.
  • a method of classifying the obtained hollow polymer fine particles by a hydrodynamic method utilizing a specific gravity difference or the like is also known.
  • fine particles having a large outer diameter and a large inner diameter (high hollowness) and fine particles having a small outer diameter and a small inner diameter (low hollowness) have the same mobility.
  • Patent Document 1 discloses that a polymerizable monomer component including a crosslinkable monomer, a hydrophilic monomer, and other monomers is contained in an aqueous dispersion medium in the presence of different polymer fine particles having a composition different from that of the copolymer of the polymerizable monomer component.
  • a method for producing polymer particles having a single inner pore comprises the steps of dispersing the polymerizable monomer component in the different polymer fine particles and then polymerizing the polymerizable monomer component.
  • the heterogeneous polymer include polystyrene or a copolymer of styrene and at least one selected from acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, and butadiene.
  • the crosslinkable monomer include divinylbenzene, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, and the like.
  • hydrophilic monomer examples include acrylic acid, methacrylic acid, methyl methacrylate, 2-hydroxyethyl methacrylate, vinyl pyridine, glycidyl acrylate, and glycidyl methacrylate.
  • examples of other monomers include styrene.
  • Patent Document 2 discloses an ionic monomer (Aa), a nonionic monomer (Ab) whose solubility parameter does not change or increases with the change from monomer to polymer during polymerization, and the nonionic monomer
  • a monomer component (B) containing a nonionic monomer (Bb) whose non-ionic monomer (Bb) and nonionic monomer (Bb) other than the nonionic monomer (Bb) have a solubility parameter that decreases with the change to the polymer.
  • Method for producing hollow polymer particles which have been described. Further, in the production method described in Patent Document 2, a polymer obtained by polymerizing a nonionic monomer (Ab) component out of a combination of the polymer fine particles (A) and the monomer component (B).
  • the absolute value of the difference between the solubility parameter [ ⁇ (Ab), p] of the monomer and the solubility parameter [ ⁇ (Bb), m] of the monomer of the nonionic monomer (Bb) is 1.0 or less It is said that it is the feature.
  • hollow polymer fine particles having a sufficiently uniform outer diameter and inner diameter could not be obtained.
  • the content of the polymerization initiator in the monomer oil droplets is small, so that not only the polymerization rate is lowered, but also in the aqueous phase.
  • an oil droplet is obtained by press-fitting a homogeneous mixed solution A containing a hydrophilic monomer, a crosslinking monomer, another monomer, and an oily substance into a liquid B immiscible with A through a microporous membrane.
  • a manufacturing method is shown in which particles having an oily substance as an inner core are obtained by polymerization after obtaining the above.
  • the method of passing through the microporous membrane has a problem that, although the outer diameter distribution is uniform as compared with the conventional method using an emulsifying apparatus, it is necessary to perform operations such as classification.
  • An object of the present invention is to provide a method for producing single-hole hollow polymer microparticles that require no classification operation and have an extremely uniform outer diameter and inner diameter. Furthermore, an object of the present invention is to provide single-hole hollow polymer particles produced using the method for producing single-hole hollow polymer particles.
  • a seed particle dispersion in which seed particles containing a non-crosslinked polymer are dispersed in a dispersion medium containing water and an oil-soluble solvent are mixed, and the seed particles absorb the oil-soluble solvent.
  • Preparing a dispersion of swollen particle droplets, mixing the dispersion of swollen particle droplets with an aqueous solution containing a water-soluble polymer, and preparing the water solution of the mixture And a step of precipitating the water-soluble polymer on the surface of the swollen particle droplets by performing an operation to lower the solubility of the water-soluble polymer.
  • a seed particle dispersion in which seed particles containing a non-crosslinked polymer are dispersed in a dispersion medium containing water and an oil-soluble solvent are mixed.
  • the method for producing single-hole hollow polymer particles of the present invention may include a step of preparing a seed particle dispersion in which seed particles containing a non-crosslinked polymer are dispersed in a dispersion medium containing water. .
  • the seed particles contain a non-crosslinked polymer.
  • the non-crosslinkable monomer constituting the non-crosslinked polymer is not particularly limited.
  • a small amount of a crosslinkable monomer may be used in combination.
  • the crosslinkable monomer is not particularly limited, and examples thereof include divinylbenzene and ethylene glycol dimethacrylate.
  • the preferable upper limit of the blending amount of the crosslinkable monomer in the total of the non-crosslinkable monomer and the crosslinkable monomer is 5% by weight.
  • the blending amount of the crosslinkable monomer exceeds 5% by weight, the absorbability of the oil-soluble solvent into the seed particles obtained is lowered, and swollen particle droplets may not be formed.
  • a more preferred upper limit of the amount of the crosslinkable monomer is 1% by weight.
  • the molecular weight of the seed particles is not particularly limited, but a preferable upper limit of the weight average molecular weight is 500,000. When the weight average molecular weight of the seed particles exceeds 500,000, the absorbability of the oil-soluble solvent into the obtained seed particles is lowered, and swollen particle droplets may not be formed. A more preferable upper limit of the weight average molecular weight of the seed particles is 100,000. Although the minimum of the weight average molecular weight of the said seed particle is not specifically limited, When it is less than 1000, a particle
  • the volume average particle diameter of the seed particles is not particularly limited, but the preferable lower limit is 1/10 of the average outer diameter (average particle diameter) of the target single-hole hollow polymer fine particles, and the preferable upper limit is the target single-hole hollow polymer fine particles. 1 / 1.05 of the average outer diameter. If the volume average particle diameter of the seed particles is less than 1/10 of the average outer diameter of the desired single-hole hollow polymer fine particles, the limit of absorption performance is limited in order to obtain the desired outer diameter of the single-hole hollow polymer fine particles. It is necessary to absorb a large amount of the oil-soluble solvent in excess, and an absorption residue may occur, or the outer diameter of the obtained single-hole hollow polymer fine particles may not be uniform.
  • the volume average particle diameter of the seed particles exceeds 1 / 1.05 of the outer diameter of the target single-hole hollow polymer fine particle, there is no room for absorbing a very small amount of oil-soluble solvent, and single holes having high hollowness Hollow polymer fine particles may not be obtained.
  • the volume average particle diameter of the seed particles is more preferably 1/8 or more, and more preferably 1 / 1.5 or less, of the average outer diameter of the target single-hole hollow polymer fine particles.
  • the seed particle has a preferred upper limit of the Cv value of the particle diameter of 30%.
  • the Cv value of the particle diameter of the seed particles exceeds 30%, the particle diameter of the swollen seed particles may not be uniform, and the particle diameter of the obtained single-hole hollow polymer fine particles may not be uniform.
  • a more preferable upper limit of the Cv value of the particle diameter of the seed particles is 20%.
  • the Cv value of the particle size of the seed particles can be calculated from the volume average particle size m measured with a particle size measuring device and the standard deviation ⁇ according to the following formula (1).
  • the method for preparing the seed particles is not particularly limited, and examples thereof include soap-free emulsion polymerization, emulsion polymerization, and dispersion polymerization.
  • the dispersion medium is not particularly limited as long as it contains water, and examples thereof include water or a mixed dispersion medium in which a water-soluble organic solvent such as methanol or ethanol is added to water.
  • the dispersion medium may contain a dispersant as necessary.
  • the dispersant is not particularly limited, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, polyoxyethylene alkyl ether, and polyvinyl alcohol.
  • the blending amount of the seed particles in the seed particle dispersion is not particularly limited, and the preferred lower limit is 0.1% by weight and the preferred upper limit is 50% by weight. When the amount of the seed particles is less than 0.1% by weight, the production efficiency of the single-hole hollow polymer fine particles may be lowered. If the blended amount of the seed particles exceeds 50% by weight, the seed particles may aggregate. A more preferable lower limit of the blending amount of the seed particles is 0.5% by weight, and a more preferable upper limit is 30% by weight.
  • the seed particle dispersion and an oil-soluble solvent are mixed, and the seed particles absorb the oil-soluble solvent to prepare a uniform dispersion of swollen particle droplets. To do.
  • the oil-soluble solvent means a solvent having a logPow (octanol / water partition coefficient) of 0 or more.
  • the oil-soluble solvent is not particularly limited, and examples thereof include aromatic hydrocarbons such as toluene and xylene, propane, cyclopropane, butane, cyclobutane, isobutane, normal pentane, cyclopentane, neopentane, isopentane, normal hexane, cyclohexane, 2 -Aliphatic hydrocarbons or cyclic hydrocarbons such as methylpentane, 2,2-dimethylbutane, normal heptane, cycloheptane, normal octane, cyclooctane and isooctane; ketones such as methyl isobutyl ketone; esters such as ethyl acetate And the like.
  • aromatic hydrocarbons such as toluene and xylene, propane, cyclopropane, butane, cyclobutane, isobutane, normal pentan
  • single-hole hollow polymer fine particles having cavities can be produced by volatilizing the oil-soluble solvent after forming a shell of single-hole hollow polymer fine particles as described later.
  • single-hole hollow polymer fine particles enclosing the oil-soluble solvent may be produced without volatilizing the oil-soluble solvent.
  • these oil-soluble solvents can be used to produce thermally expandable single-hole hollow polymer fine particles.
  • thermally expandable single-hole hollow polymer fine particles it is preferable to use a volatile oil-soluble solvent such as an aliphatic hydrocarbon such as isopentane, heptane, and isooctane as the oil-soluble solvent.
  • a volatile oil-soluble solvent such as an aliphatic hydrocarbon such as isopentane, heptane, and isooctane as the oil-soluble solvent.
  • the curing agent is not particularly limited, and examples thereof include imidazole compounds such as 2-ethyl-4-methylimidazole (2E4MZ) and 2-methylimidazole (2MZ), polyamine compounds such as polyethylene polyamine and metaxylenediamine, and trialkyls.
  • imidazole compounds such as 2-ethyl-4-methylimidazole (2E4MZ) and 2-methylimidazole (2MZ)
  • polyamine compounds such as polyethylene polyamine and metaxylenediamine, and trialkyls.
  • the acid anhydride include tetrahydrophthalic anhydride and trimellitic anhydride.
