WO2010035676A1 - 電動車両及び電動車両の充電制御方法 - Google Patents

電動車両及び電動車両の充電制御方法 Download PDF

Info

Publication number
WO2010035676A1
WO2010035676A1 PCT/JP2009/066221 JP2009066221W WO2010035676A1 WO 2010035676 A1 WO2010035676 A1 WO 2010035676A1 JP 2009066221 W JP2009066221 W JP 2009066221W WO 2010035676 A1 WO2010035676 A1 WO 2010035676A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
control unit
charger
charging
state
Prior art date
Application number
PCT/JP2009/066221
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112009002329T priority Critical patent/DE112009002329T5/de
Priority to US13/061,831 priority patent/US8143843B2/en
Priority to CN200980137163.1A priority patent/CN102164771B/zh
Publication of WO2010035676A1 publication Critical patent/WO2010035676A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electric vehicle including a battery that can be charged from an external power source, and a charge control method for the electric vehicle.
  • an electric vehicle equipped with a traction motor such as an electric vehicle or a hybrid vehicle
  • a connecting part such as a power plug and a charging circuit including a charger
  • a plug-in hybrid vehicle a vehicle that can charge a battery from an external power source via a power plug.
  • a charger is connected between the power plug and the battery, and the battery is connected from the external power source via the charger. It may be possible to charge the battery.
  • Patent Document 1 describes a charging system including a charging device mounted on an electric vehicle and an infrastructure-side power supply device.
  • the charging device includes a charge port unit (C / P unit) having a port.
  • the power supply apparatus includes an AC power source and a standard charge module (SCM) connected to the AC power source.
  • the SCM is connected to the paddle via a cable.
  • the C / P unit is provided with a core and a charging coil.
  • the position where the charging coil connected to the core of the C / P unit and the inverter of the SCM is provided is a position where the feeding coil and the charging coil in the paddle are close to each other when the paddle is in the charging position, This is a position where an induced current is generated in the charging coil when a current flows through the power feeding coil.
  • the limit switch that is closed when the paddle reaches the charging position is connected to the RF board as a communication device.
  • 12V power is supplied to the RF board, and the RF board is connected to the SCM communication device. It is possible to transmit and receive communication signals between the two.
  • the RF board when a signal transmitted by the SCM is received, a battery ECU activation signal is generated and transmitted to the battery ECU, and the battery ECU is activated.
  • the battery ECU supplies the current generated in the charging coil to the battery, and charging of the battery is started.
  • the SCM starts transmission of communication signals to the RF board, the battery ECU is activated, and charging of the battery is resumed.
  • Patent Document 2 describes a power supply device for an electric vehicle that includes a direct current power supply device that supplies power from a commercial power source to a main battery, is fixed on the ground side, or is mounted on an electric vehicle, and a battery ECU. ing.
  • the DC power supply device includes a high-voltage output unit that converts commercial power to high-voltage DC power and supplies power to the main battery, and a low-voltage output unit that converts commercial power to low-voltage DC power and supplies power to the auxiliary battery. It is supposed to have.
  • Patent Documents 3 to 5 there are Patent Documents 3 to 5 in addition to Patent Documents 1 and 2.
  • JP-A-10-304582 Japanese Patent Laid-Open No. 11-178228 JP 2006-278210 A JP 2006-304408 A JP 2007-124813 A
  • Patent Literature 1 to Patent Literature 5 include a battery that can be charged from an external power source, a charger, a charger control unit that controls the charger, and a battery that monitors the state of the battery.
  • a control unit means for reducing energy loss during charging and improving charging efficiency is not disclosed.
  • An object of the present invention is to provide a battery that can be charged from an external power source, a charger, a charger controller that controls the charger, and a battery controller that monitors the state of the battery in the electric vehicle and the charging control method for the electric vehicle.
  • an electric vehicle provided with the above, it is possible to reduce energy loss during charging and improve charging efficiency.
  • An electric vehicle is a battery that can be charged from an external power source, supplies power to the traveling motor when the vehicle is traveling, and is disconnected from the traveling motor when charged from the external power source.
  • Battery a charger connected to the battery via a power line, a charging circuit including a switch connected between the charger and the battery via a power line, a charger control unit for controlling the charger, and a battery state
  • a battery control unit that monitors when a voltage signal is input to the battery control unit, and the battery control unit can be charged after the battery control unit is activated.
  • Battery state determining means for determining whether or not the condition is satisfied, and when the battery state determining means determines that the battery state satisfies the chargeable condition, the battery And a starting unit for turning on a switch connected to the control unit by a signal line and starting a charger control unit connected by the battery control unit and the signal line.
  • the charger control unit charges the battery from an external power source. It is an electric vehicle which controls a charger so that it may.
  • An electric vehicle includes a battery that can be charged from an external power source, a charger that is connected to the battery via a power line, and a switch that is connected between the charger and the battery via a power line.
  • a charger circuit that controls the charger, a battery controller that monitors the state of the battery, a traveling motor that is driven by the supply of power from the battery, and between the traveling motor and the battery And a vehicle control unit that turns off the relay when the battery is charged from an external power source and turns on the relay when the traveling motor is driven.
  • the switch connected to the battery control unit and the signal line is turned on, and the battery control unit and the signal line Activation means for activating the connected charger control unit, and charging power determination for transmitting a charging power determination signal representing the calculated charging power to be charged to the battery state or the battery calculated from the battery state in the charger control unit
  • the charger control unit externally outputs the calculated charging power to be charged by the battery calculated from the battery state represented by the charging power determination signal or the calculated charging power represented by the charging power determination signal.
  • the switch includes a system relay, for example.
  • the battery is a plurality of batteries
  • the battery control unit is a plurality of battery control units corresponding to the respective batteries and communicating with the charger control unit, and a switch. Is a plurality of switches connected by power lines between each battery and the charger, and the charger control unit calculates the calculated charging power of the battery calculated from the battery state transmitted from each battery control unit, Alternatively, the charger is controlled so that each battery is charged from the external power source with the calculated charging power transmitted from the battery control unit.
  • the plurality of battery control units determine whether or not a corresponding battery state satisfies a chargeable condition, and among the plurality of switches, when the chargeable condition is satisfied. After turning on only the switch corresponding to the determined battery, at least one battery control unit transmits an activation command signal to the charger control unit.
  • the battery control unit that monitors the state of the battery and the charger control unit that controls the charger are activated, and the battery control unit And the control part except a charger control part is not started.
  • an inverter or step-up converter that is driven during traveling is provided with a travel connection switch that is connected between the battery and the battery, and the battery and the charger are connected via the power line.
  • the current capacity of the charging connection switch which is a switch to be used, is made smaller than the current capacity of the traveling connection switch.
  • the travel connection switch includes, for example, a system relay.
  • the electric vehicle according to the present invention preferably includes a travel time connection switch connected by a power line between an inverter or boost converter that is driven during travel and the battery, and is connected by a power line between the battery and the charger.
  • the connection switch at the time of charging is a MOS-FET having a current cutoff function and a MOS-FET. System relays connected in series.
  • the electric vehicle according to the present invention further includes a travel connection switch that is connected by a power line between an inverter or boost converter that is driven during travel and the battery, and is connected by a power line between the battery and the charger.
  • a travel connection switch that is connected by a power line between an inverter or boost converter that is driven during travel and the battery, and is connected by a power line between the battery and the charger.
  • a signal indicating that a start switch that can be operated by the driver is preferably turned on when charging from an external power source.
  • the travel connection switch is turned on.
  • the signal indicating that the start switch is turned on when charging from an external power supply is not input, the travel connection switch is not turned on.
  • a switch control unit is provided.
  • the electric vehicle according to the present invention further includes a travel connection switch that is connected by a power line between an inverter or boost converter that is driven during travel and the battery, and is connected by a power line between the battery and the charger.
  • a travel connection switch that is connected by a power line between an inverter or boost converter that is driven during travel and the battery, and is connected by a power line between the battery and the charger.
  • a welding detection unit that detects the presence or absence of welding of a system relay included in the connection switch during charging Is provided.
  • the electric vehicle according to the present invention preferably includes two power conversion units for charging the low-voltage battery, and one power conversion unit of the two power conversion units is mounted in the charger, It is activated only when charging from an external power source, the other power conversion unit of the two power conversion units is activated only when the vehicle is running, and the output capacity of one power conversion unit is the output capacity of the other power conversion unit When the signal indicating that the start switch that can be operated by the driver during charging from the external power source is input, the other power conversion unit is driven and the one power conversion unit Power conversion unit control means for stopping driving is provided.
  • the power converter is a DC / DC converter or an AC / DC converter.
  • a charging control method for an electric vehicle which is a battery that can be charged from an external power source, supplies electric power to a traveling motor when the vehicle is traveling,
  • a battery that includes a battery that is disconnected from the motor, a charger that is connected to the battery via a power line, a switch that is connected between the charger and the battery via a power line, and a charger control that controls the charger
  • a battery control unit that monitors the state of the battery. The battery control unit starts when the voltage signal is input to the battery control unit, and the battery control unit.
  • the battery control unit determines whether or not the battery state satisfies a chargeable condition, and the battery control unit When it is determined that the battery controller and the signal line are turned on, the battery controller and the charger controller connected by the signal line are activated, and the charger controller, Controlling the charger so as to charge the battery from an external power source.
  • a charging control method for an electric vehicle a battery that can be charged from an external power source, a charger connected to the battery via a power line, and a power line connected between the charger and the battery.
  • a charging circuit including a switch to be operated, a charger control unit that controls the charger, a battery control unit that monitors the state of the battery, a relay that is connected between the traveling motor and the battery by a power line, and an external A vehicle control unit that turns off a relay when charging a battery from a power source and turns on a relay when driving a traveling motor, and a voltage signal is input to the battery control unit.
  • the battery control unit is activated when the battery control unit is activated, and after the battery control unit is activated, the battery control unit determines whether the state of the battery satisfies a chargeable condition.
  • the battery controller determines that the battery condition satisfies the chargeable condition, the battery controller turns on the switch connected to the signal line and connects to the battery controller and the signal line.
  • a step of starting the control unit a step of transmitting a charging power determination signal representing a calculated charging power that the battery control unit should charge the battery state or the battery calculated from the battery state to the charger control unit, and charging
  • the charger control unit charges the battery from the external power source with the calculated charging power to be charged from the battery state represented by the charging power determination signal or the calculated charging power represented by the charging power determination signal.
  • a step of controlling the charging of the electric vehicle is activated when the battery control unit is activated, and after the battery control unit is activated, the battery control unit determines whether the state of the battery satisfies a chargeable condition.
  • the battery is a plurality of batteries
  • the battery control unit corresponds to each battery and communicates with the charger control unit.
  • the switches are a plurality of switches connected by power lines between the respective batteries and the charger, and the charger control unit calculates the battery state calculated from the battery state transmitted from each battery control unit. Controlling the charger to charge each battery from the external power source with the calculated charging power or the calculated charging power transmitted from the battery control unit.
  • the plurality of battery control units determine whether or not a corresponding battery state satisfies a chargeable condition, and charging is possible among the plurality of switches. After turning on only the switch corresponding to the battery determined to satisfy the condition, at least one battery control unit includes a step of transmitting an activation command signal to the charger control unit.
  • a battery that can be charged from an external power source, a charger, and a charger controller that controls the charger And in an electric vehicle provided with the battery control part which monitors the state of a battery, the energy loss at the time of charge can be reduced and charging efficiency can be improved. That is, according to the electric vehicle of the present invention, at the time of charging, the battery control unit is activated when a voltage signal is input to the battery control unit, and the battery state determination unit determines that the state of the battery satisfies the chargeable condition.
  • the switch is turned on by the starting unit, the charger control unit is started, and the charger control unit calculates the charging power calculated from the battery state transmitted from the charging power determination signal transmitting unit, or charging The charger is controlled so that the battery is charged from the external power source with the calculated charging power transmitted from the power determining signal transmitting means. For this reason, it is possible to prevent the charger controller from being unnecessarily activated during charging from an external power source, to reduce energy loss during charging, and to improve charging efficiency.
  • a relay connected by a power line between the traveling motor and the battery, and an external power source Since the vehicle control unit that turns off the relay when charging the battery and turns on the relay when driving the traveling motor is provided, charging from the external power source can be performed more efficiently. That is, when charging from an external power source, the battery control unit is activated when a voltage signal is input to the battery control unit, and the battery charger determines that the battery state is determined to satisfy the chargeable condition by the battery state determination unit.
  • the control unit is activated, the relay connected between the traveling motor and the battery is turned off, so the traveling motor is connected to the traveling motor side rather than the relay to drive the inverter. There is no need to boot the system. For this reason, it is possible to save power during charging and improve charging efficiency.
  • the relay connected between the traveling motor and the battery is turned on, so that electric power from the battery is supplied to the traveling motor side so that the vehicle can travel using the traveling motor.
  • the battery is a plurality of batteries
  • the battery control unit is a plurality of battery control units corresponding to each battery and communicating with the charger control unit
  • the switch is provided between each battery and the charger.
  • the charger control unit calculates the calculated charging power of the battery calculated from the battery state transmitted from each battery control unit or the calculated charging power transmitted from the battery control unit.
  • the charging is a switch that includes a travel connection switch that is connected between an inverter or boost converter that is driven during travel and the battery, and is connected by a power line between the battery and the charger.
  • the charging time connection switch is connected in series with the MOS-FET having a current cutoff function and the MOS-FET According to the configuration including the system relay, it is not necessary to provide the system relay with a current interruption function, and the charging efficiency can be improved by reducing the size and loss of the system relay.
  • the electric vehicle includes a travel connection switch connected between an inverter or a DC / DC converter that is driven during travel and a battery, and a switch connected by a power line between the battery and the charger.
  • a travel connection switch connected between an inverter or a DC / DC converter that is driven during travel and a battery
  • a switch connected by a power line between the battery and the charger.
  • the travel connection switch control means which does not turn on the travel connection switch
  • FIG. 1 is a block diagram illustrating a configuration of a hybrid vehicle according to a first embodiment of the present invention. It is a figure which shows the circuit of the one part structure of FIG. It is a figure which shows the circuit containing the power control unit of FIG.
  • FIG. 3 is a block diagram showing in detail a configuration of a battery ECU in FIG. 2. It is a flowchart for demonstrating the charge control method of the hybrid vehicle of the 1st Embodiment of this invention. It is a flowchart for demonstrating the charge control method of the hybrid vehicle of the 2nd Embodiment of this invention. In the 3rd Embodiment of this invention, it is a figure which shows the circuit of a one part structure of a hybrid vehicle.
  • FIG. 1 is a block diagram illustrating a configuration of a hybrid vehicle according to a first embodiment of the present invention. It is a figure which shows the circuit of the one part structure of FIG. It is a figure which shows the circuit containing the power control unit of FIG.
  • FIG. 8 is a diagram for explaining a signal transmission / reception path in a part of the circuit of FIG. 7.
  • the 4th Embodiment of this invention it is a figure which shows the circuit of a part of structure of a hybrid vehicle.
  • the 4th Embodiment of this invention it is a block diagram which shows the structure of each battery ECU.
