WO2010032462A1 - キャパシタおよびその製造方法 - Google Patents

キャパシタおよびその製造方法 Download PDF

Info

Publication number
WO2010032462A1
WO2010032462A1 PCT/JP2009/004667 JP2009004667W WO2010032462A1 WO 2010032462 A1 WO2010032462 A1 WO 2010032462A1 JP 2009004667 W JP2009004667 W JP 2009004667W WO 2010032462 A1 WO2010032462 A1 WO 2010032462A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
current collector
capacitor
conductive layer
electrode
Prior art date
Application number
PCT/JP2009/004667
Other languages
English (en)
French (fr)
Inventor
今村敬亮
小島浩一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010529641A priority Critical patent/JP5906374B2/ja
Priority to US13/063,946 priority patent/US8705226B2/en
Publication of WO2010032462A1 publication Critical patent/WO2010032462A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Definitions

  • the present invention relates to a capacitor used for energy regeneration of a hybrid car or a fuel cell car or as a power source for electronic equipment.
  • capacitors have been used as power sources for many electronic devices because of their good charge / discharge response.
  • electric double layer capacitors have a high energy density and are also used for power storage.
  • the contact resistance on the surface of the current collector is increased by the natural oxide film formed on the surface of the current collector made of metal foil in the atmosphere. Therefore, a configuration in which hard carbon particles are pressure-bonded between the current collector and the polarizable electrode layer in order to suppress the increase in contact resistance is disclosed. With this configuration, the distance between the carbon particles digging into the natural oxide film and the surface of the current collector becomes closer, it is possible to energize, and the contact resistance on the surface of the current collector can be reduced.
  • Patent Document 1 As prior art document information relating to this application, for example, Patent Document 1 is known.
  • the performance deterioration becomes more remarkable when the capacitor is used under high temperature conditions.
  • the capacitor when the capacitor is used for an in-vehicle power source or the like, it is conceivable to charge and discharge in a high-temperature vehicle body. Therefore, it is necessary to improve the reliability of the capacitor under high temperature conditions.
  • the present invention provides a capacitor in which performance degradation during long-term use is suppressed.
  • the present invention provides a device in which a positive electrode and a negative electrode in which an electrode portion mainly composed of a carbon material is formed on a surface of a current collector made of metal is used as a pair of electrodes, and wound or laminated with a separator interposed therebetween.
  • a film different from the natural oxide film of the metal constituting the current collector is formed on at least part of the surface of the current collector of at least one of the positive electrode and the negative electrode, and a conductive layer is formed on this film.
  • the film and the conductive layer are formed, and the film includes phosphorus and a metal constituting the current collector.
  • the capacitor according to the present invention is chemically inactive with the driving electrolyte because the film formed on the surface of the current collector contains phosphorus and the metal constituting the current collector.
  • the compound produced by the reaction between the current collector and the driving electrolyte adheres to the current collector, and the direct current resistance (DCR) corresponding to the contact resistance of the current collector surface increases. It becomes possible to suppress.
  • a conductive layer on the film a part of the conductive layer bites into the film (anchor effect), and the film is formed so that the periphery of the bitten conductive layer is in close contact with the film. Therefore, the effect of suppressing the reaction between the electrolytic solution and the current collector by the film can be enhanced.
  • the conductive layer often penetrates the film or touches the surface of the current collector through the film depending on the physical characteristics of the film. Therefore, the initial DCR can be reduced as compared with the conventional configuration in which the conductive layer is provided on the surface of the current collector on which the natural oxide film is formed.
  • FIG. 1 is a perspective view in which a part of a capacitor according to an embodiment of the present invention is cut away.
  • FIG. 2 is a vertical sectional view showing the positive electrode of the capacitor according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the voltage application time and the DCR change rate of capacitors manufactured under various conditions and comparative examples in the capacitor according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the voltage application time and the DCR change rate in the capacitor according to the embodiment of the present invention and the capacitor manufactured under various conditions and other conditions of the comparative example.
  • FIG. 5 is a diagram showing a deterioration tendency in withstand voltage of a film produced under various conditions in the capacitor according to the embodiment of the present invention.
  • FIG. 1 is a perspective view in which a part of a capacitor according to an embodiment of the present invention is cut away.
  • the element 1 is formed by winding a positive electrode 2 and a negative electrode 3 that perform adsorption / desorption of ions, and a separator 4 that is interposed between the positive electrode 2 and the negative electrode 3 for insulation.
  • a positive lead wire 5a and a negative lead wire 5b, which are lead terminals, are provided on the positive electrode 2 and the negative electrode 3 of the element 1, respectively.
  • the element 1 is housed in a bottomed outer casing 6 together with a driving electrolyte (not shown), and the opening end of the outer casing 6 is sealed by a sealing member 7 so that the lead wires 5a and 5b are exposed.
  • the capacitor is configured.
  • the positive electrode 2 and the negative electrode 3 are, for example, positive electrode polarizable electrodes mainly made of activated carbon as electrode portions on the front and back surfaces of a positive electrode current collector 2a and a negative electrode current collector 3a made of an aluminum foil having a thickness of about 20 ⁇ m.
  • the layer 2b and the negative polarizable electrode layer 3b are applied.
  • the positive electrode 2 and the negative electrode 3 may be used with different dimensions, but the materials of the members constituting the positive electrode 2 and the negative electrode 3 are substantially the same. Therefore, the configuration of the electrode in the present embodiment will be described below mainly using the positive electrode 2.
  • FIG. 2 is a vertical sectional view showing the positive electrode of the capacitor according to the present embodiment.
  • a valve metal is used as the material of the current collector 2a.
  • the valve metal include metals such as aluminum, tantalum, and titanium.
  • the aluminum foil is preferably further roughened on the surface.
  • the contact area between the current collector 2a and the polarizable electrode layer 2b is increased, the conductivity is improved, and the bonding with each member provided on the surface of the current collector 2a is strengthened.
  • a roughening method a method of electrolytic etching in a hydrochloric acid-based etching solution, a method of chemical and / or electrical etching in an acidic solution, and the like are applicable, but not particularly limited.
  • the positive electrode 2 of the capacitor according to the present embodiment has a film 8 containing phosphorus and aluminum formed on both surfaces of the current collector 2a. Further, a conductive layer 9 is formed on the film 8.
  • the film 8 is formed by immersing the current collector 2a in a solution, anodizing in a liquid, or thermally oxidizing. It is desirable to use a solution containing a phosphorus compound as a solution for forming the film 8 by dipping in a solution and for anodizing in the solution. In addition, a solution containing a boron compound or a solution containing an adipic acid compound may be used. Even when these solutions are used, the same effect as that obtained when a solution containing a phosphorus compound is used can be obtained. Further, when a boron compound or adipic acid is used for anodization, a denser film can be obtained than a film containing phosphorus and the metal constituting the current collector.
  • the film obtained from the boron compound solution and the film obtained from the solution of the adipic acid compound are similar in physical properties and capacitor deterioration suppressing performance, which is an effect of the present invention.
  • both have higher reactivity to water than phosphorus, it is preferable to apply a thin film containing phosphorus on a film containing boron or adipic acid and a current collector as a treatment for improving water resistance.
  • a solution such as an aqueous solution of ammonium phosphate, dilute phosphoric acid, ammonium borate, or an aqueous solution of ammonium adipate can be used as the solution for anodizing.
  • the structure of the film 8 includes phosphorus and aluminum.
  • the composition of the film varies depending on the solution used for anodization, and also depends on the metal constituting the current collector 2a. Is also different.
  • Specific examples of the film 8 containing phosphorus and aluminum include, but are not limited to, Al (PO 4 ), Al 2 (HPO 4 ) 3 , and Al (H 2 PO 4 ) 3 .
  • the film 8 in the present embodiment is different from the natural oxide film formed by natural oxidation, and exhibits low reactivity with the driving electrolyte used.
  • the conductive layer 9 is made of a carbon material that is a conductive material (not shown), a conductive organic polymer material, and a metal oxide such as ruthenium oxide.
  • the carbon material includes carbon black, graphite powder, activated carbon, and the like, and the conductive organic polymer material includes polyacetylene, polypyrrole, polyacene, and the like.
  • a carbon material is preferably used. More preferably, carbon black is used, and acetylene black which is a kind of carbon black is more preferably used.
  • the conductive material is not limited to the above materials.
  • a conductive paste (not shown) containing a conductive material is applied to the surface of the current collector 2a, or a conductive material is vapor deposited to form a sheet containing the conductive material, and press
  • a method such as bringing the current collector 2a and the conductive layer 9 into close contact with each other can be used depending on the process, the method for forming the conductive layer 9 is not particularly limited.
  • the reactivity between the film 8 produced by the above method and the driving electrolyte is low. That is, it is inactive. Therefore, by providing the film 8 on the surface of the current collector 2a, the compound produced by the reaction between the current collector and the driving electrolyte during the long-term use of the capacitor as in the past can be reduced. It can be suppressed that this compound continues to adhere to the surface and increases the DCR of the surface of the current collector. As a result, it is possible to suppress the deterioration of the capacitor performance during long-term use. Furthermore, the gas generated by the decomposition of the driving electrolyte can be suppressed.