  • the curing accelerator is not particularly limited, and examples thereof include chlorine-substituted carboxylic acid compounds such as monochloroacetic acid and dichloroacetic acid, chlorine-substituted phenolic compounds such as p-chlorophenol and o-chlorophenol, and nitro such as p-nitrophenol. Examples thereof include substituted phenol compounds and mercaptan compounds such as thiophenol and 2-mercaptoethanol.
  • these oil-soluble solvents are used, single-hole hollow polymer fine particles enclosing the oil-soluble solvent can be produced. These oil-soluble solvents may be used alone or in combination of two or more.
  • the blending amount of the oil-soluble solvent may be appropriately adjusted according to the outer diameter and inner diameter of the target single-hole hollow polymer fine particles, but the preferable lower limit with respect to 100 parts by weight of the seed particles is 15 parts by weight, and the preferable upper limit is 100,000. Parts by weight. When the amount of the oil-soluble solvent is less than 15 parts by weight, single-hole hollow polymer particles having a high hollowness may not be obtained. If the blending amount of the oil-soluble solvent exceeds 100,000 parts by weight, the absorption capacity of the seed particles may be exceeded and an absorption residue may be generated. A more preferable lower limit of the amount of the oil-soluble solvent is 230 parts by weight, and a more preferable upper limit is 50,000 parts by weight.
  • the oil-soluble solvent may be added directly to the seed particle dispersion and mixed, but once added to a dispersion medium containing water to prepare an emulsion, the emulsion is added to the seed particle dispersion.
  • a method of mixing is preferred.
  • the oil-soluble solvent can be more uniformly absorbed by the seed particles.
  • the seed particle dispersion may be added to the emulsion and mixed.
  • the dispersion medium of the emulsion of the oil-soluble solvent is not particularly limited, and may be the same dispersion medium as that used for the seed particle dispersion, or may be a different dispersion medium.
  • the dispersion medium of the emulsion of the oil-soluble solvent preferably contains an emulsifier.
  • the emulsifier is not particularly limited, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, polyoxyethylene alkyl ether, and polyvinyl alcohol.
  • the whole amount of the emulsion may be added and mixed all at once, or may be added separately and mixed.
  • segmenting you may add by dripping.
  • the oil-soluble solvent is absorbed by the seed particles, and uniform swollen particle droplets are formed.
  • a step of preparing a mixed solution by mixing the obtained dispersion of swollen particle droplets and an aqueous solution containing a water-soluble polymer is performed.
  • the water-soluble polymer is not particularly limited as long as it is completely dissolved in water, and examples thereof include polyvinyl alcohol, methyl cellulose, hydroxypropyl methyl cellulose, gelatin, gelatin-polyanions complex, sodium alginate and the like.
  • the polyanions are not particularly limited, and examples thereof include gum arabic, carrageenan, carboxymethyl cellulose, agar, and polyvinylbenzene sulfonic acid.
  • a thermally expandable simple solvent can be obtained by enclosing a volatile oil-soluble solvent such as the aliphatic hydrocarbon as the oil-soluble solvent.
  • Porous hollow polymer fine particles can be produced. When such heat-expandable single-hole hollow polymer fine particles are heated to a temperature equal to or higher than the softening point temperature of the shell to vaporize the oil-soluble solvent, the heat-expandable fine particles have higher hollowness.
  • the compounding quantity of the said water-soluble polymer is not specifically limited, A preferable minimum is 0.1 weight part and a preferable upper limit is 100 weight part with respect to 100 weight part of said oil-soluble solvents. If the blending amount of the water-soluble polymer is less than 0.1 parts by weight, the formed film becomes thin, so that single-hole hollow polymer particles may not be formed. When the blending amount of the water-soluble polymer exceeds 100 parts by weight, the viscosity of the mixed solution may increase and handleability may decrease. A more preferable lower limit of the amount of the water-soluble polymer is 1.0 part by weight, and a more preferable upper limit is 30 parts by weight.
  • an operation of reducing the solubility of the water-soluble polymer in the mixed solution is performed.
  • operations for reducing the solubility of the water-soluble polymer include temperature adjustment, pH adjustment, addition of an electrolyte, addition of a poor solvent, addition of a curing agent, and the like.
  • the solubility in the mixed solution can be remarkably lowered by adding borax, formalin-hydrochloric acid or the like.
  • the solubility in the mixed solution can be remarkably lowered by adding calcium chloride, acid, polymer cation and the like.
  • the water-soluble polymer is methylcellulose, the gelling can be promoted by heating, and then the tannic acid can be added and cured to significantly reduce the solubility in the mixed solution.
  • the water-soluble polymer By performing an operation for reducing the solubility of the water-soluble polymer in the mixed solution, the water-soluble polymer is deposited on the surface of the swollen particle droplets, and a film is formed. That is, a core-shell particle dispersion in which the core is formed of the oil-soluble solvent and the water-soluble polymer in which the shell is deposited is obtained.
  • the obtained core-shell particles are repeatedly washed with pure water, and the oil-soluble solvent is volatilized to produce single-hole hollow polymer particles having a cavity.
  • single-hole hollow polymer fine particles enclosing the oil-soluble solvent may be produced without volatilizing the oil-soluble solvent.
  • single-hole hollow polymer particles having an extremely uniform outer diameter and inner diameter can be produced. Since the outer diameter and inner diameter are extremely uniform, no special classification operation such as sieving, air classification, specific gravity differential class or the like is required. Since the yield is high and the process is short, the single-hole hollow polymer fine particles can be supplied cheaply and quickly.
  • the single-hole hollow polymer particles produced using the method for producing single-hole hollow polymer particles of the present invention are also one aspect of the present invention.
  • the single-hole hollow polymer fine particles of the present invention may have cavities and may contain the oil-soluble solvent.
  • the outer diameter and inner diameter are extremely uniform, so that the specific surface area can be improved with a very small amount of addition, and light diffusibility, light weight, heat insulation Further, cushioning, selective absorption, reflection, and transmission of ultraviolet rays, visible light, infrared rays, and the like can be controlled.
  • the single-hole hollow polymer fine particles of the present invention include a curing agent or a curing accelerator as the oil-soluble solvent, for example, a microcapsule that includes a curing agent or a curing accelerator for producing a cured product such as an epoxy resin.
  • a curing agent or a curing accelerator for producing a cured product such as an epoxy resin.
  • the single-hole hollow polymer fine particles of the present invention containing a curing agent or a curing accelerator are contained in the curable composition, and the curing reaction is initiated by breaking the shell with mechanical pressure or heat as necessary. To produce a cured product.
  • the curable composition containing the single-hole hollow polymer fine particles of the present invention begins to harden during storage in a thin portion of the shell.
  • the curing agent or the curing accelerator does not sufficiently ooze out during the curing in the thick part of the shell, and the reactivity is not lowered.
  • the storage stability is high and the curing is uniform.
  • the single-hole hollow polymer fine particle of the present invention has a shell formed of polyvinyl alcohol that exhibits gas barrier properties, and includes a volatile oil-soluble solvent such as the aliphatic hydrocarbon as the oil-soluble solvent, It can be used as thermally expandable single-hole hollow polymer fine particles.
  • a volatile oil-soluble solvent such as the aliphatic hydrocarbon as the oil-soluble solvent
  • the single-hole hollow polymer fine particles of the present invention have extremely uniform outer diameter and inner diameter
  • the fine particles after thermal expansion also have extremely uniform outer diameter and inner diameter, and light diffusibility, light weight, heat insulation, cushioning properties, ultraviolet rays
  • it is applied to various uses for the purpose of imparting selective absorption, reflection, transparency, etc. of visible light and infrared light, it becomes easy to control these performances.
  • the average outer diameter (average particle diameter) of the single-hole hollow polymer fine particles of the present invention is not particularly limited, but a preferable lower limit is 0.1 ⁇ m and a preferable upper limit is 100 ⁇ m. If the average outer diameter is less than 0.1 ⁇ m, a sufficiently large single hole may not be obtained, or the amount of the oil-soluble solvent contained may be reduced. When the average outer diameter exceeds 100 ⁇ m, the absorption of the oil-soluble solvent into the seed particles is delayed, and thus productivity may be reduced.
  • the more preferable lower limit of the average outer diameter of the single-hole hollow polymer fine particles of the present invention is 0.5 ⁇ m, and the more preferable upper limit is 20 ⁇ m.
  • the preferable upper limit of the Cv value of the outer diameter is 10%.
  • the Cv value of the outer diameter exceeds 10%, for example, when the single-hole hollow polymer fine particles of the present invention are used as a microcapsule encapsulating a curing agent or a curing accelerator for producing a cured product such as an epoxy resin The cured product may not be homogeneously cured.
  • the Cv value of the outer diameter exceeds 10%, for example, when the single-hole hollow polymer fine particles of the present invention are thermally expandable, the uniformity of the outer diameter of the fine particles after thermal expansion may be lowered.
  • a more preferable upper limit of the Cv value of the outer diameter is 7%.
  • the Cv value of the outer diameter of the single-hole hollow polymer fine particles of the present invention can be calculated in the same manner as the Cv value of the particle diameter of the seed particles.
  • the average inner diameter of the single-hole hollow polymer fine particles of the present invention is not particularly limited, but a preferable lower limit is 5% of the average outer diameter, and a preferable upper limit is 99.9% of the average outer diameter. If the average inner diameter is less than 5% of the average outer diameter, a sufficiently large single hole may not be obtained, or the amount of the oil-soluble solvent contained may be reduced. When the average inner diameter exceeds 99.9% of the average outer diameter, the shell becomes thin, so that the oil-soluble solvent contained may leak out.
  • the more preferable lower limit of the average inner diameter of the single-hole hollow polymer fine particles of the present invention is 10% of the average outer diameter, and the more preferable upper limit is 99% of the average outer diameter.
  • the preferable upper limit of the Cv value of the inner diameter is 10%.
  • the Cv value of the inner diameter exceeds 10%, for example, when the single-hole hollow polymer fine particles of the present invention are used as microcapsules enclosing a curing agent or a curing accelerator for producing a cured product such as an epoxy resin, Curing of the cured product may not be uniform.