  • the hybrid vehicle which is an electric vehicle according to the present invention, it is a schematic circuit diagram showing a configuration for externally charging a plurality of high voltage batteries.
  • FIG. 1 is a block diagram showing the configuration of the hybrid vehicle of the present embodiment.
  • FIG. 2 is a diagram showing a circuit having a partial configuration of FIG.
  • FIG. 3 is a diagram showing a circuit including the power control unit of FIG.
  • FIG. 4 is a block diagram showing in detail the configuration of the battery ECU of FIG.
  • FIG. 5 is a flowchart for illustrating the charge control method for the hybrid vehicle of the present embodiment.
  • the electric vehicle of the present invention is applied to a hybrid vehicle that is an electric vehicle that travels using at least one of an engine and a traveling motor as a traveling power source.
  • the present invention is not limited to such a configuration, and can be applied to the case where the electric vehicle is an electric vehicle that travels using only the traveling motor as a traveling power source.
  • a hybrid vehicle 10 that is an electric vehicle according to the present embodiment includes an engine 12, a generator (MG1) 14 that is a first motor generator, and a traveling motor that is a second motor generator. (MG2) 16, and the generator 14 and the traveling motor 16 are controlled by a motor control unit 18.
  • MG1 generator
  • MG2 traveling motor
  • MG2 generator
  • the generator 14 and the traveling motor 16 are controlled by a motor control unit 18.
  • the hybrid vehicle 10 includes a vehicle control unit 20 and outputs a control signal to the engine 12 based on signals input from an accelerator opening sensor, a shift lever position sensor, a vehicle speed sensor, and the like (not shown) and motor control.
  • a signal corresponding to a torque command value to be output to the generator 14 and the traveling motor 16 is output to the unit 18.
  • at least one of the engine 12 and the traveling motor 16 is used as a traveling power source to drive a wheel (not shown).
  • the generator 14 is a three-phase AC motor and can be used as a motor for starting the engine 12.
  • the traveling motor 16 is a three-phase AC motor, and can be used as a generator, that is, for power regeneration.
  • traveling motor and “generator” are distinguished for convenience, but in the present embodiment, both are motor generators having both functions. However, in the present invention, as the “traveling motor”, one having a function of only a motor can be used.
  • the driving state of the generator 14 and the traveling motor 16 is controlled by a motor control unit 18 via a power control unit (PCU) 22.
  • the power control unit 22 has a buck-boost converter 24. That is, the power control unit 22 includes a generator inverter (MG1 inverter) 26, a travel motor inverter (MG2 inverter) 28, a step-up / down converter 24, a first capacitor 30 and a second capacitor 32. .
  • a travel connection switch is connected to a positive line and a negative line connecting the high voltage battery 36 and both ends of the first capacitor, and a relay 34 controlled to be opened and closed by the vehicle control unit 20 or the motor control unit 18 is connected. is doing.
  • the motor control unit 18 (FIG. 1) outputs drive control signals for the generator 14 and the traveling motor 16 to the inverters 26 and 28, respectively, and the inverters 26 and 28 respectively generate the generator 14 based on the drive control signals. And each of the traveling motors 16 is driven.
  • the step-up / step-down converter 24 can boost the DC voltage supplied from the high-voltage battery 36 mounted on the hybrid vehicle 10 (FIG. 1) via the first capacitor 30 and supply the boosted voltage to the second capacitor 32.
  • the relay 34 is turned on or off by a signal from the motor control unit 18 or the vehicle control unit 20 (FIG. 1).
  • the buck-boost converter 24 boosts the DC voltage in response to the on-time and off-time of a switching element such as a transistor (not shown) in response to a signal from the motor control unit 18 (FIG. 1). 2 has a function of supplying to the capacitor 32.
  • the second capacitor 32 smoothes the DC voltage from the buck-boost converter 24 and supplies the smoothed DC voltage to the generator inverter 26 and the travel motor inverter 28.
  • the generator inverter 26 converts the DC voltage into an AC voltage based on a signal corresponding to the torque command value from the motor control unit 18 (FIG. 1). Then, the generator 14 is driven. Further, when the DC voltage from the second capacitor 32 is supplied, the traveling motor inverter 28 converts the DC voltage into an AC voltage based on a signal corresponding to the torque command value from the motor control unit 18 and travels. The motor 16 is driven.
  • the generator inverter 26 converts the AC voltage generated by the generator 14 into a DC voltage based on a signal from the motor control unit 18 (FIG. 1), and converts the converted DC voltage to the second capacitor 32.
  • the traveling motor inverter 28 converts the AC voltage generated by the traveling motor 16 into a DC voltage based on a signal from the motor control unit 18 during regenerative braking of the hybrid vehicle 10 (FIG. 1).
  • a DC voltage is supplied to the buck-boost converter 24 via the second capacitor 32.
  • the DC voltage thus supplied to the step-up / down converter 24 is supplied to the high voltage battery 36 via the first capacitor 30 and the high voltage battery 36 is charged.
  • the engine 12, the vehicle control unit 20, the motor control unit 18, and the power control unit 22 are each connected by a signal line 108.
  • the high voltage battery 36 is a commercial power source and can be charged from an external power source 38 (FIG. 2) which is an AC power source. That is, the high voltage battery 36 can supply power to the traveling motor 16 and can be charged from the external power source 38.
  • the voltage of the high voltage battery 36 is, for example, 200V.
  • the hybrid vehicle 10 of the present embodiment includes a charging circuit 40, a battery ECU 42 that is a battery control unit that monitors the state of the high voltage battery 36, and an auxiliary low voltage battery 44 (see FIG. 1). 2).
  • the charging circuit 40 includes a plug 46 that can be connected to an external power source 38 (FIG. 2), a high-voltage cable 48 to which the plug 46 is connected, a charging connector 50 connected to the high-voltage cable 48, and a charging connector 50.
  • a charging inlet 51 (FIG. 2) that is a charging port that can be connected to the charging inlet 51, a charger unit 52 connected to the charging inlet 51, and a charging connection switch 54 connected between the high-voltage battery 36 and the charger unit 52. And have.
  • the relay 34 As shown in FIG. 1, between the power control unit 22 and the generator 14 and the traveling motor 16, and between the power control unit 22, the relay 34, the high voltage battery 36, the charging connection switch 54, and the charger unit 52. Between the charger unit 52 and the charging inlet 51 and between the charging connector 50 and the plug 46 are connected by a power line 106 called a power line.
  • the high voltage system cable 48 constitutes the power line 106.
  • the charging connector 50 when the charging connector 50 is connected to the charging inlet 51 installed in the vehicle body 56, the external power supply 38 is connected to the external power supply 38 via the high-voltage cable 48 and the plug 46 led out from the vehicle body 56.
  • the charging inlet 51 is a power interface for receiving charging power from an external power supply 38 outside the vehicle.
  • Charging connector 50 outputs CPLT, which is a voltage signal, to battery ECU 42 when connected to external power supply 38.
  • CPLT is a voltage signal generated by a CPLT generator included in a CCID (Charging Circuit Interrupt Device) 58, for example, a control pilot circuit (not shown), and is output to the battery ECU 42 via the charging connector 50.
  • CCID Charging Circuit Interrupt Device
  • CCID 58 When input to the I / O of the ECU 42, a voltage is applied to the I / O of the battery ECU 42, and the battery ECU 42 including the switch connection charger ECU activation means 70 (FIG. 4) is activated.
  • the CCID 58 also has a leakage detection means.
  • CPLT can also be directly generated by the charging connector 50 without generating CPLT by CCID58. For this reason, the CCID 58 or the charging connector 50 has a CPLT generator, and the CPLT generator operates by receiving power from the external power supply 38 when the external power supply 38 and the plug 46 are connected. It has the function to generate.
  • the CPLT generator oscillates CPLT at a duty cycle (ratio of on-duty width to oscillation period) set based on the rated current determined for each charging cable. It is also possible to notify the battery ECU 42 of the rated current.
  • the CCID 58 and the charging connector 50 are connected by a signal line (not shown), and CPLT transmitted from the CCID 58 is output to the battery ECU 42 via the charging connector 50 and the charging inlet 51.
  • the CCID 58 is built in the vehicle, the high-voltage cable 48 connected to the plug 46 can be pulled into and pulled out from the vehicle, and CPLT is output from the CCID 58 to the battery ECU 42.
  • a configuration similar to that of the present embodiment can also be employed.
  • the charging connector 50 and the charging inlet 51 can be omitted, and the CCID 58 can be connected to the charger unit 52 via a power line.
  • a housing portion that enables winding or drawing of the high-voltage cable 48 can be provided in the vehicle body. At the time of charging, the high-voltage cable 48 is pulled out from the vehicle body, and the plug 46 is connected to the external power source 38.
  • the charger unit 52 includes a charger 60 and a charger ECU 62 that is a charger controller that controls the charger 60, and the charging connector 50 and the charger 60 are connected to the power line 106. Are connected by a high-voltage cable 64 constituting the.
  • the charger 60 includes an AC / DC converter (not shown) that converts an alternating current input from the charging connector 50 into a direct current.
  • the charging connection switch 54 includes two system relays S1a and S1b connected in parallel to each other, and a semiconductor switching element M1 having a current blocking function connected in series to each of the system relays S1a and S1b. Prepare. A resistor is connected in series to the system relay S1a on one side of the two system relays S1a and S1b. For example, only one of the two system relays S1a and S1b is connected and the other is disconnected.
  • the semiconductor switching element M1 is, for example, a MOS-FET and is used for current interruption, and the system relays S1a and S1b are used for physical circuit disconnection.
  • the charging connection switch 54 connects one system relay S1a (or S1b) of the two system relays S1a and S1b and the semiconductor switching element M1.
  • the battery ECU 42 is connected to the charging connector 50, the charging connection switch 54, the high voltage battery 36, and the charger ECU 62 through signal lines 116, 112, 110, and 114, which are low voltage cables, respectively.
  • the battery ECU 42 receives a detection signal indicating a temperature, a current value, a voltage value, and the like of the high voltage battery 36 from a sensor provided on the high voltage battery 36 side after activation, and is in a battery state from the input detection signal.
  • the state of charge (SOC) that is the amount of charge of the battery 36 is estimated and monitored.
  • the SOC represents the ratio of the current charge amount with respect to the full charge amount in the high-voltage battery 36. For example, the unit is defined as%.
  • the battery ECU 42 determines that the state of the high voltage battery 36, for example, the state of the SOC, the temperature of the high voltage battery 36, the presence or absence of electric leakage of the high voltage battery 36, and the like satisfy the preset chargeable condition.
  • the connection switch 54 By outputting a connection command signal to the connection switch 54, the connection switch 54 at the time of charging is connected, the charger ECU 62 is activated, and a signal indicating the battery state is transmitted to the charger ECU 62. That is, as shown in FIG. 4, the battery ECU 42 includes a battery state determination unit 68, a switch connection charger ECU activation unit 70, and a charging power determination signal transmission unit 72.
  • the battery ECU 42 is activated when CPLT is input from the charging connector 50 via the charging inlet 51 to the battery ECU 42 and voltage is applied to the battery ECU 42.
  • power is supplied from the low voltage battery 44. That is, when the plug 46 is connected to the external power source 38 and the charging connector 50 is inserted into the charging inlet 51, that is, when connected, the trigger is triggered by the CPLT transmitted by the charging connector 50, and is also activated when the vehicle is running.
  • the battery ECU 42 is activated.
  • the voltage of the low voltage battery 44 is 12 V, for example, and is lower than the voltage of the high voltage battery 36.
  • the positive and negative lines of the low voltage battery 44 are connected between the power control unit 22 and the high voltage battery 36 via a DC / DC converter 69.
  • the power capacity of the DC / DC converter 69 is smaller than the power capacity of the buck-boost converter 24 (FIG. 3).
  • the switching elements such as transistors constituting the buck-boost converter 24 can withstand the use in which the number of devices that are simultaneously connected to the buck-boost converter 24 and supply power is larger than that of the DC / DC converter 69. Use one with performance.
  • the DC / DC converter 69 shown in FIG. 2 can convert the DC voltage supplied from the high voltage battery 36 such as 200V into a DC voltage such as 12V and supply it to the low voltage battery 44.
  • the step-up / down converter 24 shown in FIG. 3 converts a DC voltage supplied from a high voltage battery 36 such as 200V into a high voltage DC voltage in a large range such as 200V to 650V, for example. It can be supplied to a load such as 16.
  • the battery state determination means 68 (FIG. 4) monitors the state of the high voltage battery 36 after the battery ECU 42 is activated, and determines whether or not the state of the high voltage battery 36 satisfies all the preset chargeable conditions. To do.
  • the chargeable condition is that the high voltage battery 36 is not leaking, the temperature of the high voltage battery 36 is within a reference range, the SOC of the high voltage battery 36 is within a reference range, and the high voltage battery 36 is normal. To function.
  • the switch connection charger ECU activation means 70 sends a connection command signal to the connection switch 54 during charging when the battery state determination means 68 (FIG. 4) determines that the battery state satisfies all chargeable conditions. Is output, the charging connection switch 54 is connected, and the charger ECU 62 is activated.
  • the charger ECU 62 is a high voltage ECU that is driven by a voltage from the high voltage battery 36.
  • the charging power determination signal transmission means 72 (FIG. 4) transmits a charging power determination signal representing the estimated value of the SOC of the high voltage battery 36, which is in a battery state, to the charger ECU 62.
  • the battery ECU 42 is an ECU (electric control unit) that is activated when the vehicle travels, and has information on the high-voltage battery 36 during travel, that is, stores the state of the high-voltage battery 36 during travel in the storage unit. Yes. On the other hand, the charger ECU 62 is not activated while the vehicle is running.
  • the battery ECU 42 and the charger ECU are activated on the vehicle side, and the ECU that is a control unit excluding the battery ECU 42 and the charger ECU 62 is not activated.
  • the charger ECU 62 When the charger ECU 62 is activated by the battery ECU 42, the power to be charged in the high voltage battery 36 from the SOC of the high voltage battery 36 indicated by the charge power determination signal transmitted from the charge power determination signal transmission means 72 (FIG. 4).
  • the calculated charging power is calculated, that is, determined.
  • the charger ECU 62 can also determine the calculated charging power from the SOC of the high voltage battery 36 and the temperature of the high voltage battery 36. Further, the charger ECU 62 controls the AC / DC converter included in the charger 60 so that the high voltage battery 36 is charged from the external power source 38 with the determined calculated charging power.
  • the vehicle control unit 20 (FIG. 1) turns off the relay 34 (FIGS.
  • the vehicle control unit 20 connects the relay 34 when the vehicle is started, that is, when a start switch (not shown) corresponding to the ignition switch is turned on.
  • the battery ECU 42 and the high voltage battery 36 are connected by a signal line 110
  • the battery ECU 42 and the charging connection switch 54 are connected by a signal line 112
  • the battery ECU 42 and the charger are connected.
  • the ECU is connected by a signal line 114
  • the battery ECU 42 and the charging connector 50 are connected by a signal line 116.
  • step S2 the battery ECU 42 is activated when CPLT output from the charging connector 50 is input to the battery ECU 42.
  • step S3 the battery state determination unit 68 determines whether or not the state of the high voltage battery 36 satisfies all of the chargeable conditions based on a signal transmitted from the high voltage battery 36 through the signal line 110 after the battery ECU 42 is activated. Determine.
  • step S4 the switch connection charger ECU activation means 70 sends a connection command signal to the connection switch 54 during charging via the signal line 112 when the battery state determination means 68 determines that all the chargeable conditions are satisfied. Then, the charging connection switch 54 is connected, and an activation command signal is transmitted to the charger ECU 62 through the signal line 114 to activate the charger ECU 62.
  • step S5 the charging power determination signal transmission means 72 transmits a charging power determination signal representing the SOC of the high voltage battery 36 in the battery state from the battery ECU 42 to the charger ECU 62 through the signal line 114. Then, in step S6, the charger ECU 62 calculates calculated charging power, which is charging power to be charged by the high voltage battery 36, from the SOC of the high voltage battery 36 represented by the charging power determination signal. In step S7, the charger ECU 62 The charger 60 is controlled so that the high voltage battery 36 is charged from the external power source 38 with the calculated charging power calculated. That is, when the high voltage battery 36 can be charged with the calculated charging power, the charger ECU 62 cuts off the current input from the external power source 38 to the high voltage battery 36 by the AC / DC converter included in the charger 60.
  • the battery 36 that can be charged from the external power source 38, the charger 60, the charger ECU 62 that controls the charger 60, and the high-voltage battery.
  • the hybrid vehicle including the battery ECU 42 that monitors the state 36 energy loss during charging can be reduced and charging efficiency can be improved. That is, according to the hybrid vehicle of the present embodiment, at the time of charging, when the voltage signal CPLT is input from the charging connector 50 to the battery ECU 42, the battery ECU 42 is activated. When it is determined that the state satisfies the chargeable condition, the switch connection charger control unit activation unit 70 turns on the charge connection switch 54 and activates the charger ECU 62.
  • the charger ECU 62 controls the charger 60 so as to charge the high voltage battery 36 from the external power source 38 with the calculated charging power of the high voltage battery 36 calculated from the SOC transmitted from the charging power determination signal transmission means 72. To do. For this reason, it is possible to prevent the charger ECU 62 from being activated unnecessarily during charging from the external power supply 38, reduce energy loss during charging, and improve charging efficiency.
  • the relay 34 is connected between the traveling motor 16 and the high voltage battery 36 by the power line, and the relay 34 is turned off when the high voltage battery 36 is charged from the external power source 38.
  • a vehicle control unit 20 that turns on the relay 34 when the traveling motor 16 is driven. Therefore, charging from the external power source 38 can be performed more efficiently. That is, at the time of charging from the external power supply 38, when the voltage signal CPLT is input from the charging connector 50 to the battery ECU 42, the battery ECU 42 is activated. When it is determined that the charging is satisfied, the charger ECU 62 is activated, but the relay 34 connected between the traveling motor 16 and the high voltage battery 36 is turned off.
  • the charging connection switch 54 includes the system relays S1a and S1b and the semiconductor switching element M1 having a current cutoff function connected in series to the system relays S1a and S1b.