  • the present invention provides a film of a natural oxide film as compared with a configuration in which the conductive layer 9 is provided on the film 8 and pressed to press the conductive layer 9 into the natural oxide film as in Patent Document 1. Even when the thicker film 8 is formed, if the thickness is about 140 mm or less, the conductive layer 9 penetrates deeper. Alternatively, the conductive layer 9 can penetrate the coating 8 and come into contact with the current collector 2a. As a result, it is possible to provide a larger number of conductive layers 9 that are in electrical communication with the current collector 2a. Therefore, it is possible to reduce the initial DCR of the current collector 2a.
  • the present embodiment can reduce the initial DCR much better.
  • the conductive layer 9 bites into the coating 8 containing phosphorus and aluminum, the coating 8 having low reactivity with the driving electrolyte solution is formed in close contact with the surrounding conductive layer 9.
  • the surface area of the current collector in contact with the electrolytic solution is reduced through the gaps of the conductive layer 9 that bites into the film 8. Therefore, it becomes possible to reduce the amount of the compound produced by the reaction between the driving electrolyte and the current collector 2a.
  • the conductive layer 9 can increase the conductivity of the current collector 2a and the polarizable electrode layer 2b, and the DCR of the current collector 2a can be suppressed from increasing. It is possible to further enhance the suppression effect.
  • the natural oxide film formed on the surface of the valve metal in the atmosphere is generally one of the factors that hinder the conductivity between the current collector 2a and the polarizable electrode layer 2b. Therefore, the natural oxide film has been generally removed. Moreover, the thickness of the natural oxide film formed unintentionally is generally less than 30 mm. However, in the present embodiment, this chemically inert film 8 that is different from the natural oxide film is intentionally provided on the surface of the current collector 2a, and the conductive film 8 is electrically conductive between the film 8 and the polarizable electrode layer 2b. Layer 9 is provided. This makes it possible to achieve both suppression of performance degradation and reduction of initial DCR during long-term use. Since the film 8 of the present embodiment is intentionally provided, a film having a thickness of 30 mm or more which is difficult to form with a natural oxide film formed on the surface of the current collector without intention can be formed.
  • FIG. 2 is a schematic diagram, depiction of the above-described unevenness provided by etching on the surface of the current collector 2a and depiction in which the conductive layer 9 bites into the film 8 are omitted.
  • the current collector 2a is obtained by etching the surface of an aluminum foil.
  • a very dense film 8 can be provided by providing the film 8 on the etched aluminum foil, and the electrolyte solution is heated to a high temperature. Even in use, it can withstand physical deterioration such as peeling.
  • the current collector 2a needs to have a tensile strength that does not break when the positive electrode 2 is wound.
  • the thickness of the current collector 2a is desirably 10 ⁇ m to 50 ⁇ m.
  • foil-shaped metal is used for current collectors 2a and 3a, but the shape of current collector 2a is not limited to this.
  • the configuration of the present invention has been specifically described using the positive electrode 2 in FIG. 2, but the same configuration can be used for the negative electrode 3.
  • the coating 8 and the conductive layer 9 are provided on the front and back surfaces of the current collectors 2a and 3a, but the locations of the coating 8 and the conductive layer 9 are not limited to this, The effect of the present invention can be obtained even in a configuration in which only one side of the electrode is provided.
  • the separator 4 is made of a porous and insulating material.
  • Cellulose paper, polypropylene, polyethylene terephthalate (PET), polyimide, etc. are used as the porous and insulating material.
  • the separator 4 is disposed so as to be interposed between the positive electrode 2 and the negative electrode 3, and needs to have a tensile strength that is not broken when wound together with the positive electrode 2 and the negative electrode 3. Further, in order to fill a large volume of activated carbon into the outer case 6 having a constant volume, the thickness is desirably 10 ⁇ m to 50 ⁇ m.
  • the separator 4 is not limited to the above materials and dimensions.
  • Lead wires 5a and 5b are connected to unformed portions of conductive layer 9 and polarizable electrode layers 2b and 3b in positive electrode 2 and negative electrode 3, that is, exposed surfaces of current collector 2a and current collector 3a, and are connected to an external circuit. Is done. For this reason, the lead wires 5a and 5b are made of a metal such as aluminum or copper in order to reduce the connection resistance between the current collector 2a and the current collector 3a as much as possible. The material is not limited to the above. Further, the means for extracting each electrode from the element 1 is not limited to the lead wires 5a and 5b.
  • the base material of the outer case 6 in terms of workability, but the material is not limited.
  • the shape of the exterior case 6 it will not be limited to cylindrical shape like FIG. 1, For example, square tube shape may be sufficient.
  • At least one of propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC) and the like is used as a solvent, and for example, tetraethylammonium tetrafluoroborate as an electrolyte.
  • TEABF 4 triethylmethylammonium tetrafluoroborate
  • EMIBF 4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • EDMIBF 4 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate
  • TMIBF 4 1,2,3-trimethyl imidazolium tetrafluoroborate
  • DIBF 4 1,3-dimethyl-imidazolium tetrafluoroborate
  • Mochiiruko at least one of such Can the solvent and the electrolyte are not particularly limited.
  • the sealing member 7 is disposed inside the open end of the outer case 6 so as to be in close contact with the inner peripheral surface of the outer case 6.
  • the sealing member 7 is drawn from the outer peripheral surface of the outer case 6 toward the inside of the outer case 6 with respect to a part of the inner peripheral surface of the outer end of the outer case 6 that is in contact with the sealing member 7. .
  • the sealing member 7 is fixed at the place where it is disposed. Further, a part of the opening end portion of the exterior case 6 protruding outward from the sealing member 7 is bent toward the inside of the exterior case 6, and the fixing strength of the sealing member 7 is enhanced.
  • a through hole is provided in a part of the sealing member 7. .
  • butyl rubber is used for the sealing member 7, but the material is not particularly limited.
  • a film 8 containing phosphorus and aluminum is formed on both surfaces of the current collectors 2a and 3a. Then, a conductive layer 9 is formed on the film 8.
  • the film 8 is a natural oxide film removed by immersing in sulfuric acid, and an aluminum foil having a size of about 15 cm ⁇ 20 cm and a thickness of 20 ⁇ m, which has been roughened by etching, is ammonium phosphate (PM). It is provided by dipping in an aqueous solution and anodizing at an anodic oxidation voltage of 0.5V.
  • concentration of the PM aqueous solution is 0.5% to 10%, a film having a thickness of about 7 mm containing high-quality phosphorus and aluminum can be provided.
  • the concentration is below the lower limit of the above concentration range, a sufficient film cannot be formed due to insufficient phosphorus in the solution.
  • the upper limit is exceeded, the pH of the PM aqueous solution becomes low, and the positive The current collector may be corroded.
  • the current during the anodic oxidation treatment is set to 0.1 A to 5 A, a high-quality coating can be provided efficiently.
  • the speed of the anodizing treatment is attributed to the magnitude of the current during anodizing, and the larger the current value, the faster the anodizing can be performed.
  • the upper limit of the above current value range is exceeded, the anodic oxidation rate is too high and a very rough film is formed, and the effect of the present invention cannot be obtained.
  • the voltage holding time after reaching the anodic oxidation voltage is desirably 30 seconds or longer. As the time is increased, a coating containing a high-quality phosphorus-based compound can be provided.
  • an ammonium salt of carboxymethyl cellulose hereinafter referred to as CMC
  • water is used as a solvent.
  • Acetylene black as a conductive material and ammonium salt of CMC as a binder and water are kneaded and dispersed at a blending ratio of acetylene black and ammonium salt of CMC of 4: 1.
  • the blending ratio of acetylene black and ammonium salt of CMC is preferably 2: 1 to 10: 1.
  • the contact resistance between the current collectors 2a and 3a and the polarizable electrode layers 2b and 3b increases, and the effect of the present invention cannot be obtained.
  • the blending ratio of acetylene black is larger than 10, it becomes difficult to knead and disperse acetylene black, ammonium salt of CMC and water, and a conductive paste cannot be obtained.
  • a conductive paste is applied to the current collectors 2a and 3a provided with a film containing a phosphorus compound so that the thickness of the conductive layer 9 is 5 ⁇ m on one side. That is, the current collectors 2a and 3a having the coating 8 and the conductive layer 9 on the surface after the double-side coating are applied so that the thickness thereof is 30 ⁇ m. Thereafter, the coated conductive paste is dried at a temperature of 90 ° C. to remove water as a dispersion medium.
  • coat 8 and the conductive layer 9 on the surface is pressed with a roll press machine, and the thickness of each collector 2a, 3a which has the membrane
  • the electrode paste is applied to the current collectors 2a and 3a thus produced to form polarizable electrode layers 2b and 3b.
  • activated carbon having an alkali activation treatment with potassium hydroxide (KOH) and a specific surface area of 2000 m 2 / g and an average particle diameter D 50 of 3 ⁇ m is used as a material for the electrode paste.
  • acetylene black which is a kind of carbon black having an average particle diameter D 50 of 50 nm, is used as the conductivity imparting agent.
  • As the binder an aqueous dispersion of ammonium salt of CMC and polytetrafluoroethylene (PTFE) is used. These are blended so that the weight ratio of the solids is about 85: 8: 5: 2, respectively, and water as a dispersion medium is added to knead and disperse.
  • an electrode paste is prepared.
  • the weight ratio of the solid content in the electrode paste is about 30% by weight.
  • the polarizable electrode layers 2b and 3b are formed by coating the electrode paste thus obtained on both surfaces of the current collectors 2a and 3a of the positive electrode 2 and the negative electrode 3 using a coating machine.
  • the electrode paste is applied so that the polarizable electrode layers 2b and 3b have a thickness of about 34 ⁇ m on one side. That is, the electrode paste is applied by adjusting the coating conditions so that the positive electrode 2 and the negative electrode 3 have a thickness of 90 ⁇ m.
  • the coated electrode paste is dried at a temperature of 90 ° C. to remove water as a dispersion medium.
  • the positive electrode 2 and the negative electrode 3 thus obtained are further pressed using a roll press.
  • pressing is performed so that the thickness of the polarizable electrode layers 2b and 3b after pressurization is about 90% of the thickness of the polarizable electrode layers 2b and 3b before pressurization. That is, the thickness of the positive electrode 2 and the negative electrode 3 after pressurization is about 85 ⁇ m, and the thickness of the polarizable electrode layers 2 b and 3 b is about 63 ⁇ m.
  • the density of the polarizable electrode layers 2b and 3b is about 0.55 g / cm 3 .
