WO2010029877A1 - 電子写真感光体、画像形成方法、画像形成装置 - Google Patents
電子写真感光体、画像形成方法、画像形成装置 Download PDFInfo
- Publication number
- WO2010029877A1 WO2010029877A1 PCT/JP2009/065310 JP2009065310W WO2010029877A1 WO 2010029877 A1 WO2010029877 A1 WO 2010029877A1 JP 2009065310 W JP2009065310 W JP 2009065310W WO 2010029877 A1 WO2010029877 A1 WO 2010029877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- photosensitive member
- electrophotographic photosensitive
- phthalocyanine pigment
- exposure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/142—Inert intermediate layers
- G03G5/144—Inert intermediate layers comprising inorganic material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/75—Details relating to xerographic drum, band or plate, e.g. replacing, testing
- G03G15/751—Details relating to xerographic drum, band or plate, e.g. replacing, testing relating to drum
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0696—Phthalocyanines
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/10—Bases for charge-receiving or other layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/10—Bases for charge-receiving or other layers
- G03G5/102—Bases for charge-receiving or other layers consisting of or comprising metals
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/10—Bases for charge-receiving or other layers
- G03G5/104—Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/00953—Electrographic recording members
- G03G2215/00957—Compositions
Definitions
- the present invention relates to an electrophotographic photosensitive member (hereinafter also simply referred to as a photosensitive member) used for electrophotographic image formation, an image forming method and an image forming apparatus using the electrophotographic photosensitive member.
- a photosensitive member used for electrophotographic image formation
- an image forming method and an image forming apparatus using the electrophotographic photosensitive member used for electrophotographic image formation, an image forming method and an image forming apparatus using the electrophotographic photosensitive member.
- the present invention has been made to solve the above problems. That is, the present invention provides an electrophotographic photoreceptor that does not cause image defects such as black spots and image unevenness when image exposure is performed using light called so-called short wavelength light having a wavelength of 350 nm to 500 nm.
- the purpose is to provide.
- an electrophotographic photoreceptor capable of forming a halftone image that exhibits good dot reproducibility and is free of interference fringes and streak-like image defects when subjected to short wavelength exposure. It is intended.
- the present inventor constituted a photosensitive layer having sufficient sensitivity to light having a short wavelength of 350 to 500 nm and higher charge injection from the conductive support to the photosensitive layer.
- the present invention has been found on the assumption that a structure to prevent at a level is necessary.
- an electrophotographic photosensitive member having any one of the configurations described below.
- the gallium phthalocyanine pigment is a hydroxygallium phthalocyanine pigment having peaks at diffraction angles (2 ⁇ ⁇ 0.2) in Cu-K ⁇ characteristic X-ray diffraction of at least 7.4 ° and 28.2 °. 4.
- the electrophotographic photosensitive member according to any one of items 1 to 3.
- the gallium phthalocyanine pigment has a chloro having peaks at least at 7.4 °, 16.6 °, 25.5 ° and 28.3 ° at a diffraction angle (2 ⁇ ⁇ 0.2) in Cu-K ⁇ characteristic X-ray diffraction. 4.
- the electrophotographic photosensitive member according to any one of items 1 to 3, which is a gallium phthalocyanine pigment.
- the gallium phthalocyanine pigment has gallium having peaks at least at 6.8 °, 12.8 °, 15.8 °, and 26.6 ° at a diffraction angle (2 ⁇ ⁇ 0.2) in Cu-K ⁇ characteristic X-ray diffraction. 4.
- the electrophotographic photosensitive member according to any one of items 1 to 3, which is a phthalocyanine pigment.
- the titanyl phthalocyanine pigment is a Y-type oxytitanyl phthalocyanine pigment having a diffraction angle (2 ⁇ ⁇ 0.2) in Cu-K ⁇ characteristic X-ray diffraction and a peak of at least 27.3 °, 1 to 4.
- the electrophotographic photosensitive member according to any one of items 3.
- a charging step for applying a charging potential on the electrophotographic photosensitive member according to any one of 1 to 10 An exposure step of forming an electrostatic latent image by exposing the electrophotographic photoreceptor to which a charged potential is applied with light having a wavelength of 350 nm to 500 nm; A developing step of supplying toner onto the electrophotographic photosensitive member to visualize the electrostatic latent image into a toner image; An image forming method comprising a step of transferring the toner image formed on the electrophotographic photosensitive member to a transfer medium.
- the electrophotographic photosensitive member according to any one of 1 to 10, Charging means for applying a charging potential to the electrophotographic photosensitive member;
- An image forming apparatus comprising: an exposure unit that exposes the electrophotographic photosensitive member to which a charged potential is applied with light having a wavelength of 350 nm to 500 nm.
- the present invention when image exposure is performed using light called so-called short-wavelength light having a wavelength of 350 nm to 500 nm, a highly dense dot image without image defects such as black spots and image unevenness is formed. I can do it now. That is, when the surface of the electrophotographic photosensitive member according to the present invention is subjected to short wavelength exposure, it is possible to form a halftone image having good dot reproducibility and free from interference fringes and streak-like image defects. It was. As described above, according to the present invention, it is possible to stably form a high-quality electrophotographic image free from image defects.
- 1 is a schematic view in which functions of an image forming apparatus of the present invention are incorporated.
- 1 is a cross-sectional configuration diagram of a color image forming apparatus showing an embodiment of the present invention.
- 1 is a cross-sectional view of a color image forming apparatus using an organic photoreceptor of the present invention. It is a figure which shows an example of the cross-sectional curve showing regular uneven
- the electrophotographic photoreceptor according to the present invention has at least an intermediate layer, a charge generation layer, and a charge transport layer on a conductive support, and the skewness (Rsk) of the cross-sectional curve of the conductive support is ⁇ 8 ⁇ Rsk ⁇ 0, preferably ⁇ 4 ⁇ Rsk ⁇ 1, and the charge generation layer contains a metal phthalocyanine pigment.
- the electrophotographic photoreceptor according to the present invention has a structure in which the skewness of the cross-sectional curve of the conductive support falls within the above range, and contains a metal phthalocyanine pigment in the charge generation layer.
- the configuration of the present invention makes it possible to provide an electrophotographic photosensitive member capable of forming a high-quality electrophotographic image.
- the “skewness of the cross-sectional curve on the surface of the conductive support” constituting the photoconductor according to the present invention is one of the parameters defining the regularity of the irregularities formed on the surface of the conductive support. It defines the degree of distortion (degree of distortion) of the distributed state of the peaks and valleys. That is, when creating a roughness curve of the surface of the conductive support, it is assumed that there is a variation in the distribution of peaks (convex portions) and valleys (concave portions) constituting the roughness curve. Is quantified by a parameter called “distortion degree (strain degree)”, thereby defining the roughness of the surface of the conductive support.
- the value of “skewness of the cross-sectional curve on the surface of the conductive support” is set to be larger than ⁇ 8 and smaller than 0, preferably larger than ⁇ 4 and smaller than ⁇ 1. Is.
- the skewness (Rsk) of the cross-sectional curve defined in the present invention conforms to the definition of “ISO4287: 1997” and is represented by the following formula.
- Rq represents the root mean square roughness
- lr represents the length in the X-axis direction
- Z (x) represents the Z-axis direction (height direction) component of the roughness at the x position.
- skewness of the cross-sectional curve is defined as the root mean square of the parameter Z (x) indicating the roughness in the height direction at the reference length divided by the root mean square.
- skewness (Rsk) of the cross-sectional curve of the conductive support constituting the photoconductor according to the present invention was measured under the following measurement conditions.
- Measurement conditions Measuring machine: Surface roughness meter (Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.) Measurement length L: 8.0 mm Cut-off wavelength ⁇ c: 0.08 mm Stylus tip shape: cone with a tip angle of 60 ° Stylus tip radius: 0.5 ⁇ m Measurement speed: 0.3 mm / sec Measurement magnification: 100,000 times Measurement position: Top, middle, and bottom three locations (total three locations of the center in the width direction of the photosensitive layer side surface of the conductive support and the midpoint between the center and the end) The average value of the three locations is the skewness (Rsk) value in the present invention.
- the measurement position of an electroconductive support body is shown in FIG.
- M represents the center in the width direction of the photosensitive layer side surface of the conductive support 1
- P and Q represent the end portions on the photosensitive layer side surface of the conductive support 1.
- R is a midpoint between the center P and the end P
- U is a midpoint between the center P and the end Q. Therefore, the measurement positions of the skewness (Rsk) of the conductive support 1 shown in FIG. 7 are the three points of the center M and the midpoints R and U between the center and the end.
- a regular uneven shape defined by the skewness in the above range is imparted to the surface of the conductive support, and the use of the conductive support having such a skewness makes it possible to solve the problems of the present invention.
- corrugated shape formed in the electroconductive support body surface is demonstrated using FIG. 4 and FIG.
- “regular unevenness formed on the surface of the conductive support” means that the cross-sectional shape of the conductive support is, for example, as shown in FIG. 4 and FIG. It has a shape.
- FIG. 4 has a shape that regularly repeats acute convex portions (crests) and concave portions (valleys), and FIG.
- FIG. 5 repeats a concavo-convex pattern having a more complicated shape than the concavo-convex shape of FIG. It is.
- FIG. 5 has a small concave part (valley) at the tip of the convex part (crest), and two small convex parts (crests) in the concave part (valley).
- the value of the skewness is within the above range, all other than the concavo-convex pattern having the shape described with reference to FIGS.
- skewness (Rsk) value of the cross-sectional curve of the conductive support is expressed by using positive and negative, and the positive and negative cases will be described with reference to FIG.