  • the Cv value of the inner diameter exceeds 10%, for example, when the single-hole hollow polymer fine particles of the present invention are thermally expandable, the uniformity of the inner diameter of the fine particles after thermal expansion may be lowered.
  • a more preferable upper limit of the Cv value of the inner diameter is 7%.
  • the Cv value of the inner diameter of the single-hole hollow polymer fine particle of the present invention can be calculated in the same manner as the Cv value of the particle diameter of the seed particle.
  • the present invention it is possible to provide a method for producing single-hole hollow polymer fine particles that require no classification operation and have an extremely uniform outer diameter and inner diameter. Furthermore, according to this invention, the single-hole hollow polymer microparticle manufactured using the manufacturing method of this single-hole hollow polymer microparticle can be provided.
  • Example 1 100 parts by weight of styrene, 3 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, volume average particle diameter 0.5 ⁇ m, Cv value
  • a seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
  • An emulsion was prepared by adding 2 parts by weight of triethanolamine lauryl sulfate and 900 parts by weight of water as emulsifiers to 100 parts by weight of heptane as an oil-soluble solvent.
  • the resulting seed particle dispersion is mixed with an emulsion so that the oil-soluble solvent is 200 times the weight of polystyrene particles, mixed, stirred for 24 hours, and swollen droplets of seed particles that have absorbed the oil-soluble solvent. A dispersion was obtained.
  • Example 2 100 parts by weight of styrene, 3 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, volume average particle diameter 0.5 ⁇ m, Cv value
  • a seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
  • An emulsion was prepared by adding 2 parts by weight of triethanolamine lauryl sulfate and 900 parts by weight of water as emulsifiers to 100 parts by weight of heptane as an oil-soluble solvent.
  • the resulting seed particle dispersion is mixed with an emulsion so that the oil-soluble solvent is 200 times the weight of polystyrene particles, mixed, stirred for 24 hours, and swollen droplets of seed particles that have absorbed the oil-soluble solvent. A dispersion was obtained.
  • Example 3 Except for using 5 parts by weight of potassium persulfate as in Example 1, the volume average particle diameter was 0.2 ⁇ m, the Cv value was 15%, and the concentration of spherical non-crosslinked polystyrene particles was 1.5% by weight.
  • a seed particle dispersion dispersed in water was prepared. To this seed particle dispersion, polymer fine particles were obtained in the same manner as in Example 1 except that the addition amount of the emulsion was added so as to be an oil-soluble solvent 20 times the weight of polystyrene particles.
  • Example 4 The volume average particle diameter is 2.0 ⁇ m, the Cv value is 15%, and the spherical non-crosslinked polystyrene particles are 1.5% by weight, except that 0.5 part by weight of potassium persulfate is used.
  • a seed particle dispersion dispersed in water at a concentration was prepared. To this seed particle dispersion, polymer fine particles were obtained in the same manner as in Example 1 except that the addition amount of the emulsion was added so as to be an oil-soluble solvent 125 times the weight of polystyrene particles.
  • Example 5 In the same manner as in Example 1 except that 0.5 part by weight of potassium persulfate and 0.1 part by weight of sodium chloride were added, a volume average particle diameter of 5.0 ⁇ m, a Cv value of 15%, and a spherical shape A seed particle dispersion was prepared in which non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight. To this seed particle dispersion, polymer fine particles were obtained in the same manner as in Example 1 except that the addition amount of the emulsion was added so as to be an oil-soluble solvent 125 times the weight of polystyrene particles.
  • the tannic acid aqueous solution is dropped so that the added amount of tannic acid is 0.5 parts by weight with respect to 100 parts by weight of the oil-soluble solvent, and the reaction is performed for 5 hours, whereby the core is heptane, A core-shell particle dispersion in which the shell was formed of a crosslinked hydroxypropylmethylcellulose was obtained.
  • the obtained core-shell particles were repeatedly washed with pure water, vacuum dried to volatilize heptane, and polymer fine particles were obtained.
  • the longest diameter of a single hole was measured using a caliper, the number average value and the coefficient of variation of this value were obtained, and these were calculated as the average inner diameter and inner diameter Cv value. did.
  • the average inner diameter and the inner diameter Cv value were calculated for particles having a single hole.
  • Example 6 100 parts by weight of styrene, 3 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, volume average particle diameter 0.5 ⁇ m, Cv value A seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
  • the resulting seed particle dispersion is mixed with an emulsion so that the oil-soluble solvent is 200 times the weight of polystyrene particles, mixed, stirred for 24 hours, and swollen droplets of seed particles that have absorbed the oil-soluble solvent.
  • a dispersion was obtained. While stirring the obtained dispersion of swollen particle droplets, an aqueous solution of hydroxypropylmethylcellulose as a water-soluble polymer was added dropwise so that the added amount of hydroxypropylmethylcellulose was 5 parts by weight with respect to 100 parts by weight of the oil-soluble solvent. To prepare a mixed solution.
  • a tannic acid aqueous solution was dropped so that the amount of tannic acid added was 0.5 parts by weight with respect to 100 parts by weight of the oil-soluble solvent, and the reaction was performed for 5 hours.
  • a core-shell particle dispersion in which the core was formed of toluene / 2-ethyl-4-methylimidazole and the shell was formed of a crosslinked hydroxypropylmethylcellulose was obtained.
  • the obtained core-shell particles were washed repeatedly with pure water, dried in vacuum, and toluene was volatilized to obtain polymer fine particles.
  • Example 7 Polymer fine particles were obtained in the same manner as in Example 6 except that 100 parts by weight of 2-methylimidazole (2MZ) was used instead of 100 parts by weight of 2-ethyl-4-methylimidazole (2E4MZ) as the oil-soluble solvent. It was.
  • Example 8 The volume average particle diameter was 0.2 ⁇ m, the Cv value was 15%, and the concentration of spherical non-crosslinked polystyrene particles was 1.5% by weight, except that 5 parts by weight of potassium persulfate was used.
  • a seed particle dispersion dispersed in water was prepared. To this seed particle dispersion, polymer fine particles were obtained in the same manner as in Example 6 except that the addition amount of the emulsion was added so as to be an oil-soluble solvent 20 times the weight of polystyrene particles.
  • Example 9 The volume average particle diameter is 2.0 ⁇ m, the Cv value is 15%, and the spherical non-crosslinked polystyrene particles are 1.5% by weight, except that 0.5 part by weight of potassium persulfate is used.
  • a seed particle dispersion dispersed in water at a concentration was prepared. To this seed particle dispersion, polymer fine particles were obtained in the same manner as in Example 6 except that the addition amount of the emulsion was added so as to be an oil-soluble solvent 125 times the weight of polystyrene particles.
  • Example 10 In the same manner as in Example 6 except that 0.5 part by weight of potassium persulfate and 0.1 part by weight of sodium chloride were added, a volume average particle size of 5.0 ⁇ m, a Cv value of 15%, and a spherical shape A seed particle dispersion was prepared in which non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight. To this seed particle dispersion, polymer fine particles were obtained in the same manner as in Example 6 except that the addition amount of the emulsion was added so as to be an oil-soluble solvent 125 times the weight of polystyrene particles.
  • a core-shell particle dispersion in which the core is formed of 1-cyanoethyl-2-phenylimidazole and the shell is formed of a methacrylic acid / acrylonitrile copolymer is obtained. Obtained. Thereafter, the obtained dispersion was filtered to obtain polymer fine particles.
  • Polymer particles were obtained in the same manner as in Example 6 except that the obtained emulsion was added to water (no seed particles were used).
  • the longest diameter of a single hole was measured using a caliper, the number average value and the coefficient of variation of this value were obtained, and these were calculated as the average inner diameter and inner diameter Cv value. did.
  • the average inner diameter and the inner diameter Cv value were calculated for particles having a single hole.
  • Example 11 100 parts by weight of styrene, 3 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, volume average particle diameter 0.5 ⁇ m, Cv value
  • a seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
  • An emulsion was prepared by adding 2 parts by weight of triethanolamine lauryl sulfate and 900 parts by weight of water as emulsifiers to 100 parts by weight of heptane as an oil-soluble solvent.
  • An emulsion is added to the obtained seed particle dispersion so as to be an oil-soluble solvent 200 times the weight of polystyrene particles, and stirred for 24 hours to disperse a dispersion of droplets of seed particles that have absorbed the oil-soluble solvent.
  • Example 12 The volume average particle diameter is 2.0 ⁇ m, the Cv value is 15%, and the spherical non-crosslinked polystyrene particles are 1.5% by weight, except that 0.5 part by weight of potassium persulfate is used.
  • a seed particle dispersion dispersed in water at a concentration was prepared. Polymer fine particles were obtained in the same manner as in Example 11 except that the addition amount of the emulsion was added to this seed particle dispersion so that the oil-soluble solvent was 125 times the weight of the polystyrene particles.
  • Example 13 In the same manner as in Example 11 except that 0.5 part by weight of potassium persulfate and 0.1 part by weight of sodium chloride were added, a volume average particle size of 5.0 ⁇ m, a Cv value of 15%, and a spherical shape A seed particle dispersion was prepared in which non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight. Polymer fine particles were obtained in the same manner as in Example 11 except that the addition amount of the emulsion was added to this seed particle dispersion so that the oil-soluble solvent was 125 times the weight of the polystyrene particles.
  • a core-shell particle dispersion having a core formed of heptane and a shell formed of polyvinyl alcohol was obtained.
  • the obtained core-shell particles were repeatedly washed with pure water and vacuum-dried to obtain polymer fine particles.
  • the longest diameter of a single hole was measured using a caliper, the number average value and the coefficient of variation of this value were obtained, and these were calculated as the average inner diameter and inner diameter Cv value. did.
  • the average inner diameter and the inner diameter Cv value were calculated for particles having a single hole.
  • the present invention it is possible to provide a method for producing single-hole hollow polymer fine particles that require no classification operation and have an extremely uniform outer diameter and inner diameter. Furthermore, according to this invention, the single-hole hollow polymer microparticle manufactured using the manufacturing method of this single-hole hollow polymer microparticle can be provided.