  • the positive electrode 2 and the negative electrode 3 thus prepared are cut into a size of 4 cm ⁇ 10 cm. Then, aluminum lead wires are attached to the current collectors 2b and 3b, respectively, and the positive electrode 2 and the negative electrode 3 are arranged and wound so as to face each other with the separator 4 interposed therebetween.
  • the separator 4 is made of cellulose paper having a thickness of 35 ⁇ m and a density of 0.45 g / cm 3 . In this way, the element 1 is manufactured.
  • the element 1 is immersed in the driving electrolyte, and the positive electrode 2, the negative electrode 3, and the separator 4 are impregnated with the driving electrolyte.
  • the driving electrolyte a solution in which 1-ethyl-2,3-dimethylimidazolium tetrafluoroborate is dissolved in a mixed solvent of propylene carbonate and dimethyl carbonate so as to have a concentration of 1.0 M is used.
  • the element 1 composed of the positive electrode 2, the negative electrode 3, and the separator 4 is inserted into the bottomed cylindrical outer case 6 and sealed with the sealing member 7. In this way, the capacitor of Sample 1 is manufactured.
  • the capacitor of sample 2 was formed by anodizing a film having a thickness of about 14 mm containing phosphorus and aluminum on the surface of each current collector at an anodic oxidation voltage of 1 V in the production of the capacitor of sample 1. Other than this, the capacitor of Sample 2 is fabricated in the same configuration as Sample 1.
  • the capacitor of sample 3 was formed by anodizing a film having a thickness of about 42 mm containing phosphorus and aluminum on the surface of each current collector in the production of the capacitor of sample 1 at an anodic oxidation voltage of 3V. Except for this, the capacitor of Sample 3 is fabricated in the same configuration as Sample 1.
  • the capacitor of sample 4 was formed by anodizing a film having a thickness of about 70 mm containing phosphorus and aluminum on the surface of each current collector at the anodizing voltage of 5 V in the production of the capacitor of sample 1. Except for this, the capacitor of Sample 4 is fabricated in the same configuration as Sample 1.
  • the capacitor of sample 5 was formed by anodizing a film having a thickness of about 140 mm containing phosphorus and aluminum on the surface of each current collector in the production of the capacitor of sample 1 at an anodic oxidation voltage of 10V. Except for this, the capacitor of Sample 5 is fabricated in the same configuration as Sample 1.
  • the capacitor of sample 6 was formed by anodizing a film having a thickness of about 420 mm containing phosphorus and aluminum on the surface of each current collector in the production of the capacitor of sample 1 at an anodic oxidation voltage of 30V. Except for this, the capacitor of Sample 6 is fabricated in the same configuration as Sample 1.
  • the capacitor of Comparative Example 1 does not undergo anodization and formation of a conductive layer on each current collector in the production of the capacitor of Sample 1. Except for this, the capacitor of Comparative Example 1 is fabricated in the same configuration as Sample 1.
  • the capacitor of Comparative Example 2 in the production of the capacitor of Sample 1, only the conductive layer is applied to the surface of each current collector, and no film is formed by anodic oxidation. Except for this, the capacitor of Comparative Example 2 is fabricated in the same configuration as Sample 1.
  • the capacitor of Comparative Example 3 was formed by conducting anodization with a anodic oxidation voltage of 1 V on a surface of each current collector, which was about 14 mm thick, containing phosphorus and aluminum. No layer is formed. Except for this, the capacitor of Comparative Example 3 is fabricated in the same configuration as Sample 1.
  • the capacitor of Comparative Example 4 was formed by anodizing a film having a thickness of about 42 mm containing phosphorus and aluminum on the surface of each current collector in the production of the capacitor of Comparative Example 3 at an anodic oxidation voltage of 3V. . Except for this, the capacitor of Comparative Example 4 is fabricated in the same manner as Comparative Example 3.
  • the capacitor of Comparative Example 5 was formed by anodizing a film having a thickness of about 70 mm containing phosphorus and aluminum on the surface of each current collector in the production of the capacitor of Comparative Example 3 at an anodic oxidation voltage of 5V. . Except for this, the capacitor of Comparative Example 5 is fabricated in the same manner as Comparative Example 3.
  • FIG. 3 is a diagram showing the relationship between the voltage application time and the DCR change rate of capacitors manufactured under various conditions and comparative examples in the capacitor according to the embodiment of the present invention. More specifically, in the capacitors of Samples 1 to 6 and Comparative Examples 1 to 5 in the present embodiment, the DC resistance (DCR) change measured at room temperature and the time during which a constant voltage of 2.8 V was applied in a 60 ° C. atmosphere. It is the figure which showed the relationship with a rate.
  • DCR DC resistance
  • Samples 1 to 6 are Comparative Example 1 in which neither anodization nor formation of a conductive layer is performed, and a comparative example in which only a conductive layer is provided. 2 can suppress the deterioration of DCR after long-time use at room temperature.
  • Table 1 when comparing Samples 2 to 4 with Comparative Examples 3 to 5 in which only the film having the same thickness as Samples 2 to 4 was subjected to only anodization, Sample 2-4 was obtained by providing a conductive layer. It can be seen that the initial DCR at room temperature can be reduced. Further, it can be seen that Samples 1 to 5 can reduce the initial DCR at room temperature as compared with Comparative Example 1.
  • Electrolyte solution and the inactive film are in close contact with the periphery of the conductive layer that has penetrated into the film. Therefore, unlike the conventional conductive layer that digs into the natural oxide film, Samples 3 to 6 have an electrolyte solution for the current collector around the digged conductive layer after the conductive layer is disposed and the conductivity is increased. Reactivity with is reduced. As a result, performance degradation is suppressed as compared with the conventional case. This appears as a difference in DCR change rate.
  • the anodizing voltage is about 5 V or less, and the film thickness is 7 mm or more. It is preferable to provide a conductive layer on a film of 70 mm or less.
  • the etching treatment is a surface treatment method for providing irregularities on the surface of the member.
  • Comparative Example 1 fine activated carbon is accommodated from above the natural oxide film in at least a part of the concave portion provided on the current collector.
  • Comparative Example 2 has a configuration in which a conductive layer is provided in the recess.
  • this conductive layer fills the space of the recess formed by the etching process, it is necessary to energize the activated carbon and the inner surface of the recess through the conductive layer and the natural oxide film.
  • the initial DCR between Comparative Example 1 and Comparative Example 2 does not change much because the conductive layer is provided with the effect of improving the conductivity of the current collector etched, between the activated carbon and the recess. This is because the presence of the layer cancels the current flow.
  • Comparative Example 6 was performed using an electric double layer capacitor having the same configuration as Comparative Example 1 (only the etching foil) in Performance Evaluation Test 1.
  • FIG. 4 is a diagram showing the relationship between the voltage application time and the DCR change rate in the capacitor according to the embodiment of the present invention and the capacitor manufactured under various conditions and other conditions of the comparative example. More specifically, it is a diagram showing the relationship between the time during which samples 7 to 8 and comparative example 6 are applied under the above conditions and the DCR change rate. In FIG. 4, it can be seen that the difference between Samples 7 and 8 and Comparative Example 6 becomes clearer by using a higher temperature atmosphere and using it for a long time.
  • Example 9 For evaluation, a 20 mm ⁇ 25 mm aluminum foil sample was used, and this aluminum foil was impregnated with an ammonium adipate (AA) solution, applied at a voltage of 3 V, and anodized (hereinafter referred to as “sample 9”). ), An aluminum foil of the same size was impregnated in a PM solution, applied at a voltage of 3 V, and anodized (hereinafter referred to as “Comparative Example 7”). After impregnating Sample 9 and Comparative Example 7 in an AA solution at 95 ° C. for 1 hour, the voltage after a constant current was applied to Sample 9 and Comparative Example 7 for 5 minutes was measured.
  • AA ammonium adipate
  • FIG. 5 is a diagram showing a deterioration tendency in withstand voltage of a film produced under various conditions in the capacitor according to the embodiment of the present invention. More specifically, it is a diagram showing a deterioration tendency in the withstand voltage of Sample 9 and Comparative Example 7.
  • the electrode of the capacitor in the present invention is not limited to the case where the capacitor element is wound, but can be used in the same way when the capacitor element has a laminated shape or a 99-fold shape.
  • the electric double layer capacitor has been described as the capacitor of the present invention.
  • the present invention is not limited to this.
  • a film containing phosphorus on the surface of the current collector.
  • a copper foil is used for the negative electrode current collector and an aluminum foil is used for the positive electrode current collector, a film is formed on the surface of the positive electrode current collector, and a conductive layer is further provided on the film. The same effect as that of the electric double layer capacitor can be obtained.
  • the capacitor according to the present embodiment forms a polarizable electrode layer as an electrode portion on at least one surface of a current collector made of a metal foil highly reactive with a driving electrolyte, in advance, A film containing phosphorus and a metal constituting the current collector is disposed on at least one surface of the current collector, and a conductive layer is disposed on the film. Further, a polarizable electrode layer is provided on the surface of the current collector provided with the film and the conductive layer.
  • the coating provided on the current collector of each of the positive electrode and the negative electrode has low reactivity with the driving electrolyte solution, so that the reaction between the driving electrolyte solution and the current collector during repeated charging and discharging can be suppressed. It becomes possible. Therefore, it is possible to suppress performance degradation such as increase in the DCR of the capacitor and decrease in capacity due to long-time use.
  • membrane provided in each collector is about 140 mm or less, according to the physical characteristic of a film
  • a capacitor is provided on both sides or one side of the current collector, and a conductive layer is provided to suppress the deterioration of the capacitor performance due to long-term use. Therefore, it is useful for applications such as energy regeneration for automobiles requiring power and power sources for electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明におけるキャパシタは、集電体の両面または片面に予め陽極酸化処理などによって皮膜が設けられ、さらに皮膜の上に導電層が設けられ、この導電層の上に電極部として分極性電極層が設けられている。これにより、本発明におけるキャパシタは、集電体の両面または片面に予め設けられている皮膜と駆動用電解液との反応性が低いため、長期使用した際に、駆動用電解液と集電体反応を抑制することができ、且つ、導電層が設けられることにより集電体の表面における初期の接触抵抗を低減することができるとともに、皮膜による性能劣化を抑制する効果を高めることができる。