- FIG. 6A shows the case where the skewness (Rsk) of the cross section curve of the conductive support is positive, and the cross section curve on the surface of the conductive support indicated by the solid line is rounded with sharp acute convex portions. It is comprised from the recessed part.
- FIG. 6B shows the case where the skewness (Rsk) of the cross section curve of the conductive support is negative, and the cross section curve on the surface of the conductive support indicated by the solid line is a rounded convex portion and a sharp acute angle. It is comprised from the recessed part.
- the broken line in a figure represents an average line.
- the surface of the conductive support is subjected to a cutting process. Specifically, as will be described later, it is possible to form the uneven shape by selecting the material and shape of the cutting tool used for cutting, or by appropriately selecting the cutting amount, feed pitch, and rotation speed at the time of cutting. it can.
- the surface of the conductive support is then subjected to sand blasting, dry ice blasting, high-pressure jet water treatment, etc. To do.
- sand blasting dry ice blasting
- high-pressure jet water treatment etc.
- a diamond tool using single crystal diamond either a flat nose shape or R (rounded shape) may be used. In the case of an R shape, a nose radius of about 10 to 30 mm should be used. Is preferred.
- a flat or R shape may be used for the nose shape, but it is preferable to use one having a particle size of 0.2 ⁇ m or more and 15 ⁇ m or less.
- the polishing finish roughness on the cutting surface of the cutting tool is polished so that the maximum roughness Rt is 0.3 ⁇ m or more and 2.0 ⁇ m or less.
- the maximum roughness Rt of the cutting surface of the cutting tool can be measured using a surface roughness meter such as the aforementioned surface roughness meter “Surfcom 1400D” (manufactured by Tokyo Seimitsu Co., Ltd.).
- the cutting tool is preferably polished by a diamond wheel attached to a tool polishing machine.
- the rotation speed is preferably 3000 to 8000 rpm and the cutting depth is preferably 0.001 to 0.2 mm.
- the feed pitch can be set within a range of preferably 100 ⁇ m / rev or more, more preferably 150 ⁇ m / rev or more as a minimum value, and preferably 600 ⁇ m / rev or less, more preferably 450 ⁇ m / rev or less as a maximum value.
- JP 2007-264379 A for dry ice blasting JP 2005-292565, and for sand blasting JP 2000-105481 JP 2000-155436 A
- the method disclosed in Japanese Patent Application Laid-Open No. 2006-30580 can be referred to in order to achieve the skewness of the sectional curve of the present application.
- the conductive support used in the photoconductor according to the present invention may be in the form of a sheet or a cylinder, but is preferably a cylindrical shape.
- the cylindrical conductive support is particularly referred to as “cylindrical conductive. Sexual support ".
- the “cylindrical conductive support” is also referred to as “drum”.
- the “cylindrical conductive support” in the present invention means a cylindrical support capable of forming an endless image by rotation.
- the straightness is 0.1 mm or less, and the deflection is 0.1 mm or less.
- a conductive support in the range of is preferred. By setting the straightness and the shake within the above ranges, good image formation becomes possible.
- the cylindrical conductive support used in the photoreceptor according to the present invention preferably has a diameter of 10 to 300 mm, more preferably 10 to 50 mm.
- a photoreceptor using a cylindrical conductive support having a small diameter of 10 to 50 mm has a remarkable effect of the present invention, improves the adhesion between the support and the intermediate layer, and prevents the occurrence of black spots at the same time.
- the material for the cylindrical conductive support examples include, for example, a metal drum such as aluminum or nickel, a plastic drum on which aluminum, tin oxide, indium oxide or the like is vapor-deposited, or a paper or plastic coated with a conductive substance. Drums and the like.
- the conductive support preferably has a specific resistance of 10 3 ⁇ cm or less at room temperature.
- the conductive support used in the present invention it is also possible to use an alumite film formed on the surface thereof and subjected to a sealing treatment.
- the alumite treatment is usually performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid gives the most preferable result.
- anodizing in sulfuric acid the sulfuric acid concentration is preferably 100 to 200 g / L
- the aluminum ion concentration is 1 to 10 g / L
- the liquid temperature is about 20 ° C.
- the applied voltage is preferably about 20 V. It is not limited.
- the average film thickness of the anodized film is usually preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
- the conductive support used in the photoreceptor according to the present invention has the above-described characteristics.
- the conductive support used in the photoreceptor according to the present invention is preferably prepared so that the surface roughness is 0.5 to 2.5 ⁇ m in terms of 10-point average roughness Rz. What was produced so that it might be -1.8micrometer was more preferable.
- the conductive support processed so as to have such a surface roughness is preferable because it easily imparts the skewness configuration of the cross-sectional curve within the range defined in the present invention.
- an intermediate layer containing N-type semiconductive particles which will be described later, is installed on such a conductive support, the occurrence of dielectric breakdown and black spots is prevented, and when interference light such as a laser is used. In addition, the generation of moire can be efficiently prevented.
- the definition of the surface roughness Rz (ten-point average roughness) and the measuring method are as follows.
- the surface roughness Rz means (ten-point average roughness) described in JIS B0601-1982. That is, it is the difference between the average height of the top five peaks and the average height of the bottom five valleys within the distance of the standard value of the reference length.
- Measuring condition measuring machine Surface roughness meter (Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.) Measurement length L: Standard value of reference length
- Contact tip shape Tip angle 60 ° Conical contact tip radius: 0.5 ⁇ m
- Measurement speed 0.3 mm / sec
- Measurement magnification 100000 times
- Measurement position Upper, middle, and lower three locations (the center in the width direction of the photosensitive layer side surface of the conductive support, and the middle point of the center and the end) The average value of Rz at the three locations is defined as the value of Rz.
- an intermediate layer having a barrier function is provided between a conductive support and a photosensitive layer (consisting of a charge generation layer and a charge transport layer).
- the adhesion between the conductive support and the photosensitive layer is improved.
- a so-called barrier function for preventing charge injection from the support toward the photosensitive layer can be imparted.
- the intermediate layer preferably contains particles called “N-type semiconductive particles” typified by titanium oxide or zinc oxide.
- N-type semiconductive particles are fine particles that impart a property of limiting conductive carriers to electrons in the intermediate layer. That is, by containing N-type semiconductive particles in an insulating binder constituting the intermediate layer, the intermediate layer blocks injection of positively charged holes from the support to the photosensitive layer, while the photosensitive layer The movement of electrons from the surface has the property of not blocking.
- N-type semiconductive particles include titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).
- TiO 2 titanium oxide
- ZnO zinc oxide
- SnO 2 tin oxide
- titanium oxide and zinc oxide are more preferable.
- the N-type semiconductive particles used in the present invention have a number average primary particle size of preferably 10 nm to 200 nm, more preferably 15 to 150 nm.
- a coating solution for forming an intermediate layer using N-type semiconductive particles having a number average primary particle size in the above range exhibits good dispersion stability, and the intermediate layer formed from this coating solution has a function of preventing black spots from occurring. In addition, it has good environmental characteristics and cracking resistance.
- the number average primary particle size of the N-type semiconductive particles is, for example, a ferret obtained by enlarging the particles 10,000 times by observation with a transmission electron microscope and performing image analysis on 100 particles randomly extracted from the enlarged image. It is obtained by calculating the average value of the direction diameters.
- the N-type semiconductive particles used in the present invention have a dendritic shape, a needle shape, a granular shape, and the like, and the N-type semiconductive particles having such a shape are, for example, titanium oxide particles, anatase type, There are crystal types such as a rutile type, and types in which amorphous is mixed with these crystal types. In the present invention, any crystal type may be used, or two or more crystal types may be mixed and used. Of these, the rutile type is most preferred.
- the N-type semiconductive particles to be contained in the intermediate layer can be those subjected to surface treatment.
- Specific examples of the surface treatment performed on the N-type semiconductive particles include, for example, a method in which the surface treatment is performed using a reactive organosilicon compound after a plurality of surface treatments. In the method of performing the surface treatment multiple times and finally performing the surface treatment using the reactive organosilicon compound, the surface treatment is performed at least once using at least one compound selected from alumina, silica, and zirconia. It is preferable to perform the surface treatment using a reactive organosilicon compound.
- the above-described surface treatment using alumina, silica, zirconia is a treatment for precipitating alumina, silica, zirconia on the surface of the N-type semiconductive particles, and alumina deposited on the surface of the N-type semiconductive particles, Silica and zirconia also include hydrates of alumina, silica and zirconia.
- the surface treatment using the reactive organosilicon compound means that the surface treatment is performed using a treatment liquid containing the reactive organosilicon compound.
- the intermediate layer may be formed by applying an intermediate layer forming coating solution prepared by dispersing N-type semiconductive particles such as titanium oxide or zinc oxide in a solvent together with a binder resin on a conductive support. it can.
- the coating liquid for forming the intermediate layer is composed of N-type semiconductive particles, a binder resin, a dispersion solvent, and the like.
- a dispersion solvent a solvent used for forming other layers such as a charge generation layer and a charge transport layer is used. Similar ones can be used.
- binder resin examples include thermoplastic resins such as polyamide resin, polyvinyl acetate resin, polyvinyl acetal resin, polyvinyl butyral resin, and polyvinyl alcohol resin, and heat such as melamine resin, epoxy resin, and alkyd resin.
- thermoplastic resins such as polyamide resin, polyvinyl acetate resin, polyvinyl acetal resin, polyvinyl butyral resin, and polyvinyl alcohol resin
- heat such as melamine resin, epoxy resin, and alkyd resin.
- curable resin examples thereof include a curable resin and a copolymer resin containing two or more of the above-described resin repeating units.