  • the charging efficiency can be improved by reducing the size and the loss of the system relays S1a and S1b.
  • FIG. 6 is a flowchart for explaining a charge control method for a hybrid vehicle according to the second embodiment of the present invention.
  • the battery ECU 42 transmits a signal indicating the SOC of the high voltage battery 36 in the battery state to the charger ECU 62, and the charger ECU 62 receives the high voltage battery 36.
  • the calculated charging power of the high voltage battery 36 is calculated from the SOC and the charger 60 is controlled to charge the high voltage battery 36 with the calculated charging power.
  • the same elements as those shown in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the switch connection charger ECU activation means 70 of the battery ECU 42 activates the charger ECU 62 in step S4
  • the switch connection charger ECU activation means 70 in step S5 Calculated charging power, which is charging power to be charged by the high voltage battery 36, is calculated from the SOC of the high voltage battery 36, and a charging power determination signal representing the calculated charging power is transmitted to the charger ECU 62.
  • step S6 the charger ECU 62 controls the charger 60 so that the high voltage battery 36 is charged with the calculated charging power represented by the charging power determination signal.
  • the calculation of the calculated charging power can be executed not by the charger ECU 62 but by the battery ECU 42. Since other configurations and operations are the same as those in the first embodiment, overlapping illustrations and descriptions are omitted.
  • the battery ECU 42 calculates the calculated charging power before the battery ECU 42 activates the charger ECU 62. You can also
  • FIG. 7 is a diagram showing a partial circuit configuration of the hybrid vehicle in the third embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a signal transmission / reception path in a part of the circuit of FIG.
  • the hybrid vehicle of the present embodiment is equipped with a plurality of high-voltage batteries 36, 74, 76 for driving the traveling motor 16 and the generator 14.
  • a plurality of high-voltage batteries 36, 74, 76 for driving the traveling motor 16 and the generator 14.
  • two high-voltage batteries 36, 74 are batteries that are mounted as standard equipment on the hybrid vehicle on the vehicle manufacturer side, and the remaining one high-voltage battery 76 is It is an optional battery that can be selected as an option on the vehicle.
  • three high-voltage batteries 36, 74, and 76 are mounted on the hybrid vehicle will be described, but the same applies to the case where two high-voltage batteries or four or more high-voltage batteries are mounted on the vehicle. it can.
  • the hybrid vehicle of the present embodiment includes a plurality of charging connection switches 54, 78, 80 connected between the high-voltage batteries 36, 74, 76 and the charger 60, and the high-voltage batteries 36, 74, And a plurality of battery ECUs 42, 82, and 84 that are battery control units for controlling 76.
  • Each charging connection switch has two system relays S1a, S1b, S2a, S2b, S3a, S3b and semiconductor switching elements M1, M2, M3 as in the case of the first embodiment. .
  • Each of the battery ECUs 42, 82, 84 is similar to the case of the first embodiment shown in FIG. 4 described above, the battery state determination means 68, the switch connection charger ECU activation means 70, and the charging power determination signal. Transmission means 72.
  • the low voltage battery 44 can supply power to the plurality of battery ECUs 42, 82, 84.
  • each battery ECU 42, 82, 84 corresponds to each high voltage battery 36, 74, 76 and communicates with the charger ECU 62.
  • Each battery state determination unit 68 determines whether or not the state of the corresponding high voltage battery 36, 74, 76 satisfies all the chargeable conditions.
  • Each switch connection charger ECU activation means 70 is determined by the battery state determination means 68 to satisfy all of the chargeable conditions among the plurality of charge connection switches 54, 78, 80. After connecting only the charging connection switches 54, 78, 80 corresponding to 74, 76, the switch connection charger ECU activation means 70 included in at least one battery ECU 42, 82, 84 sends an activation command signal to the charger ECU 62.
  • the charger ECU 62 is activated.
  • the charger ECU 62 calculates the calculated charging power of each high voltage battery 36, 74, 76 from the SOC of the high voltage battery 36, 74, 76 which is the battery state represented by the signal transmitted from each battery ECU 42, 82, 84.
  • the charger 60 is controlled to charge the high voltage batteries 36, 74, 76 from the external power source 38 with the calculated charging power.
  • a CPLT voltage signal
  • the battery ECUs 42, 82, 84 are activated. Further, after the battery ECUs 42, 82, and 84 are activated, the battery state determination unit 68 determines whether or not the corresponding high voltage batteries 36, 74, and 76 satisfy all the chargeable conditions, and all the chargeable conditions are satisfied. When it is determined that the charging condition is satisfied, the corresponding switch connection charger ECU activation means 70 is determined to satisfy the chargeable condition, and the charging connection switches 54, 78, 80 corresponding to the high voltage batteries 36, 74, 76 are determined.
  • At least one switch connection charger ECU activation means 70 transmits the activation command signal to the charger ECU 62, and the charger The ECU 62 is activated.
  • the charger ECU 62 may be configured to be activated by the activation command signal transmitted first from any of the battery ECUs 42, 82, 84, and all of the plurality of switch-connected charger ECU activation means 70 are activated.
  • the charger ECU 62 may be activated when the activation command signal transmitted first is received.
  • the charging power determination signal transmitting means 72 included in the battery ECUs 42, 82, 84 corresponding to the high voltage batteries 36, 74, 76 determined to satisfy the chargeable condition includes the battery ECUs 42, 82, 84. Transmits a signal representing the SOC of the high-voltage batteries 36, 74, 76, which is in a battery state, to the charger ECU 62. Then, the charger ECU 62 calculates the calculated charging power of the high voltage batteries 36, 74, 76 from the SOC of the high voltage batteries 36, 74, 76, and satisfies the chargeable condition from the external power source 38 with the calculated charging power. , 76 is charged, the charger 60 is controlled.
  • the plurality of battery ECUs 42, 82, 84 correspond to the plurality of high voltage batteries 36, 74, 76, communicate with the charger ECU 62, and connect switches 54, 78 during charging. , 80 are connected between the respective high voltage batteries 36, 74, 76 and the charger 60. Further, the charger ECU 62 determines each of the battery states indicated by the charging power determination signals transmitted from the battery ECUs 42, 82, 84 corresponding to the high voltage batteries 36, 74, 76 determined to satisfy the chargeable condition. The calculated charging power of the high voltage batteries 36, 74, 76 is calculated, and the charger 60 is controlled to charge the high voltage batteries 36, 74, 76 satisfying the chargeable condition from the external power source 38 with the calculated charging power.
  • all of the battery ECUs 42, 82, 84 do not monitor the battery state of the corresponding high voltage batteries 36, 74, 76 and connect the connection switches 54, 78, 80 during charging.
  • the charger ECU 62 may not be activated and a signal indicating the battery state may not be transmitted to the charger ECU 62.
  • the remaining two battery ECUs 82, 84 are connected to one battery ECU 42 of the plurality of battery ECUs 42, 82, 84 by a CANbus network, and one battery ECU 42 is connected to the remaining battery ECUs 82, 84. It is also possible to perform integrated control.
  • the battery states of the high voltage batteries 36, 74, and 76 at the time of traveling are stored as histories in the battery ECUs 42, 82, and 84, and one battery ECU 42 reads the histories of the remaining two battery ECUs 82 and 84.
  • One battery ECU 42 selects the high voltage batteries 36, 74, 76 that can be charged based on the history, and sets the connection switches 54, 78, 80 during charging corresponding to the selected high voltage batteries 36, 74, 76. Connect and activate the charger ECU 62.
  • One battery ECU 42, 82, 84 transmits a signal representing the history of the battery state of the selected high voltage battery 36, 74, 76 to the charger ECU 62, and the charger ECU 62 uses the determined charging power as an external power source. From 38, the charger 60 is controlled to charge the selected high voltage batteries 36, 74, 76. Even in such a configuration, as in the case of the present embodiment, efficient charging from the external power supply 38 is possible.
  • FIG. 9 is a diagram showing a circuit of a partial configuration of the hybrid vehicle in the fourth embodiment of the present invention.
  • FIG. 10 is a block diagram showing the configuration of each battery ECU in the present embodiment.
  • a travel time connection switch 86 is connected, which is connected when a start switch (not shown) corresponding to the ignition switch is turned on.
  • the travel connection switch 86 includes semiconductor switching elements S1a, S1b, which constitute the charge connection switches 54, 78, 80 connected between the high-voltage batteries 36, 74, 76 and the charger unit 52.
  • system relays SA and SB connected between the power control unit 22 and the positive or negative side of each of the high-voltage batteries 36, 74, and 76 are provided.
  • a system relay SC is connected between the negative electrode side or the positive electrode side of each high voltage battery 36, 74, 76 and the power control unit 22.
  • the current capacities of the connection switches 54, 78, 80 during charging are made smaller than the current capacity of the connection switch 86 during travel.
  • the vehicle control unit 20 (see FIG. 1) turns off the traveling connection switch 86, which is a relay when charging the high voltage batteries 36, 74, 76 from the external power source 38 (see FIG. 2), and the traveling motor. When driving 16 (see FIG. 1 etc.), the travel connection switch 86 is controlled so that the travel connection switch 86 is turned on.
  • a DC / DC converter 69 is connected to the low voltage battery 44 and supplied from the generator 14 or the traveling motor 16 (see FIG. 1 and the like) via the inverters 26 and 28 (see FIG. 3) when the vehicle is traveling. After the high voltage is stepped down by the DC / DC converter 69, it is supplied to the low voltage battery 44 and charged. Further, the AC / DC converter 88 included in the charger 60 is connected to the low voltage battery 44, and when the high voltage batteries 36, 74, 76 are charged from the external power source 38 (see FIG. 2), the voltage from the external power source 38 is AC / DC. After being stepped down by the DC converter 88, it is supplied to the low voltage battery 44 and charged.
  • the output power capacity of the AC / DC converter 88 is smaller than the output power capacity of the buck-boost converter 24 (see FIG. 3). That is, the switching elements such as transistors constituting the buck-boost converter 24 have a performance that can withstand the use in which the number of devices that are simultaneously connected to the buck-boost converter 24 and supply power is larger than that of the AC / DC converter 88. Use things.
  • the AC / DC converter 88 uses a device that supplies less power than the buck-boost converter 24 and has a lower power capacity than the buck-boost converter 24.
  • the AC / DC converter 88 converts a high AC voltage such as 100 V supplied from the external power supply 38 into a low DC voltage such as 12 V and supplies the low voltage battery 44. That is, the hybrid vehicle of the present embodiment includes an AC / DC converter 88 and a step-up / down converter 24 that are two power conversion units for charging the low-voltage battery 44.
  • the AC / DC converter 88 is mounted in the charger 60 and is activated only when charging from the external power source 38. Further, the step-up / down converter 24 is activated only when the vehicle is traveling.
  • the vehicle control unit 20 includes a travel connection switch control means (not shown) and a welding detection means.
  • the driving connection switch control means receives a signal indicating that a start switch (not shown) operable by the driver is turned on when charging from the external power source 38 (see FIG. 2)
  • the travel connection switch 86 When the travel connection switch 86 is connected, that is, turned on, and when the signal indicating that the start switch is turned on during charging from the external power source 38 is not input, the travel connection switch 86 is not connected, that is, turned off. .
  • the welding detection means detects the presence or absence of welding of the system relays S1a, S1b, S2a, S2b, S3a, S3b included in each charging connection switch 78 when the charger 60 is activated. For example, the welding detection means uses the current value detected when the connection command signal or the disconnection command signal is output to the corresponding charging connection switch 54, 78, 80, and the corresponding charging connection switch 54, 78, 80. Detect the presence or absence of welding.
  • each charging connection switch 54, 78, 80 has two system relays S 1 a, S 1 b, S 2 a, S 2 b, S 3 a, S 3 b as in this embodiment, the welding detection means 92 It is also possible to shift the time point at which the presence or absence of welding of the two system relays S1a, S1b, S2a, S2b, S3a, and S3b is detected. For example, after detecting the presence or absence of welding of system relays S1a, S2a, and S3a with resistors connected in series, the presence or absence of welding of system relays S1b, S2b, and S3b without connecting resistors in series can also be detected.
  • the battery ECUs 42, 82, 84 have power conversion unit control means 94.
  • the power conversion unit control means 94 is the step-up / down converter 24 (see FIG. 3) to drive the AC / DC converter 88.
  • the battery ECUs 42, 82, 84 do not have the power conversion unit control means 94, and another control unit that controls the AC / DC converter 88 and the step-up / down converter 24 has the power conversion unit control means 94. It can also be.
  • the DC / DC converter 69 is connected to the power line to which the system relay SC is connected among the power lines connecting the high voltage battery 36 and the power control unit 22.
  • the system relay SB and the system relay are connected.
  • the DC / DC converter 69 can also be connected to the power line side to which the SC is connected.
  • the hybrid vehicle including the battery ECU 42 that monitors the charging energy loss during charging can be reduced and charging efficiency can be improved.
  • the step-up / step-down converter 24 is provided between the high-voltage batteries 36, 74, 76 and the traveling motor 16, the high-voltage batteries 36, 74, 76 can be charged from the external power source 38 without using the step-up / down converter 24.
  • a hybrid vehicle capable of efficiently charging from the external power source 38 can be realized.
  • the travel connection switch 86 when a signal indicating that a starter switch that can be operated by the driver is turned on when charging from the external power supply 38, the travel connection switch 86 is turned on while the charging from the external power supply 38 is performed.
  • a travel time connection switch control means that does not turn on the travel time connection switch 86 is provided. For this reason, it can suppress that a high voltage is added to vehicle-mounted apparatuses, such as an electric power steering apparatus driven at the time of driving, during charging.
  • the on-running connection switch 86 is turned on by turning on the start switch. Can be supplied with electric power from the high-voltage batteries 36, 74, 76. However, even in this case, control is performed so that traveling is prohibited while the vehicle is stopped. For example, when the shift lever is in the P range position, the motor control unit 18 (see FIG. 1) controls the gate motor not to be sent to the travel motor inverter 28 (see FIG. 3). Since other configurations and operations are the same as those of the third embodiment shown in FIGS. 7 to 8 described above, the same parts are denoted by the same reference numerals, and overlapping illustrations and descriptions are omitted.
  • the other power conversion unit of the two power conversion units is activated only when the vehicle is running, the output capacity of one power conversion unit is
  • the other power conversion unit It is also possible to employ a configuration that includes power conversion unit control means that drives the power conversion unit and stops driving one of the power conversion units.
  • FIG. 11 is a schematic circuit diagram showing a configuration in which a plurality of high-voltage batteries are externally charged in a hybrid vehicle that is an electric vehicle according to the present invention.
  • the hybrid vehicle shown in FIG. 11 is connected to each of a plurality of (two in the illustrated example) high-voltage batteries 36 and 74 and two high-voltage batteries 36 and 74 mounted on the vehicle, which are charged from an external power source 38.
  • the first rectifier circuit unit 96, the second rectifier circuit unit 98 connected to the external power supply 38, and the charger 100 are provided.
  • the charger 100 includes a switching circuit unit 102 connected to the second rectifier circuit unit 98, and a voltage conversion unit 104 provided between the switching circuit unit 102 and each first rectifier circuit unit 96.
  • the switching circuit unit 102 is configured by a semiconductor switching element such as a MOS-FET, for example. Also, charging connection switches 54 and 78 are provided between the second rectifier circuit unit 98 and the high-voltage batteries 36 and 74 and between the first rectifier circuit unit 96 and the high-voltage batteries 36 and 74. . As in the above embodiments, when a charging connector (not shown) and an external power source 38 are connected and the charging connector is connected to a charging inlet (not shown), a voltage signal is transmitted from the charging connector via the charging inlet. Is transmitted to a battery ECU (not shown), and the battery ECU is activated.
  • a charging connector not shown
  • an external power source 38 are connected and the charging connector is connected to a charging inlet (not shown)
  • a voltage signal is transmitted from the charging connector via the charging inlet. Is transmitted to a battery ECU (not shown), and the battery ECU is activated.
  • the second rectifier circuit unit 98 and the charger 100 convert the alternating voltage into a direct-current voltage, and the boosted voltage is converted into the high-voltage batteries 36 and 74. And the high voltage batteries 36 and 74 are charged. Moreover, in the example shown in FIG. 11, the charger 100 and the some high voltage battery 36,74 are each connected via the output cable. Further, when charging from the external power source 38 to the high voltage batteries 36, 74, the high voltage battery 36 (or 74) having the lowest voltage among the plurality of high voltage batteries 36, 74 is used, and electric power is supplied from the external power source 38 by charging. I am doing so.
  • charging power is supplied to the high-voltage batteries 36 and 74 having insufficient charging power by controlling only on and off of charging in the charger 100.
  • the charger 100 includes a charger ECU 62 (see FIG. 2 and the like) that is a charger controller, and the charger ECU 62 or a battery ECU (not shown) that is a battery controller is a high-voltage battery 36, 74.
  • the battery state of the battery is monitored, and if the SOC is equal to or higher than a predetermined value, charging is controlled by controlling on / off of charging so that the semiconductor switching element of the switching circuit unit 102 is turned off.
  • the charger ECU 62 included in the charger 100 determines the charging power of the high-voltage batteries 36 and 74 from the battery state, and charges the high-voltage batteries 36 and 74 from the external power source 38 with the determined charging power. There is no need to control.
  • Other configurations and operations are the same as those in the first embodiment shown in FIGS. 1 to 5 described above, and thus redundant description and illustration are omitted.
  • the charger 100 does not include the second rectifier circuit unit 98, but the charger 100 may include the second rectifier circuit unit 98.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電動車両において、外部電源から充電可能なバッテリと、充電器と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部とを備える構成において、充電時のエネルギ損失を低減し、充電効率を向上させる。  電動車両であるハイブリッド車両は、高圧バッテリ(36)に接続される充電器(60)と、高圧バッテリ(36)と充電器(60)との間に接続される充電時接続スイッチ(54)とを含む充電回路と、充電器ECU(62)と、バッテリECU(42)とを備える。バッテリECU(42)は、電圧信号が入力された場合に起動し、高圧バッテリ(36)の状態が充電可能条件を満たすと判定した場合に充電時接続スイッチ(54)を接続し、充電器ECU(62)を起動させ、充電器ECU(62)にバッテリ状態を表す信号を送信する。