Description

キャパシタおよびその製造方法
 本発明は、ハイブリッドカーや燃料電池車のエネルギー回生用又は電子機器の電源として用いられるキャパシタに関する。
 従来からキャパシタは、その充放電の応答性の良さから多くの電子機器の電源として用いられている。キャパシタの中で特に電気二重層キャパシタは高いエネルギー密度を有しており、蓄電用途にも使用されている。
 電気二重層キャパシタにおいては、金属箔からなる集電体の表面に大気雰囲気下で形成される自然酸化皮膜により、集電体の表面における接触抵抗が増大する。そのために、この接触抵抗の増大を抑制するために集電体と分極性電極層との間に硬質の炭素粒を圧着した構成が開示されている。この構成によって、自然酸化皮膜に食い込んだ炭素粒と集電体表面との距離がより近くなり、通電することが可能となり、集電体の表面の接触抵抗を低減することができる。
 なお、この出願に関する先行技術文献情報として、例えば、特許文献1が知られている。
 しかし、キャパシタを長期使用した場合、炭素粒の層の隙間を通じて電解液と接触する集電体の表面に、電解液と反応して生成された化合物が付着し、この化合物が電極部と集電体表面との接触抵抗(直流抵抗)を増大させてしまう。これが未だに、従来のキャパシタの長期使用時における性能劣化の要因となっている。
 また、その性能劣化はキャパシタを高温条件下で使用することでより顕著になる。今後キャパシタが車載用電源などに利用された場合、高温の車体内での充放電を行うことが考えられる。よって、高温条件下でのキャパシタの信頼性を高めていくことも必要である。
特許第3719570号公報
 本発明は、長期使用時の性能劣化が抑制されたキャパシタを提供する。本発明は、金属から成る集電体の表面へ炭素材料を主体とした電極部が形成された正極および負極を一対の電極とし、その間にセパレータを介在した状態で巻回又は積層された素子を用いたキャパシタにおいて、正極及び負極の少なくとも一方の集電体の表面の少なくとも一部に集電体を構成する金属の自然酸化皮膜と異なる皮膜が形成され、この皮膜の上に導電層が形成され、皮膜および導電層が形成され、且つ、皮膜はリンおよび前記集電体を構成する金属を含む構成とする。
 この構成により、本発明におけるキャパシタは、集電体の表面に形成された皮膜がリンおよび集電体を構成する金属を含むため、駆動用電解液と化学的に不活性であり、キャパシタを長期使用した際に、集電体と駆動用電解液との反応によって生成される化合物が集電体に付着し、集電体の表面の接触抵抗に当たる直流抵抗(DCR)が増大していくことを抑制することが可能となる。さらに、上記皮膜の上に導電層が設けられることにより、この皮膜に導電層の一部が食い込み(アンカー効果)、且つ、食い込んだ導電層の周囲を密着するように皮膜が形成される構成となるため、皮膜による電解液と集電体との反応の抑制効果を高めることができる。
 また、それぞれの集電体に設けられた皮膜の厚みが約140Å以下であれば、皮膜の物理的特性によって、皮膜に導電層が、よく食い込む又は皮膜を貫通して集電体の表面に接触するため、従来の自然酸化皮膜が形成された集電体の表面に導電層が設けられた構成よりも、初期のDCRを低減することが可能となる。
図1は、本発明の実施の形態にかかるキャパシタの一部分を切り欠いた斜視図である。 図2は、本発明の実施の形態にかかるキャパシタの正極を示した鉛直方向の断面図である。 図3は、本発明の実施の形態にかかるキャパシタにおいて、種々の条件で作製したキャパシタおよび比較例の電圧印加時間とDCR変化率との関係を示した図である。 図4は、本発明の実施の形態にかかるキャパシタにおいて、種々の条件で作製したキャパシタおよび比較例の他の条件における電圧印加時間とDCR変化率との関係を示した図である。 図5は、本発明の実施の形態にかかるキャパシタにおいて、種々の条件で作製した皮膜の耐電圧における劣化傾向を示した図である。
 以下に、本発明にかかるキャパシタのうち、電気二重層キャパシタについて、図面を用いながら本発明における実施の形態の説明を行うが、本発明は下記の実施の形態の内容に限らない。
 (実施の形態)
 図1は本発明の実施の形態にかかるキャパシタの一部分を切り欠いた斜視図である。
 図1において、素子1は、イオンの吸脱着を行う正極2および負極3と、正極2と負極3との間に介在し絶縁するセパレータ4とが巻回されたものである。この素子1の正極2ならびに負極3へそれぞれ、引き出し端子である正極のリード線5aと負極のリード線5bが設けられている。素子1は、駆動用電解液(図示なし)とともに有底状の外装ケース6へ収容され、リード線5a、5bが表出するように外装ケース6の開口端部が封口部材7によって封止されてキャパシタが構成されている。
 正極2および負極3は、例えば厚み約20μmのアルミニウム箔で構成される正極の集電体2aおよび負極の集電体3aの表裏面に、それぞれ電極部として活性炭を主とした正極の分極性電極層2bおよび負極の分極性電極層3bが塗布されているものである。
 なお、正極2と負極3は各部材の寸法を異にして用いる場合もあるが、正極2および負極3を構成する部材の材質は略同一である。そのため、以下に主に正極2を用いて本実施の形態における電極の構成の説明を行う。
 図2は本実施の形態にかかるキャパシタの正極を示した鉛直方向の断面図である。
 図2において、集電体2aの材料としては弁金属が用いられる。弁金属としては、アルミニウム、タンタル、チタンなどの金属がある。また、これらの元素を含んで弁作用を生じる合金、例えばチタンを含むアルミニウム系合金なども用いられるが、特に金属の種類を限定するものではない。最も好ましいのは、高純度アルミニウムである。
 アルミニウム箔はさらに、表面を粗面化することが好ましい。表面を粗面化することにより、集電体2aと分極性電極層2bとの接触面積が増し、導電性が向上するとともに、集電体2aの表面へ設けられる各部材との接合が強固になる。粗面化の方法としては、塩酸系のエッチング液中で電解エッチングする方法、酸性溶液中で化学的および/または電気的にエッチングする方法などが適用可能であるが特に限定されない。
 図2において、本実施の形態におけるキャパシタの正極2は集電体2aの両面へリンおよびアルミニウムを含む皮膜8が形成されている。さらに、この皮膜8の上に導電層9が形成されている。
 皮膜8の形成方法は集電体2aを溶液中に浸漬する、又は液中で陽極酸化する、または熱酸化することにより形成される。溶液中に浸漬して皮膜8を形成する場合および液中で陽極酸化する場合の溶液としては、リン系化合物を含む溶液を用いることが望ましい。その他、ホウ素系化合物を含む溶液又はアジピン酸化合物を含む溶液を用いても良い。これらの溶液を用いてもリン系化合物を含む溶液を用いた場合と同様の効果が得られる。さらに陽極酸化に、ホウ素化合物あるいはアジピン酸を用いた場合、リンおよび集電体を構成する金属を含む皮膜より緻密な皮膜が得られる。ホウ素化合物の溶液から得られる皮膜とアジピン酸化合物の溶液から得られる皮膜とは、物性および本発明の効果であるキャパシタの劣化抑制性能が似ている。しかし、どちらも水に対する反応性がリンより高いため耐水性を高める処理として、ホウ素またはアジピン酸と集電体とを含む皮膜の上にリンを含んだ薄い皮膜によるコーティングを施すのが好ましい。
 また、陽極酸化する場合の溶液としてより好ましくは、リン酸アンモニウム水溶液、希リン酸、ホウ酸アンモニウム、アジピン酸アンモニウム水溶液などの溶液を使用することができる。
 上記溶液に浸漬され、陽極酸化等が施された集電体2aにおける一部のアルミニウムは溶液中のリン等と反応して、駆動用電解液と反応性の低い皮膜8が生成される。
 本実施の形態では皮膜8の構成をリンおよびアルミニウムを含んだものとしたが、上記のように、陽極酸化を行う際の溶液によって皮膜の組成も異なり、また集電体2aを構成する金属によっても異なる。リンおよびアルミニウムを含む皮膜8の具体的な組成としては、Al(PO4)、Al2(HPO4)3、Al(H2PO4)3などが挙げられるが、これらに限定されない。
 また、これら本実施の形態における皮膜8は、自然酸化によって形成される自然酸化皮膜とは異なるものであり、用いられる駆動用電解液と低い反応性を示すものである。
 導電層9は材料として、導電材(図示せず)である炭素材料、導電性有機高分子材料、および酸化ルテニウムなどの金属酸化物が用いられる。炭素材料はカーボンブラック、黒鉛粉末、活性炭などを含み、導電性有機高分子材料はポリアセチレン、ポリピロール、ポリアセンなどを含む。好ましくは炭素材料が用いられる。さらに、好ましくは、カーボンブラックが用いられ、カーボンブラックの一種であるアセチレンブラックが用いられればさらに好ましい。しかし、導電材は上記材料に限定されない。
 また、導電層9の形成方法としては集電体2aの表面に、導電材を含む導電ペースト(図示せず)を塗工、又は導電材を蒸着し、導電材を含むシートを形成し、プレス工程により集電体2aと導電層9を密着させるなどの方法を用いることができるが、特に導電層9の形成方法を限定するものではない。
 上記の方法により作製された皮膜8と駆動用電解液との反応性は低い。すなわち、不活性である。そのため、皮膜8が集電体2aの表面へ設けられることにより、従来のようにキャパシタの長期使用時において、集電体と駆動用電解液との反応で生成される化合物が、集電体の表面に付着し続け、この化合物が集電体の表面のDCRを増大させていくことを抑制することができる。結果として、長期使用時のキャパシタの性能劣化を抑制することができる。さらに、駆動用電解液の分解により発生するガスを抑制することができる。
 また本発明は、皮膜8の上に導電層9を設け、これらをプレスすることによって、特許文献1のように自然酸化皮膜に導電層9を食い込ませる構成と比較して、自然酸化皮膜の膜厚より厚い皮膜8を形成した場合においても、約140Å以下の厚みであれば、導電層9がより深く食い込む。又は、導電層9が皮膜8を貫通して集電体2aと接触することが可能である。これによって、集電体2aと通電する導電層9を従来より多く設けることができる。そのため、集電体2aの初期DCRを低減することが可能である。当然、皮膜8の厚みが140Å以上であっても皮膜8が形成されることにより初期DCRが高まることを、導電層9を設けることによって抑制する効果は得ることができる。仮に、同じ1厚みの自然酸化皮膜の上に導電層9が設けられた構成と比較しても、本実施の構成のほうが初期DCRを非常に良く低減できる。
 加えて、導電層9が、リンおよびアルミニウムを含む皮膜8に食い込むことによって、食い込む導電層9の周囲に、駆動用電解液との反応性が低い皮膜8が密着するように形成されることとなり、皮膜8に食い込む導電層9の隙間などを通じて、電解液と接触する集電体の表面積が低減される。よって、駆動用電解液と集電体2aとが反応することにより生成される化合物の量を低減することが可能となる。さらに導電層9の配設により集電体2aと分極性電極層2bとの導電性を高めた上で、集電体2aのDCRが増大していくことを抑制することができるため、性能劣化の抑制効果をより高めることが可能となる。
 大気雰囲気下で弁金属の表面に形成される自然酸化皮膜は、一般的には、集電体2aと分極性電極層2bとの導電性を阻害する要因の一つであった。したがって、自然酸化皮膜などは一般的には取り除かれていた。また、意図せず形成される自然酸化皮膜の厚みとは一般的には30Å未満である。しかし、本実施の形態ではこの化学的に不活性であり、自然酸化皮膜とは異なる皮膜8を集電体2aの表面へ意図的に設け、皮膜8と分極性電極層2bとの間に導電層9を設けている。これにより、長期使用における性能劣化の抑制と初期DCRの低減とを両立することを可能とした。本実施の形態の皮膜8は意図的に設けられるため、意図なく集電体表面に形成される自然酸化皮膜では形成し難い厚み30Å以上のものも形成することができる。