Abstract

本発明は、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子の製造方法を提供する。更に、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子を提供する。 本発明は、非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液と、油溶性溶剤とを混合し、前記種粒子に前記油溶性溶剤を吸収させて膨潤粒子液滴の分散液を調製する工程と、前記膨潤粒子液滴の分散液と、水溶性ポリマーを含有する水溶液とを混合して混合液を調製する工程と、前記混合液の前記水溶性ポリマーの溶解度を低下させる操作を行うことにより、前記膨潤粒子液滴の表面に前記水溶性ポリマーを析出させる工程とを有する単孔中空ポリマー微粒子の製造方法である。

Description

単孔中空ポリマー微粒子の製造方法
本発明は、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子の製造方法に関する。更に、本発明は、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子に関する。
単孔を有する中空ポリマー微粒子の製造方法として、親水性のモノマー、架橋性モノマー及び油溶性溶剤を重合開始剤と共に均一溶解してモノマー溶液を調製し、該モノマー溶液を水相中で乳化分散させた後、重合する方法がある。この製造方法は、生成するポリマーと油溶性溶剤との相分離効果を利用して、微粒子中に単孔を形成する方法である。
しかし、この方法で得られる単孔を有する中空ポリマー微粒子は、粒子径分布が乳化分散の機械的な操作方法に依存しており、外径(粒子径)、内径(単孔の径)及び外径と内径との比を一定の範囲に制御することは困難であるという問題があった。
外径を揃える目的で、篩いやメッシュ等で分級操作を実施しても、充分に均一な外径分布の中空ポリマー微粒子を得ることは困難である。また、仮に外径を揃えたとしても内径を揃えることはできない。
また、得られた中空ポリマー微粒子を、比重差等を活用した流体力学的方法により分級する方法も知られている。しかし、外径が大きく内径も大きい(中空度の高い)微粒子と、外径が小さく内径も小さい(中空度の低い)微粒子とは同様の移動性を有してしまうことから、この方法ではこれらを分級することはできなかった。
これに対して、モノマー成分を種粒子に吸収させたうえで重合させる中空ポリマー微粒子の製造方法が検討されている。この方法によれば、比較的外径が均一な中空ポリマー微粒子が製造できると考えられる。
例えば、特許文献1には、架橋性モノマー、親水性モノマー及びその他のモノマーを含む重合性モノマー成分を、この重合性モノマー成分によるコポリマーとは異なる組成の異種ポリマー微粒子の存在下において水性分散媒体中で分散させて当該異種ポリマー微粒子に重合性モノマー成分を吸収させ、次いで重合性モノマー成分を重合させる工程を有する、単一の内孔を有するポリマー粒子の製造方法が記載されている。上記特許文献1において、上記異種ポリマーの例として、ポリスチレン、又は、アクリル酸、メタクリル酸、アクリルエステル、メタクリルエステル及びブタジエンから選択される少なくとも1種とスチレンとのコポリマーが挙げられている。また、上記架橋性モノマーの例として、ジビニルベンゼン、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等が挙げられている。上記親水性モノマーの例としてアクリル酸、メタクリル酸、メチルメタクリレート、2-ヒドロキシエチルメタクリレート、ビニルピリジン、グリシジルアクリレート、グリシジルメタクリレート等が挙げられている。その他のモノマーの例として、スチレン等が挙げられている。しかしながら、特許文献1に記載された方法では、外径及び内径が充分に均一な中空ポリマー微粒子を得ることは難しかった。特許文献1の実施例においても、概ね単孔の中空ポリマー微粒子は得られているものの、その外径、内径ともに均一でなく、また、単孔構造の微粒子だけではなく複数の孔を有する微粒子が混じっていた。
特許文献2には、イオン性モノマー(A-a)、重合時にモノマーからポリマーへの変化にともない、溶解度パラメーターが変化しないか、または増加する非イオン性モノマー(A-b)及び上記非イオン性モノマー(A-b)以外の非イオン性モノマー(A-c)を含むモノマーを重合して得られる重合体微粒子(A)の存在下に、イオン性モノマー(B-a)、重合時にモノマーからポリマーへの変化にともない、溶解度パラメーターが減少する非イオン性モノマー(B-b)及び非イオン性モノマー(B-b)以外の非イオン性モノマー(B-c)を含むモノマー成分(B)を水性媒体中で水溶性重合開始剤を用いて一定条件を満たす重合温度で乳化重合して平均内孔径が微粒子の平均粒子径の0.25~0.8倍である単一の内孔を有する中空ポリマー微粒子の製造方法が記載されている。また、特許文献2に記載された製造方法において、上記重合体微粒子(A)とモノマー成分(B)の組み合わせのうち、非イオン性モノマー(A-b)成分を重合することにより得られたポリマーの溶解度パラメーター〔δ(A-b),p〕と非イオン性モノマー(B-b)成分のモノマーの溶解度パラメーター〔δ(B-b),m〕との差の絶対値が1.0以下であることが特徴であるとされている。しかしながら、特許文献2に記載された方法では、外径及び内径が充分に均一な中空ポリマー微粒子を得ることはできなかった。また、特許文献2に記載された製造方法では、水溶性重合開始剤を用いることから、モノマー油滴内の重合開始剤の含有量が少ないため、重合率が低下するだけでなく、水相中での乳化重合が併発して、内孔のない微粒子も混入してしまう問題もあった。
特許文献3には、親水性モノマー、架橋性モノマー、他のモノマー、油性物質を含む均一混合液Aを、Aに対して不混和性の液体Bにミクロ多孔体膜を通して圧入することにより油滴を得た後に、重合させることにより油性物質を内核とした粒子を得る製造方法が示されている。しかしながら、ミクロ多孔体膜を通す方法は、従来の乳化装置を用いる方法に比べれば外径の分布が均一になるものの、結局は、分級等の操作を行う必要があるという問題があった。
特公平04-068324号公報 特開平04-279637号公報 特開2002-105104号公報
本発明は、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子の製造方法を提供することを目的とする。更に、本発明は、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子を提供することを目的とする。
本発明は、非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液と、油溶性溶剤とを混合し、前記種粒子に前記油溶性溶剤を吸収させて膨潤粒子液滴の分散液を調製する工程と、前記膨潤粒子液滴の分散液と、水溶性ポリマーを含有する水溶液とを混合して混合液を調製する工程と、前記混合液の前記水溶性ポリマーの溶解度を低下させる操作を行うことにより、前記膨潤粒子液滴の表面に前記水溶性ポリマーを析出させる工程とを有する単孔中空ポリマー微粒子の製造方法である。
以下に本発明を詳述する。
本発明の単孔中空ポリマー微粒子の製造方法は、非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液と、油溶性溶剤とを混合し、前記種粒子に前記油溶性溶剤を吸収させて膨潤粒子液滴の分散液を調製する工程を有する。なお、本発明の単孔中空ポリマー微粒子の製造方法は、非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液を調製する工程を有してもよい。
上記種粒子は、非架橋ポリマーを含有する。
上記非架橋ポリマーを構成する非架橋性モノマーは特に限定されず、例えば、スチレン、メタクリル酸メチル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸、アクリル酸メチル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸等が挙げられる。
上記非架橋性モノマーを重合して上記種粒子を構成する際に、少量の架橋性モノマーを併用してもよい。少量の架橋性モノマーを併用することにより、得られる種粒子の強度が向上する。
上記架橋性モノマーは特に限定されず、例えば、ジビニルベンゼン、エチレングリコールジメタクリレート等が挙げられる。
上記架橋性モノマーを配合する場合、上記非架橋性モノマーと上記架橋性モノマーとの合計に占める上記架橋性モノマーの配合量の好ましい上限は5重量%である。上記架橋性モノマーの配合量が5重量%を超えると、得られる種粒子への油溶性溶剤の吸収性が低下し、膨潤粒子液滴が形成されないことがある。上記架橋性モノマーの配合量のより好ましい上限は1重量%である。
上記種粒子の分子量は特に限定されないが、重量平均分子量の好ましい上限は50万である。上記種粒子の重量平均分子量が50万を超えると、得られる種粒子への油溶性溶剤の吸収性が低下し、膨潤粒子液滴が形成されないことがある。上記種粒子の重量平均分子量のより好ましい上限は10万である。上記種粒子の重量平均分子量の下限は特に限定されないが、1000未満であると、実質的に粒子を形成できないことがある。
上記種粒子の体積平均粒子径は特に限定されないが、好ましい下限は目的とする単孔中空ポリマー微粒子の平均外径(平均粒子径)の1/10、好ましい上限は目的とする単孔中空ポリマー微粒子の平均外径の1/1.05である。上記種粒子の体積平均粒子径が目的とする単孔中空ポリマー微粒子の平均外径の1/10未満であると、所望の単孔中空ポリマー微粒子の外径を得るために、吸収性能の限界を超えた多くの油溶性溶剤を吸収する必要があり、吸収残りが発生したり、得られる単孔中空ポリマー微粒子の外径が均一にならなかったりすることがある。上記種粒子の体積平均粒子径が目的とする単孔中空ポリマー微粒子の外径の1/1.05を超えると、ごく微量の油溶性溶剤しか吸収する余地がなく、高い中空度を有する単孔中空ポリマー微粒子が得られないことがある。上記種粒子の体積平均粒子径は、目的とする単孔中空ポリマー微粒子の平均外径の1/8以上であることがより好ましく、1/1.5以下であることがより好ましい。
上記種粒子は、粒子径のCv値の好ましい上限が30%である。上記種粒子の粒子径のCv値が30%を超えると、膨潤した種粒子の粒子径が均一にならず、得られる単孔中空ポリマー微粒子の粒子径も均一にならないことがある。上記種粒子の粒子径のCv値のより好ましい上限は、20%である。
なお、上記種粒子の粒子径のCv値は、粒子径測定装置により測定される体積平均粒子径mと標準偏差σから、下記式(1)により算出することができる。
Cv=σ/m×100(%)  (1)
なお、上記単孔中空ポリマー微粒子の平均外径は、走査型電子顕微鏡により、1視野に約100個の粒子が観察できる倍率で観察し、任意に選択した50個の粒子についてノギスを用いて最長径を測定し、最長径の数平均値を求めることにより算出することができる。
上記種粒子を調製する方法は特に限定されず、ソープフリー乳化重合、乳化重合、分散重合等の方法が挙げられる。
上記分散媒は、水を含有する分散媒であれば特に限定されず、水、又は、水にメタノール、エタノール等の水溶性有機溶剤を添加した混合分散媒等が挙げられる。
上記分散媒は、必要に応じて、分散剤を含有してもよい。
上記分散剤は特に限定されず、例えば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸トリエタノールアミン、ポリオキシエチレンアルキルエーテル、ポリビニルアルコール等が挙げられる。
上記種粒子分散液における上記種粒子の配合量は特に限定されず、好ましい下限は0.1重量%、好ましい上限は50重量%である。上記種粒子の配合量が0.1重量%未満であると、単孔中空ポリマー微粒子の生産効率が低くなることがある。上記種粒子の配合量が50重量%を超えると、種粒子が凝集してしまうことがある。上記種粒子の配合量のより好ましい下限は0.5重量%、より好ましい上限は30重量%である。
本発明の単孔中空ポリマー微粒子の製造方法において、上記種粒子分散液と、油溶性溶剤とを混合し、上記種粒子に油溶性溶剤を吸収させて均一な膨潤粒子液滴の分散液を調製する。
本明細書において油溶性溶剤とは、logPow(オクタノール/水分配係数)が0以上である溶剤を意味する。溶剤のlogPowは、以下のように求められる。
n-オクタノールと水とを充分に混合した混合液を24時間放置した後、混合液に溶剤を加えてさらに混合する。その後、オクタノール相中に含まれる溶剤濃度(Co)と水相中とに含まれる溶剤濃度(Cw)とをガスクロマトグラフィーにより測定し、得られたCo及びCwを用いて、下記式(2)からlogPowを算出できる。
logPow=log(Co/Cw)    (2)
Co:オクタノール相中の溶剤濃度
Cw:水相中の溶剤濃度
上記油溶性溶剤は特に限定されず、例えば、トルエン、キシレン等の芳香族炭化水素や、プロパン、シクロプロパン、ブタン、シクロブタン、イソブタン、ノルマルペンタン、シクロペンタン、ネオペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、2-メチルペンタン、2,2-ジメチルブタン、ノルマルヘプタン、シクロヘプタン、ノルマルオクタン、シクロオクタン、イソオクタン等の脂肪族炭化水素又は環状炭化水素や、メチルイソブチルケトン等のケトン類や、酢酸エチル等のエステル類等が挙げられる。これらの油溶性溶剤を用いた場合には、後述するように単孔中空ポリマー微粒子のシェルを形成した後、上記油溶性溶剤を揮発させることによって空洞を有する単孔中空ポリマー微粒子を製造してもよく、上記油溶性溶剤を揮発させずに上記油溶性溶剤を内包する単孔中空ポリマー微粒子を製造してもよい。
また、後述するように、これらの油溶性溶剤を用いて、熱膨張性の単孔中空ポリマー微粒子を製造することもできる。熱膨張性の単孔中空ポリマー微粒子を製造する場合には、上記油溶性溶剤として、イソペンタン、ヘプタン、イソオクタン等の脂肪族炭化水素等の揮発性の油溶性溶剤を用いることが好ましい。
これらの油溶性溶剤は単独で用いてもよく、2種以上を併用してもよい。
また、上記油溶性溶剤として、硬化剤又は硬化促進剤を用いてもよい。