- polyamide resins are preferable, and among them, alcohol-soluble polyamide resins formed by copolymerization or methoxymethylol conversion are preferable.
- the addition amount of the N-type semiconductive particles dispersed in the binder resin is preferably 10 to 10,000 parts by mass of the N-type semiconductive particles with respect to 100 parts by mass of the binder resin. Part is more preferred.
- a dispersing means such as a sand mill, a ball mill, or an ultrasonic dispersion that uniformly disperses the N-type semiconductive particles.
- the film thickness of the intermediate layer is preferably 0.2 to 15 ⁇ m, more preferably 0.3 to 10 ⁇ m, and still more preferably 0.5 to 8 ⁇ m.
- the photosensitive layer constituting the photoreceptor according to the present invention has a structure in which a charge generation layer (also referred to as CGL) and a charge transport layer (also referred to as CTL) are separated.
- CGL charge generation layer
- CTL charge transport layer
- the negatively charged photoreceptor preferably has a layer structure in which a charge generation layer (CGL) is provided on an intermediate layer and a charge transport layer (CTL) is provided thereon.
- the positively charged photosensitive member has a layer configuration reverse to that of the negatively charged photosensitive member, that is, a charge transport layer (CTL) is provided on an intermediate layer, and a charge generating layer (CGL) is provided thereon.
- CTL charge transport layer
- CGL charge generating layer
- the charge generation layer contains a charge generation material (CGM), and may contain a binder resin and, if necessary, known additives in addition to the charge generation material.
- CGM charge generation material
- the photoreceptor according to the present invention uses a metal phthalocyanine pigment as a charge generation material (CGM).
- CGM charge generation material
- the “metal phthalocyanine pigment” in the present invention is a pigment made of a compound having a structure in which an ionized metal atom is coordinated to the center of a phthalocyanine ring.
- Examples of the metal atom constituting the “metal phthalocyanine pigment” in the present invention include titanium, gallium, vanadium, copper, and zinc.
- gallium phthalocyanine pigment having a structure in which gallium atoms are coordinated or a titanyl phthalocyanine pigment having a structure in which titanium atoms are coordinated is preferable. Since gallium phthalocyanine pigments and titanyl phthalocyanine pigments have robust properties, they are not easily chemically degraded with respect to short-wavelength laser light or the like, and have relatively high sensitivity to short-wavelength laser light. However, since it has the property of easily receiving charge injection from the conductive support, there remains a problem in forming a stable latent image.
- a conductive support having a cross-sectional curve skewness (Rsk) in the range of ⁇ 8 ⁇ Rsk ⁇ 0 is applied to the charge generation layer containing such a metal phthalocyanine pigment, thereby providing a conductive support. It was made possible to prevent charge injection from the body. In addition, the occurrence of image defects such as inversion black spots and streaky density unevenness due to charge injection from the conductive support is prevented, and the high sensitivity characteristic also acts to achieve high-definition formed by irradiation with short-wavelength laser light. The dot latent image was formed faithfully. As a result, fine dot image reproducibility was improved, and when a halftone image was formed, it was possible to form a high-quality electrophotographic image without streaky density unevenness on the image.
- Rsk cross-sectional curve skewness
- the photoreceptor according to the present invention contains a metal phthalocyanine pigment in the charge generation layer.
- metal phthalocyanine pigments a structure in which a gallium phthalocyanine pigment or a titanium atom is coordinated is a structure in which a gallium atom is coordinated. Of these, those using titanyl phthalocyanine pigments are preferred.
- the metal phthalocyanine pigment that can be used in the present invention has a crystal structure having a peak at a specific diffraction angle (also called Bragg angle) (2 ⁇ ⁇ 0.2 °) in an X-ray diffraction spectrum using CuK ⁇ as a radiation source. is there.
- the peak is shown as an acute protrusion on a spectrum chart created by X-ray diffraction spectrum measurement, and its shape is clearly different from noise in the spectrum chart.
- hydroxygallium phthalocyanine pigments and chlorogallium phthalocyanine pigments are more preferable.
- the hydroxygallium phthalocyanine pigment those having peaks at 7.4 ° and 28.2 ° of diffraction angles (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction are particularly preferable.
- the chlorogallium phthalocyanine pigment has peaks at 7.4 °, 16.6 °, 25.5 ° and 28.3 ° of the diffraction angle (2 ⁇ ⁇ 0.2 °) in CuK ⁇ characteristic X-ray diffraction. Is particularly preferred.
- Y-type oxytitanyl phthalocyanine pigment has a diffraction angle (2 ⁇ ⁇ 0 .2 °) having a peak at 27.2 °.
- the metal phthalocyanine pigment that can be used in the present invention has a specific diffraction angle (also referred to as Bragg angle) (2 ⁇ ⁇ 0.2 °) in the X-ray diffraction spectrum using CuK ⁇ as a radiation source as described above. It has a crystal structure showing a peak.
- the metal phthalocyanine pigment that can be used in the present invention may have a peak at another diffraction angle in addition to a peak at a diffraction angle (2 ⁇ ⁇ 0.2 °) that identifies each compound.
- a method for measuring an X-ray diffraction spectrum using CuK ⁇ as a radiation source will be described.
- Examples of the X-ray diffraction spectrum measurement method using CuK ⁇ as a radiation source include known measurement methods such as a powder method and a thin film method, and these use CuK ⁇ (wavelength 1.54178 ⁇ ) as an X-ray source. is there.
- the thin film method which is one of the methods for measuring the X-ray diffraction spectrum, will be described.
- the X-ray diffraction spectrum measurement by the thin film method has an advantage that a thin film X-ray diffraction spectrum of the photosensitive layer itself can be obtained.
- the measuring method there is a method of forming a photosensitive layer on a glass surface and measuring it.
- the procedure of the measuring method of the X-ray diffraction spectrum which uses CuK (alpha) of a photosensitive layer as a radiation source is demonstrated more concretely.
- (1) Preparation of measurement sample A coating solution for forming a photosensitive layer is applied to an antireflective cover glass so that the film thickness after drying is 10 ⁇ m or more, and dried.
- a measuring apparatus for measuring an X-ray diffraction spectrum an X-ray diffractometer for measuring a thin film sample using CuK ⁇ rays monochromatically parallelized by an artificial multilayer mirror is used as a radiation source.
- a radiation source for example, “Rigaku RINT2000 (Rigaku Corporation)” and the like can be mentioned.
- the measurement conditions for the X-ray diffraction spectrum are as follows.
- X-ray output voltage 50 kV
- X-ray output current 250 mA
- Light receiving solar slit 0.1 ° X-ray diffraction spectrum measurement can be performed by setting the above measurement conditions.
- a charge generation layer containing an azo pigment represented by the following general formula (1) as a charge generation material (CGM) is also of a short wavelength, similar to the charge generation layer containing a metal phthalocyanine pigment such as the gallium phthalocyanine pigment described above. Although it has a relatively high sensitivity to laser light, it has a property of being easily subjected to charge injection from a conductive support.
- the azo pigment is represented by the following general formula (1). That is,
- each of R 201 and R 202 represents any one of a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, and a cyano group, and R 201 and R 202 may be the same, It may be different.
- Cp 1 and Cp 2 in the formula are groups represented by the following formula (1a), and Cp 1 and Cp 2 may be the same or different.
- R 203 in formula (1a) represents a hydrogen atom, an alkyl group, or an aryl group.
- R 204 , R 205 , R 206 , R 207 and R 208 each represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, a halogenated alkyl group, an alkyl group, an alkoxy group, a dialkylamino group or a hydroxyl group.
- Z represents an atomic group necessary for constituting a substituted or unsubstituted aromatic carbocyclic ring or a substituted or unsubstituted aromatic heterocyclic ring.
- a known resin can be used as the binder.
- the most preferable resin that can be used for the charge generation layer include formal resin, butyral resin, silicone resin, silicone-modified butyral resin, and phenoxy resin.
- the metal phthalocyanine pigment described above is uniformly dispersed in the charge generation layer, which is considered to contribute to reducing the increase in residual potential due to repeated use.
- the ratio of the binder resin to the charge generating material in the charge generating layer is preferably 20 to 600 parts by mass of the charge generating material with respect to 100 parts by mass of the binder resin.
- the film thickness of the charge generation layer is preferably 0.01 ⁇ m to 2 ⁇ m.
- the charge transport layer contains a charge transport material (CTM), and can contain a known additive such as a binder resin and, if necessary, an antioxidant in addition to the charge transport material. .
- CTM charge transport material
- the charge transport material (CTM) preferably has a high mobility and an ionization potential difference from the combined charge generation material of 0.5 (eV) or less, more preferably 0.25 (eV) or less. . It is considered that the charge transport material having such characteristics contributes to the smallest increase in residual potential due to repeated use.
- the ionization potential of the charge generation material (CGM) and the charge transport material (CTM) can be measured with a known measurement device such as a surface analysis device AC-1 (manufactured by Riken Keiki Co., Ltd.).
- charge transport material for example, known charge transport materials (CTM) such as triphenylamine derivatives, hydrazone compounds, styryl compounds, benzidine compounds, and butadiene compounds can be used.
- CTM charge transport materials
- the charge transport layer can be usually formed by dissolving these charge transport materials in a suitable binder resin.
- binder resin for the charge transport layer examples include polystyrene resin, acrylic resin, methacrylic resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate.
- examples thereof include resins, silicone resins, melamine resins, and copolymer resins containing two or more repeating units of these resins.
- the most preferable binder resin for the charge transport layer is a polycarbonate resin.
- the polycarbonate resin is most preferable because it improves the dispersibility of the charge transport material and contributes to the improvement of the electrophotographic characteristics.