Description

電動車両及び電動車両の充電制御方法
 本発明は、外部電源から充電可能なバッテリを備える電動車両及び電動車両の充電制御方法に関する。
 従来から、電気自動車またはハイブリッド車両等の走行用モータを搭載した電動車両において、運転停止中に、商用電源である外部電源から、電源プラグ等の接続部、及び充電器を含む充電回路を介して、バッテリに充電することが考えられている。例えば、エンジンと走行用モータとの少なくとも一方を駆動源として車輪を駆動させるハイブリッド車両において、このように外部電源から電源プラグを介してバッテリに充電可能な車両は、プラグイン型ハイブリッド車両と呼ばれる。
 このような電動車両において、従来から、外部電源から電源プラグを介してバッテリに充電可能とするために、電源プラグとバッテリとの間に充電器を接続し、外部電源から充電器を介してバッテリに充電可能とすることが考えられる。
 また、特許文献1には、電気自動車に搭載される充電装置と、インフラ側の給電装置とを備える充電システムが記載されている。充電装置は、ポートを有するチャージポートユニット(C/Pユニット)を備える。給電装置は、交流電源と、交流電源に接続されたスタンダードチャージモジュール(SCM)とを有する。SCMは、ケーブルを介してパドルと接続されている。C/Pユニットには、コア及び充電コイルが設けられている。C/Pユニットのコア及びSCMのインバータと接続された充電コイルが設けられている位置は、パドルが充電用位置にあるときにパドル内の給電コイルと充電コイルとが近接する位置であって、給電コイルに電流が流れたときに充電コイルに誘導電流が発生する位置である。
 パドルが充電用位置に達したときに閉じられるリミットスイッチは、通信装置としてのRF基板と接続され、リミットスイッチが閉じられると、RF基板に12V電源が投入され、RF基板はSCMの通信装置との間での通信信号の送受信が可能になる。RF基板では、SCMが送信している信号を受信すると、電池ECU起動信号が発生し、電池ECUへ発信され、電池ECUが起動される。電池ECUは、充電コイルに発生した電流をバッテリに供給させ、バッテリの充電が開始される。停電が発生すると、電池ECUは機能を停止する。停電から復帰すると、SCMはRF基板に対し通信信号の送信を開始させ、電池ECUが起動し、バッテリの充電が再開されるとされている。
 また、特許文献2には、商用電源から主バッテリへ給電する、地上側に固定されるか、または電気自動車に搭載される直流電源装置と、電池ECUとを有する電気自動車用電源装置が記載されている。直流電源装置は、商用電源電力を高圧の直流電力に変換して主バッテリに給電する高圧出力部と、商用電源電力を低圧の直流電力に変換して補機バッテリに給電する低圧出力部とを有するとされている。
 なお、本発明に関連する先行技術文献として、特許文献1,2の他に特許文献3から特許文献5がある。
特開平10-304582号公報 特開平11-178228号公報 特開2006-278210号公報 特開2006-304408号公報 特開2007-124813号公報
 上記のように従来から考えられている電動車両において、外部電源からバッテリに充電可能とするために、充電器と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部とを設けることが考えられる。このような構成において、外部電源から充電器に電力が供給される場合に、バッテリの状態にかかわらず充電器制御部を起動させると、不必要に充電器制御部が起動され、外部電源からバッテリへの充電時に電力が無駄に消費される可能性がある。すなわち、バッテリの状態である充電状態が満充電であるにもかかわらず、充電器制御部が起動されると、電力の無駄が生じる可能性がある。このため、外部電源から充電可能なバッテリと、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部とを備える電動車両において、充電時のエネルギ損失を低減し、充電効率を向上させることが求められている。
 これに対して、特許文献1から特許文献5に記載された構成は、外部電源から充電可能なバッテリと、充電器と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部とを備える電動車両において、充電時のエネルギ損失を低減し、充電効率を向上させる手段を開示するものではない。
 本発明の目的は、電動車両及び電動車両の充電制御方法において、外部電源から充電可能なバッテリと、充電器と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部とを備える電動車両において、充電時のエネルギ損失を低減し、充電効率を向上させることである。
 本発明の第1の発明に係る電動車両は、外部電源から充電可能なバッテリであって、車両走行時に走行用モータに電力を供給し、外部電源からの充電時には走行用モータとの間が切り離されるバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部と、を備え、バッテリ制御部は、電圧信号がバッテリ制御部に入力された場合に起動するバッテリ制御部であって、バッテリ制御部の起動後に、バッテリの状態が充電可能条件を満たすか否かを判定するバッテリ状態判定手段と、バッテリ状態判定手段によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させる起動手段と、を含み、充電器制御部は、外部電源からバッテリを充電させるように充電器を制御する電動車両である。
 また、本発明の第2の発明に係る電動車両は、外部電源から充電可能なバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部と、バッテリからの電力の供給により駆動する走行用モータと、走行用モータとバッテリとの間に電力線により接続されるリレーと、外部電源からバッテリを充電する場合にリレーをオフし、走行用モータを駆動する場合にリレーをオンする車両制御部と、を備え、バッテリ制御部は、電圧信号がバッテリ制御部に入力された場合に起動するバッテリ制御部であって、バッテリ制御部の起動後に、バッテリの状態が充電可能条件を満たすか否かを判定するバッテリ状態判定手段と、バッテリ状態判定手段によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させる起動手段と、充電器制御部にバッテリ状態、またはバッテリ状態から算出されるバッテリに充電させるべき算出充電電力を表す充電電力決定用信号を送信する充電電力決定用信号送信手段と、を含み、充電器制御部は、充電電力決定用信号が表すバッテリ状態から算出されるバッテリに充電させるべき算出充電電力、または充電電力決定用信号が表す算出充電電力で外部電源からバッテリを充電させるように充電器を制御する電動車両である。
 なお、スイッチは、例えば、システムリレーを含む。
 また、本発明に係る電動車両において、好ましくは、バッテリは、複数のバッテリであり、バッテリ制御部は、それぞれのバッテリに対応し、充電器制御部と通信する複数のバッテリ制御部であり、スイッチは、それぞれのバッテリと充電器との間に電力線により接続される複数のスイッチであり、充電器制御部は、それぞれのバッテリ制御部から送信されるバッテリ状態から算出されるバッテリの算出充電電力、またはバッテリ制御部から送信される算出充電電力で外部電源からそれぞれのバッテリを充電させるように充電器を制御する。
 また、本発明に係る電動車両において、好ましくは、複数のバッテリ制御部は、対応するバッテリの状態が充電可能条件を満たすか否かを判定し、複数のスイッチのうち、充電可能条件を満たすと判定されたバッテリに対応するスイッチのみをオンした後に、少なくとも1のバッテリ制御部が、充電器制御部に起動指令信号を送信する。
 また、本発明に係る電動車両において、好ましくは、バッテリの外部電源からの充電時には、バッテリの状態を監視するバッテリ制御部と、充電器を制御する充電器制御部とを起動させ、バッテリ制御部及び充電器制御部を除く制御部は起動させない。
 また、本発明に係る電動車両において、好ましくは、走行時に駆動するインバータまたは昇圧コンバータと、バッテリとの間に電力線により接続する走行時接続スイッチを備え、バッテリと充電器との間に電力線により接続されるスイッチである充電時接続スイッチの電流容量は、走行時接続スイッチの電流容量よりも小さくする。走行時接続スイッチは、例えばシステムリレーを含む。
 また、本発明に係る電動車両において、好ましくは、走行時に駆動するインバータまたは昇圧コンバータとバッテリとの間に電力線により接続する走行時接続スイッチを備え、バッテリと充電器との間に電力線により接続されるスイッチである充電時接続スイッチの電流容量は、走行時接続スイッチの電流容量よりも小さくする構成において、好ましくは、充電時接続スイッチは、電流遮断機能を有するMOS-FETと、MOS-FETに直列に接続されたシステムリレーとを含む。
 また、本発明に係る電動車両において、走行時に駆動するインバータまたは昇圧コンバータとバッテリとの間に電力線により接続する走行時接続スイッチを備え、バッテリと充電器との間に電力線により接続されるスイッチである充電時接続スイッチの電流容量は、走行時接続スイッチの電流容量よりも小さくする構成において、好ましくは、外部電源からの充電時に、運転者が操作可能な起動スイッチがオンされたことを表す信号が入力された場合には、走行時接続スイッチをオンする一方、外部電源からの充電時に起動スイッチがオンされたことを表す信号が入力されない場合には、走行時接続スイッチをオンしない走行時接続スイッチ制御部を備える。
 また、本発明に係る電動車両において、走行時に駆動するインバータまたは昇圧コンバータとバッテリとの間に電力線により接続する走行時接続スイッチを備え、バッテリと充電器との間に電力線により接続されるスイッチである充電時接続スイッチの電流容量は、走行時接続スイッチの電流容量よりも小さくする構成において、好ましくは、充電器の起動時に充電時接続スイッチが有するシステムリレーの溶着の有無を検知する溶着検知部を備える。
 また、本発明に係る電動車両において、好ましくは、低圧バッテリを充電するための2個の電力変換部を備え、2個の電力変換部の一方の電力変換部は、充電器内に搭載され、外部電源からの充電時にのみ起動し、2個の電力変換部の他方の電力変換部は、車両の走行時にのみ起動し、一方の電力変換部の出力容量は、他方の電力変換部の出力容量よりも小さくし、外部電源からの充電時に運転者が操作可能な起動スイッチがオンされたことを表す信号が入力された場合には、他方の電力変換部を駆動し、一方の電力変換部の駆動を停止する電力変換部制御手段を備える。なお、電力変換部は、DC/DCコンバータまたはAC/DCコンバータとする。
 また、本発明の第3の発明に係る電動車両の充電制御方法は、外部電源から充電可能なバッテリであって、車両走行時に走行用モータに電力を供給し、外部電源からの充電時には走行用モータとの間が切り離されるバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部と、を備える電動車両の充電制御方法であって、電圧信号がバッテリ制御部に入力された場合にバッテリ制御部が起動するステップと、バッテリ制御部の起動後に、バッテリ制御部がバッテリの状態が充電可能条件を満たすか否かを判定するステップと、バッテリ制御部によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させるステップと、充電器制御部が、外部電源からバッテリを充電させるように充電器を制御するステップと、を含む電動車両の充電制御方法である。
 また、本発明の第4の発明に係る電動車両の充電制御方法は、外部電源から充電可能なバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部と、走行用モータとバッテリとの間に電力線により接続されるリレーと、外部電源からバッテリを充電する場合にリレーをオフし、走行用モータを駆動する場合にリレーをオンする車両制御部と、を備える電動車両の充電制御方法であって、電圧信号がバッテリ制御部に入力された場合にバッテリ制御部が起動するステップと、バッテリ制御部の起動後に、バッテリ制御部がバッテリの状態が充電可能条件を満たすか否かを判定するステップと、バッテリ制御部によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させるステップと、バッテリ制御部が、充電器制御部にバッテリ状態、またはバッテリ状態から算出されるバッテリに充電させるべき算出充電電力を表す充電電力決定用信号を送信するステップと、充電器制御部が、充電電力決定用信号が表すバッテリ状態から算出されるバッテリに充電させるべき算出充電電力、または充電電力決定用信号が表す算出充電電力で外部電源からバッテリを充電させるように充電器を制御するステップと、を含む電動車両の充電制御方法である。
 また、本発明に係る電動車両の充電制御方法において、好ましくは、バッテリは、複数のバッテリであり、バッテリ制御部は、それぞれのバッテリに対応し、充電器制御部と通信する複数のバッテリ制御部であり、スイッチは、それぞれのバッテリと充電器との間に電力線により接続される複数のスイッチであり、充電器制御部が、それぞれのバッテリ制御部から送信されるバッテリ状態から算出されるバッテリの算出充電電力、またはバッテリ制御部から送信される算出充電電力で外部電源からそれぞれのバッテリを充電させるように充電器を制御するステップを含む。
 また、本発明に係る電動車両の充電制御方法において、好ましくは、複数のバッテリ制御部は、対応するバッテリの状態が充電可能条件を満たすか否かを判定し、複数のスイッチのうち、充電可能条件を満たすと判定されたバッテリに対応するスイッチのみをオンした後に、少なくとも1のバッテリ制御部が、充電器制御部に起動指令信号を送信するステップを含む。
 本発明の第2の発明に係る電動車両及び第4の発明に係る電動車両の充電制御方法によれば、外部電源から充電可能なバッテリと、充電器と、充電器を制御する充電器制御部と、バッテリの状態を監視するバッテリ制御部とを備える電動車両において、充電時のエネルギ損失を低減し、充電効率を向上させることができる。すなわち、本発明に係る電動車両によれば、充電時には、バッテリ制御部に電圧信号が入力された場合にバッテリ制御部が起動し、バッテリ状態判定手段によりバッテリの状態が充電可能条件を満たすと判定された場合に、起動手段によりスイッチがオンされ、充電器制御部が起動され、充電器制御部は、充電電力決定用信号送信手段から送信されるバッテリ状態から算出される算出充電電力、または充電電力決定用信号送信手段から送信される算出充電電力で、外部電源からバッテリを充電させるように充電器を制御する。このため、外部電源からの充電時に不必要に充電器制御部が起動されるのを防止して、充電時のエネルギ損失を低減し、充電効率を向上させることができる。
 また、本発明の第2の発明に係る電動車両及び第4の発明に係る電動車両の充電制御方法によれば、走行用モータとバッテリとの間に電力線により接続されるリレーと、外部電源からバッテリを充電する場合にリレーをオフし、走行用モータを駆動する場合にリレーをオンする車両制御部とを備えるので、外部電源からの充電をより効率よく行える。すなわち、外部電源からの充電時には、バッテリ制御部に電圧信号が入力された場合にバッテリ制御部が起動し、バッテリ状態判定手段によりバッテリの状態が充電可能条件を満たすと判定された場合に充電器制御部が起動されるが、走行用モータとバッテリとの間に接続されるリレーはオフされるので、リレーよりも走行用モータ側に接続され、インバータを駆動する等の走行用モータ駆動用のシステムを起動させずに済む。このため、充電時の省電力化を図れ、充電効率を向上させることができる。一方、走行時には、走行用モータとバッテリとの間に接続されるリレーがオンされるので、バッテリからの電力を走行用モータ側に供給し、車両において、走行用モータを使用した走行を行える。
 また、バッテリは、複数のバッテリであり、バッテリ制御部は、それぞれのバッテリに対応し、充電器制御部と通信する複数のバッテリ制御部であり、スイッチは、それぞれのバッテリと充電器との間に電力線により接続される複数のスイッチであり、充電器制御部は、それぞれのバッテリ制御部から送信されるバッテリ状態から算出されるバッテリの算出充電電力、またはバッテリ制御部から送信される算出充電電力で外部電源からそれぞれのバッテリを充電させるように充電器を制御する構成によれば、車両の走行時に複数のバッテリを同時に効率よく使用できる構成で、外部電源からの効率よい充電が可能となる。
 また、本発明に係る電動車両において、走行時に駆動するインバータまたは昇圧コンバータとバッテリとの間に接続する走行時接続スイッチを備え、バッテリと充電器との間に電力線により接続されるスイッチである充電時接続スイッチの電流容量は、走行時接続スイッチの電流容量よりも小さくする構成において、好ましくは、充電時接続スイッチは、電流遮断機能を有するMOS-FETと、MOS-FETに直列に接続されたシステムリレーとを含む構成によれば、電流遮断機能をシステムリレーに持たせずに済み、システムリレーの小型化と低損失化とにより、充電効率を向上させることができる。
 また、本発明に係る電動車両において、走行時に駆動するインバータまたはDC/DCコンバータとバッテリとの間に接続する走行時接続スイッチを備え、バッテリと充電器との間に電力線により接続されるスイッチである充電時接続スイッチの電流容量は、走行時接続スイッチの電流容量よりも小さくする構成において、外部電源からの充電時に、運転者が操作可能な起動スイッチがオンされたことを表す信号が入力された場合には、走行時接続スイッチをオンする一方、外部電源からの充電時に起動スイッチがオンされたことを表す信号が入力されない場合には、走行時接続スイッチをオンしない走行時接続スイッチ制御手段を備える構成によれば、走行時に駆動する電動パワーステアリング装置等の車載装置に、充電中に高圧電圧が加わることを抑制できる。
本発明の第1の実施の形態のハイブリッド車両の構成を示すブロック図である。 図1の一部の構成の回路を示す図である。 図2のパワーコントロールユニットを含む回路を示す図である。 図2のバッテリECUの構成を詳しく示すブロック図である。 本発明の第1の実施の形態のハイブリッド車両の充電制御方法を説明するためのフローチャートである。 本発明の第2の実施の形態のハイブリッド車両の充電制御方法を説明するためのフローチャートである。 本発明の第3の実施の形態において、ハイブリッド車両の一部の構成の回路を示す図である。 図7の一部の回路において、信号送受信経路を説明するための図である。 本発明の第4の実施の形態において、ハイブリッド車両の一部の構成の回路を示す図である。 本発明の第4の実施の形態において、各バッテリECUの構成を示すブロック図である。 本発明に関する電動車両であるハイブリッド車両において、複数の高圧バッテリを外部充電する構成を示す略回路図である。
[第1の発明の実施の形態]
 以下において、図面を用いて本発明に係る実施の形態につき詳細に説明する。図1から図4は、本発明の実施の形態の第1例を示している。図1は、本実施の形態のハイブリッド車両の構成を示すブロック図である。図2は、図1の一部の構成の回路を示す図である。図3は、図2のパワーコントロールユニットを含む回路を示す図である。図4は、図2のバッテリECUの構成を詳しく示すブロック図である。図5は、本実施の形態のハイブリッド車両の充電制御方法を説明するためのフローチャートである。
 なお、本実施の形態では、エンジンと走行用モータとのうち、少なくとも一方を走行用動力源として走行する電動車両であるハイブリッド車両に本発明の電動車両を適用する場合について説明する。ただし、本発明は、このような構成に限定するものではなく、電動車両を、走行用モータのみを走行用動力源として走行させる電気自動車とする場合でも適用できる。
 図1に示すように、本実施の形態の電動車両であるハイブリッド車両10は、エンジン12と、第1モータジェネレータである、発電機(MG1)14と、第2モータジェネレータである、走行用モータ(MG2)16とを備え、発電機14と走行用モータ16とは、モータ制御部18により駆動を制御する。
 また、ハイブリッド車両10は、車両制御部20を備え、図示しないアクセル開度センサ、シフトレバーポジションセンサ、車速センサ等から入力される信号に基づいて、エンジン12に制御信号を出力するとともに、モータ制御部18に、発電機14と走行用モータ16とに出力するためのトルク指令値に対応する信号を出力する。そして、エンジン12と走行用モータ16とのうち、少なくとも一方を走行用動力源として、図示しない車輪を駆動する。発電機14は、3相交流モータであり、エンジン12始動用モータとしても使用可能である。また、走行用モータ16は、3相交流モータであり、かつ、発電機、すなわち電力回生用としても使用可能である。なお、本明細書及び請求の範囲全体において、「走行用モータ」と「発電機」とは便宜上区別しているが、本実施の形態では、いずれも双方の機能を有するモータジェネレータである。ただし、本発明において、「走行用モータ」は、モータのみの機能を有するものも使用できる。