 因みに、図2は概略図であるため、集電体2aの表面へエッチング処理により設けられた上記凹凸の描写や、皮膜8に導電層9が食い込む描写は省略した。
 上記のように本実施の形態において、集電体2aとしてアルミニウム箔の表面にエッチング処理を施したものが用いられている。本発明は集電体2aの構成をエッチング処理したものに限定はしないが、エッチング処理されたアルミニウム箔に皮膜8を設けることによって非常に緻密な皮膜8を設けることができ、高温化した電解液の中で使用しても剥離などの物理的劣化に対して耐性を有することができる。
 また、集電体2aは、正極2を巻回するときに切れない程度の引っ張り強度を有する必要がある。一方、一定体積の外装ケース6内に多くの活性炭(図示せず)を充填することが求められるので、集電体2aはできる限り薄いことが望ましい。そのため、集電体2aの厚みは10μm~50μmであることが望ましい。なお、本実施の形態では集電体2aおよび3aに箔状の金属を用いたが集電体2aの形状はこれに限定されない。
 本実施の形態では図2の正極2を用いて本発明の構成を具体的に説明したが、負極3についても同様の構成を用いることができる。また、本実施の形態ではそれぞれの集電体2aおよび3aの表裏面へ皮膜8および導電層9が設けられているが、皮膜8および導電層9の配設箇所はこれに限定されず、一方の電極に片面だけ設けられている構成でも本発明の効果を得ることができる。
 図1において、セパレータ4には多孔性で絶縁性である材料が用いられる。多孔性で絶縁性である材料としては、セルロース系の紙、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリイミドなどが用いられる。また、セパレータ4は、正極2と負極3の間に介在するように配設され、正極2および負極3とともに、巻回するときに切れない程度の引張り強度を有する必要がある。さらに、一定体積の外装ケース6内に多くの活性炭を充填するためには、厚み10μm~50μmであることが望ましい。なお、セパレータ4は上記材料および寸法に限定されない。
 リード線5aおよび5bは、正極2及び負極3における導電層9、分極性電極層2bおよび3bの未形成部分、つまり露出した集電体2aおよび集電体3a表面に接続され、外部回路に接続される。そのため、リード線5aおよび5bを構成する材料は集電体2aおよび集電体3aとの接続抵抗をできる限り低減するために、例えばリード線5aおよび5bはアルミニウムや銅などの金属が用いられるが、上記材料に限定されない。また、素子1からそれぞれの電極を引き出す手段はリード線5aおよび5bに限定されない。
 外装ケース6の基材は加工性等の点から例えばアルミニウムまたはステンレスを用いることができるが、材料を限定するものではない。なお、外装ケース6の形状は有底であれば図1のように円筒状に限定されず、例えば角筒状であっても良い。
 因みに駆動用電解液(図示せず)には、溶媒として、プロピレンカーボネート(PC)やエチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのうち少なくとも一つを用い、電解質として例えばテトラエチルアンモニウムテトラフルオロボレート(TEABF4)や、トリエチルメチルアンモニウムテトラフルオロボレート(TEMABF4)、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMIBF4)、1-エチル-2、3-ジメチルイミダゾリウムテトラフルオロボレート(EDMIBF4)、1、2、3-トリメチルイミダゾリウムテトラフルオロボレート(TMIBF4)及び1、3-ジメチルイミダゾリウムテトラフルオロボレート(DMIBF4)などのうち少なくとも一つを用いることができる。しかし、特に溶媒、電解質を限定するものではない。
 封口部材7は外装ケース6の開口端内部において外装ケース6内周面と密着するように配設されている。そして、封口部材7は封口部材7と接している外装ケース6の開口端内周面の一部に対して、外装ケース6の外周面から外装ケース6内部に向かって絞り加工が施されている。この絞り加工によって封口部材7が配設箇所に固定されている。さらに、封口部材7より外部へ突出した外装ケース6の開口端部の一部に外装ケース6内側に向かう曲げ加工が施され、封口部材7の固定強度が強化されている。また、本実施の形態においては素子1と接続しているリード線5aおよび5bが封口部材7を貫通して外部回路と接続するために、封口部材7の一部に貫通孔が設けられている。なお、封口部材7には例えばブチルゴムが用いられるが、特に材料を限定するものではない。
 (性能評価試験1)
 以下に、本発明を実施した複数のサンプルと比較例をもとに行った性能評価試験1の内容を示す。
 まずサンプル1のキャパシタにおける、正極ならびに負極の構成と作製方法について説明する。
 それぞれの集電体2a、3aの表面の両面ともに、リンおよびアルミニウムを含む皮膜8を形成する。そして、この皮膜8の上に導電層9を形成する。皮膜8は、硫酸に浸漬することで自然酸化皮膜の除去処理を行い、エッチング処理により表面を粗面化した、大きさ約15cm×20cm、厚さ20μmのアルミニウム箔を、リン酸アンモニウム(PM)水溶液中に浸漬し、陽極酸化電圧0.5Vで陽極酸化を行うことにより設ける。ここで、PM水溶液の濃度を0.5%~10%にして用いれば、良質なリンおよびアルミニウムを含む厚み約7Åの皮膜を設けることができる。上述の濃度範囲の下限を下回った場合、溶液内のリンの不足により、十分な皮膜を形成することができず、上限を超えた場合、PM水溶液のpHが低くなり、皮膜形成中に正極の集電体が腐食してしまう恐れがある。
 また、陽極酸化処理時の電流を0.1A~5Aにすれば、効率よく、良質な皮膜を設けることができる。陽極酸化処理の速度は、陽極酸化時の電流の大きさに起因し、電流値が大きいほど迅速に陽極酸化を行うことができる。しかし上述の電流値範囲の上限を超えると、陽極酸化の速度が速過ぎて非常に粗い皮膜が形成され、本発明の効果を得ることができなくなってしまう。
 なお、陽極酸化電圧に達してからの電圧保持時間は30秒以上であることが望ましく、時間を長くするほど、良質なリン系化合物を含む皮膜を設けることができる。
 導電層9の材料である導電性ペーストには、導電材として、1次粒子の平均粒径D50=50nmのカーボンブラックの一種であるアセチレンブラックを用いる。また、結着剤としてカルボキシメチルセルロース(以下、CMC)のアンモニウム塩を用い、溶媒として水とを用いる。
 導電材であるアセチレンブラックと結着剤であるCMCのアンモニウム塩と水を、アセチレンブラックとCMCのアンモニウム塩の配合割合が4:1で混練し分散を行う。アセチレンブラックとCMCのアンモニウム塩の配合割合は2:1~10:1が望ましい。アセチレンブラックの配合割合が2よりも小さくなると、それぞれの集電体2a、3aと分極性電極層2b、3bとの接触抵抗が大きくなり、本発明の効果が得られない。また、アセチレンブラックの配合割合が10よりも大きくなると、アセチレンブラックとCMCのアンモニウム塩と水とを混練し分散を行うことが困難となり、導電ペーストが得られない。
 リン系化合物を含む皮膜を設けた集電体2a、3aへ、導電層9の厚みが片面5μmになるように塗工機により導電性ペーストを塗工する。すなわち、両面塗工後の上記皮膜8と導電層9を表面に有する集電体2a、3aの厚みが、30μmになるように塗工する。その後、塗工した導電ペーストを90℃の温度で乾燥して分散媒である水を除去する。その後、皮膜8と導電層9を表面に有するそれぞれの集電体2a、3aをロールプレス機によりプレスし、皮膜8と導電層9を表面に有するそれぞれの集電体2a、3aの厚みを約22μmにした。
 このようにして作製された集電体2a、3aに電極ペーストを塗工して分極性電極層2b、3bを形成する。
 まず電極ペーストの材料として、水酸化カリウム(KOH)によりアルカリ賦活処理し、比表面積が2000m2/g、平均粒径D50が3μmの活性炭を用いる。さらに導電性付与剤としては平均粒径D50が50nmのカーボンブラックの一種であるアセチレンブラックを用いる。結着剤としてはCMCのアンモニウム塩およびポリテトラフルオロエチレン(PTFE)の水分散液を用いる。これらを固形分の重量比がそれぞれ約85:8:5:2となるように配合し、分散媒である水を添加して、混練、分散する。このようにして電極ペーストを調製する。なお電極ペースト中の固形分の重量比率は約30重量%とする。
 このようにして得られた電極ペーストを塗工機により、正極2ならびに負極3それぞれの集電体2a、3aの両面に塗工することで分極性電極層2b、3bを形成する。なお、分極性電極層2b、3bの厚みが片面約34μmになるように電極ペーストを塗工する。すなわち、正極2、負極3の厚みが90μmになるように塗工条件を調整して、電極ペーストを塗工する。
 その後、塗工した電極ペーストを90℃の温度で乾燥して分散媒である水を除去する。このようにして得られた正極2、負極3をさらにロールプレス機を用いてプレス加工を行う。このとき、加圧後の分極性電極層2b、3bの厚みが加圧前の分極性電極層2b、3bの厚みの約90%となるようにプレスする。すなわち、加圧後の正極2、負極3の厚みは約85μmとなり、分極性電極層2b、3bの厚みは約63μmとなる。この状態で分極性電極層2b、3bの密度は約0.55g/cm3となる。
 このようにして作製した、正極2ならびに負極3を4cm×10cmの寸法に切断する。そしてそれぞれの集電体2b、3bにそれぞれアルミニウム製のリード線を取り付け、正極2、負極3がセパレータ4を挟んで対面するように配置し巻回する。セパレータ4は厚み35μm、密度0.45g/cm3であるセルロース系の紙を使用する。このようにして、素子1を作製する。
 その後、この素子1を駆動用電解液に浸漬し、正極2、負極3とセパレータ4とに駆動用電解液を含浸させる。駆動用電解液としては、プロピレンカーボネートとジメチルカーボネートの混合溶媒に1.0Mの濃度となるように1-エチル-2、3-ジメチルイミダゾリウムテトラフルオロボレートを溶かした溶液を用いる。
 最後に、正極2、負極3、セパレータ4からなる素子1を有底筒状の外装ケース6に挿入し、封口部材7を用いて封口する。このようにしてサンプル1のキャパシタが作製される。
 サンプル2のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体の表面にリンおよびアルミニウムを含む厚み約14Åの皮膜を、陽極酸化電圧1Vで陽極酸化を行うことにより形成した。これ以外はサンプル1と同様の構成にしてサンプル2のキャパシタを作製する。
 サンプル3のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体の表面に、リンおよびアルミニウムを含む厚み約42Åの皮膜を、陽極酸化電圧3Vで陽極酸化を行うことにより形成した。これ以外はサンプル1と同様の構成にしてサンプル3のキャパシタを作製する。
 サンプル4のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体の表面に、リンおよびアルミニウムを含む厚み約70Åの皮膜を、陽極酸化電圧5Vで陽極酸化を行うことにより形成した。これ以外はサンプル1と同様の構成にしてサンプル4のキャパシタを作製する。