- the ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by weight of the charge transport material with respect to 100 parts by weight of the binder resin.
- the thickness of the charge transport layer is preferably 10 to 40 ⁇ m.
- the electrophotographic photoreceptor according to the present invention has at least an intermediate layer, a charge generation layer, and a charge transport layer on a conductive support as described above. If necessary, a surface layer (protective layer) ) May be included.
- the electrophotographic photoreceptor according to the present invention is formed by sequentially applying a coating solution for forming an intermediate layer, a coating solution for forming a charge generation layer, and a coating solution for forming a charge transport layer onto a conductive support by a known method. Can be produced.
- a known coating method can be used as a method of applying the coating liquid for forming each layer.
- a coating processing method such as a dip coating method, a spray coating method, or a quantity regulation type coating method can be used.
- the amount-regulated coating method is a coating method in which coating is performed while controlling the coating amount and the thickness of each coating layer, and a coating method using a coating device called a circular slide hopper is typical. It is.
- the layer When the layer is formed by coating, it is required that the lower layer film that has been coated is not dissolved as much as possible when forming the upper layer side, and that uniform coating processing can be performed smoothly.
- a spray coating method or a quantity-regulated coating method as a coating method that can clear such requirements without taking time and effort.
- the spray coating method is described in detail in, for example, JP-A-3-90250 and JP-A-3-269238, and the amount-regulating coating method is described in, for example, JP-A-58-189061. It is described in detail in publications and the like.
- the aforementioned quantity-regulating type coating apparatus includes a coating apparatus using a circular slide hopper type coating head or an extrusion type coating head.
- a coating apparatus having a circular slide hopper type coating head described later (hereinafter also referred to as a circular slide hopper type coating apparatus or a slide type coating apparatus) is preferable.
- the coating apparatus having such a circular-shaped coating head is a coating apparatus compared to a dip coating method in which almost the entire cylindrical conductive support (excluding a part of the upper end) is immersed in the coating solution. It is possible to form a layer in one way without retaining the dispersion liquid.
- the coating film thickness can be accurately controlled by the flow rate of the coating liquid discharged from the coating apparatus, there is little variation in film thickness, and an optically uniform layer must be formed when forming the surface protective layer. Can do.
- Examples of the solvent or dispersion medium used in preparing the coating solution for forming the intermediate layer, charge generation layer, and charge transport layer constituting the electrophotographic photoreceptor according to the present invention include the following. That is, n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, acetone, methyl ethyl ketone, methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, tetrahydrofuran, dioxolane, dioxane, methanol Ethanol, 1-propanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cellosolve and the like. These solvents can be used alone or in combination of two or more as a mixed solvent.
- a solvent with high resin solubility and an evaporation rate are appropriately maintained, such as a mixed solvent of methanol and linear alcohol. It is preferable to use a mixed solvent composed of a solvent having a property. By using a mixed solvent in this way, the evaporation rate of the solvent can be kept moderate, and the occurrence of image defects due to drying unevenness during coating can be suppressed.
- the image forming method using the electrophotographic photosensitive member according to the present invention includes at least the following steps. That is, (1) An electrostatic latent image forming step for forming an electrostatic latent image on an electrophotographic photosensitive member using exposure light called short-wavelength light having a wavelength of 350 nm or more and 500 nm or less (2) Forming on the electrophotographic photosensitive member A developing step of developing the electrostatic latent image using a developer containing toner to form a toner image (3) The toner image formed on the electrophotographic photosensitive member is transferred onto a transfer member such as paper Transfer process for transferring (4) A fixing process for fixing the toner image transferred onto the transfer body.
- a latent image is formed on a photoreceptor by irradiating exposure light having a wavelength of 350 nm to 500 nm, generally called short wavelength exposure, and a semiconductor laser or a light emitting diode is used as an exposure light source. From these exposure light sources, exposure light having an exposure dot diameter of 5 to 50 ⁇ m, preferably 10 to 25 ⁇ m in the writing principal direction is irradiated onto the photoconductor to perform digital exposure.
- the exposure dot diameter when the image writing density is 600 dpi is 42.3 ⁇ m
- the exposure dot diameter when the image writing density is 1200 dpi is 21.7 ⁇ m
- the exposure dot diameter when the image writing density is 2400 dpi is 10.4 ⁇ m. 5 ⁇ m.
- the exposure dot diameter is the size (length, width) of the exposure light, and specifically, in the main scanning direction of the region where the intensity of the exposure light is 1 / e 2 or more of the peak intensity. It means the length along. If the exposure dot diameter is smaller than the thickness of the photosensitive layer, the resolution of the latent image is increased. However, if the exposure dot diameter is too small, the reproducibility of the toner development amount may become unstable.
- a dot latent image corresponding to exposure dot light of 21.7 ⁇ m or less can be formed on the electrophotographic photosensitive member even when exposure is performed with an image writing density of 1200 dpi or more.
- a fine and high-resolution toner image represented by a photographic image can be stably formed.
- the image forming apparatus shown in FIG. 1 is a digital image forming apparatus, and includes an image reading unit A, an image processing unit B, an image forming unit C, and a transfer paper transport unit D as a transfer paper transport unit. .
- automatic document feeding means for automatically conveying the document.
- the document is placed on the document placing table 11, and the placed document is separated and conveyed one by one by the document conveying roller 12, and the image is read at the reading position 13a.
- the document that has been read is discharged onto the document discharge tray 14 by the document transport roller 12.
- the original image is read by a plurality of mirror units 15 and 16 including an illumination lamp constituting a scanning optical system and a plurality of mirrors.
- the image read by the image reading unit A is formed on the light receiving surface of the image sensor CCD through the projection lens 17.
- the optical image formed on the image pickup device CCD is photoelectrically converted into an electrical signal (luminance signal) and then A / D converted, and subjected to processing such as density conversion and filter processing in the image processing unit B. It is temporarily stored in memory as data.
- the image forming unit C includes the photoreceptor 1 according to the present invention.
- PCL (precharge lamp) 8 is arranged in the order of operation.
- density detecting means 222 for measuring the reflection density of the patch image formed on the photoreceptor 1 is provided on the downstream side of the developing means 4.
- the photosensitive member 1 the photosensitive member according to the present invention is used and rotated in the clockwise direction shown in the drawing.
- the image exposure unit 3 After the photosensitive member 1 is uniformly charged by the charging unit 2, the image exposure unit 3 performs image exposure based on the image signal from the memory of the image processing unit B. The image exposure unit 3 performs image exposure on the photoreceptor 1 at the position Ao, whereby an electrostatic latent image is formed on the surface of the photoreceptor 1.
- the image forming apparatus can use an image exposure light source having an oscillation wavelength of 350 to 500 nm, such as a semiconductor laser or a light emitting diode, when forming an electrostatic latent image on a photoreceptor. It is. According to such an image exposure light source, it is possible to perform digital exposure on the photosensitive member by exposure light with the exposure dot diameter in the direction of writing to be reduced to 10 to 50 ⁇ m, so that it is possible to form a minute dot image. is there.
- an image exposure light source having an oscillation wavelength of 350 to 500 nm, such as a semiconductor laser or a light emitting diode, when forming an electrostatic latent image on a photoreceptor. It is. According to such an image exposure light source, it is possible to perform digital exposure on the photosensitive member by exposure light with the exposure dot diameter in the direction of writing to be reduced to 10 to 50 ⁇ m, so that it is possible to form a minute dot image. is there.
- the electrostatic latent image formed on the photosensitive member 1 is developed by the developing unit 4 to form a toner image on the surface of the photosensitive member 1.
- the transfer paper transport unit D includes paper feed units 41 (A), 41 (B), and 41 (C) that store transfer papers P of different sizes, and a manual paper feed unit 42 that performs manual paper feed. And a transfer paper P more appropriate than these is selected.
- the transfer paper P is conveyed to the conveyance path 40 by the guide roller 43, and the inclination and deviation are corrected by the registration roller 44.
- the transfer paper P corrected by the registration roller 44 is conveyed again along the conveyance path 40 and guided to the pre-transfer roller 43 a, the paper feed path 46, and the entry guide plate 47.
- the toner image on the photoreceptor 1 is transferred onto the transfer paper P by the transfer pole 24, the separation pole 25, the nail separation means 250, and the like at the transfer position Bo.
- the transfer paper P is separated from the surface of the photoreceptor 1 and the transfer means 5 is transferred. Then, it is conveyed to the fixing unit 50.
- the fixing unit 50 includes a fixing roller 51 and a pressure roller 52, and the toner is fixed by heating and pressure by passing the transfer paper P between the fixing roller 51 and the pressure roller 52. After the toner image has been fixed, the transfer paper P is discharged onto the paper discharge tray 64.
- the transfer paper P is conveyed in the direction of the broken line arrow by the operation of the paper discharge switching member 170 and the transfer paper guide unit 177. Is done. Further, the transfer paper P is transported downward by the transport mechanism 178 and is switchback transported, and the rear end portion of the transfer paper P becomes the leading end portion, and the transport guide 131 and the paper feed roller 132 of the duplex printing paper feed unit 130 are operated. As a result, the transfer paper P is conveyed again through the conveyance path 40, and a toner image can be formed on the back surface of the transfer paper P by the above-described procedure.
- the constituent elements such as the photosensitive member, the developing unit, and the cleaning unit according to the present invention are unitized as a process cartridge, and the unit can be freely attached to and detached from the apparatus main body.
- at least one of the charging unit, the image exposure unit, the developing unit, the transfer or separation unit, and the cleaning unit may be a process cartridge integrated with the photosensitive member, and may be a single unit that can be freely attached to and detached from the apparatus main body. .