上記硬化剤は特に限定されず、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)、2-メチルイミダゾール(2MZ)等のイミダゾール化合物や、ポリエチレンポリアミン、メタキシレンジアミン等のポリアミン化合物や、トリアルキルテトラヒドロ無水フタル酸、無水トリメリット酸等の酸無水物が挙げられる。上記硬化促進剤は特に限定されず、例えば、モノクロロ酢酸、ジクロロ酢酸等の塩素置換カルボン酸化合物や、p-クロロフェノール、o-クロロフェノール等の塩素置換フェノール化合物や、p-ニトロフェノール等のニトロ置換フェノール化合物や、チオフェノール、2-メルカプトエタノール等のメルカプタン化合物等が挙げられる。これらの油溶性溶剤を用いた場合には、上記油溶性溶剤を内包する単孔中空ポリマー微粒子を製造することができる。
これらの油溶性溶剤は単独で用いてもよく、2種以上を併用してもよい。
上記油溶性溶剤の配合量は、目的とする単孔中空ポリマー微粒子の外径及び内径により適宜調整すればよいが、上記種粒子100重量部に対する好ましい下限は15重量部、好ましい上限は100,000重量部である。上記油溶性溶剤の配合量が15重量部未満であると、高い中空度を有する単孔中空ポリマー微粒子が得られないことがある。上記油溶性溶剤の配合量が100,000重量部を超えると、上記種粒子の吸収性能の限界を超え、吸収残りが発生することがある。上記油溶性溶剤の配合量のより好ましい下限は230重量部、より好ましい上限は50,000重量部である。
上記油溶性溶剤を直接上記種粒子分散液に加えて混合してもよいが、いったん水を含有する分散媒に添加して乳化液を調製し、該乳化液を上記種粒子分散液に加えて混合する方法が好ましい。乳化液として上記種粒子分散液に加えることにより、上記油溶性溶剤をより均一に上記種粒子に吸収させることができる。なお、上記乳化液に、上記種粒子分散液を加えて混合してもよい。
上記油溶性溶剤の乳化液の分散媒は特に限定されず、上記種粒子分散液に用いた分散媒と同じ分散媒であってもよく、異なる分散媒であってもよい。
上記油溶性溶剤の乳化液の分散媒は、乳化剤を含有することが好ましい。上記乳化剤は特に限定されず、例えば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸トリエタノールアミン、ポリオキシエチレンアルキルエーテル、ポリビニルアルコール等が挙げられる。
上記油溶性溶剤の乳化液と上記種粒子分散液とを混合する際には、上記乳化液の全量を一括で加えて混合してもよいし、分割して加えて混合してもよい。分割して加える場合には、滴下することにより添加してもよい。
上記種粒子分散液と、上記油溶性溶剤とを混合すると、上記種粒子に上記油溶性溶剤が吸収されて、均一な膨潤粒子液滴が形成される。
本発明の単孔中空ポリマー微粒子の製造方法において、得られた膨潤粒子液滴の分散液と、水溶性ポリマーを含有する水溶液とを混合して混合液を調製する工程を行う。
上記水溶性ポリマーは、水に完全に溶解すれば特に限定されず、例えば、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルメチルセルロース、ゼラチン、ゼラチン-ポリアニオン類複合物、アルギン酸ナトリウム等が挙げられる。
上記ポリアニオン類は特に限定されず、例えば、アラビアゴム、カラギーナン、カルボキシメチルセルロース、寒天、ポリビニルベンゼンスルホン酸等が挙げられる。
また、上記水溶性ポリマーとして、ガスバリア性を発現するポリビニルアルコールを用いる場合には、上記油溶性溶剤として上記脂肪族炭化水素等の揮発性の油溶性溶剤を内包することにより、熱膨張性の単孔中空ポリマー微粒子を製造することができる。このような熱膨張性の単孔中空ポリマー微粒子は、シェルの軟化点温度以上に加熱して上記油溶性溶剤を気化させると、熱膨張し、より高中空度の微粒子となる。
上記水溶性ポリマーの配合量は特に限定されないが、上記油溶性溶剤100重量部に対し、好ましい下限が0.1重量部、好ましい上限が100重量部である。上記水溶性ポリマーの配合量が0.1重量部未満であると、形成される被膜が薄くなるため、単孔中空ポリマー微粒子を形成できないことがある。上記水溶性ポリマーの配合量が100重量部を超えると、上記混合液の粘度が上昇して取扱い性が低下することがある。上記水溶性ポリマーの配合量のより好ましい下限は1.0重量部、より好ましい上限は30重量部である。
本発明の単孔中空ポリマー微粒子の製造方法において、上記混合液の上記水溶性ポリマーの溶解度を低下させる操作を行う。上記水溶性ポリマーの溶解度を低下させる操作として、例えば、温度調整、pH調整、電解質の添加、貧溶媒の添加、硬化剤の添加等が挙げられる。
例えば、水溶性ポリマーがポリビニルアルコールである場合、ホウ砂やホルマリン-塩酸等を添加することにより上記混合液に対する溶解度を著しく低下させることができる。
水溶性ポリマーがアルギン酸ナトリウムやゼラチンである場合、塩化カルシウム、酸、高分子カチオン等を添加することにより上記混合液に対する溶解度を著しく低下させることができる。
水溶性ポリマーがメチルセルロースである場合、加熱することによりゲル化を促進させた後に、タンニン酸を添加して硬化させることにより上記混合液に対する溶解度を著しく低下させることができる。
上記混合液に上記水溶性ポリマーの溶解度を低下させる操作を行うことにより、上記膨潤粒子液滴の表面に上記水溶性ポリマーが析出し、被膜が形成される。即ち、コアが上記油溶性溶剤、シェルが析出した水溶性ポリマーにより形成されている、コアシェル粒子分散液が得られる。
なお、析出した水溶性ポリマーにより形成されている被膜の強度を向上するために、更に、上記混合液に架橋剤等を添加してもよい。
本発明の単孔中空ポリマー微粒子の製造方法では、得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、上記油溶性溶剤を揮発させることにより空洞を有する単孔中空ポリマー微粒子を製造してもよく、上記油溶性溶剤を揮発させずに上記油溶性溶剤を内包する単孔中空ポリマー微粒子を製造してもよい。
本発明の単孔中空ポリマー微粒子の製造方法によれば、外径及び内径が極めて均一である単孔中空ポリマー微粒子を製造することができる。外径及び内径が極めて均一であることから、篩、風力分級、比重差分級等による特別な分級操作が必要ない。歩留まりが高く、工程も短いので、単孔中空ポリマー微粒子を安く、早く供給することができる。
本発明の単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子もまた、本発明の1つである。
本発明の単孔中空ポリマー微粒子は、空洞を有していてもよく、上記油溶性溶剤を内包していてもよい。
本発明の単孔中空ポリマー微粒子は、空洞を有する場合、外径及び内径が極めて均一であることから、ごく少量の添加で比表面積を向上させることができ、光拡散性、軽量性、断熱性、クッション性、紫外線や可視光や赤外線等の選択吸収や反射、透過性を制御することができる。
本発明の単孔中空ポリマー微粒子は、上記油溶性溶剤として硬化剤や硬化促進剤を内包する場合、例えば、エポキシ樹脂等の硬化物を製造するための硬化剤又は硬化促進剤を内包するマイクロカプセルとして用いることができる。即ち、硬化剤又は硬化促進剤を内包する本発明の単孔中空ポリマー微粒子を硬化性組成物中に含有し、必要に応じて機械的圧力又は熱でシェルを破壊することにより、硬化反応を開始させて硬化物を製造することができる。本発明の単孔中空ポリマー微粒子の外径及び内径が極めて均一であることから、本発明の単孔中空ポリマー微粒子を含有する硬化性組成物は、シェルの薄い部分で貯蔵中に硬化が開始したり、シェルの厚い部分で硬化中に硬化剤又は硬化促進剤が充分に滲み出さず反応性が低下したりすることがなく、その結果、貯蔵安定性が高く、硬化が均質となる。
本発明の単孔中空ポリマー微粒子は、ガスバリア性を発現するポリビニルアルコールによってシェルが形成されており、かつ、上記油溶性溶剤として上記脂肪族炭化水素等の揮発性の油溶性溶剤を内包する場合、熱膨張性の単孔中空ポリマー微粒子として用いることができる。このような熱膨張性の単孔中空ポリマー微粒子は、シェルの軟化点温度以上に加熱して上記油溶性溶剤を気化させると、熱膨張し、より高中空度の微粒子となる。本発明の単孔中空ポリマー微粒子は外径及び内径が極めて均一であることから、熱膨張後の微粒子も外径及び内径が極めて均一となり、光拡散性、軽量性、断熱性、クッション性、紫外線や可視光や赤外線等の選択吸収や反射、透過性等の付与を目的として種々の用途に適用する場合、これらの性能の制御が容易となる。
本発明の単孔中空ポリマー微粒子の平均外径(平均粒子径)は特に限定されないが、好ましい下限は0.1μm、好ましい上限は100μmである。平均外径が0.1μm未満であると、充分な大きさの単孔が得られなかったり、内包する油溶性溶剤の量が少なくなったりすることがある。平均外径が100μmを超えると、種粒子への油溶性溶剤の吸収が遅くなるため、生産性が低下することがある。本発明の単孔中空ポリマー微粒子の平均外径のより好ましい下限は0.5μm、より好ましい上限は20μmである。
本発明の単孔中空ポリマー微粒子は、外径(粒子径)のCv値の好ましい上限が10%である。外径のCv値が10%を超えると、例えば、本発明の単孔中空ポリマー微粒子を、エポキシ樹脂等の硬化物を製造するための硬化剤又は硬化促進剤を内包するマイクロカプセルとして使用した場合、硬化物の硬化が均質とならないことがある。また、外径のCv値が10%を超えると、例えば、本発明の単孔中空ポリマー微粒子が熱膨張性である場合、熱膨張後の微粒子の外径の均一性も低下することがある。外径のCv値のより好ましい上限は7%である。
なお、本発明の単孔中空ポリマー微粒子の外径のCv値は、上記種粒子の粒子径のCv値と同様に算出することができる。
本発明の単孔中空ポリマー微粒子の平均内径は特に限定されないが、好ましい下限は平均外径の5%、好ましい上限は平均外径の99.9%である。平均内径が平均外径の5%未満であると、充分な大きさの単孔が得られなかったり、内包する油溶性溶剤の量が少なくなったりすることがある。平均内径が平均外径の99.9%を超えると、シェルが薄くなるため、内包する油溶性溶剤が漏出することがある。本発明の単孔中空ポリマー微粒子の平均内径のより好ましい下限は平均外径の10%、より好ましい上限は平均外径の99%である。
本発明の単孔中空ポリマー微粒子は、内径のCv値の好ましい上限が10%である。内径のCv値が10%を超えると、例えば、本発明の単孔中空ポリマー微粒子を、エポキシ樹脂等の硬化物を製造するための硬化剤又は硬化促進剤を内包するマイクロカプセルとして使用した場合、硬化物の硬化が均質とならないことがある。また、内径のCv値が10%を超えると、例えば、本発明の単孔中空ポリマー微粒子が熱膨張性である場合、熱膨張後の微粒子の内径の均一性も低下することがある。内径のCv値のより好ましい上限は7%である。
なお、本発明の単孔中空ポリマー微粒子の内径のCv値は、上記種粒子の粒子径のCv値と同様に算出することができる。
本発明によれば、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子の製造方法を提供することができる。更に、本発明によれば、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子を提供することができる。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されない。
(実施例1)
スチレン100重量部、過硫酸カリウム3重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.5μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
油溶性溶剤としてのヘプタン100重量部に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水900重量部とを加えて乳化し、乳化液を調製した。
得られた種粒子分散液に、ポリスチレン粒子重量の200倍の油溶性溶剤となるように乳化液を加えて混合し、24時間撹拌して、油溶性溶剤を吸収した種粒子の膨潤粒子液滴の分散液を得た。
得られた膨潤粒子液滴の分散液を撹拌しながら、水溶性ポリマーとしてヒドロキシプロピルメチルセルロースの水溶液を、ヒドロキシプロピルメチルセルロースの添加量が油溶性溶剤100重量部に対して5重量部となるように滴下して混合液を調製した。
得られた混合液を80℃に加熱した後、タンニン酸水溶液を、タンニン酸の添加量が油溶性溶剤100重量部に対して0.5重量部となるように滴下し、5時間反応させることにより、コアがヘプタン、シェルがヒドロキシプロピルメチルセルロース架橋体により形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してヘプタンを揮発させて、ポリマー微粒子を得た。
(実施例2)
スチレン100重量部、過硫酸カリウム3重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.5μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
油溶性溶剤としてのヘプタン100重量部に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水900重量部とを加えて乳化し、乳化液を調製した。
得られた種粒子分散液に、ポリスチレン粒子重量の200倍の油溶性溶剤となるように乳化液を加えて混合し、24時間撹拌して、油溶性溶剤を吸収した種粒子の膨潤粒子液滴の分散液を得た。
得られた膨潤粒子液滴の分散液を撹拌しながら、水溶性ポリマーとしてゼラチンの水溶液を、ゼラチンの添加量が油溶性溶剤100重量部に対して5重量部となるように滴下して混合液を調製した。
得られた混合液を80℃に加熱した後、アルギン酸ナトリウム水溶液を、アルギン酸ナトリウムの添加量が油溶性溶剤100重量部に対して0.5重量部となるように滴下し、5時間反応させることにより、コアがヘプタン、シェルがゼラチン架橋体により形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してヘプタンを揮発させて、ポリマー微粒子を得た。
(実施例3)
過硫酸カリウムを5重量部とした以外は実施例1と同様にして、体積平均粒子径0.2μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の20倍の油溶性溶剤となるように添加した以外は、実施例1と同様にしてポリマー微粒子を得た。
(実施例4)
過硫酸カリウムを0.5重量部とした以外は実施例1と同様にして、体積平均粒子径2.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の125倍の油溶性溶剤となるように添加した以外は、実施例1と同様にしてポリマー微粒子を得た。