 サンプル5のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体の表面に、リンおよびアルミニウムを含む厚み約140Åの皮膜を、陽極酸化電圧10Vで陽極酸化を行うことにより形成した。これ以外はサンプル1と同様の構成にしてサンプル5のキャパシタを作製する。
 サンプル6のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体の表面に、リンおよびアルミニウムを含む厚み約420Åの皮膜を、陽極酸化電圧30Vで陽極酸化を行うことにより形成した。これ以外はサンプル1と同様の構成にしてサンプル6のキャパシタを作製する。
 比較例1のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体に陽極酸化処理および導電層の形成を行わない。これ以外はサンプル1と同様の構成にして比較例1のキャパシタを作製する。
 比較例2のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体の表面に、導電層の塗工のみを行い、陽極酸化による皮膜形成を行わない。これ以外はサンプル1と同様の構成にして比較例2のキャパシタを作製する。
 比較例3のキャパシタは、サンプル1のキャパシタの作製において、それぞれの集電体の表面のリンおよびアルミニウムを含む厚み約14Åの皮膜を、陽極酸化電圧1Vで陽極酸化を行うことにより形成し、導電層の形成は行わない。これ以外はサンプル1と同様の構成にして比較例3のキャパシタを作製する。
 比較例4のキャパシタは、比較例3のキャパシタの作製において、それぞれの集電体の表面に、リンおよびアルミニウムを含む厚み約42Åの皮膜を、陽極酸化電圧3Vで陽極酸化を行うことにより形成した。これ以外は比較例3と同様にして比較例4のキャパシタを作製する。
 比較例5のキャパシタは、比較例3のキャパシタの作製において、それぞれの集電体の表面に、リンおよびアルミニウムを含む厚み約70Åの皮膜を、陽極酸化電圧5Vで陽極酸化を行うことにより形成した。これ以外は比較例3と同様にして比較例5のキャパシタを作製する。
 以下に、上記サンプル1~6および比較例1~5に関する性能評価試験の結果を表1および図3を用いて説明する。表1は本実施の形態におけるサンプル1~6と比較例1~5のキャパシタによる常温下での初期特性を示したものである。図3は本発明の実施の形態にかかるキャパシタにおいて、種々の条件で作製したキャパシタおよび比較例の電圧印加時間とDCR変化率との関係を示した図である。さらに詳細には本実施の形態におけるサンプル1~6と比較例1~5のキャパシタにおける60℃雰囲気中で2.8V定電圧を印加し続けた時間と常温下で測定した直流抵抗(DCR)変化率との関係を示した図である。
Figure JPOXMLDOC01-appb-T000001
 図3において、サンプル1~6と比較例1~5との比較の中で、サンプル1~6は、陽極酸化および導電層の形成ともに行っていない比較例1および導電層のみを設けた比較例2よりも常温における長時間使用後のDCRの劣化を抑制することができている。また表1において、サンプル2~4と、陽極酸化のみを行いサンプル2~4と同じ厚みの皮膜だけを設けた比較例3~5とを比較すると、サンプル2-4は導電層を設けることで常温における初期のDCRを低減できていることがわかる。さらに、サンプル1~5では比較例1と比較しても、常温における初期のDCRを低減できていることがわかる。
 導電層を設けずに陽極酸化電圧5Vで陽極酸化を行った比較例5は、常温における初期のDCRの値が非常に増大している。導電層を設け、陽極酸化を5V以上で行ったサンプル3~6は、常温における初期のDCRの値は低減されたまま、長時間使用後のDCRの増大は抑制されていることがわかる。これは電導度の高い導電層を皮膜上に塗工することにより、導電層が皮膜に食い込み、導電層を介して集電体と通電した活性炭の量が増え、皮膜のみの構成と比べて抵抗が低くなるためである。さらに、皮膜に食い込んだ導電層の周囲には、電解液と不活性である皮膜が密着している。そのため、従来のように自然酸化皮膜に食い込む導電層と異なり、サンプル3~6は、導電層が配設され導電性が高まった上で、食い込んだ導電層の周囲にある集電体の電解液との反応性が低くなる。それによって、従来よりも性能劣化を抑えられている。これが、DCR変化率の差として大きく現れている。
 上記の性能評価試験から、比較例1より初期DCRを抑え、且つ、長時間使用後のDCRの劣化を低減するという効果を得るためには陽極酸化電圧を約5V以下、皮膜の厚みとして7Å以上、70Å以下の皮膜上に、導電層を設けることが好ましい。
 ここで、上記性能評価試験において、自然酸化皮膜を形成したエッチング箔の表面に導電層が設けられた構成である比較例2の初期DCRと比較例1の初期DCRとの間に差がない点について説明する。
 本実施の形態で説明したように、エッチング処理とは部材の表面に対して凹凸を設ける表面処理方法である。
 比較例1では集電体に設けられたこの凹凸の少なくとも一部の凹部に、自然酸化皮膜の上から微細な活性炭が収容されている。これに対して比較例2では、この凹部に導電層を設けた構成である。比較例2においては、この導電層がエッチング処理による凹部の空間を充填してしまうため、活性炭と凹部の内表面とを、導電層および自然酸化皮膜を介して通電させる必要が生じる。比較例1と比較例2との初期DCRにあまり変化がないのは、導電層が設けられることによってエッチング処理された集電体の導電性の向上という効果を、活性炭と凹部との間に導電層が存在することで通電を阻害していることにより打ち消しているためである。
 (性能評価試験2)
 60℃雰囲気下でのライフ試験を行った性能評価試験1に続いて、性能評価試験2では更に高温(85℃)の雰囲気下でのライフ試験を行った。
 サンプル7として性能評価試験1におけるサンプル4(5V陽極酸化および導電層あり)と同様の構成である電気二重層キャパシタを用いた。
 サンプル8として性能評価試験1におけるサンプル5(10V陽極酸化および導電層あり)と同様の構成である電気二重層キャパシタを用いた。
 比較例6として性能評価試験1における比較例1(エッチング箔のみ)と同様の構成である電気二重層キャパシタを用いて行った。
 試験条件として、85℃雰囲気下で2.5Vの定電圧を印加し続けた後、常温でサンプル7、8ならびに比較例6のDCRの変化率を測定した。その結果を図4として示す。
 図4は本発明の実施の形態にかかるキャパシタにおいて、種々の条件で作製したキャパシタおよび比較例の他の条件における電圧印加時間とDCR変化率との関係を示した図である。さらに詳細には、上記サンプル7~8および比較例6を上記条件で印加した時間とDCR変化率との関係を示した図である。図4において、より高温の雰囲気化、且つ、長時間使用することによって、サンプル7、8と比較例6との差がより明確になることが分かる。
 すなわち、図4からわかるようにエッチング箔の集電体のみの構成で高温雰囲気下で定電圧を印加し続けた比較例6は、急激なDCR劣化が確認された。一方、集電体の表面に皮膜、その上に導電層を設けた構成であるサンプル7,8は、高温条件下かつ長時間使用後においても性能劣化は小さく、性能劣化抑制効果は大きいことがわかる。
 (性能評価試験3)
 本発明において陽極酸化にアジピン酸あるいはホウ素化合物を用いた場合の皮膜の劣化抑制特性を調べる性能評価試験3を行った。
 評価は、20mm×25mmのアルミニウム箔試料を用い、このアルミニウム箔をアジピン酸アンモニウム(AA)溶液に含浸し、3V電圧で印加し、陽極酸化を行ったものと(以下、「サンプル9」と呼ぶ)、同様のサイズのアルミニウム箔をPM溶液に含浸し、3V電圧で印加し、陽極酸化を行ったもの(以下、「比較例7」と呼ぶ)を用いて行った。サンプル9および比較例7をAA溶液中に95℃雰囲気下で1時間含浸した後、サンプル9および比較例7に対してそれぞれ、定電流を5分間流した後の電圧を測定した。そして、サンプル9および比較例7のAA溶液を含浸する前と後との耐電圧の比(含浸後/含浸前)で表し、評価した。上記条件で試験を行うことによって、試験のためにキャパシタを組み立てる必要がなく、夫々の組成の皮膜が集電体の表面に形成された場合の電解液との反応性の傾向が短時間かつ簡単な設備で調べることができる。
 上記条件で行った試験の結果を、それぞれ陽極酸化時の酸化時間を横軸として図5に示す。図5は、本発明の実施の形態にかかるキャパシタにおいて、種々の条件で作製した皮膜の耐電圧における劣化傾向を示した図である。さらに詳細には、上記サンプル9および比較例7の耐電圧における劣化傾向を示した図である。
 図5において、サンプル9と比較例7とを比較すると、酸化時間によっては若干数値に誤差はあるが略同等の性能を示していると言える。因みに、アジピン酸化合物の溶液から得られる皮膜とホウ素化合物から得られる皮膜は物性およびキャパシタの劣化抑制特性が似ている。そのため、比較例7のようにリンおよびアルミニウムを含む皮膜と、サンプル9のようにAA溶液から得られる炭素およびアルミニウムを含む皮膜とが同等の性能であるという結果はホウ素およびアルミニウムを含む皮膜についても言える。
 なお、本発明におけるキャパシタの電極はキャパシタ素子が巻回状であるときに限らず、積層状、九十九折状である場合にも同様に用いることが可能である。
 さらに、本発明のキャパシタとして電気二重層キャパシタを用いて説明を行ったが、これに限らず、例えば負極の集電体表面へ設けた炭素材料内部へリチウムイオンを吸蔵する電気化学キャパシタの電極にも集電体の表面へリンを含む皮膜を設けることは可能である。一例として負極集電体に銅箔を用い、正極集電体にアルミニウム箔を用いる場合にも、正極集電体の表面に皮膜を形成し、さらに皮膜の上に導電層を設けることで、上記の電気二重層キャパシタと同様の効果が得られる。
 以上より、本実施の形態にかかるキャパシタは、駆動用電解液と反応性の高い金属製の箔で構成された集電体の少なくとも片面に電極部として分極性電極層を形成する際に、予め集電体の少なくとも片面へ、リンおよび集電体を構成する金属を含む皮膜と、この皮膜の上に導電層が配設される。さらに、皮膜ならびに導電層が設けられた集電体の表面に分極性電極層が設けられた構成とする。
 これにより、正極および負極それぞれの集電体に設けられた皮膜は駆動用電解液との反応性が低いため、充放電を繰り返す際の駆動用電解液と集電体の反応を抑制することが可能となる。そのため、長時間使用によるキャパシタのDCRの増大や容量低下などの性能劣化を抑えることが可能である。また、それぞれの集電体に設けられた皮膜が約140Å以下であれば、皮膜の物理的特性によって、皮膜によく導電層が食い込む。そのため、従来の自然酸化皮膜が形成された集電体の表面に導電層が設けられた構成よりも、初期DCRを低減することが可能となる。
 本発明は集電体の両面または片面に予め皮膜を設けた上に導電層を配することによって、長時間使用によるキャパシタの性能劣化を抑えているため、製品ライフスパンが長く、急速な充放電を要する自動車のエネルギー回生や電子機器の電源としての用途が有用である。
 1  素子
 2  正極
 3  負極
 2a,3a  集電体
 2b,3b  分極性電極層
 4  セパレータ
 5a,5b  リード線
 6  外装ケース
 7  封口部材
 8  皮膜
 9  導電層