- FIG. 2 is a cross-sectional configuration diagram of a color image forming apparatus in which the electrophotographic photosensitive member according to the present invention can be mounted.
- This color image forming apparatus is called a tandem type color image forming apparatus, and includes four sets of image forming units (image forming units) 10Y, 10M, 10C, and 10Bk, an endless belt-shaped intermediate transfer body unit 7, and a feeding unit.
- the paper transport unit 21 and the fixing unit 24 are included.
- a document image reading apparatus A is disposed on the upper part of the main body A of the image forming apparatus.
- the image forming unit 10Y that forms a yellow image includes a charging unit (charging step) 2Y, an exposure unit (exposure step) 3Y, and a developing unit disposed around a drum-shaped photoconductor 1Y as a first image carrier. Means (development process) 4Y, primary transfer roller 5Y as primary transfer means (primary transfer process), and cleaning means 6Y.
- the image forming unit 10M that forms a magenta image includes a drum-shaped photoconductor 1M as a first image carrier, a charging unit 2M, an exposure unit 3M, a developing unit 4M, and a primary transfer roller as a primary transfer unit. 5M and cleaning means 6M.
- An image forming unit 10C for forming a cyan image includes a drum-shaped photoreceptor 1C as a first image carrier, a charging unit 2C, an exposure unit 3C, a developing unit 4C, and a primary transfer roller 5C as a primary transfer unit. And a cleaning means 6C.
- the image forming unit 10Bk that forms a black image includes a drum-shaped photoreceptor 1Bk as a first image carrier, a charging unit 2Bk, an exposure unit 3Bk, a developing unit 4Bk, and a primary transfer roller 5Bk as a primary transfer unit. It has a cleaning means 6Bk.
- the four sets of image forming units 10Y, 10M, 10C, and 10Bk include charging means 2Y, 2M, 2C, and 2Bk that rotate around the photosensitive drums 1Y, 1M, 1C, and 1Bk, and image exposure means 3Y, 3M, and 3C. 3Bk, rotating developing means 4Y, 4M, 4C, 4Bk, primary transfer means 5Y, 5M, 5C, 5Bk, and cleaning means 6Y, 6M, 6C for cleaning the photosensitive drums 1Y, 1M, 1C, 1Bk, It is composed of 6Bk.
- the image forming units 10Y, 10M, 10C, and 10Bk have the same configuration except that the colors of toner images formed on the photoreceptors 1Y, 1M, 1C, and 1Bk are different, and the image forming unit 10Y is taken as an example in detail. explain.
- the image forming unit 10Y has a charging unit 2Y (hereinafter simply referred to as a charging unit 2Y or a charger 2Y), an exposure unit 3Y, a developing unit 4Y, and a cleaning unit 6Y (around a photosensitive drum 1Y as an image forming body).
- a charging unit 2Y or a charger 2Y the cleaning unit 6Y or the cleaning blade 6Y
- the cleaning unit 6Y or the cleaning blade 6Y is simply disposed, and a yellow (Y) toner image is formed on the photosensitive drum 1Y.
- the photosensitive drum 1Y, the charging unit 2Y, the developing unit 4Y, and the cleaning unit 5Y are provided so as to be integrated.
- the charging means 2Y is a means for applying a uniform potential to the photosensitive drum 1Y.
- a corona discharge type charger 2Y is used for the photosensitive drum 1Y.
- the image exposure means 3Y performs exposure based on the image signal (yellow) on the photosensitive drum 1Y given a uniform potential by the charger 2Y, and forms an electrostatic latent image corresponding to the yellow image.
- the exposure means 3Y includes an LED in which light emitting elements are arranged in an array in the axial direction of the photosensitive drum 1Y and an imaging element (trade name; Selfoc lens), or A laser optical system or the like is used.
- the image forming apparatus may be configured such that the above-described photosensitive member and components such as a developing device and a cleaning device are integrally formed as a process cartridge (image forming unit), and the image forming unit is configured to be detachable from the apparatus main body. Good. Further, at least one of a charger, an image exposure device, a developing device, a transfer or separation device, and a cleaning device is integrally supported together with a photosensitive member to form a process cartridge (image forming unit), which is detachable from the apparatus main body. A single image forming unit may be detachable using guide means such as a rail of the apparatus main body.
- the endless belt-shaped intermediate transfer body unit 7 has an endless belt-shaped intermediate transfer body 70 as a second image carrier having a semiconductive endless belt shape that is wound around a plurality of rollers and is rotatably supported.
- Each color image formed by the image forming units 10Y, 10M, 10C, and 10Bk is transferred onto a rotating endless belt-shaped intermediate transfer body 70 by primary transfer rollers 5Y, 5M, 5C, and 5Bk as primary transfer means.
- the images are sequentially transferred to form a synthesized color image.
- a transfer material P as a transfer material (a support for carrying a fixed final image: for example, plain paper, a transparent sheet, etc.) housed in the paper feed cassette 20 is fed by a paper feed means 21 and a plurality of intermediates.
- the secondary transfer roller 5b As the secondary transfer means, and is secondarily transferred onto the transfer material P, and the color images are collectively transferred.
- the transfer material P onto which the color image has been transferred is fixed by the fixing means 50, is sandwiched between the discharge rollers 25, and is placed on the discharge tray 26 outside the apparatus.
- a toner image transfer support formed on a photosensitive member such as an intermediate transfer member or a transfer material is collectively referred to as a transfer medium.
- the endless belt-shaped intermediate transfer body 70 obtained by transferring the color image onto the transfer material P by the secondary transfer roller 5b as the secondary transfer unit and then separating the curvature of the transfer material P has the residual toner removed by the cleaning unit 6b.
- the primary transfer roller 5Bk is always in contact with the photoreceptor 1Bk.
- the other primary transfer rollers 5Y, 5M, and 5C abut against the corresponding photoreceptors 1Y, 1M, and 1C, respectively, only during color image formation.
- the secondary transfer roller 5b contacts the endless belt-shaped intermediate transfer member 70 only when the transfer material P passes through the secondary transfer roller 5b.
- the casing 8 can be pulled out from the apparatus main body via the support rails 82L and 82R.
- the housing 8 includes image forming units 10Y, 10M, 10C, and 10Bk and an endless belt-shaped intermediate transfer body unit 7.
- the image forming units 10Y, 10M, 10C, and 10Bk are arranged in tandem in the vertical direction.
- An endless belt-shaped intermediate transfer body unit 7 is disposed on the left side of the photoreceptors 1Y, 1M, 1C, and 1Bk in the drawing.
- the endless belt-shaped intermediate transfer body unit 7 includes an endless belt-shaped intermediate transfer body 70 that can be rotated by winding rollers 71, 72, 73, 74, primary transfer rollers 5Y, 5M, 5C, 5Bk, and cleaning means 6b. Consists of.
- FIG. 3 shows a color image forming apparatus capable of using the electrophotographic photosensitive member according to the present invention (at least a charging unit, an exposing unit, a plurality of developing units, a transferring unit, a cleaning unit and an intermediate unit around the photosensitive unit).
- 2 is a cross-sectional view of a configuration of a copying machine or a laser beam printer having a transfer body.
- the belt-shaped intermediate transfer body 70 uses an elastic body having a medium resistance.
- 1 is a rotating drum type photoreceptor that is repeatedly used as an image forming member, and is driven to rotate in a counterclockwise direction indicated by an arrow at a predetermined peripheral speed.
- the photoreceptor 1 is uniformly charged to a predetermined polarity and potential by a charging means (charging process) 2, and then time-series electric digital of image information by an image exposure means (image exposure process) 3 (not shown).
- An electrostatic latent image corresponding to the yellow (Y) color component image (color information) of the target color image is formed by receiving image exposure by scanning exposure light or the like by a laser beam modulated in accordance with the pixel signal.
- the electrostatic latent image is developed with yellow toner which is the first color by yellow (Y) developing means: developing step (yellow color developing device) 4Y.
- developing step yellow color developing device
- the second to fourth developing means magenta developer, cyan developer, black developer
- 4M, 4C, and 4Bk are not activated and do not act on the photoreceptor 1.
- the yellow toner image of the first color is not affected by the second to fourth developing devices.
- the intermediate transfer member 70 is stretched by rollers 79a, 79b, 79c, 79d, and 79e, and is driven to rotate in the clockwise direction at the same peripheral speed as the photosensitive member 1.
- the first color yellow toner image formed and supported on the photosensitive member 1 is applied to the intermediate transfer member 70 from the primary transfer roller 5a in the process of passing through the nip portion between the photosensitive member 1 and the intermediate transfer member 70.
- the intermediate transfer (primary transfer) is sequentially performed on the outer peripheral surface of the intermediate transfer body 70 by the electric field formed by the primary transfer bias.
- the surface of the photoreceptor 1 after the transfer of the first color yellow toner image corresponding to the intermediate transfer body 70 is cleaned by the cleaning device 6a.
- the second color magenta toner image, the third color cyan toner image, and the fourth color black (black) toner image are sequentially superimposed and transferred onto the intermediate transfer body 70 to correspond to the target color image.
- a superimposed color toner image is formed.
- the secondary transfer roller 5b is supported in parallel with the secondary transfer counter roller 79b so as to be separated from the lower surface portion of the intermediate transfer body 70.
- the primary transfer bias for sequentially superimposing and transferring the first to fourth color toner images from the photosensitive member 1 to the intermediate transfer member 70 has a polarity opposite to that of the toner and is applied from a bias power source.
- the applied voltage is, for example, in the range of +100 V to +2 kV.
- the secondary transfer roller 5b and the intermediate transfer member cleaning means 6b can be separated from the intermediate transfer member 70. is there.