(実施例5)
過硫酸カリウムを0.5重量部とし、更に、塩化ナトリウム0.1重量部を添加した以外は実施例1と同様にして、体積平均粒子径5.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の125倍の油溶性溶剤となるように添加した以外は、実施例1と同様にしてポリマー微粒子を得た。
(比較例1)
油溶性溶剤としてのヘプタン100重量部を多孔質膜に通して、乳化剤と水とを含有する連続層に分散させ、乳化液を作製した。
得られた乳化液を撹拌しながら、水溶性ポリマーとしてヒドロキシプロピルメチルセルロース水溶液を、ヒドロキシプロピルメチルセルロースの添加量が油溶性溶剤100重量部に対して5重量部となるように滴下した。80℃に加熱した後に、タンニン酸水溶液を、タンニン酸の添加量が油溶性溶剤100重量部に対して0.5重量部となるように滴下し、5時間反応させることにより、コアがヘプタン、シェルがヒドロキシプロピルメチルセルロース架橋体により形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してヘプタンを揮発させて、ポリマー微粒子を得た。
(比較例2)
油溶性溶剤としてのヘプタン100重量部を多孔質膜に通して、乳化剤と水とを含有する連続層に分散させ、乳化液を作製した。
得られた乳化液を撹拌しながら、水溶性ポリマーとしてゼラチン水溶液を、ゼラチンの添加量が油溶性溶剤100重量部に対して5重量部となるように滴下した。80℃に加熱した後に、アルギン酸ナトリウム水溶液を、アルギン酸ナトリウムの添加量が油溶性溶剤100重量部に対して0.5重量部となるように滴下し、5時間反応させることにより、コアがヘプタン、シェルがゼラチン架橋体により形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してヘプタンを揮発させて、ポリマー微粒子を得た。
(評価)
実施例1~5、比較例1、2で得られたポリマー微粒子について、以下の方法により評価を行った。結果を表1に示した。
(1)外径の測定
得られたポリマー微粒子を、走査型電子顕微鏡により、1視野に約100個が観察できる倍率で観察し、任意に選択した50個の微粒子についてノギスを用いて最長径を測定し、この値の数平均値と変動係数を求め、これらを平均外径、外径Cv値とした。
(2)内径の測定及び単孔性の評価
得られたポリマー微粒子を、エポキシ樹脂に包埋した後、樹脂を硬化させ、マイクロトームで断面切片を切り出した。得られた切片を走査型電子顕微鏡により、1視野に約100個の断面が観察できる倍率で観察した。
単孔性について、任意に選択した50個の微粒子の断面を観察して、単一の孔が存在する粒子の数が49個以上であった場合を「◎」、45~48個であった場合を「○」、40~44個であった場合を「△」、39個以下であった場合を「×」と評価した。
また、任意に選択した50個の微粒子の断面について、ノギスを用いて単一の孔の最長径を計測し、この値の数平均値と変動係数を求め、これらを平均内径、内径Cv値とした。なお、平均内径、内径Cv値は、単一の孔が存在する粒子について算出した。
Figure JPOXMLDOC01-appb-T000001
(実施例6)
スチレン100重量部、過硫酸カリウム3重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.5μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
油溶性溶剤として2-エチル-4-メチルイミダゾール(2E4MZ)100重量部及びトルエン100重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水900重量部とを加えて混合し、乳化液を調製した。
得られた種粒子分散液に、ポリスチレン粒子重量の200倍の油溶性溶剤となるように乳化液を加えて混合し、24時間撹拌して、油溶性溶剤を吸収した種粒子の膨潤粒子液滴の分散液を得た。
得られた膨潤粒子液滴の分散液を撹拌しながら、水溶性ポリマーとしてヒドロキシプロピルメチルセルロースの水溶液を、ヒドロキシプロピルメチルセルロースの添加量が油溶性溶剤100重量部に対して5重量部となるように滴下して混合液を調製した。
得られた混合液を80℃に昇温させた後、タンニン酸水溶液を、タンニン酸の添加量が油溶性溶剤100重量部に対して0.5重量部となるように滴下し、5時間反応させることにより、コアがトルエン/2-エチル-4-メチルイミダゾール、シェルがヒドロキシプロピルメチルセルロース架橋体により形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してトルエンを揮発させてポリマー微粒子を得た。
(実施例7)
油溶性溶剤としての2-エチル-4-メチルイミダゾール(2E4MZ)100重量部に代えて、2-メチルイミダゾール(2MZ)100重量部を用いた以外は、実施例6と同様にしてポリマー微粒子を得た。
(実施例8)
過硫酸カリウムを5重量部とした以外は実施例6と同様にして、体積平均粒子径0.2μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の20倍の油溶性溶剤となるように添加した以外は、実施例6と同様にしてポリマー微粒子を得た。
(実施例9)
過硫酸カリウムを0.5重量部とした以外は実施例6と同様にして、体積平均粒子径2.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の125倍の油溶性溶剤となるように添加した以外は、実施例6と同様にしてポリマー微粒子を得た。
(実施例10)
過硫酸カリウムを0.5重量部とし、更に、塩化ナトリウム0.1重量部を添加した以外は実施例6と同様にして、体積平均粒子径5.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の125倍の油溶性溶剤となるように添加した以外は、実施例6と同様にしてポリマー微粒子を得た。
(比較例3)
メタクリル酸2重量部、アクリロニトリル8重量部及び2,2-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)0.1重量部を含有するイソプロピルアルコール溶液400重量部に、あらかじめ平均粒子径5μmに微粉砕した1-シアノエチル-2-フェニルイミダゾール90重量部を分散させた。この分散液を、窒素雰囲気下、50℃で3時間反応させることにより、コアが1-シアノエチル-2-フェニルイミダゾール、シェルがメタクリル酸/アクリロニトリル共重合体により形成されている、コアシェル粒子分散液を得た。その後、得られた分散液を濾過してポリマー微粒子を得た。
(比較例4)
温度計、還流冷却器及びテフロン(登録商標)製半月型攪拌装置を備えた内容積1000mLの三ツ口丸底フラスコに、2-メチルイミダゾール(2MZ)28.0g及びアクリルポリマー(東亞合成社製「レゼダGP-300」)4.99gを仕込み、次いで、メチルイソブチルケトン(MIBK)593.95gを加え、温度を70℃に上げて完全に溶解した。次いで、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート828」)の50重量%MIBK溶液143.74gを加えて混合し、混合物を300rpmの速度で攪拌しながら70℃で10時間反応させ、反応率をほぼ100%まで到達させることにより、コアが2-メチルイミダゾール(2MZ)、シェルがアクリルポリマーにより形成されている、コアシェル粒子分散液を得た。その後、得られた分散液を濾過してポリマー微粒子を得た。
(比較例5)
油溶性溶剤として2-エチル-4-メチルイミダゾール(2E4MZ)100重量部及びトルエン100重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水900重量部とを加えて混合し、乳化液を調製した。
得られた乳化液を、水に加えた(種粒子を用いなかった)以外は、実施例6と同様にしてポリマー粒子を得た。
(評価)
実施例6~10、比較例3~5で得られたポリマー微粒子について、以下の方法により評価を行った。結果を表2に示した。
(1)外径の測定
得られたポリマー微粒子を、走査型電子顕微鏡により、1視野に約100個が観察できる倍率で観察し、任意に選択した50個の微粒子についてノギスを用いて最長径を測定し、この値の数平均値と変動係数を求め、これらを平均外径、外径Cv値とした。
(2)内径の測定及び単孔性の評価
得られたポリマー微粒子を、エポキシ樹脂に包埋した後、樹脂を硬化させ、マイクロトームで断面切片を切り出した。得られた切片を走査型電子顕微鏡により、1視野に約100個の断面が観察できる倍率で観察した。
単孔性について、任意に選択した50個の微粒子の断面を観察して、単一の孔が存在する粒子の数が49個以上であった場合を「◎」、45~48個であった場合を「○」、40~44個であった場合を「△」、39個以下であった場合を「×」と評価した。
また、任意に選択した50個の微粒子の断面について、ノギスを用いて単一の孔の最長径を計測し、この値の数平均値と変動係数を求め、これらを平均内径、内径Cv値とした。なお、平均内径、内径Cv値は、単一の孔が存在する粒子について算出した。
(3)貯蔵安定性評価
得られたポリマー微粒子10重量部と、エポキシ樹脂(ジャパンエポキシレジン社製「JER828」)100重量部との混合物を、40℃で7日間放置した。放置後、混合物がゲル状態になっていない場合を「○」、ゲル状態になった場合を「×」と評価した。
Figure JPOXMLDOC01-appb-T000002
(実施例11)
スチレン100重量部、過硫酸カリウム3重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.5μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
油溶性溶剤としてのヘプタン100重量部に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水900重量部とを加えて乳化し、乳化液を調製した。
得られた種粒子分散液に、ポリスチレン粒子重量の200倍の油溶性溶剤となるように乳化液を加え、24時間撹拌して、油溶性溶剤を吸収した種粒子の膨潤粒子液滴の分散液を得た。
得られた膨潤粒子液滴の分散液を撹拌しながら、水溶性ポリマーとしてポリビニルアルコールの水溶液を、ポリビニルアルコールの添加量が油溶性溶剤100重量部に対して5重量部となるように滴下して混合液を調製した。
得られた混合液を80℃に加熱した後、1%ホルマリン水溶液を、ホルマリンの添加量が油溶性溶剤100重量部に対して0.5重量部となるように滴下し、1規定の塩酸を10重量部加えて5時間反応させることにより、コアがヘプタン、シェルがポリビニルアルコールにより形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥して、ポリマー微粒子を得た。
(実施例12)
過硫酸カリウムを0.5重量部とした以外は実施例11と同様にして、体積平均粒子径2.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の125倍の油溶性溶剤となるように添加した以外は、実施例11と同様にしてポリマー微粒子を得た。
(実施例13)
過硫酸カリウムを0.5重量部とし、更に、塩化ナトリウム0.1重量部を添加した以外は実施例11と同様にして、体積平均粒子径5.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
この種粒子分散液に、乳化液の添加量をポリスチレン粒子重量の125倍の油溶性溶剤となるように添加した以外は、実施例11と同様にしてポリマー微粒子を得た。
(比較例6)
油溶性溶剤としてのヘプタン100重量部を多孔質膜に通して、乳化剤と水とを含有する連続層に分散させ、乳化液を作製した。
得られた乳化液を撹拌しながら、水溶性ポリマーとしてポリビニルアルコール水溶液を、ポリビニルアルコールの添加量が油溶性溶剤100重量部に対して5重量部となるように滴下した。80℃に加熱した後に、1%ホルマリン水溶液を、ホルマリンの添加量が油溶性溶剤100重量部に対して0.5重量部となるように滴下し、1規定の塩酸を10重量部加えて5時間反応させることにより、コアがヘプタン、シェルがポリビニルアルコールにより形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥して、ポリマー微粒子を得た。
(評価)
実施例11~13、比較例6で得られたポリマー微粒子について、以下の方法により評価を行った。結果を表3に示した。
(1)外径の測定
得られたポリマー微粒子を、走査型電子顕微鏡により、1視野に約100個が観察できる倍率で観察し、任意に選択した50個の微粒子についてノギスを用いて最長径を測定し、この値の数平均値と変動係数を求め、これらを平均外径、外径Cv値とした。
(2)内径の測定及び単孔性の評価
得られたポリマー微粒子を、エポキシ樹脂に包埋した後、樹脂を硬化させ、マイクロトームで断面切片を切り出した。得られた切片を走査型電子顕微鏡により、1視野に約100個の断面が観察できる倍率で観察した。
単孔性について、任意に選択した50個の微粒子の断面を観察して、単一の孔が存在する粒子の数が49個以上であった場合を「◎」、45~48個であった場合を「○」、40~44個であった場合を「△」、39個以下であった場合を「×」と評価した。
また、任意に選択した50個の微粒子の断面について、ノギスを用いて単一の孔の最長径を計測し、この値の数平均値と変動係数を求め、これらを平均内径、内径Cv値とした。なお、平均内径、内径Cv値は、単一の孔が存在する粒子について算出した。
(3)熱膨張性(発泡性)評価
得られたポリマー微粒子を約0.1g計量し、10mLのメスシリンダーに入れた。その後、150℃に加熱したオーブンに5分間投入し、メスシリンダー内で膨張した熱膨張性のポリマー微粒子の容積を測定した。容積が5mL以上である場合を「◎」、2mL以上5mL未満である場合を「○」、0.5mL以上2mL未満である場合を「△」、0.5mL未満である場合を「×」とした。
Figure JPOXMLDOC01-appb-T000003
本発明によれば、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子の製造方法を提供することができる。更に、本発明によれば、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子を提供することができる。