 また、発電機14および走行用モータ16の駆動状態は、モータ制御部18により、パワーコントロールユニット(PCU)22を介して制御している。図3に示すように、パワーコントロールユニット22は、昇降圧コンバータ24を有する。すなわち、パワーコントロールユニット22は、発電機用インバータ(MG1用インバータ)26と、走行モータ用インバータ(MG2用インバータ)28と、昇降圧コンバータ24と、第1コンデンサ30及び第2コンデンサ32とを有する。また、高圧バッテリ36と第1コンデンサの両端との間を接続する正極線及び負極線にそれぞれ走行時接続スイッチであり、車両制御部20またはモータ制御部18により開閉を制御されるリレー34を接続している。モータ制御部18(図1)は、インバータ26,28に、発電機14及び走行用モータ16の駆動制御信号をそれぞれ出力し、それぞれのインバータ26,28は、駆動制御信号に基づいて発電機14及び走行用モータ16のそれぞれを駆動する。
 昇降圧コンバータ24は、ハイブリッド車両10(図1)に搭載する高圧バッテリ36から、第1コンデンサ30を介して供給された直流電圧を昇圧して、第2コンデンサ32に供給可能としている。リレー34は、モータ制御部18または車両制御部20(図1)からの信号によりオンまたはオフされる。
 また、昇降圧コンバータ24は、モータ制御部18(図1)からの信号に対応して、図示しないトランジスタ等のスイッチング素子のオン時間とオフ時間とに対応して、直流電圧を昇圧し、第2コンデンサ32に供給する機能を有する。第2コンデンサ32は、昇降圧コンバータ24からの直流電圧を平滑化し、平滑化した直流電圧を、発電機用インバータ26と走行モータ用インバータ28とに供給する。
 発電機用インバータ26は、第2コンデンサ32からの直流電圧が供給されると、モータ制御部18(図1)からのトルク指令値に対応する信号に基づいて、直流電圧を交流電圧に変換して発電機14を駆動する。また、走行モータ用インバータ28は、第2コンデンサ32からの直流電圧が供給されると、モータ制御部18からのトルク指令値に対応する信号に基づいて、直流電圧を交流電圧に変換して走行用モータ16を駆動する。
 一方、発電機用インバータ26は、発電機14により発電した交流電圧をモータ制御部18(図1)からの信号に基づいて直流電圧に変換し、その変換した直流電圧を、第2コンデンサ32を介して昇降圧コンバータ24に供給する。また、走行モータ用インバータ28は、ハイブリッド車両10(図1)の回生制動時に、走行用モータ16により発電した交流電圧をモータ制御部18からの信号に基づいて直流電圧に変換し、その変換した直流電圧を、第2コンデンサ32を介して昇降圧コンバータ24に供給する。このように昇降圧コンバータ24に供給された直流電圧は、第1コンデンサ30を介して高圧バッテリ36に供給され、高圧バッテリ36が充電される。図1に示すように、エンジン12と、車両制御部20と、モータ制御部18と、パワーコントロールユニット22とは、それぞれ信号線108により接続している。
 図1、図2に示すように、高圧バッテリ36は、商用電源であり、かつ、交流電源である外部電源38(図2)からも充電可能としている。すなわち、高圧バッテリ36は、走行用モータ16に電力を供給可能で、かつ、外部電源38からの充電を可能とする。高圧バッテリ36の電圧は、例えば、200V等である。
 また、図1に示すように、本実施の形態のハイブリッド車両10は、充電回路40と、高圧バッテリ36の状態を監視するバッテリ制御部であるバッテリECU42と、補機用の低圧バッテリ44(図2)とを備える。また、充電回路40は、外部電源38(図2)に接続可能なプラグ46と、プラグ46が接続された高圧系ケーブル48と、高圧系ケーブル48に接続された充電コネクタ50と、充電コネクタ50と接続可能な充電口である充電インレット51(図2)と、充電インレット51に接続される充電器ユニット52と、高圧バッテリ36と充電器ユニット52との間に接続される充電時接続スイッチ54とを有する。図1に示すように、パワーコントロールユニット22と、発電機14及び走行用モータ16との間、及び、パワーコントロールユニット22、リレー34、高圧バッテリ36、充電時接続スイッチ54及び充電器ユニット52の間、充電器ユニット52と充電インレット51との間、充電コネクタ50とプラグ46との間は、それぞれパワーラインと呼ばれる電力線106により接続している。高圧系ケーブル48は、電力線106を構成する。
 図2に示すように、充電コネクタ50は、車体56に設置される充電インレット51に接続されたときに、車体56から外部に導出した高圧系ケーブル48とプラグ46とを介して外部電源38と接続される。ここで、充電インレット51は、車両外部の外部電源38から充電電力を受電するための電力インターフェースである。また、充電コネクタ50は、外部電源38と接続された場合に電圧信号であるCPLTをバッテリECU42に出力する。ここで、CPLTは、CCID(Charging Circuit Interrupt Device)58が有するCPLT生成部、例えばコントロールパイロット回路(図示せず)により生成される電圧信号で、充電コネクタ50を介してバッテリECU42に出力され、バッテリECU42のI/Oに入力されることにより、バッテリECU42のI/Oに電圧が印加され、スイッチ接続充電器ECU起動手段70(図4)を含むバッテリECU42が起動する。CCID58は、漏電検出手段も有する。なお、CCID58でCPLTを生成せず、充電コネクタ50によりCPLTを直接生成することもできる。このため、CCID58または充電コネクタ50は、CPLT生成部を有し、CPLT生成部は、外部電源38とプラグ46とが接続された場合に外部電源38から電力を供給されることにより動作し、CPLTを発生する機能を有する。CPLT生成部は、充電コネクタ50が充電インレット51に接続された場合に、充電ケーブル毎に定められる定格電流に基づいて設定されるデューティサイクル(発振周期に対するオンデューティ幅の比)でCPLTを発振させ、バッテリECU42に定格電流を通知するようにすることもできる。CCID58と充電コネクタ50とは図示しない信号線で接続され、CCID58から送信されるCPLTを充電コネクタ50、充電インレット51を介してバッテリECU42に出力する。なお、本実施の形態とは別の実施の形態として、CCID58を車両に内蔵し、プラグ46を接続した高圧系ケーブル48の車両への引き込み及び引き出しを可能とし、CCID58からバッテリECU42にCPLTを出力する電動車両において、本実施の形態と同様の構成を採用することもできる。この場合、充電コネクタ50及び充電インレット51を省略し、CCID58を充電器ユニット52に電力線を介して接続することもできる。例えば、電動車両では、高圧系ケーブル48の巻き取り、または引き込みを可能とする収容部を車体に設けることもできる。充電時には、高圧系ケーブル48を車体から外側に引き出し、プラグ46を外部電源38に接続する。
 また、本実施の形態において、充電器ユニット52は、充電器60と、充電器60を制御する充電器制御部である充電器ECU62とを有し、充電コネクタ50と充電器60とを電力線106を構成する高圧系ケーブル64により接続している。充電器60は、充電コネクタ50から入力される交流電流を直流電流に変換する、図示しないAC/DCコンバータを有する。
 また、充電時接続スイッチ54は、互いに並列に接続された2個のシステムリレーS1a,S1bと、各システムリレーS1a,S1bに対し直列に接続された電流遮断機能を有する半導体スイッチング素子M1と、を備える。2個のシステムリレーS1a,S1bの片側のシステムリレーS1aには抵抗を直列に接続している。2個のシステムリレーS1a,S1bは、例えば一方のみを接続し、他方を遮断する。また、半導体スイッチング素子M1は、例えばMOS-FETであり、電流遮断用として使用し、各システムリレーS1a,S1bは物理的な回路の切り離し用として使用する。充電時接続スイッチ54は、バッテリECU42から接続指令信号が入力されることにより、2個のシステムリレーS1a,S1bの一方のシステムリレーS1a(またはS1b)と、半導体スイッチング素子M1とを接続する。
 また、バッテリECU42は、充電コネクタ50と、充電時接続スイッチ54と、高圧バッテリ36と、充電器ECU62とにそれぞれ低圧系ケーブルである信号線116,112,110,114により接続される。バッテリECU42は、起動後に、高圧バッテリ36側に設けたセンサから、高圧バッテリ36の温度、電流値、電圧値等を表す検知信号が入力され、入力された検知信号からバッテリの状態であり、高圧バッテリ36の充電量であるSOC(state of charge)を推定し、監視する。SOCは、高圧バッテリ36での満充電量に対する現在の充電量の割合を表し、例えばその単位を%として規定する。また、バッテリECU42は、高圧バッテリ36の状態、例えばSOCや高圧バッテリ36の温度、高圧バッテリ36の漏電の有無等の状態が、予め設定される充電可能条件を満たすと判定した場合に、充電時接続スイッチ54に接続指令信号を出力することにより、充電時接続スイッチ54を接続し、充電器ECU62を起動し、充電器ECU62にバッテリ状態を表す信号を送信する。すなわち、図4に示すように、バッテリECU42は、バッテリ状態判定手段68と、スイッチ接続充電器ECU起動手段70と、充電電力決定用信号送信手段72とを有する。
 図2に示すように、バッテリECU42は、充電コネクタ50から充電インレット51を介してCPLTがバッテリECU42に入力され、バッテリECU42に電圧が印加されることにより起動し、バッテリECU42の起動後には、充電コネクタ50の代わりに、低圧バッテリ44から電力の給電を受ける。すなわち、外部電源38にプラグ46が接続され、充電コネクタ50が充電インレット51に挿入される、すなわち接続された場合に、充電コネクタ50が送信するCPLTをトリガにして、車両の走行時にも起動するバッテリECU42が起動する。低圧バッテリ44の電圧は、例えば12V等であり、高圧バッテリ36の電圧よりも低い。また、低圧バッテリ44の正極線及び負極線は、パワーコントロールユニット22と高圧バッテリ36との間に、DC/DCコンバータ69を介して接続している。DC/DCコンバータ69の電力容量は、昇降圧コンバータ24(図3)の電力容量よりも小さくしている。逆にいうと、昇降圧コンバータ24を構成するトランジスタ等のスイッチング素子は、昇降圧コンバータ24に同時に接続し電力を供給する機器の数がDC/DCコンバータ69の場合よりも多くなる使用に耐えられる性能を有するものを使用する。また、図2に示すDC/DCコンバータ69は、200V等の高圧バッテリ36から供給される直流電圧を12V等の直流電圧に変換して低圧バッテリ44に供給可能とする。これに対して、図3に示す昇降圧コンバータ24は、200V等の高圧バッテリ36から供給される直流電圧を、例えば、200Vから650V等の高圧の大きい範囲の直流電圧に変換して走行用モータ16等の負荷に供給可能とする。
 また、バッテリ状態判定手段68(図4)は、バッテリECU42の起動後に、高圧バッテリ36の状態を監視し、高圧バッテリ36の状態が予め設定された充電可能条件のすべてを満たすか否かを判定する。例えば、充電可能条件は、高圧バッテリ36が漏電しておらず、高圧バッテリ36の温度が基準とする範囲内であり、高圧バッテリ36のSOCが基準とする範囲内であり、高圧バッテリ36が正常に機能すること等である。
 スイッチ接続充電器ECU起動手段70(図4)は、バッテリ状態判定手段68(図4)によりバッテリ状態が充電可能条件のすべてを満たすと判定された場合に、充電時接続スイッチ54に接続指令信号を出力することにより、充電時接続スイッチ54を接続し、充電器ECU62を起動させる。充電器ECU62は、高圧バッテリ36からの電圧により駆動される高圧系ECUである。
 また、充電電力決定用信号送信手段72(図4)は、バッテリ状態である、高圧バッテリ36のSOCの推定値を表す充電電力決定用信号を充電器ECU62に送信する。なお、バッテリECU42は、車両の走行時に起動しているECU(electric control unit)であり、走行時の高圧バッテリ36の情報を有する、すなわち走行時の高圧バッテリ36の状態を記憶部に記憶させている。これに対して、充電器ECU62は、車両の走行中には起動しない。すなわち、高圧バッテリ36の外部電源38からの充電時には、車両側において、バッテリECU42と充電器ECUとを起動させ、バッテリECU42及び充電器ECU62を除く制御部であるECUは起動させない。
 充電器ECU62は、バッテリECU42により起動されると、充電電力決定用信号送信手段72(図4)から送信される充電電力決定用信号が表す高圧バッテリ36のSOCから高圧バッテリ36に充電すべき電力である、算出充電電力を算出する、すなわち決定する。充電器ECU62は、高圧バッテリ36の算出充電電力を決定する場合に、高圧バッテリ36のSOCと、高圧バッテリ36の温度とから算出充電電力を決定することもできる。また、充電器ECU62は、決定した算出充電電力で外部電源38から高圧バッテリ36を充電させるように、充電器60が有するAC/DCコンバータを制御する。また、車両制御部20(図1)は、外部電源38から高圧バッテリ36を充電する場合にリレー34(図1から図3)をオフし、走行用モータ16を駆動する場合にリレー34をオンするようにリレー34を制御する。例えば、車両制御部20は、車両の起動時、すなわち、イグニッションスイッチに対応する図示しない起動スイッチのオン時にリレー34を接続する。また、図1に示すように、バッテリECU42と高圧バッテリ36との間は信号線110により接続し、バッテリECU42と充電時接続スイッチ54との間は信号線112により接続し、バッテリECU42と充電器ECUとの間は信号線114により接続し、バッテリECU42と充電コネクタ50との間は信号線116により接続している。
 このようなハイブリッド車両10では、図5のフローチャートを用いて説明する、充電制御方法により高圧バッテリ36の外部からの充電である外部充電を制御する。なお、以下の説明では、図1から図4に示した要素と同一の要素には同一の符号を付して説明する。図5のフローチャートで示すように、外部充電時には、まず、ステップS1で、充電コネクタ50と外部電源38とが接続されると、CCID58または充電コネクタ50が有するCPLT生成部によりCPLTが生成される。次いで、ステップS2で、充電インレット51に充電コネクタ50が接続されると、充電コネクタ50から充電インレット51を介して、バッテリECU42に信号線116を通じて電圧信号であるCPLTが出力される。
 また、ステップS2で、バッテリECU42は、充電コネクタ50から出力されるCPLTがバッテリECU42に入力されると起動する。また、ステップS3で、バッテリ状態判定手段68は、バッテリECU42の起動後に、信号線110を通じて高圧バッテリ36から送信される信号に基づいて高圧バッテリ36の状態が充電可能条件のすべてを満たすか否かを判定する。また、ステップS4で、スイッチ接続充電器ECU起動手段70は、バッテリ状態判定手段68により充電可能条件のすべてを満たすと判定された場合に、充電時接続スイッチ54に信号線112により接続指令信号を送信し、充電時接続スイッチ54を接続させ、充電器ECU62に信号線114により起動指令信号を送信し、充電器ECU62を起動させる。
 また、ステップS5で、充電電力決定用信号送信手段72は、バッテリECU42から充電器ECU62にバッテリ状態である、高圧バッテリ36のSOCを表す充電電力決定用信号を信号線114により送信する。そして、ステップS6で、充電器ECU62は、充電電力決定用信号が表す高圧バッテリ36のSOCから高圧バッテリ36で充電すべき充電電力である算出充電電力を算出し、ステップS7で、充電器ECU62は、算出した算出充電電力で外部電源38から高圧バッテリ36を充電させるように、充電器60を制御する。すなわち、算出充電電力で高圧バッテリ36を充電できた場合には、充電器ECU62は、外部電源38から高圧バッテリ36側に入力される電流を、充電器60が有するAC/DCコンバータで遮断する。
 このような本実施の形態のハイブリッド車両及びハイブリッド車両の充電制御方法によれば、外部電源38から充電可能なバッテリ36と、充電器60と、充電器60を制御する充電器ECU62と、高圧バッテリ36の状態を監視するバッテリECU42とを備えるハイブリッド車両において、充電時のエネルギ損失を低減し、充電効率を向上させることができる。すなわち、本実施の形態のハイブリッド車両によれば、充電時には、充電コネクタ50からバッテリECU42に電圧信号であるCPLTが入力された場合にバッテリECU42が起動し、バッテリ状態判定手段68により高圧バッテリ36の状態が充電可能条件を満たすと判定された場合に、スイッチ接続充電器制御部起動手段70により充電時接続スイッチ54がオンされ、充電器ECU62が起動される。また、充電器ECU62は、充電電力決定用信号送信手段72から送信されるSOCから算出される高圧バッテリ36の算出充電電力で、外部電源38から高圧バッテリ36を充電させるように充電器60を制御する。このため、外部電源38からの充電時に不必要に充電器ECU62が起動されるのを防止して、充電時のエネルギ損失を低減し、充電効率を向上させることができる。
 また、本実施の形態のハイブリッド車両によれば、走行用モータ16と高圧バッテリ36との間に電力線により接続されるリレー34と、外部電源38から高圧バッテリ36を充電する場合にリレー34をオフし、走行用モータ16を駆動する場合にリレー34をオンする車両制御部20とを備える。このため、外部電源38からの充電をより効率よく行える。すなわち、外部電源38からの充電時には、充電コネクタ50からバッテリECU42に電圧信号であるCPLTが入力された場合にバッテリECU42が起動し、バッテリ状態判定手段68により高圧バッテリ36の状態が充電可能条件を満たすと判定された場合に充電器ECU62が起動されるが、走行用モータ16と高圧バッテリ36との間に接続されるリレー34はオフされる。このため、リレー34よりも走行用モータ16側に接続され、昇降圧コンバータ24、インバータ26,28を駆動する等の走行用モータ16駆動用のシステムを起動させずに済む。このため、充電時の省電力化を図れ、充電効率を向上させることができる。一方、走行時には、走行用モータ16と高圧バッテリ36との間に接続されるリレー34がオンされるので、高圧バッテリ36からの電力を走行用モータ16側に供給し、車両において、走行用モータ16を使用した走行を行える。また、外部電源38からの充電時に、外部電源38からの電圧を変換するために、走行時に使用しない電力容量の小さいAC/DCコンバータを使用すればよく、走行時に使用する昇降圧コンバータ24(図3)等を使用せずに済む。このため、充電時のエネルギ消費の低減を図れ、充電を効率よく行える。
 また、充電時接続スイッチ54は、システムリレーS1a,S1bと、システムリレーS1a,S1bに対し直列に接続された電流遮断機能を有する半導体スイッチング素子M1とを備えるので、電流遮断機能をシステムリレーS1a,S1bに持たせずに済み、システムリレーS1a,S1bの小型化と低損失化とにより、充電効率を向上させることができる。
[第2の発明の実施の形態]
 図6は、本発明の第2の実施の形態のハイブリッド車両の充電制御方法を説明するためのフローチャートである。上記の第1の実施の形態では、図1を参照するように、バッテリECU42が、充電器ECU62にバッテリ状態である高圧バッテリ36のSOCを表す信号を送信し、充電器ECU62が、高圧バッテリ36のSOCから高圧バッテリ36の算出充電電力を算出し、算出充電電力で高圧バッテリ36を充電させるように充電器60を制御する場合を説明した。なお、以下の説明では、上記の図1から図4に示した要素と同等の要素には同一の符号を付して説明する。
 本実施の形態では、図6に示すように、ステップS4でバッテリECU42のスイッチ接続充電器ECU起動手段70が充電器ECU62を起動させると、ステップS5で、スイッチ接続充電器ECU起動手段70は、高圧バッテリ36のSOCから高圧バッテリ36で充電すべき充電電力である算出充電電力を算出し、算出充電電力を表す充電電力決定用信号を充電器ECU62に送信する。