- the secondary transfer roller 5b When the superimposed color toner image transferred onto the belt-shaped intermediate transfer member 70 is transferred to the transfer material P, which is the second image carrier, the secondary transfer roller 5b is brought into contact with the belt of the intermediate transfer member 70. At the same time, the transfer material P is fed from the pair of paper registration rollers 23 through the transfer sheet guide to the belt of the intermediate transfer body 70 to the contact nip with the secondary transfer roller 5b at a predetermined timing.
- a secondary transfer bias is applied to the secondary transfer roller 5b from a bias power source. By this secondary transfer bias, the superimposed color toner image is transferred (secondary transfer) from the intermediate transfer body 70 to the transfer material P as the second image carrier.
- the transfer material P that has received the transfer of the toner image is conveyed to the fixing means 50 and heated and fixed.
- the image forming apparatus is generally applicable to electrophotographic apparatuses such as copying machines, laser printers, LED printers, and liquid crystal shutter printers, and further displays, recordings, light printing, plate making, facsimiles, etc. applying electrophotographic technology. It can be applied to a wide range of devices.
- the toner that can be used in the present invention may be a pulverized toner or a polymerized toner.
- a polymerized toner that can be prepared by a polymerization method is preferable from the viewpoint of obtaining a stable particle size distribution.
- Polymerized toner means a toner that is formed by the production of a resin for a toner binder and the polymerization of the raw material monomer of the binder resin, and if necessary, the subsequent chemical treatment. More specifically, it means a toner formed through a polymerization reaction such as suspension polymerization or emulsion polymerization, and if necessary, a step of fusing particles between them.
- the volume average particle diameter of the toner is preferably 2 to 9 ⁇ m, more preferably 3 to 7 ⁇ m.
- Dv50 50% volume particle diameter
- the volume average particle diameter of the toner is preferably 2 to 9 ⁇ m, more preferably 3 to 7 ⁇ m.
- the toner that can be used in the present invention can be used as a one-component developer or a two-component developer.
- a non-magnetic one-component developer or a magnetic one-component developer containing about 0.1 to 0.5 ⁇ m of magnetic particles in the toner may be used. be able to.
- the magnetic particles of the carrier known materials such as metals such as iron, ferrite and magnetite, alloys of these metals with metals such as aluminum and lead can be used, and ferrite particles are particularly preferable.
- the volume average particle size of the magnetic particles is preferably 15 to 100 ⁇ m, more preferably 25 to 80 ⁇ m.
- the volume average particle diameter of the carrier can be typically measured by a laser diffraction particle size distribution measuring apparatus “HELOS” (manufactured by SYMPATEC) equipped with a wet disperser.
- HELOS laser diffraction particle size distribution measuring apparatus
- the carrier is preferably a carrier in which magnetic particles are coated with a resin, or a so-called resin-dispersed carrier in which magnetic particles are dispersed in a resin.
- the coating resin is not particularly limited, and examples thereof include olefin resins, styrene resins, styrene-acrylic resins, silicone resins, ester resins, and fluorine-containing polymer resins.
- the resin for constituting the resin-dispersed carrier is not particularly limited, and known resins can be used. Specific examples include styrene-acrylic resins, polyester resins, fluorine resins, and phenol resins.
- an intermediate layer coating solution was applied by a dip coating method to form an intermediate layer 1 having a dry film thickness of 5.0 ⁇ m.
- the intermediate layer coating solution was obtained by diluting an intermediate layer dispersion having the following composition with isopropyl alcohol twice, and allowing to stand overnight, followed by filtration (filter: rigesh mesh filter manufactured by Nippon Pole Co., Ltd., nominal filtration accuracy: 5 ⁇ m, pressure: 50 kPa). Made.
- Binder resin (polyamide resin N-1 with the following structure) 1 part
- Anatase type titanium oxide A1 (primary particle size 30 nm; surface treatment with fluorinated ethyltrimethoxysilane) 3 parts Isopropyl alcohol 10 parts The above ingredients are mixed and dispersed using a sand mill disperser for 10 hours in a batch system. Thus, an intermediate layer dispersion was prepared.
- Hydroxygallium phthalocyanine pigment (CGM-1: Cu-K ⁇ characteristic X-ray diffraction spectrum with diffraction angles (2 ⁇ ⁇ 02) having peaks at 7.4 ° and 28.2 °) 20 parts Polyvinyl butyral resin (# 6000-C, manufactured by Denki Kagaku Kogyo Co., Ltd.) 10 parts t-butyl acetate 700 parts 4-methoxy-4-methyl-2-pentanone 300 parts (formation of charge transport layer) The following components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method to form a charge transport layer having a dry film thickness of 24 ⁇ m. “Photoreceptor 1” was produced by the above procedure.
- Charge transport material (4-methoxy-4 ′-(4-methyl- ⁇ -phenylstyryl) triphenylamine) 75 parts polycarbonate resin “Iupilon-Z300” (Mitsubishi Gas Chemical Co., Ltd.) 100 parts Antioxidant (Compound A below) 2 parts Tetrahydrofuran / toluene (volume ratio 7/3) 750 parts
- Evaluation was made by first producing 50,000 A4 size prints that output an image with a pixel rate of 7% under an environment of a temperature of 30 ° C. and a relative humidity of 80% RH, and performing a printing durability test, and then a temperature of 20 ° C. Then, an A4 size print having an image to be evaluated as follows under an environment with a relative humidity of 60% RH was prepared. Three types of prints for evaluation were prepared: black and white image prints (fogging and image defect evaluation), dot image reproducibility black and white image prints, and full-color halftone image prints including human face photographs.
- the dot image reproducibility evaluation print forms a line image (hereinafter referred to as a 1-dot line image) and a solid black image having a width of 1 dot on a white background of A4 size paper, and 2 dots in the solid black image.
- a white line image having a width of 2 (hereinafter referred to as a 2-dot line image) is formed.
- the evaluation is carried out as shown below by visual evaluation of the reproducibility of the 1-dot line image formed on the white ground, the solid black image density, and the visual evaluation of the reproducibility of the 2-dot line image formed on the solid black image. It is a thing.
- the solid black image density was evaluated using a reflection densitometer “RD-918 (manufactured by Macbeth Co.)”, and the relative density was evaluated with the reflection density of A4 size paper that was not printed as 0. The following ⁇ and ⁇ were accepted.
- ⁇ A continuous white dot line image is confirmed, and the solid black image density is 1.0 or more and less than 1.2 (no problem in practical use)
- X A cut white dot line image was confirmed, or a continuous white two dot line image was confirmed, but the solid black image density was less than 1.0 (practically problematic).
- the color image evaluation was performed using a full-color halftone image print including the above-mentioned human face photograph.
- the full-color half-tone image print including a human face photo is obtained by outputting a full-color human face photo image and yellow, magenta, cyan, and black half-tone images on A4 size paper.
- evaluation was performed by visual observation to evaluate the occurrence of image defects called unevenness and spots on full-color human face photographic images and the occurrence of interference fringes and streaky irregularities on halftone images.
- the coated surface of the photoreceptor and the tape are observed, the number of grids peeled off at the interface between the photosensitive layer and the intermediate layer is determined, and the ratio of the peeled area is calculated.
- the adhesion test by the cross-cut tape method is carried out by forming 100 cross-cuts with tape on each of the above photoreceptors and conducting a cross-cut test according to the method described in JIS. Counted and evaluated.
- Evaluation criteria A The number of remaining grids is 80% or more (good) ⁇ : The number of remaining grids is 50% or more and less than 80% (no problem in practical use) ⁇ : Number of remaining grids less than 50% (unsuitable)
- A1 represents anatase-type titanium oxide
- A2 and A3 represent rutile-type titanium oxide
- Z represents zinc oxide, as shown in the particle type column in the middle layer section of Table 1.
- the “photoreceptors 1 to 4, 6” having a structure in which the skewness (Rsk) of the cross-sectional curve of the conductive support is within the range defined by the present invention and the metal phthalocyanine pigment is contained in the charge generation layer.
- “ ⁇ 8” good results were obtained for each evaluation item.