Claims (7)

  1. 金属から成る集電体の表面に炭素材料を主とした電極部が形成された正極および負極と、これら正極および負極の間に介在するセパレータとを巻回又は積層した素子と、
    前記素子と駆動用電解液とが収納された外装ケースとを備えたキャパシタにおいて、
    前記正極及び前記負極の少なくとも一方の前記集電体の表面の少なくとも一部に前記集電体を構成する金属の自然酸化皮膜と異なる皮膜が形成され、前記皮膜の上に導電層が形成され、前記導電層の上に前記電極部が形成されたことを特徴としたキャパシタ。
  2. 前記集電体がエッチング箔であることを特徴とした
    請求項1に記載のキャパシタ。
  3. 前記皮膜がリンおよび前記集電体を構成する金属を含むことを特徴とした
    請求項1に記載のキャパシタ。
  4. 前記皮膜がホウ素および前記集電体を構成する金属を含むことを特徴とした
    請求項1に記載のキャパシタ。
  5. 前記皮膜が炭素および前記集電体を構成する金属を含むことを特徴とした
    請求項1に記載のキャパシタ。
  6. 金属から成る集電体の表面に炭素材料を主とした電極部を形成する正極および負極と、これら正極および負極の間に介在するセパレータとを巻回または積層して素子を作製するステップと、
    前記素子および駆動用電解液を外装ケースに収容するステップと
    を備えたキャパシタの製造方法において、
    前記正極及び前記負極の少なくとも一方の集電体の表面の少なくとも一部に前記集電体を構成する金属の自然酸化皮膜と異なる皮膜を形成するステップと、
    前記皮膜の上に導電層を形成するステップと、
    前記導電層の上に電極部を形成するステップと
    を備えたキャパシタの製造方法。
  7. 前記皮膜を形成するステップにおいて、前記集電体へ陽極酸化を行うことによって前記皮膜を形成したことを特徴とした請求項6に記載のキャパシタの製造方法。
PCT/JP2009/004667 2008-09-18 2009-09-17 キャパシタおよびその製造方法 WO2010032462A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010529641A JP5906374B2 (ja) 2008-09-18 2009-09-17 キャパシタおよびその製造方法
US13/063,946 US8705226B2 (en) 2008-09-18 2009-09-17 Capacitor having a characterized electrode and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008239130 2008-09-18
JP2008-239130 2008-09-18

Publications (1)