 ステップS6で、充電器ECU62は、充電電力決定用信号が表す算出充電電力で高圧バッテリ36を充電させるように充電器60を制御する。このように算出充電電力の算出は、充電器ECU62ではなく、バッテリECU42により実行させることもできる。その他の構成及び作用については、上記の第1の実施の形態と同様であるため、重複する図示及び説明を省略する。なお、本実施の形態において、バッテリECU42が、高圧バッテリ36が充電可能条件を満たすと判定した後、バッテリECU42が充電器ECU62を起動させる前に、バッテリECU42により算出充電電力を算出する構成とすることもできる。
[第3の発明の実施の形態]
 図7は、本発明の第3の実施の形態において、ハイブリッド車両の一部の構成の回路を示す図である。図8は、図7の一部の回路において、信号送受信経路を説明するための図である。
 本実施の形態のハイブリッド車両は、走行用モータ16及び発電機14の駆動用として、複数の高圧バッテリ36,74,76を搭載している。複数の高圧バッテリ36,74,76のうち、2個の高圧バッテリ36,74は、車両メーカー側においてハイブリッド車両に標準装備として搭載するバッテリであり、残りの1個の高圧バッテリ76は、ユーザーが車両にオプションとして搭載することが選択可能なオプションバッテリである。以下の説明では、ハイブリッド車両に3個の高圧バッテリ36,74,76を搭載する場合を説明するが、2個の高圧バッテリ、または4個以上の高圧バッテリを車両に搭載する場合でも同様に実施できる。
 車両の走行時には、複数の高圧バッテリ36,74,76から昇降圧コンバータ24を介して走行用モータ16または発電機14に電力を、複数の高圧バッテリ36,74,76で同時または選択的に供給可能とする。また、本実施の形態のハイブリッド車両は、各高圧バッテリ36,74,76と充電器60との間に接続された複数の充電時接続スイッチ54,78,80と、各高圧バッテリ36,74,76を制御するバッテリ制御部である複数のバッテリECU42,82,84とを備える。各充電時接続スイッチは、上記の第1の実施の形態の場合と同様に、2個ずつのシステムリレーS1a,S1b,S2a,S2b,S3a,S3bと半導体スイッチング素子M1,M2,M3とを有する。各バッテリECU42,82,84は、上記の図4に示した第1の実施の形態の場合と同様に、バッテリ状態判定手段68と、スイッチ接続充電器ECU起動手段70と、充電電力決定用信号送信手段72とを有する。また、低圧バッテリ44により複数のバッテリECU42,82,84に電力を供給可能としている。
 また、各バッテリECU42,82,84は、それぞれの高圧バッテリ36,74,76に対応し、充電器ECU62と通信する。各バッテリ状態判定手段68(図4参照)は、対応する高圧バッテリ36,74,76の状態が充電可能条件のすべてを満たすか否かを判定する。また、各スイッチ接続充電器ECU起動手段70は、バッテリ状態判定手段68により、複数の充電時接続スイッチ54,78,80のうち、充電可能条件のすべてを満たすと判定された、高圧バッテリ36,74,76に対応する充電時接続スイッチ54,78,80のみを接続した後に、少なくとも1のバッテリECU42,82,84が有するスイッチ接続充電器ECU起動手段70が、充電器ECU62に起動指令信号を送信し、充電器ECU62を起動させる。充電器ECU62は、それぞれのバッテリECU42,82,84から送信される信号が表すバッテリ状態である高圧バッテリ36,74,76のSOCから、それぞれの高圧バッテリ36,74,76の算出充電電力を算出し、算出充電電力で外部電源38からそれぞれの高圧バッテリ36,74,76を充電させるように充電器60を制御する。
 このようなハイブリッド車両の充電制御方法では、上記の図5に示した第1の実施の形態と同様に、充電コネクタ50から複数のバッテリECU42,82,84のそれぞれに、電圧信号であるCPLT(図2参照)が出力される。
 また、各バッテリECU42,82,84が有するバッテリECU42,82,84(図4参照)に、充電コネクタ50からCPLTが入力されると、各バッテリECU42,82,84が起動する。また、バッテリ状態判定手段68は、バッテリECU42,82,84の起動後に、対応する高圧バッテリ36,74,76の状態が充電可能条件のすべてを満たすか否かを判定し、充電可能条件のすべてを満たすと判定された場合に、対応するスイッチ接続充電器ECU起動手段70が、充電可能条件を満たすと判定された、高圧バッテリ36,74,76に対応する充電時接続スイッチ54,78,80のみに接続指令信号を送信し、充電時接続スイッチ54,78,80を接続させた後に、少なくとも1のスイッチ接続充電器ECU起動手段70が、充電器ECU62に起動指令信号を送信し、充電器ECU62を起動させる。この場合、充電器ECU62は、いずれかのバッテリECU42,82,84から最先に送信される起動指令信号により起動する構成とすればよく、複数のスイッチ接続充電器ECU起動手段70のすべてが起動指令信号を送信した場合に、充電器ECU62は、最先に送信される起動指令信号を受信した場合に起動する構成としてもよい。
 また、充電可能条件を満たすと判定された高圧バッテリ36,74,76に対応するバッテリECU42,82,84が有する、充電電力決定用信号送信手段72(図4)は、バッテリECU42,82,84から充電器ECU62にバッテリ状態である、高圧バッテリ36,74,76のSOCを表す信号を送信する。そして、充電器ECU62は、高圧バッテリ36,74,76のSOCから高圧バッテリ36,74,76の算出充電電力を算出し、算出充電電力で外部電源38から充電可能条件を満たす高圧バッテリ36,74,76を充電させるように、充電器60を制御する。
 このような本実施の形態によれば、複数のバッテリECU42,82,84は、複数の高圧バッテリ36,74,76のそれぞれに対応し、充電器ECU62と通信し、充電時接続スイッチ54,78,80は、それぞれの高圧バッテリ36,74,76と充電器60との間に接続される。また、充電器ECU62は、充電可能条件を満たすと判定された高圧バッテリ36,74,76に対応する、バッテリECU42,82,84から送信される充電電力決定用信号が表すバッテリ状態から、それぞれの高圧バッテリ36,74,76の算出充電電力を算出し、算出充電電力で外部電源38から充電可能条件を満たす高圧バッテリ36,74,76を充電させるように充電器60を制御する。このため、ハイブリッド車両の走行時に複数の高圧バッテリ36,74,76を同時に効率よく使用できる構成で、外部電源38からの効率よい充電が可能となる。その他の構成及び作用については、上記の図1から図5に示した第1の実施の形態と同様であるため、同等部分には同一符号を付して重複する図示及び説明を省略する。
 なお、本実施の形態において、各バッテリECU42,82,84のすべてが、対応する高圧バッテリ36,74,76のバッテリ状態を監視せず、かつ、充電時接続スイッチ54,78,80を接続せず、かつ、充電器ECU62を起動させず、充電器ECU62にバッテリ状態を表す信号を送信しない構成とすることもできる。この場合には、例えば、複数のバッテリECU42,82,84の1個のバッテリECU42に残りの2個のバッテリECU82,84をCANbusネットワークで接続し、1個のバッテリECU42が残りのバッテリECU82,84を統合制御するようにすることもできる。この場合、各バッテリECU42,82,84に走行時の高圧バッテリ36,74,76のバッテリ状態を履歴として記憶させ、1個のバッテリECU42が残りの2個のバッテリECU82,84の履歴を読み出す。1個のバッテリECU42は、その履歴に基づいて、充電可能な高圧バッテリ36,74,76を選択し、選択された高圧バッテリ36,74,76に対応する充電時接続スイッチ54,78,80を接続し、充電器ECU62を起動させる。1個のバッテリECU42,82,84は、選択された高圧バッテリ36,74,76のバッテリ状態の履歴を表す信号を充電器ECU62に送信し、充電器ECU62は、決定した充電電力で、外部電源38から、選択された高圧バッテリ36,74,76を充電させるように充電器60を制御する。このような構成の場合も、本実施の形態の場合と同様に、外部電源38からの効率よい充電が可能となる。
[第4の発明の実施の形態]
 図9は、本発明の第4の実施の形態において、ハイブリッド車両の一部の構成の回路を示す図である。図10は、本実施の形態において、各バッテリECUの構成を示すブロック図である。
 本実施の形態では、上記の図7から図8に示した第3の実施の形態において、昇降圧コンバータ24と複数の高圧バッテリ36,74,76との間に、車両の起動時、すなわち、イグニッションスイッチに対応する図示しない起動スイッチのオン時に接続する、走行時接続スイッチ86を接続している。図示の例では、走行時接続スイッチ86は、各高圧バッテリ36,74,76と充電器ユニット52との間に接続した充電時接続スイッチ54,78,80を構成する半導体スイッチング素子S1a,S1b,S2a,S2b,S3a,S3bと同様に、各高圧バッテリ36,74,76の正極側または負極側とパワーコントロールユニット22との間に接続したシステムリレーSA,SBを有する。また、各高圧バッテリ36,74,76の負極側または正極側とパワーコントロールユニット22との間にシステムリレーSCを接続している。また、充電時接続スイッチ54,78,80の電流容量は、走行時接続スイッチ86の電流容量よりも小さくしている。また、車両制御部20(図1参照)は、外部電源38(図2参照)から高圧バッテリ36,74,76を充電する場合にリレーである、走行時接続スイッチ86をオフし、走行用モータ16(図1等参照)を駆動する場合に走行時接続スイッチ86をオンするように走行時接続スイッチ86を制御する。
 また、低圧バッテリ44にDC/DCコンバータ69を接続し、車両走行時等、発電機14または走行用モータ16(図1等参照)からインバータ26,28(図3参照)を介して供給される高圧電圧がDC/DCコンバータ69で降圧された後、低圧バッテリ44に供給され、充電されるようにしている。また、低圧バッテリ44に充電器60が有するAC/DCコンバータ88を接続し、外部電源38(図2参照)からの高圧バッテリ36,74,76の充電時に、外部電源38からの電圧がAC/DCコンバータ88で降圧された後、低圧バッテリ44に供給され、充電されるようにしている。
 AC/DCコンバータ88の出力電力容量は、昇降圧コンバータ24(図3参照)の出力電力容量よりも小さくしている。すなわち、昇降圧コンバータ24を構成するトランジスタ等のスイッチング素子は、昇降圧コンバータ24に同時に接続し電力を供給する機器の数がAC/DCコンバータ88の場合よりも多くなる使用に耐えられる性能を有するものを使用する。これに対して、AC/DCコンバータ88は電力を供給する機器の数が、昇降圧コンバータ24の場合よりも少なく、電力容量が昇降圧コンバータ24よりも低いものを使用する。また、AC/DCコンバータ88は、外部電源38から供給される100V等の高い交流電圧を、12V等の低い直流電圧に変換し、低圧バッテリ44に供給する。すなわち、本実施の形態のハイブリッド車両は、低圧バッテリ44を充電するための2個の電力変換部である、AC/DCコンバータ88と、昇降圧コンバータ24とを備える。また、AC/DCコンバータ88は、充電器60内に搭載され、外部電源38からの充電時にのみ起動する。また、昇降圧コンバータ24は、車両の走行時にのみ起動する。
 また、車両制御部20(図1参照)は、図示しない走行時接続スイッチ制御手段と、溶着検知手段とを有する。なお、以下の説明では、図9と同一の要素には同一の符号を付して説明する。走行時接続スイッチ制御手段は、外部電源38(図2参照)からの充電時に、運転者が操作可能な起動スイッチ(図示せず)がオンされたことを表す信号が入力された場合には、走行時接続スイッチ86を接続する、すなわちオンする一方、外部電源38からの充電時に起動スイッチがオンされたことを表す信号が入力されない場合には、走行時接続スイッチ86を接続しない、すなわちオフする。
 また、溶着検知手段は、充電器60の起動時に、各充電時接続スイッチ78が有するシステムリレーS1a,S1b,S2a,S2b,S3a,S3bの溶着の有無を検知する。例えば、溶着検知手段は、対応する充電時接続スイッチ54,78,80に接続指令信号または遮断指令信号を出力した場合に検出される電流値により、対応する充電時接続スイッチ54,78,80の溶着の有無を検知する。なお、本実施の形態のように、各充電時接続スイッチ54,78,80が、2個ずつのシステムリレーS1a,S1b,S2a,S2b,S3a,S3bを有する場合に、溶着検知手段92により、2個のシステムリレーS1a,S1b,S2a,S2b,S3a,S3bの溶着の有無を検知する時点をずらせることもできる。例えば、抵抗を直列に接続したシステムリレーS1a,S2a,S3aの溶着の有無を検知した後に、抵抗を直列に接続しないシステムリレーS1b,S2b,S3bの溶着の有無を検知することもできる。
 また、図10に示すように、バッテリECU42,82,84は、電力変換部制御手段94を有する。電力変換部制御手段94は、外部電源38(図2参照)からの充電時に運転者が操作可能な起動スイッチがオンされたことを表す信号が入力された場合には、昇降圧コンバータ24(図3参照)を駆動し、AC/DCコンバータ88の駆動を停止する。なお、バッテリECU42,82,84に電力変換部制御手段94を持たせずに、AC/DCコンバータ88と昇降圧コンバータ24とを制御する別の制御部が、電力変換部制御手段94を有する構成とすることもできる。なお、図示の例では、高圧バッテリ36とパワーコントロールユニット22とを接続する電力線のうち、システムリレーSCが接続された電力線にDC/DCコンバータ69を接続しているが、システムリレーSBとシステムリレーSCとが接続された電力線の側にDC/DCコンバータ69を接続することもできる。
 このような本実施の形態のハイブリッド車両の場合も、外部電源38から充電可能なバッテリ36,74,76と、充電器60と、充電器60を制御する充電器ECU62と、高圧バッテリ36の状態を監視するバッテリECU42とを備えるハイブリッド車両において、充電時のエネルギ損失を低減し、充電効率を向上させることができる。また、高圧バッテリ36,74,76と走行用モータ16との間に昇降圧コンバータ24を設ける場合でも、昇降圧コンバータ24を介さずに外部電源38から高圧バッテリ36,74,76の充電が可能となり、外部電源38からの充電を効率よく行えるハイブリッド車両を実現できる。また、外部電源38からの充電時に、運転者が操作可能な起動スイッチがオンされたことを表す信号が入力された場合には、走行時接続スイッチ86をオンする一方、外部電源38からの充電時に起動スイッチがオンされたことを表す信号が入力されない場合には、走行時接続スイッチ86をオンしない走行時接続スイッチ制御手段を備える。このため、走行時に駆動する電動パワーステアリング装置等の車載装置に、充電中に高圧電圧が加わることを抑制できる。また、車両に搭載する空気調節装置等の車載装置の作動等のため、車載装置に高圧電力を供給する必要がある場合には、起動スイッチのオンにより走行時接続スイッチ86をオンし、車載装置に高圧バッテリ36,74,76の電力を供給することができる。ただし、この場合でも、車両の停車中には走行が禁止されるように制御する。例えば、シフトレバーがPレンジ位置にある場合に、走行モータ用インバータ28(図3参照)にゲート信号が送られないようにモータ制御部18(図1参照)により制御する。その他の構成及び作用については、上記の図7から図8に示した第3の実施の形態と同様であるため、同等部分には同一符号を付して重複する図示及び説明を省略する。
 また、車載充電器を搭載する電動車両であって、12V等の低圧バッテリ充電用のDC/DCコンバータ等、2個の電力変換部を備え、2個の電力変換部の一方の電力変換部は、充電器内に搭載され、外部電源からの充電時にのみ起動し、2個の電力変換部の他方の電力変換部は、車両の走行時にのみ起動し、一方の電力変換部の出力容量は、他方の電力変換部の出力容量よりも小さくし、さらに、外部電源からの充電時に運転者が操作可能な起動スイッチがオンされたことを表す信号が入力された場合には、他方の電力変換部を駆動し、一方の電力変換部の駆動を停止する電力変換部制御手段を備える構成を採用することもできる。
 図11は、本発明に関する電動車両であるハイブリッド車両において、複数の高圧バッテリを外部充電する構成を示す略回路図である。図11に示すハイブリッド車両は、外部電源38から充電する、車両に搭載する複数の(図示の例の場合は2個の)高圧バッテリ36,74と、高圧バッテリ36,74のそれぞれに接続された第1整流回路部96と、外部電源38に接続された第2整流回路部98と、充電器100とを備える。充電器100は、第2整流回路部98に接続されたスイッチング回路部102と、スイッチング回路部102と各第1整流回路部96との間に設けられた電圧変換部104とを有する。スイッチング回路部102は、例えば、MOS-FET等の半導体スイッチング素子により構成している。また、第2整流回路部98と高圧バッテリ36,74との間であり、第1整流回路部96と高圧バッテリ36,74との間にリレーである充電時接続スイッチ54,78を設けている。上記の各実施の形態と同様に、図示しない充電コネクタと外部電源38とが接続され、充電コネクタが充電インレット(図示せず)に接続された場合に、充電コネクタから充電インレットを介して電圧信号が図示しないバッテリECUに送信され、バッテリECUが起動する。
 外部電源38から各高圧バッテリ36,74に充電する場合には、第2整流回路部98と充電器100とで交流電圧から直流電圧に変換され、昇圧された電圧が、各高圧バッテリ36,74に供給され、各高圧バッテリ36,74が充電される。また、図11に示す例では、充電器100と複数の高圧バッテリ36,74とをそれぞれ出力ケーブルを介して接続している。また、外部電源38から高圧バッテリ36,74への充電時に、複数の高圧バッテリ36,74のうち、最も電圧が低い高圧バッテリ36(または74)に成り行き充電で外部電源38から電力が供給されるようにしている。
 このような図11に示すハイブリッド車両10によれば、充電器100において、充電のオンとオフとのみを制御するだけで、充電電力が不足している高圧バッテリ36,74に充電電力を供給しやすくできる。すなわち、充電器100は、充電器制御部である充電器ECU62(図2等参照)を有し、充電器ECU62またはバッテリ制御部であるバッテリECU(図示せず)は、各高圧バッテリ36,74のバッテリ状態であるSOCを監視し、SOCが予め設定される所定値以上であれば、スイッチング回路部102の半導体スイッチング素子をオフするように、充電のオンとオフとを制御することにより、充電電力が不足している高圧バッテリ36,74に充電電力を供給しやすくできる。すなわち、図11に示す例で、高圧バッテリ36,74を外部電源38により充電する場合には、充電電力の割り振りを複数の高圧バッテリ36,74に陰に行い、陽には行わない。このため、充電器100が有する充電器ECU62において、バッテリ状態から高圧バッテリ36,74の充電電力を決定し、決定した充電電力で外部電源38から高圧バッテリ36,74を充電させるように充電器100を制御する必要がなくなる。その他の構成及び作用については、上記の図1から図5に示した第1の実施の形態と同様であるため、重複する説明及び図示は省略する。なお、図示の例では、充電器100は、第2整流回路部98を含んでいないが、充電器100が第2整流回路部98を含むようにすることもできる。
 10 ハイブリッド車両、12 エンジン、14 発電機(MG1)、16 走行用モータ(MG2)、18 モータ制御部、20 車両制御部、22 パワーコントロールユニット(PCU)、24 昇降圧コンバータ、26 発電機用インバータ(MG1用インバータ)、28 走行モータ用インバータ(MG2用インバータ)、30 第1コンデンサ、32 第2コンデンサ、34 リレー、36 高圧バッテリ、38 外部電源、40 充電回路、42 バッテリECU、44 低圧バッテリ、46 プラグ、48 高圧系ケーブル、50 充電コネクタ、51 充電インレット、52 充電器ユニット、54 充電時接続スイッチ、56 車体、58 CCID、60 充電器、62 充電器ECU、64 高圧系ケーブル、68 バッテリ状態判定手段、69 DC/DCコンバータ、70 スイッチ接続充電器ECU起動手段、72 充電電力決定用信号送信手段、74,76 高圧バッテリ、78,80 充電時接続スイッチ、82,84 バッテリECU、86 走行時接続スイッチ、88 AC/DCコンバータ、92 溶着検知手段、94 電力変換部制御手段、96 第1整流回路部、98 第2整流回路部、100 充電器、102 スイッチング回路部、104 電圧変換部、106 電力線、108,110,112,114,116 信号線。