- 10Y, 10M, 10C, 10Bk Image forming unit 1 (1Y, 1M, 1C, 1Bk)
- Photoconductor (conductive support) 2 (2Y, 2M, 2C, 2Bk)
- Charging means 3 (3Y, 3M, 3C, 3Bk)
- Exposure means 4 (4Y, 4M, 4C, 4Bk)
- Developing means M In the width direction of the photosensitive layer side surface of the conductive support Centers P, Q Edges R, U in the width direction of the photosensitive layer side surface of the conductive support.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
- Discharging, Photosensitive Material Shape In Electrophotography (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
Abstract
Description
前記導電性支持体の断面曲線のスキューネス(Rsk)が-8<Rsk<0の範囲にあり、
前記電荷発生層が金属フタロシアニン顔料を含有することを特徴とする電子写真感光体。
1~10のいずれか1項に記載の電子写真感光体上に帯電電位を付与する帯電工程と、
帯電電位が付与された前記電子写真感光体上に350nm以上500nm以下の波長光で露光して静電潜像を形成する露光工程と、
前記電子写真感光体上にトナーを供給して前記静電潜像をトナー像に顕像化する現像工程と、
前記電子写真感光体上に形成された前記トナー像を転写媒体に転写する工程を有することを特徴とする画像形成方法。
1~10のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体に帯電電位を付与する帯電手段と、
帯電電位が付与された前記電子写真感光体上に350nm以上500nm以下の波長光で露光する露光手段を有することを特徴とする画像形成装置。
測定機:表面粗さ計(東京精密社製 Surfcom 1400D)
測定長さL:8.0mm
カットオフ波長λc:0.08mm
触針先端形状:先端角度60°円錐
触針先端半径:0.5μm
測定速度:0.3mm/sec
測定倍率:100000倍
測定位置:上、中、下の3カ所、(導電性支持体の感光層側表面の幅方向における中心と、該中心と端部との中点の合計3カ所)
上記3カ所の平均値を本発明におけるスキューネス(Rsk)の値とする。なお、導電性支持体の測定位置を図7に示す。図7の導電性支持体1において、Mが導電性支持体1の感光層側表面の幅方向における中心を表し、PとQが導電性支持体1の感光層側表面における端部を表す。そして、Rは中心Pと端部Pの中点であり、Uは中心Pと端部Qの中点を表す。したがって、図7に示す導電性支持体1のスキューネス(Rsk)の測定位置は、中心Mと中心と端部との中点R、Uの3点である。
本発明に係る感光体に使用される導電性支持体は、前述した特性を有するものである。
上記表面粗さRzは、JISB0601-1982に記載の(十点平均粗さ)を意味する。すなわち、基準長さの標準値の距離間で上位から5つの山頂の平均高さと、下位から5つの谷底の平均低さとの差である。
測定機:表面粗さ計(東京精密社製 Surfcom 1400D)
測定長さL:基準長さの標準値
触針先端形状:先端角度60°円錐
触針先端半径:0.5μm
測定速度:0.3mm/sec
測定倍率:100000倍
測定位置:上、中、下の3カ所、(導電性支持体の感光層側表面の幅方向における中心と、該中心と端部の中点の3カ所)
上記3カ所のRzの平均値を、Rzの値とする。
次に、本発明に係る感光体を構成する中間層について説明する。
次に、本発明に係る感光体を構成する感光層(電荷発生層と電荷輸送層)について説明する。本発明に係る感光体を構成する感光層は、電荷発生層(CGLともいう)と電荷輸送層(CTLともいう)に分離させた構成のものである。この様に、感光層を電荷発生層(CGL)と電荷輸送層(CTL)からなる機能を分離した構成のものとすることにより、繰り返し使用に伴う残留電位増加を小さく制御することができる。また、その他の電子写真特性を目的に合わせて制御することも電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造のものに比べて行い易い。
電荷発生層は、電荷発生物質(CGM)を含有するもので、電荷発生物質の他にバインダ樹脂や必要に応じて公知の添加剤を含有することも可能である。
(1)測定試料の作製
無反射カバーガラスに、乾燥後の膜厚が10μm以上となるように感光層形成用塗布液を塗布し、乾燥する。
(2)測定装置および測定条件
X線回折スペクトルを測定する測定装置としては、人工多層膜ミラーにて単色平行化したCuKα線を線源とする薄膜試料測定用のX線回折装置を用いる。たとえば、「リガクRINT2000(リガク(株))」等が挙げられる。X線回折スペクトルの測定条件は、以下のとおりである。すなわち、
X線出力電圧:50kV
X線出力電流:250mA
固定入射角(θ):1.0°
走査範囲(2θ):3~40°
スキャンステップ幅:0.05°
入射ソーラースリット:5.0°
入射スリット:0.1mm
受光ソーラースリット0.1°
上記測定条件に設定してX線回折スペクトル測定を行うことが可能である。
電荷輸送層は、電荷輸送物質(CTM)を含有するもので、電荷輸送物質の他にバインダ樹脂や必要に応じて酸化防止剤等の公知の添加剤を含有することが可能である。
本発明に係る電子写真感光体は、上述した様に、導電性支持体上に、少なくとも、中間層、電荷発生層及び電荷輸送層を有するものであるが、必要により表面層(保護層)を有するものであってもよい。
(1)波長が350nm以上500nm以下のいわゆる短波長光と呼ばれる露光光を用いて電子写真感光体上に静電潜像を形成する静電潜像形成工程
(2)電子写真感光体上に形成された静電潜像をトナーを含有してなる現像剤を用いて現像してトナー画像を形成する現像工程
(3)電子写真感光体上に形成されたトナー画像を用紙等の転写体上に転写する転写工程
(4)転写体上に転写されたトナー画像を定着する定着工程。
本発明で使用可能なトナーは、粉砕トナーでも重合トナーでもよいが、前述した様に、安定した粒度分布を得られる観点から、重合法で作製できる重合トナーが好ましい。
本発明に使用可能なトナーは、一成分現像剤として、また、二成分現像剤として使用することが可能である。
以下に示す手順により、「感光体1~10及び41」を作製し、作製した感光体について後述する評価を行った。
(支持体1の作製)
円筒状アルミニウム支持体表面を以下の手順で切削加工処理した。先ず、凹凸パターン加工形状の形成が可能な市販の多結晶ダイヤモンド焼結平バイトを用い、該バイトの切り込み量を0.035mm、送りピッチを0.2mm/rev及び回転数を6000rpmに調整して粗加工を施した。続いて、単結晶ダイヤモンドを用いた市販のダイヤモンド平バイトを用いて仕上げ加工を施した。なお、ダイヤモンド平バイトによる仕上げ加工時の取り付け角度、押し込み深さ及び回転数は前述の条件で行った。
上記「支持体1」上に、中間層塗布液を浸漬塗布法で塗布し、乾燥膜厚5.0μmの中間層1を形成した。なお、中間層塗布液は下記組成の中間層分散液をイソプロピルアルコールで2倍に希釈し、一夜静置後に濾過(フィルタ;日本ポール社製リジメッシュフィルタ公称濾過精度:5μm、圧力;50kPa)して作製した。
バインダ樹脂(下記構造のポリアミド樹脂N-1) 1部
イソプロピルアルコール 10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散処理を行って、中間層分散液を作製した。
下記成分を混合し、サンドミル分散機を用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記「中間層1」の上に乾燥膜厚0.8μmの電荷発生層を形成した。
ポリビニルブチラール樹脂(#6000-C、電気化学工業社製)
10部
酢酸t-ブチル 700部
4-メトキシ-4-メチル-2-ペンタノン 300部
(電荷輸送層の形成)
下記成分を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、乾燥膜厚24μmの電荷輸送層を形成した。以上の手順により「感光体1」を作製した。
ポリカーボネート樹脂「ユーピロン-Z300」(三菱ガス化学社製)
100部
酸化防止剤(下記化合物A) 2部
テトラヒドロフラン/トルエン(体積比7/3) 750部
「感光体1」の作製で行った支持体の作製条件、中間層形成用塗布液条件、中間層膜厚等を下記各項に示す様にそれぞれ変更して感光体作製を行うことにより「感光体2~10、41」を作製した。
前記「感光体1」の「支持体1」を作製する際に行った洗浄水の噴射処理に代えて「スーパーブラスト DSC-1(不二製作所)」にて0.3mmのドライアイス粒子を用い、噴射圧力0.4MPaのドライアイスブラストによる処理を行って「支持体2」を作製し、中間層の膜厚を6μmに変更した。それ以外は「感光体1」の作製と同様にして「感光体2」を作製した。
前記「感光体2」の作製で行ったドライアイスブラストによる処理で用いるドライアイス粒子を1mmのものに、また、噴射圧力を0.6MPaに変更して「支持体3」を作製した。その他は同様の手順で「感光体3」を作製した。
前記「感光体1」の「支持体1」を作製する際に行った洗浄水の噴射処理に代えて以下に示すサンドブラスト処理を行って「支持体4」を作製した。サンドブラスト処理は、「MICROBLASTER MB1(新東ブレーター社製)」にて、アルミナ(Al2O3)砥粒 #5000(平均粒径2μm)を用い、吹付圧力0.294MPaで行った。また、中間層の膜厚を5μmに変更した。その他は「感光体1」の作製と同様の手順で「感光体4」を作製した。
前記「感光体4」の作製において、「支持体4」を作製する際の切削加工で単結晶ダイヤモンドを用いたダイヤモンド平バイトによる仕上げ加工を行わなかった。また、前述の「MICROBLASTER MB1(新東ブレーター社製)」によるサンドブラスト処理に用いた砥粒をアルミナ(Al2O3)砥粒 #3000(平均粒径5μm)に、吹付圧力を0.54MPaに変更して「支持体5」を作製した。また、中間層の膜厚を8μmに変更した。その他は「感光体4」の作製と同様の手順で「感光体5」を作製した。