Claims (9)

  1. 非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液と、油溶性溶剤とを混合し、前記種粒子に前記油溶性溶剤を吸収させて膨潤粒子液滴の分散液を調製する工程と、
    前記膨潤粒子液滴の分散液と、水溶性ポリマーを含有する水溶液とを混合して混合液を調製する工程と、
    前記混合液の前記水溶性ポリマーの溶解度を低下させる操作を行うことにより、前記膨潤粒子液滴の表面に前記水溶性ポリマーを析出させる工程とを有する
    ことを特徴とする単孔中空ポリマー微粒子の製造方法。
  2. 油溶性溶剤を、水を含有する分散媒中に分散させた乳化液と、種粒子分散液とを混合することを特徴とする請求項1記載の単孔中空ポリマー微粒子の製造方法。
  3. 種粒子は、粒子径のCv値が30%以下であることを特徴とする請求項1又は2記載の単孔中空ポリマー微粒子の製造方法。
  4. 油溶性溶剤は、硬化剤又は硬化促進剤であることを特徴とする請求項1、2又は3記載の単孔中空ポリマー微粒子の製造方法。
  5. 水溶性ポリマーは、ポリビニルアルコールであることを特徴とする請求項1、2、3又は4記載の単孔中空ポリマー微粒子の製造方法。
  6. 請求項1、2、3、4又は5記載の単孔中空ポリマー微粒子の製造方法を用いて製造されることを特徴とする単孔中空ポリマー微粒子。
  7. 平均外径が0.1~100μmであり、かつ、外径のCv値が10%以下であることを特徴とする請求項6記載の単孔中空ポリマー微粒子。
  8. 内径のCv値が10%以下であることを特徴とする請求項6又は7記載の単孔中空ポリマー微粒子。
  9. 熱膨張性であることを特徴とする請求項6、7又は8記載の単孔中空ポリマー微粒子。
PCT/JP2009/066241 2008-09-29 2009-09-17 単孔中空ポリマー微粒子の製造方法 WO2010035680A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09816095A EP2330145B1 (en) 2008-09-29 2009-09-17 Method for producing single-hole hollow polymer microparticles
US13/120,241 US8470398B2 (en) 2008-09-29 2009-09-17 Method for producing single-hole hollow polymer microparticles
CN2009801379489A CN102164988B (zh) 2008-09-29 2009-09-17 单孔空心聚合物微粒的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008251052 2008-09-29
JP2008-251052 2008-09-29
JP2009-006362 2009-01-15
JP2009006362 2009-01-15
JP2009156995A JP4714780B2 (ja) 2008-09-29 2009-07-01 単孔中空ポリマー微粒子の製造方法
JP2009-156995 2009-07-01