Publication Number Publication Date
WO2010032462A1 true WO2010032462A1 (ja) 2010-03-25

Family

ID=42039310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004667 WO2010032462A1 (ja) 2008-09-18 2009-09-17 キャパシタおよびその製造方法

Country Status (3)

Country Link
US (1) US8705226B2 (ja)
JP (2) JP5906374B2 (ja)
WO (1) WO2010032462A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325633B1 (ko) 2011-12-21 2013-11-07 비나텍주식회사 리튬 이온 커패시터의 집전체 구조물, 이를 포함하는 전극 및 이를 포함하는 리튬 이온 커패시터
KR20180061670A (ko) * 2016-11-30 2018-06-08 삼신디바이스 주식회사 초고용량 커패시터 및 그 제조방법
WO2020059609A1 (ja) * 2018-09-21 2020-03-26 日本ケミコン株式会社 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016520B1 (ko) * 2017-10-24 2019-08-30 삼신디바이스 주식회사 고전압 슈퍼커패시터 및 그 제조방법
KR20190069892A (ko) * 2017-12-12 2019-06-20 한국제이씨씨(주) 전기 이중층 커패시터
US11756740B2 (en) * 2018-06-11 2023-09-12 Nippon Chemi-Con Corporation Electrode body, electrolytic capacitor provided with electrode body, and method for producing electrode body
KR102631866B1 (ko) * 2018-10-30 2024-01-30 한국전기연구원 전극, 이의 제조방법 및 이를 이용하는 슈퍼커패시터
EP4080531A4 (en) * 2019-12-17 2023-08-09 Nippon Chemi-Con Corporation SOLID ELECTROLYTE CAPACITOR AND METHOD OF MANUFACTURING IT
CN114868217A (zh) 2019-12-17 2022-08-05 日本贵弥功株式会社 混合型电解电容器及其制造方法
EP4080532A4 (en) * 2019-12-18 2023-08-02 Nippon Chemi-Con Corporation ELECTROLYTIC CONDENSER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121301A (ja) * 1997-10-20 1999-04-30 Okamura Kenkyusho:Kk 電気二重層コンデンサ
WO1999038177A1 (fr) * 1998-01-23 1999-07-29 Matsushita Electric Industrial Co., Ltd. Materiau electrode metallique, condensateur utilisant ledit materiau et procede de fabrication associe
JP2007250376A (ja) * 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd リチウムイオン電池の集電体用アルミニウム箔及びそれを用いたリチウムイオン電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2327620A1 (fr) * 1975-10-06 1977-05-06 Lignes Telegraph Telephon Perfectionnements aux condensateurs a electrolyte solide
JPH0620026B2 (ja) * 1984-06-12 1994-03-16 松下電器産業株式会社 電気二重層キヤパシタ
JPH02240910A (ja) * 1989-03-15 1990-09-25 Matsushita Electric Ind Co Ltd 電気二重層コンデンサ
FR2688092B1 (fr) * 1992-02-14 1994-04-15 Traitement Metaux Alliages Sa Feuille pour electrode de condensateur electrolytique et procede de fabrication.
JP2536458B2 (ja) * 1994-08-16 1996-09-18 日本電気株式会社 ジスルホン酸化合物、それをド―パントとする導電性高分子、導電材およびそれを用いた固体電解コンデンサ
EP0917166B1 (en) * 1997-09-22 2007-08-01 Japan Gore-Tex, Inc. Electric double layer capacitor and process for manufacturing the same
US6493210B2 (en) * 1998-01-23 2002-12-10 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
US6808845B1 (en) 1998-01-23 2004-10-26 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
JP2001297952A (ja) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd 電極金属材料の製造方法、及び電極金属材料を用いたキャパシタの製造方法
JP2000068166A (ja) * 1998-08-21 2000-03-03 Nichicon Corp 電気二重層コンデンサ
US6454953B2 (en) * 2000-05-24 2002-09-24 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same
US6781817B2 (en) * 2000-10-02 2004-08-24 Biosource, Inc. Fringe-field capacitor electrode for electrochemical device
JP2002170747A (ja) * 2000-11-30 2002-06-14 Denki Kagaku Kogyo Kk 電気二重層コンデンサの導電剤及び電気二重層コンデンサ
US6540900B1 (en) * 2001-10-16 2003-04-01 Kemet Electronics Corporation Method of anodizing aluminum capacitor foil for use in low voltage, surface mount capacitors
JP4061088B2 (ja) * 2002-02-12 2008-03-12 松下電器産業株式会社 電気化学蓄電デバイス用電極の製造方法
JP2005191423A (ja) * 2003-12-26 2005-07-14 Tdk Corp キャパシタ用電極
JP2005259682A (ja) * 2004-02-10 2005-09-22 Matsushita Electric Ind Co Ltd 非水電解質二次電池用集電体およびそれを用いた非水電解質二次電池用極板ならびに非水電解質二次電池用極板の製造方法
JP2006032062A (ja) * 2004-07-14 2006-02-02 Nissan Motor Co Ltd 二次電池用電極、およびこれを用いた二次電池
KR101029361B1 (ko) * 2004-09-29 2011-04-13 도요 알루미늄 가부시키가이샤 전극재 및 그의 제조방법
JP2006210883A (ja) * 2004-12-27 2006-08-10 Matsushita Electric Ind Co Ltd 分極性電極体とその製造方法、及びこれを用いた電気化学キャパシタ
WO2007094366A1 (ja) * 2006-02-16 2007-08-23 Matsushita Electric Industrial Co., Ltd. 電気二重層キャパシタ
JP4710651B2 (ja) * 2006-02-24 2011-06-29 パナソニック株式会社 電気二重層キャパシタ
WO2009041074A1 (ja) * 2007-09-28 2009-04-02 Nippon Chemi-Con Corporation 電気二重層キャパシタ用分極性電極及びそれを用いた電気二重層キャパシタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121301A (ja) * 1997-10-20 1999-04-30 Okamura Kenkyusho:Kk 電気二重層コンデンサ
WO1999038177A1 (fr) * 1998-01-23 1999-07-29 Matsushita Electric Industrial Co., Ltd. Materiau electrode metallique, condensateur utilisant ledit materiau et procede de fabrication associe
JP2007250376A (ja) * 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd リチウムイオン電池の集電体用アルミニウム箔及びそれを用いたリチウムイオン電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325633B1 (ko) 2011-12-21 2013-11-07 비나텍주식회사 리튬 이온 커패시터의 집전체 구조물, 이를 포함하는 전극 및 이를 포함하는 리튬 이온 커패시터
KR20180061670A (ko) * 2016-11-30 2018-06-08 삼신디바이스 주식회사 초고용량 커패시터 및 그 제조방법
KR101932966B1 (ko) * 2016-11-30 2018-12-27 삼신디바이스 주식회사 초고용량 커패시터 및 그 제조방법
WO2020059609A1 (ja) * 2018-09-21 2020-03-26 日本ケミコン株式会社 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法
KR20210055679A (ko) * 2018-09-21 2021-05-17 니폰 케미콘 가부시키가이샤 전극체, 전극체를 구비하는 전해 콘덴서, 및 전극체의 제조 방법
KR102655553B1 (ko) * 2018-09-21 2024-04-09 니폰 케미콘 가부시키가이샤 전극체, 전극체를 구비하는 전해 콘덴서, 및 전극체의 제조 방법

Also Published As

Publication number Publication date
JPWO2010032462A1 (ja) 2012-02-09
JP2016105497A (ja) 2016-06-09
US8705226B2 (en) 2014-04-22
US20110170229A1 (en) 2011-07-14
JP5906374B2 (ja) 2016-04-20
JP6134917B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6134917B2 (ja) キャパシタ
JP5810258B2 (ja) キャパシタ用電極体およびその製造方法とこのキャパシタ用電極体を用いたキャパシタ
CN112673439B (zh) 电极体、具备电极体的电解电容器以及电极体的制造方法
JP4983744B2 (ja) 固体電解コンデンサの製造方法
JPWO2006070617A1 (ja) 分極性電極体とその製造方法、及びこれを用いた電気化学キャパシタ
CN101000826B (zh) 电容器及其制造方法
EP1962308B1 (en) Electric double layer capacitor
CN109074960B (zh) 电解电容器及其制造方法
US8351182B2 (en) Electric double layer capacitor
JPWO2010029598A1 (ja) コンデンサ用電極箔とそれを用いた電解コンデンサ、およびコンデンサ用電極箔の製造方法
CN113795899B (zh) 电极体、具备电极体的电解电容器以及电极体的制造方法
JP2011166044A (ja) 蓄電デバイス
TWI808500B (zh) 陰極體以及電解電容器
WO2022045122A1 (ja) 電解コンデンサ及び電解コンデンサの製造方法
JP2003100569A (ja) 電気二重層キャパシタ
JP2011166043A (ja) 蓄電デバイスおよび蓄電デバイスの製造方法
JP2010003717A (ja) キャパシタ
JP5493712B2 (ja) 電極箔とその製造方法およびこの電極箔を用いたコンデンサ
WO2024062720A1 (ja) 電解コンデンサ及びその製造方法
WO2024014270A1 (ja) 電解コンデンサ
JP4839807B2 (ja) 巻回形電気二重層コンデンサ
KR20230141772A (ko) 전해 콘덴서
JP2005216881A (ja) 電気二重層コンデンサ及びその製造方法
JP2010087100A (ja) 固体電解コンデンサの製造方法
JP2006024733A (ja) 電解コンデンサ用電極箔、およびこれを用いた電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529641

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13063946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814307

Country of ref document: EP

Kind code of ref document: A1