Claims (8)

  1.  外部電源から充電可能なバッテリであって、車両走行時に走行用モータに電力を供給し、外部電源からの充電時には走行用モータとの間が切り離されるバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、
     充電器を制御する充電器制御部と、
     バッテリの状態を監視するバッテリ制御部と、
     を備え、
     バッテリ制御部は、
     電圧信号がバッテリ制御部に入力された場合に起動するバッテリ制御部であって、
     バッテリ制御部の起動後に、バッテリの状態が充電可能条件を満たすか否かを判定するバッテリ状態判定手段と、
     バッテリ状態判定手段によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させる起動手段と、を含み、
     充電器制御部は、外部電源からバッテリを充電させるように充電器を制御する電動車両。
  2.  外部電源から充電可能なバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、
     充電器を制御する充電器制御部と、
     バッテリの状態を監視するバッテリ制御部と、
     バッテリからの電力の供給により駆動する走行用モータと、
     走行用モータとバッテリとの間に電力線により接続されるリレーと、
     外部電源からバッテリを充電する場合にリレーをオフし、走行用モータを駆動する場合にリレーをオンする車両制御部と、
     を備え、
     バッテリ制御部は、
     電圧信号がバッテリ制御部に入力された場合に起動するバッテリ制御部であって、
     バッテリ制御部の起動後に、バッテリの状態が充電可能条件を満たすか否かを判定するバッテリ状態判定手段と、
     バッテリ状態判定手段によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させる起動手段と、
     充電器制御部にバッテリ状態、またはバッテリ状態から算出されるバッテリに充電させるべき算出充電電力を表す充電電力決定用信号を送信する充電電力決定用信号送信手段と、
    を含み、
     充電器制御部は、充電電力決定用信号が表すバッテリ状態から算出されるバッテリに充電させるべき算出充電電力、または充電電力決定用信号が表す算出充電電力で外部電源からバッテリを充電させるように充電器を制御する電動車両。
  3.  請求項1または請求項2に記載の電動車両において、
     バッテリは、複数のバッテリであり、
     バッテリ制御部は、それぞれのバッテリに対応し、充電器制御部と通信する複数のバッテリ制御部であり、
     スイッチは、それぞれのバッテリと充電器との間に電力線により接続される複数のスイッチであり、
     充電器制御部は、それぞれのバッテリ制御部から送信されるバッテリ状態から算出されるバッテリの算出充電電力、またはバッテリ制御部から送信される算出充電電力で外部電源からそれぞれのバッテリを充電させるように充電器を制御する電動車両。
  4.  請求項3に記載の電動車両において、
     複数のバッテリ制御部は、対応するバッテリの状態が充電可能条件を満たすか否かを判定し、複数のスイッチのうち、充電可能条件を満たすと判定されたバッテリに対応するスイッチのみをオンした後に、少なくとも1のバッテリ制御部が、充電器制御部に起動指令信号を送信する電動車両。
  5.  外部電源から充電可能なバッテリであって、車両走行時に走行用モータに電力を供給し、外部電源からの充電時には走行用モータとの間が切り離されるバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、
     充電器を制御する充電器制御部と、
     バッテリの状態を監視するバッテリ制御部と、
     を備える電動車両の充電制御方法であって、
     電圧信号がバッテリ制御部に入力された場合にバッテリ制御部が起動するステップと、
     バッテリ制御部の起動後に、バッテリ制御部がバッテリの状態が充電可能条件を満たすか否かを判定するステップと、
     バッテリ制御部によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させるステップと、
     充電器制御部が、外部電源からバッテリを充電させるように充電器を制御するステップと、を含む電動車両の充電制御方法。
  6.  外部電源から充電可能なバッテリと、バッテリに電力線により接続される充電器と、充電器とバッテリとの間に電力線により接続されるスイッチとを含む充電回路と、
     充電器を制御する充電器制御部と、
     バッテリの状態を監視するバッテリ制御部と、
     走行用モータとバッテリとの間に電力線により接続されるリレーと、
     外部電源からバッテリを充電する場合にリレーをオフし、走行用モータを駆動する場合にリレーをオンする車両制御部と、
     を備える電動車両の充電制御方法であって、
     電圧信号がバッテリ制御部に入力された場合にバッテリ制御部が起動するステップと、
     バッテリ制御部の起動後に、バッテリ制御部がバッテリの状態が充電可能条件を満たすか否かを判定するステップと、
     バッテリ制御部によりバッテリの状態が充電可能条件を満たすと判定された場合に、バッテリ制御部と信号線により接続されるスイッチをオンし、バッテリ制御部と信号線により接続される充電器制御部を起動させるステップと、
     バッテリ制御部が、充電器制御部にバッテリ状態、またはバッテリ状態から算出されるバッテリに充電させるべき算出充電電力を表す充電電力決定用信号を送信するステップと、
     充電器制御部が、充電電力決定用信号が表すバッテリ状態から算出されるバッテリに充電させるべき算出充電電力、または充電電力決定用信号が表す算出充電電力で外部電源からバッテリを充電させるように充電器を制御するステップと、を含む電動車両の充電制御方法。
  7.  請求項5または請求項6に記載の電動車両の充電制御方法において、
     バッテリは、複数のバッテリであり、
     バッテリ制御部は、それぞれのバッテリに対応し、充電器制御部と通信する複数のバッテリ制御部であり、
     スイッチは、それぞれのバッテリと充電器との間に電力線により接続される複数のスイッチであり、
     充電器制御部が、それぞれのバッテリ制御部から送信されるバッテリ状態から算出されるバッテリの算出充電電力、またはバッテリ制御部から送信される算出充電電力で外部電源からそれぞれのバッテリを充電させるように充電器を制御するステップを含む電動車両の充電制御方法。
  8.  請求項7に記載の電動車両の充電制御方法において、
     複数のバッテリ制御部は、対応するバッテリの状態が充電可能条件を満たすか否かを判定し、複数のスイッチのうち、充電可能条件を満たすと判定されたバッテリに対応するスイッチのみをオンした後に、少なくとも1のバッテリ制御部が、充電器制御部に起動指令信号を送信するステップを含む電動車両の充電制御方法。
PCT/JP2009/066221 2008-09-26 2009-09-17 電動車両及び電動車両の充電制御方法 WO2010035676A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009002329T DE112009002329T5 (de) 2008-09-26 2009-09-17 Elektrisch betriebenes Fahrzeug und Verfahren zur Steuerung eines Ladens des elektrisch angetriebenen Fahrzeugs
US13/061,831 US8143843B2 (en) 2008-09-26 2009-09-17 Electrically-driven vehicle and method for controlling charging of electrically-driven vehicle
CN200980137163.1A CN102164771B (zh) 2008-09-26 2009-09-17 电动车辆以及电动车辆的充电控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-247317 2008-09-26
JP2008247317A JP4438887B1 (ja) 2008-09-26 2008-09-26 電動車両及び電動車両の充電制御方法

Publications (1)

Publication Number Publication Date
WO2010035676A1 true WO2010035676A1 (ja) 2010-04-01

Family

ID=42059677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066221 WO2010035676A1 (ja) 2008-09-26 2009-09-17 電動車両及び電動車両の充電制御方法

Country Status (5)

Country Link
US (1) US8143843B2 (ja)
JP (1) JP4438887B1 (ja)
CN (1) CN102164771B (ja)
DE (1) DE112009002329T5 (ja)
WO (1) WO2010035676A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102398522A (zh) * 2010-08-05 2012-04-04 李尔公司 用于机载的交通工具充电器的临近检测电路
CN102624038A (zh) * 2011-01-28 2012-08-01 比亚迪股份有限公司 一种车载充电控制器静态损耗控制系统
JP2012151824A (ja) * 2010-09-10 2012-08-09 Sumitomo Electric Ind Ltd 電力線通信システム、電力線通信装置及びコネクタ装置
CN102751750A (zh) * 2011-04-21 2012-10-24 李尔公司 用于车载充电器的近感探测电路
CN102785587A (zh) * 2011-05-19 2012-11-21 铃木株式会社 车载充电系统
US8525480B2 (en) 2010-12-28 2013-09-03 Ford Global Technologies, Llc Method and system for charging a vehicle high voltage battery
EP2497677A3 (en) * 2011-03-08 2013-09-18 Honda Motor Co., Ltd. Electric vehicle
CN104029650A (zh) * 2013-03-04 2014-09-10 三菱电机株式会社 电动车辆
US9211798B2 (en) 2011-07-28 2015-12-15 Lear Corporation Multistage power supply system and method for providing uninterrupted power to vehicle circuitry
US9233611B2 (en) 2011-11-10 2016-01-12 Lear Corporation Proximity detection circuit having short protection
US9440538B2 (en) 2011-11-11 2016-09-13 Lear Corporation Housekeeping circuit having trickle charge capabilities