Publications (1)

Publication Number Publication Date
WO2010035680A1 true WO2010035680A1 (ja) 2010-04-01

Family

ID=42059681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066241 WO2010035680A1 (ja) 2008-09-29 2009-09-17 単孔中空ポリマー微粒子の製造方法

Country Status (7)

Country Link
US (1) US8470398B2 (ja)
EP (1) EP2330145B1 (ja)
JP (1) JP4714780B2 (ja)
KR (1) KR20110082125A (ja)
CN (1) CN102164988B (ja)
TW (1) TWI458762B (ja)
WO (1) WO2010035680A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185064A (ja) * 2008-09-29 2010-08-26 Sekisui Chem Co Ltd 単孔中空ポリマー微粒子の製造方法
WO2012014279A1 (ja) * 2010-07-27 2012-02-02 積水化学工業株式会社 単孔中空ポリマー微粒子の製造方法
US8470398B2 (en) 2008-09-29 2013-06-25 Sekisui Chemical Co., Ltd. Method for producing single-hole hollow polymer microparticles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443780B2 (ja) * 2009-02-20 2014-03-19 積水化学工業株式会社 イミダゾール化合物を内包した微粒子の製造方法
TWI483972B (zh) * 2010-07-28 2015-05-11 Sekisui Chemical Co Ltd Single hole hollow polymer microparticle manufacturing method
JP6007113B2 (ja) * 2013-01-10 2016-10-12 Jxエネルギー株式会社 マイクロカプセルの製造方法およびマイクロカプセル
JP6525622B2 (ja) * 2014-02-10 2019-06-05 積水化学工業株式会社 コアシェル構造のマイクロカプセル
JP2015232119A (ja) * 2014-05-13 2015-12-24 積水化学工業株式会社 水溶性硬化剤及び/又は硬化促進剤内包カプセル、水溶性硬化剤及び/又は硬化促進剤内包カプセルの製造方法、並びに、熱硬化性樹脂組成物
JP2017176907A (ja) * 2016-03-28 2017-10-05 株式会社日本カプセルプロダクツ マイクロカプセルの製造方法及びこの製造方法で製造されたマイクロカプセル

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934964A (ja) * 1972-08-02 1974-03-30
JPS62127336A (ja) * 1985-11-28 1987-06-09 Japan Synthetic Rubber Co Ltd 単一の内孔を有するポリマー粒子の製造方法
JPH04279637A (ja) 1990-11-28 1992-10-05 Japan Synthetic Rubber Co Ltd 中空ポリマー微粒子およびその製造方法
JP2002105104A (ja) 2000-09-28 2002-04-10 Kuraray Co Ltd 中実ポリマー粒子または中空ポリマー粒子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125127A (ja) 1985-11-28 1993-05-21 Japan Synthetic Rubber Co Ltd 単一の内孔を有するポリマー粒子
JPH0468324A (ja) 1990-07-09 1992-03-04 Canon Inc カメラ
JPH0820604A (ja) * 1994-07-06 1996-01-23 Kanebo Nsc Ltd 中空重合体粒子の製法
JP2003181274A (ja) * 2001-12-18 2003-07-02 Sekisui Chem Co Ltd 中空ポリマー粒子の製造方法
JP2004202770A (ja) * 2002-12-24 2004-07-22 Sekisui Chem Co Ltd 感熱記録シート
JP4317941B2 (ja) * 2004-02-18 2009-08-19 国立大学法人神戸大学 開口微粒子及びその製造方法
TW200602365A (en) * 2004-04-05 2006-01-16 Sekisui Chemical Co Ltd Hollow resin fine particles, organic/inorganic hybrid fine particles, and method for producing hollow resin fine articles
CN100543070C (zh) * 2004-04-05 2009-09-23 积水化学工业株式会社 中空树脂微粒、有机·无机混合微粒及中空树脂微粒的制造方法
US20060093822A1 (en) * 2004-11-02 2006-05-04 Keh-Ying Hsu Polymer particle with hollow structure and method for fabricating the same
WO2008095256A1 (en) * 2007-02-09 2008-08-14 Newsouth Innovations Pty Limited Hollow microparticles
JP4714780B2 (ja) 2008-09-29 2011-06-29 積水化学工業株式会社 単孔中空ポリマー微粒子の製造方法
JP2010100799A (ja) 2008-09-29 2010-05-06 Sekisui Chem Co Ltd 単孔中空ポリマー微粒子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934964A (ja) * 1972-08-02 1974-03-30
JPS62127336A (ja) * 1985-11-28 1987-06-09 Japan Synthetic Rubber Co Ltd 単一の内孔を有するポリマー粒子の製造方法
JPH0468324B2 (ja) 1985-11-28 1992-11-02 Japan Synthetic Rubber Co Ltd
JPH04279637A (ja) 1990-11-28 1992-10-05 Japan Synthetic Rubber Co Ltd 中空ポリマー微粒子およびその製造方法
JP2002105104A (ja) 2000-09-28 2002-04-10 Kuraray Co Ltd 中実ポリマー粒子または中空ポリマー粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2330145A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185064A (ja) * 2008-09-29 2010-08-26 Sekisui Chem Co Ltd 単孔中空ポリマー微粒子の製造方法
US8470398B2 (en) 2008-09-29 2013-06-25 Sekisui Chemical Co., Ltd. Method for producing single-hole hollow polymer microparticles
WO2012014279A1 (ja) * 2010-07-27 2012-02-02 積水化学工業株式会社 単孔中空ポリマー微粒子の製造方法
US20120189848A1 (en) * 2010-07-27 2012-07-26 Sekisui Chemical Co., Ltd. Method for producing single-hole hollow polymer particles
US8465836B2 (en) 2010-07-27 2013-06-18 Sekisui Chemical Co., Ltd. Method for producing single-hole hollow polymer particles
KR101761926B1 (ko) 2010-07-27 2017-07-26 세키스이가가쿠 고교가부시키가이샤 단공 중공 폴리머 미립자의 제조 방법

Also Published As

Publication number Publication date
JP4714780B2 (ja) 2011-06-29
US8470398B2 (en) 2013-06-25
CN102164988A (zh) 2011-08-24
TW201012856A (en) 2010-04-01
EP2330145A1 (en) 2011-06-08
EP2330145A4 (en) 2012-03-21
KR20110082125A (ko) 2011-07-18
EP2330145B1 (en) 2012-10-24
JP2010185065A (ja) 2010-08-26
US20110223426A1 (en) 2011-09-15
TWI458762B (zh) 2014-11-01
CN102164988B (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
JP4714780B2 (ja) 単孔中空ポリマー微粒子の製造方法
JP4742161B2 (ja) 単孔中空ポリマー微粒子の製造方法
WO2012014279A1 (ja) 単孔中空ポリマー微粒子の製造方法
US4336173A (en) Process for preparing an aqueous emulsion or dispersion of a partly water-soluble material, and optionally further conversion of the prepared dispersion or emulsion to a polymer dispersion when the partly water-soluble material is a polymerizable monomer
JP7318531B2 (ja) ラテックスの製造方法及び中空樹脂粒子の製造方法
Minami et al. Preparation of hollow polymer particles with a single hole in the shell by SaPSeP
JP5291484B2 (ja) 硬化剤又は硬化促進剤含有ポリマー微粒子の製造方法
Wang et al. Facile synthesis of hollow polymeric microparticles possessing various morphologies via seeded polymerization
JP2010100799A (ja) 単孔中空ポリマー微粒子の製造方法
CN114369281A (zh) 一种热膨胀型发泡微球及其制备方法
Srisopa et al. Understanding and preventing the formation of deformed polymer particles during synthesis by a seeded polymerization method
JP5438659B2 (ja) 硬化剤及び/又は硬化促進剤内包カプセルの製造方法、硬化剤及び/又は硬化促進剤内包カプセル、並びに、熱硬化性樹脂組成物
Liu et al. Facile synthesis of core-shell, multiple compartment anisotropic particles via control of cross-linking and continuous phase separations in one-pot dispersion polymerization
TWI483972B (zh) Single hole hollow polymer microparticle manufacturing method
Wang et al. Synthesis of SiOH-functionalized composite particles with buckled surface by seeded emulsion polymerization
Hata et al. Preparation of hollow poly (divinyl benzene) particles with multiple holes in the shell by microsuspension polymerization with the SaPSeP method
Wei et al. Template synthesis of hydrogel composite hollow spheres against polymeric hollow latex
Xu et al. Synthesis of triangle hybrid particles by radiation-induced seeded emulsion polymerization based on polystyrene/SiO2 core–shell particles
KR102004425B1 (ko) 현탁액의 저온 안정화를 통한 열팽창성 미소구의 분산도 향상 방법
TWI551619B (zh) Hardening agent and / or hardening accelerator composite particles, hardening agent and / or hardening accelerator composite particles, and thermosetting resin composition
JP5443780B2 (ja) イミダゾール化合物を内包した微粒子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137948.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117006290

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009816095

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13120241

Country of ref document: US