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254031A (ja) * 2009-04-22 2010-11-11 Denso Corp 車両用装置間通信装置
US20100326754A1 (en) * 2009-06-25 2010-12-30 Radermacher J Axel Method of hybrid vehicle engine start using stored kinetic energy
DE102009045639A1 (de) * 2009-10-13 2011-04-14 Robert Bosch Gmbh Elektrische Verbindungsvorrichtung für Hybrid- und Elektrofahrzeuge sowie zugehöriges Verfahren zur Aufladung
KR101144033B1 (ko) * 2009-12-04 2012-05-23 현대자동차주식회사 하이브리드 차량의 모터 구동 시스템 제어 방법
EP2442074B1 (en) * 2010-03-18 2016-03-16 Toyota Jidosha Kabushiki Kaisha Electrically driven vehicle
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
JP5445317B2 (ja) * 2010-05-10 2014-03-19 三菱自動車工業株式会社 充電システム
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
KR101185735B1 (ko) * 2010-07-16 2012-09-26 엘에스산전 주식회사 전기 자동차용 배터리 디스커넥트 유닛
EP2596979A4 (en) * 2010-07-22 2017-03-29 Toyota Jidosha Kabushiki Kaisha Electrically driven vehicle and method of controlling charging thereof
JP5558981B2 (ja) * 2010-09-13 2014-07-23 株式会社東海理化電機製作所 車両用通信システム
JP5489292B2 (ja) * 2010-10-28 2014-05-14 ニチコン株式会社 車載充電ユニットおよび該車載充電ユニットを備えた充電システム
US20120146582A1 (en) * 2010-12-08 2012-06-14 Industrial Technology Research Institute Systems and methods for charging battery systems of electric vehicles
KR101229441B1 (ko) * 2011-03-18 2013-02-06 주식회사 만도 배터리 충전 장치
CN102288855B (zh) * 2011-05-13 2014-06-04 肇庆理士电源技术有限公司 一种检查装置
US9086333B2 (en) * 2011-06-16 2015-07-21 Horiba Instruments Incorporated Examination system for electric vehicle or hybrid electric vehicle
EP2777975B1 (en) * 2011-06-17 2018-08-22 Yura Corporation Co., Ltd. Power relay assembly driving apparatus and driving method thereof
KR20130016875A (ko) * 2011-08-09 2013-02-19 현대자동차주식회사 하이브리드 차량
KR101263463B1 (ko) * 2011-09-02 2013-05-10 주식회사 만도 배터리 충전 장치
CN103001265B (zh) * 2011-09-08 2014-10-29 北汽福田汽车股份有限公司 动力电池高压输出电气盒
KR101241168B1 (ko) * 2011-10-05 2013-03-13 기아자동차주식회사 차량의 고전압배터리 시스템 릴레이 융착 검출 방법
JP2013083612A (ja) * 2011-10-12 2013-05-09 Mitsumi Electric Co Ltd 電池状態計測方法及び電池状態計測装置
WO2013066867A2 (en) 2011-10-31 2013-05-10 Cobasys, Llc Parallel configuration of series cells with semiconductor switching
WO2013066865A1 (en) * 2011-10-31 2013-05-10 Cobasys, Llc Intelligent charging and discharging system for parallel configuration of series cells with semiconductor switching
JP5832249B2 (ja) * 2011-11-14 2015-12-16 Asti株式会社 車両用充電器
EP2823367A4 (en) * 2012-03-07 2016-06-29 Int Truck Intellectual Prop Co VEHICLE ELECTRICAL SYSTEM CONDITION CONTROLLER
KR101342602B1 (ko) * 2012-03-23 2013-12-17 삼성에스디아이 주식회사 배터리 팩
JP5787176B2 (ja) * 2012-04-05 2015-09-30 株式会社デンソー 車両の電源制御装置
JP6010995B2 (ja) * 2012-04-17 2016-10-19 ソニー株式会社 充電装置、充電装置の制御方法、電動車両、蓄電装置および電力システム
JP5582173B2 (ja) * 2012-06-22 2014-09-03 株式会社デンソー 充電装置
CN103568996B (zh) * 2012-08-08 2016-08-17 北汽福田汽车股份有限公司 一种新能源汽车启动系统
US9487100B2 (en) * 2012-09-14 2016-11-08 General Electric Company Electrical vehicle charging device having a brake to prevent extension and retraction of the power conduit
US9114714B2 (en) * 2012-09-27 2015-08-25 Ford Global Technologies, Llc High voltage charge pack
TWI501886B (zh) * 2012-10-11 2015-10-01 Go Tech Energy Co Ltd 用於電動車的充電系統
CN103730918B (zh) * 2012-10-12 2016-02-10 高达能源科技股份有限公司 用于电动车的充电系统
US9368269B2 (en) * 2012-10-24 2016-06-14 Schumacher Electric Corporation Hybrid battery charger
KR101957340B1 (ko) * 2012-11-14 2019-03-12 삼성전자주식회사 전력 전달 장치.
US8996227B2 (en) * 2013-01-11 2015-03-31 Johnson Controls Technology Company System and method for controlling voltage on a power network
JP5757298B2 (ja) * 2013-01-25 2015-07-29 トヨタ自動車株式会社 車両の電源システムおよびそれを備える車両
CA2898310C (en) 2013-03-14 2022-07-12 Allison Transmission, Inc. System and method for power management during regeneration mode in hybrid electric vehicles
JP6403107B2 (ja) * 2013-03-22 2018-10-10 パナソニックIpマネジメント株式会社 車載充電装置
CN104348237A (zh) * 2013-08-02 2015-02-11 台达电子工业股份有限公司 电动汽车供电设备及其操作方法
US9579988B2 (en) * 2013-08-02 2017-02-28 Komatsu Ltd. Work vehicle
US10374442B2 (en) * 2013-10-17 2019-08-06 Bosch Battery Systems, Llc Integrated multiple voltage energy storage system and method
EP3349343B1 (en) 2013-11-08 2019-07-17 Delta Electronics (Thailand) Public Co., Ltd. Resistorless precharging
US20160288663A1 (en) * 2013-11-13 2016-10-06 Volvo Lastvagnar Aktiebolag Charge/discharge system
KR20150073291A (ko) * 2013-12-20 2015-07-01 엘에스산전 주식회사 전력 변환 장치
FR3015378B1 (fr) * 2013-12-23 2016-02-05 Gdf Suez Vehicule hybride comportant un groupe electrogene
JP2015122864A (ja) * 2013-12-24 2015-07-02 株式会社豊田自動織機 リレーの異常検出方法
CN103869175B (zh) * 2014-03-20 2016-08-17 奇瑞汽车股份有限公司 一种汽车电器回路电压损耗检测系统及其检测方法
KR102257902B1 (ko) * 2014-07-29 2021-05-28 삼성전자주식회사 이종 전원을 공급하는 배터리 팩 및 그 충전 방법
CN105730260B (zh) * 2014-12-10 2018-09-07 比亚迪股份有限公司 电动汽车及其启动方法和动力系统
CN105730259B (zh) * 2014-12-10 2018-09-11 比亚迪股份有限公司 电动汽车的动力电池系统及具有其的电动汽车
CN107209539B (zh) * 2015-01-26 2020-04-28 罗姆股份有限公司 供电装置及其控制电路、受电装置及其控制电路、使用它的电子设备及充电适配器、异常检测方法
KR20160109410A (ko) * 2015-03-11 2016-09-21 엘에스산전 주식회사 차량 충전 장치 및 상기 장치의 내부 회로 보호 방법
CN105048551A (zh) * 2015-07-23 2015-11-11 柳州译海网络科技有限公司 一种具有无线通信功能的智能电动车充电器
CN105048553A (zh) * 2015-07-23 2015-11-11 柳州译海网络科技有限公司 一种智能电动车充电器
CN105048552A (zh) * 2015-07-23 2015-11-11 柳州译海网络科技有限公司 一种具有通信功能和报警功能的智能电动车充电器
US20200083706A1 (en) * 2015-07-23 2020-03-12 Briggs & Stratton Corporation Lithium-ion battery including two power supplies
DE102015214732A1 (de) * 2015-08-03 2017-02-09 Audi Ag Verfahren zum Betrieb einer Energiespeichereinrichtung sowie Kraftfahrzeug mit einer Energiespeichereinrichtung
CN105172914A (zh) * 2015-08-07 2015-12-23 包头市北工机械有限公司 一种纯电动重型牵引运输车
KR20170019042A (ko) * 2015-08-11 2017-02-21 현대자동차주식회사 예약 충전 기능 구현을 위한 내장 회로를 갖는 차량용 충전 장치
CN105186858B (zh) * 2015-08-25 2018-05-29 江苏金彭车业有限公司 一种电动车低压dc-dc转换器的控制器
KR101798514B1 (ko) 2015-11-09 2017-11-16 현대자동차주식회사 차량 및 그 충전 제어방법
KR101836577B1 (ko) * 2015-11-30 2018-04-20 현대자동차주식회사 차량의 고전압배터리 충전 제어방법 및 시스템
JP6288134B2 (ja) * 2016-03-22 2018-03-07 トヨタ自動車株式会社 自動車
KR101907373B1 (ko) * 2016-11-16 2018-10-12 현대오트론 주식회사 과충전 방지 장치 및 방법
TWI621552B (zh) 2016-12-02 2018-04-21 姚立和 電動車緊急啓動裝置
CN110015089A (zh) * 2017-07-25 2019-07-16 郑州宇通客车股份有限公司 一种无轨电车自动充电的方法及其系统
JP6911689B2 (ja) * 2017-10-06 2021-07-28 トヨタ自動車株式会社 電源装置
EP4027483A1 (en) * 2017-10-13 2022-07-13 dcbel Inc. Electric vehicle battery charger
US10759287B2 (en) 2017-10-13 2020-09-01 Ossiaco Inc. Electric vehicle battery charger
JP7010035B2 (ja) * 2018-02-06 2022-01-26 トヨタ自動車株式会社 電動車両
TWI823877B (zh) * 2018-04-20 2023-12-01 加拿大商dcbel股份有限公司 電池充電器、電力轉換器及管理功耗的方法
DE102018127785A1 (de) * 2018-11-07 2020-05-07 Audi Ag Elektrisches Energiesystem für ein Kraftfahrzeug
JP2020145850A (ja) * 2019-03-06 2020-09-10 トヨタ自動車株式会社 車両用電源システム
JP7291513B2 (ja) * 2019-03-27 2023-06-15 株式会社Subaru 車両
KR20200123888A (ko) * 2019-04-22 2020-11-02 현대자동차주식회사 친환경 차량용 충전 시스템 및 이를 이용한 충전 제어방법
US11476679B2 (en) * 2019-06-11 2022-10-18 A123 Systems, LLC Dual voltage battery and method for operating the same
CN110303905B (zh) * 2019-06-24 2023-05-05 中国第一汽车股份有限公司 一种纯电动商用车用高压拓扑结构及上下电控制方法
DE102020114035A1 (de) 2020-05-26 2021-12-02 Bayerische Motoren Werke Aktiengesellschaft Energieversorgungssystem für ein elektrisch betriebenes Fahrzeug
CN112124144B (zh) * 2020-08-24 2022-04-12 奇瑞新能源汽车股份有限公司 纯电动汽车及其蓄电池补电方法、系统和存储介质
US11780607B2 (en) * 2021-10-31 2023-10-10 Beta Air, Llc Connector with ambience monitoring capability and methods of use for charging an electric aircraft
US11613184B1 (en) * 2021-10-31 2023-03-28 Beta Air, Llc Systems and methods for disabling an electric vehicle during charging
JP7468497B2 (ja) * 2021-12-03 2024-04-16 株式会社デンソー 制御装置
CN117719315A (zh) * 2022-09-19 2024-03-19 北京车和家汽车科技有限公司 电驱动总成及车辆
CN219627379U (zh) * 2022-11-30 2023-09-01 华为数字能源技术有限公司 车载充电装置和车辆
US11878693B1 (en) * 2023-06-09 2024-01-23 Dimaag-Ai, Inc. Electrical vehicles comprising power distribution systems and methods of operating thereof
US11904723B1 (en) * 2023-06-28 2024-02-20 Rivian Ip Holdings, Llc Vehicle to external load charger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088143A (ja) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd 電源制御装置
JP2007336691A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 車両用バッテリ冷却制御システム
JP2008042985A (ja) * 2006-08-02 2008-02-21 Tokai Rika Co Ltd 電動車両の蓄電池装置
WO2008026390A1 (fr) * 2006-08-31 2008-03-06 Kabushiki Kaisha Tokai Rika Denki Seisakusho Système de chargement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0808738B1 (en) * 1995-09-18 2003-06-11 Seiko Epson Corporation Safety mechanism for electric vehicle
JPH10304582A (ja) 1997-04-25 1998-11-13 Toyota Motor Corp インダクティブ充電装置およびインダクティブ充電システム
JP3707650B2 (ja) 1997-12-09 2005-10-19 株式会社デンソー 電気自動車用電源装置
JP3598873B2 (ja) * 1998-08-10 2004-12-08 トヨタ自動車株式会社 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP3934268B2 (ja) 1998-12-28 2007-06-20 ヤマハ発動機株式会社 電動車両用電源システム
JP3890168B2 (ja) 1999-08-03 2007-03-07 株式会社東京アールアンドデー 電動装置及びその電池ユニットの充放電方法
JP4168581B2 (ja) * 2000-08-25 2008-10-22 株式会社デンソー 高電圧電池の負荷起動装置
US6989981B2 (en) * 2002-10-24 2006-01-24 02Micro International Limited Battery over voltage and over protection circuit and adjustable adapter current limit circuit
CN1801570A (zh) * 2004-12-31 2006-07-12 乐金电子(昆山)电脑有限公司 利用电池充电器的系统电源提供设备
JP2006278210A (ja) 2005-03-30 2006-10-12 Toyota Motor Corp 故障診断装置および故障診断方法
JP2006304408A (ja) 2005-04-15 2006-11-02 Toyota Motor Corp 電源装置および電源装置の制御方法
CN100495805C (zh) * 2005-04-18 2009-06-03 万向电动汽车有限公司 一种电动汽车电池管理系统构成方法及其系统
JP2007124813A (ja) 2005-10-28 2007-05-17 Toyota Motor Corp 電源装置
EP1955679B1 (en) * 2007-02-09 2013-11-06 Semiconductor Energy Laboratory Co., Ltd. Assist device
CN100568610C (zh) * 2007-08-17 2009-12-09 北京集能伟业电子科技有限公司 电动车用镍氢电池管理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088143A (ja) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd 電源制御装置
JP2007336691A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 車両用バッテリ冷却制御システム
JP2008042985A (ja) * 2006-08-02 2008-02-21 Tokai Rika Co Ltd 電動車両の蓄電池装置
WO2008026390A1 (fr) * 2006-08-31 2008-03-06 Kabushiki Kaisha Tokai Rika Denki Seisakusho Système de chargement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102398522A (zh) * 2010-08-05 2012-04-04 李尔公司 用于机载的交通工具充电器的临近检测电路
CN102398522B (zh) * 2010-08-05 2014-09-03 李尔公司 用于机载的交通工具充电器的临近检测电路
JP2012151824A (ja) * 2010-09-10 2012-08-09 Sumitomo Electric Ind Ltd 電力線通信システム、電力線通信装置及びコネクタ装置
US8525480B2 (en) 2010-12-28 2013-09-03 Ford Global Technologies, Llc Method and system for charging a vehicle high voltage battery
CN102624038A (zh) * 2011-01-28 2012-08-01 比亚迪股份有限公司 一种车载充电控制器静态损耗控制系统
EP2497677A3 (en) * 2011-03-08 2013-09-18 Honda Motor Co., Ltd. Electric vehicle
CN102751750A (zh) * 2011-04-21 2012-10-24 李尔公司 用于车载充电器的近感探测电路
US9399402B2 (en) 2011-04-21 2016-07-26 Lear Corporation Proximity detection circuit for on-board vehicle charger
CN102785587A (zh) * 2011-05-19 2012-11-21 铃木株式会社 车载充电系统
CN102785587B (zh) * 2011-05-19 2014-10-08 铃木株式会社 车载充电系统
US9211798B2 (en) 2011-07-28 2015-12-15 Lear Corporation Multistage power supply system and method for providing uninterrupted power to vehicle circuitry
US9233611B2 (en) 2011-11-10 2016-01-12 Lear Corporation Proximity detection circuit having short protection
US9440538B2 (en) 2011-11-11 2016-09-13 Lear Corporation Housekeeping circuit having trickle charge capabilities
CN104029650A (zh) * 2013-03-04 2014-09-10 三菱电机株式会社 电动车辆
CN104029650B (zh) * 2013-03-04 2016-08-31 三菱电机株式会社 电动车辆

Also Published As

Publication number Publication date
CN102164771A (zh) 2011-08-24
US8143843B2 (en) 2012-03-27
JP4438887B1 (ja) 2010-03-24
CN102164771B (zh) 2014-04-16
DE112009002329T5 (de) 2012-01-19
US20110169448A1 (en) 2011-07-14
JP2010081734A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4438887B1 (ja) 電動車両及び電動車両の充電制御方法
KR101863737B1 (ko) 축전 시스템
EP2255990B1 (en) Electric vehicle
EP2535218B1 (en) Power supply system for electric vehicle, and control method thereof
JP4849171B2 (ja) 充電システムの異常判定装置および異常判定方法
US8860363B2 (en) Power supply system for electric powered vehicle, control method thereof, and electric powered vehicle
JP4582255B2 (ja) 車両の制御装置および制御方法
CN102470770A (zh) 电动车辆的电源系统
WO2012049559A2 (en) Electromotive vehicle
JP2006304390A (ja) ハイブリッド車両用電源装置
JP2008306795A (ja) 電源回路の放電制御装置
WO2015140618A1 (en) Charging system mouted on vehicle
AU2011200023A1 (en) Apparatus and Method for Controlling Oil Pump of Plug-in Hybrid Electronic Vehicle
KR101164002B1 (ko) 차량용 충전 장치 및 방법
JP2011087444A (ja) 電力装置
KR20150008378A (ko) 절연 접촉기 천이 극성 제어
JP2015035919A (ja) 車両および車両の制御方法
KR20140065209A (ko) 전기자동차 및 그 제어방법
JP6151944B2 (ja) 給電システム
JP2020202656A (ja) 車両の電源システム
KR20140065208A (ko) 전기자동차 및 그 제어방법
CN107346942B (zh) 多相转换器辅助电力降低
KR101251908B1 (ko) 플러그인 하이브리드 차량용 오일펌프 제어방법
JP2000197274A (ja) 電気自動車のバッテリ充電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137163.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13061831

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090023290

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816091

Country of ref document: EP

Kind code of ref document: A1