前記「感光体1」の作製において、切削加工に用いたバイトを市販の多結晶ダイヤモンド焼結Rバイト(ノーズの半径20mm)を用いて粗加工を行った後、単結晶ダイヤモンドRバイト(ノーズの半径20mm)を用いて仕上げ加工を行った。さらに、「支持体1」を作製したときと同じ条件で洗浄水の噴射処理を施して「支持体6」を作製した。また、中間層を形成する際、塗布液に使用した酸化チタンA1を一次平均粒径25nmのルチル形酸化チタンA2(酸化チタンA1と同じ表面処理をしたもの)に変更し、膜厚を3μmに変更した。その他は「感光体1」の作製と同様の手順で「感光体6」を作製した。
前記「感光体4」の作製において、切削加工の粗加工に用いるバイトを市販の多結晶ダイヤモンド焼結Rバイト(ノーズの半径20mm)に変更し、仕上げ加工に用いるバイトを市販の単結晶ダイヤモンドRバイト(ノーズの半径20mm)に変更し、その他は同じ手順で「支持体7」を作製した。また、中間層を形成する際、塗布液に使用した酸化チタンA1を一次平均粒径35nmのルチル形酸化チタンA3(酸化チタンA1と同じ表面処理をしたもの)に変更し、膜厚を2μmに変更した。その他は同様の手順で「感光体7」を作製した。
前記「感光体4」の作製において、中間層を形成する際、塗布液に使用した酸化チタンA1を酸化亜鉛(一次粒径155nm、メチルハイドロジェンシロキサン表面処理)に変更した。その他は同様の手順で「感光体8」を作製した。
前記「感光体1」の作製において、「支持体1」を作製する際に行った洗浄水の噴射処理を行わずに「支持体9」を作製した。その他は同様の手順で「感光体9」を作製した。
前記「感光体4」の「支持体4」を作製する際の切削加工において、単結晶ダイヤモンドを用いたダイヤモンド平バイトによる仕上げ加工を行わなかった。また、前述の「MICROBLASTER MB1(新東ブレーター社製)」によるサンドブラスト処理のとき、アルミナ(Al2O3)砥粒 #5000(平均粒径2μm)による吹付圧力を0.098MPaで行って「支持体10」を作製した。その他は「感光体4」の作製と同様の手順で「感光体10」を作製した。
前記「感光体1」の作製において、電荷発生層を形成する際に用いたヒドロキシガリウムフタロシアニンを無金属フタロシアニン顔料に変更した。その他は「感光体1」の作製と同様の手順で「感光体41」を作製した。
(1)評価条件
上記手順で作製した感光体を図2の構成を有する市販のフルカラー複合機「bizhub PRO C6500(コニカミノルタビジネステクノロジーズ(株)製)」の書き込みドット径を可変にした改造機に搭載した。像露光光源に波長405nmのレーザ光源を用い、書き込み光源の主査方向の露光径を30μm(800dpi)とし、該露光径のスポット露光が感光体面上で0.5mWになる様に設定した。なお、上記フルカラー複合機は画像形成ユニットを4組有しているので、それぞれの画像形成ユニットに同一種類の感光体(たとえば、「感光体1」を評価する場合は4本の「感光体1」)を装填して評価を行った。
〈カブリ〉
カブリは、白黒画像プリントのベタ白画像部の反射濃度を反射濃度計「RD-918(マクベス社製)」を使用して測定した。該反射濃度は、プリント作成していないA4サイズの用紙の反射濃度を0.000として相対濃度で評価した。下記の◎と○を合格とした。
◎:濃度が0.010未満(良好)
○:濃度が0.010以上、0.020以下(実用上問題ないレベル)
×:濃度が0.020より高い(実用上問題となるレベル)
〈ドット画像の再現性〉
ドット画像再現性評価用プリントは、A4サイズ用紙の白地上に1ドット分の幅を有するライン画像(以下、1ドットライン画像という)とベタ黒画像を形成し、ベタ黒画像中に2ドット分の幅を有する白のライン画像(以下、2ドットライン画像という)を入れる様に形成したものである。評価は、白地上に形成された1ドットライン画像の再現性の目視評価、ベタ黒画像濃度、ベタ黒画像上に形成された2ドットライン画像の再現性の目視評価を以下に示す様に行ったものである。なお、ベタ黒画像濃度は反射濃度計「RD-918(マクベス社製)」を使用し、プリント作成していないA4サイズの用紙の反射濃度を0として相対濃度で評価した。下記の◎と○を合格とした。
(1)1ドットライン画像とベタ黒画像濃度評価
◎:連続した黒のドットライン画像が確認され、ベタ黒画像濃度が1.2以上(良好)
○:連続した黒のドットライン画像が確認され、ベタ黒画像濃度が1.0以上1.2未満(実用上問題なし)
×:切断された黒のドットライン画像が確認された、または、連続した黒のドットライン画像は確認されたが、ベタ黒画像濃度が1.0未満(実用上問題あり)
(2)2ドットライン画像とベタ黒画像濃度評価
◎:連続した白のドットライン画像が確認され、ベタ黒画像濃度が1.2以上(良好)
○:連続した白のドットライン画像が確認され、ベタ黒画像濃度が1.0以上1.2未満(実用上問題なし)
×:切断された白のドットライン画像が確認された、または、連続した白の2ドットライン画像は確認されたが、ベタ黒画像濃度が1.0未満(実用上問題あり)。
前述した白黒画像プリントのベタ白画像部において、感光体の周期と一致する目視可能な黒ポチと長さ0.4mm以上の黒スジ状の画像欠陥の発生個数を算出して評価した。
◎:5個以下(良好)
○:6個以上10個以下(実用上問題なし)
×:11個以上(実用上問題あり)
〈カラー画像評価〉
カラー画像評価は、前述の人物顔写真を含むフルカラーハーフトーン画像プリントを用いて行った。人物顔写真を含むフルカラーハーフトーン画像プリントは、A4サイズ用紙上にフルカラー人物顔写真画像とイエロー、マゼンタ、シアン、黒の各色ハーフトーン画像を出力したものである。評価は以下に記載の様に、目視観察によりフルカラー人物顔写真画像上でのムラやポチと呼ばれる画像欠陥の発生状況とハーフトーン画像上での干渉縞やスジ状ムラの発生状況を評価した。
◎:全てのハーフトーン画像で干渉縞やスジ状ムラの発生は認められずなめらかな仕上がりが再現され、人物顔写真画像上に画像欠陥は見られなかった(良好)
○:ハーフトーン画像上に若干の干渉縞やスジ状ムラを有するものがあるがなめらかな仕上がりは再現されていると判定され、人物顔写真画像上に画像欠陥は見られなかった(実用上問題なし)
×:干渉縞やスジ状ムラが顕著に見られなめらかなしあがりが再現されていると判定できないハーフトーン画像がある、また、人物顔写真画像上に画像欠陥が発生している(実用上問題あり)
〈接着性〉
前記「感光体1~10、41」の感光層と中間層の界面における接着性評価を、JIS K 5400に基づき、碁盤目テープ法により行った。感光体の塗布面とテープを観察し、感光層と中間層の界面で剥離した碁盤目数を求め、剥がれ面積の割合を算出する。碁盤目テープ法による接着性試験は、上記各感光体にテープで100個の碁盤目を形成して前記JISに記載の方法で碁盤目試験を行い、100個のうち残留した碁盤目の数をカウントして評価した。
◎:残留した碁盤目の数が80%以上(良好)
○:残留した碁盤目の数が50%以上80%未満(実用上問題なし)
×:残留した碁盤目の数が50%未満(不適)
以上の結果を表1に示す。なお、表1の中間層の項の粒子種の欄に示す、A1はアナターゼ形酸化チタン、A2とA3はルチル形酸化チタン、Zは酸化亜鉛を表す。
前記「実験その1」で作製した「感光体1~10」の電荷発生層を形成するときに使用した電荷発生物質と電荷輸送層を形成するときに使用した電荷輸送物質を以下の様に変更して「感光体11~40」を作製した。
前記「感光体1~10」の作製において、電荷発生層を形成するときに使用した「ヒドロキシガリウムフタロシアニン顔料」を「クロロガリウムフタロシアニン顔料」に変更した。なお、後述する表2では「クロロガリウムフタロシアニン顔料」のことを「GCM-2」と表している。「クロロガリウムフタロシアニン顔料」は、Cu-Kα特性X線によるX線回折スペクトルを測定したところ、回折角(2θ±02)7.4°、16.6°、25.5°及び28.3°にピークを有することが確認された。また、電荷輸送層を形成するときに使用した「4-メトキシ-4′-(4-メチル-β-フェニルスチリル)トリフェニルアミン」を「N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-[1,1′]ビフェニル-4,4′-ジアミン」に変更した。その他は「感光体1~10」の作製と同様の手順を経て「感光体11~20」を作製した。
前記「感光体1~10」の作製において、電荷発生層を形成するときに使用した「ヒドロキシガリウムフタロシアニン顔料」を「Y-型オキシチタニルフタロシアニン顔料」に変更した。なお、後述する表3では「Y-型オキシチタニルフタロシアニン顔料」のことを「GCM-3」と表している。「Y-型オキシチタニルフタロシアニン顔料」は、Cu-Kα特性X線によるX線回折スペクトルを測定したところ、回折角(2θ±0.2)27.3°にピークを有することが確認された。その他は「感光体1~10」の作製と同様の手順を経て「感光体21~30」を作製した。
前記「感光体1~10」の作製において、電荷発生層を形成するときに使用した「ヒドロキシガリウムフタロシアニン顔料」を前述した「アゾCGM-1顔料」または「アゾCGM-2顔料」に変更した。また、電荷輸送層を形成するときに使用した「4-メトキシ-4′-(4-メチル-β-フェニルスチリル)トリフェニルアミン」を下記構造の「CTM-3」に変更した。その他は「感光体1~10」の作製と同様の手順を経て「感光体31~40」を作製した。
上記「感光体11~20」、「感光体21~30」、「感光体31~40」について、前述の「感光体1~10、41」と同様に前述の画像形成装置に搭載して前述の評価を行った。「感光体11~20」の結果を表2、「感光体21~30」の結果を表3、「感光体31~40」の結果を表4に示す。
前記「実験その1」の評価実験において、書き込み光源の主査方向の露光径を10μm(2400dpi)、該露光径のスポット露光が感光体面上で0.5mWになる様に設定を変更した。その他は同様にして「感光体1~10、41」の評価を行った。その結果、1ドットライン画像とベタ黒画像濃度が前記「実験その1」のときに比べて全体に低下する傾向になったが、本発明の構成を有するものはいずれも実用上問題のないものであった。また、他の評価については、前記「実験その1」のときに得られた結果とほぼ同等の結果が得られた。
前記「実験その1」の評価実験において、書き込み光源の主査方向の露光径を50μm(480dpi)、感光体のスポット露光が感光体面上で0.5mWになる様に設定を変更した。その他は同様にして「感光体1~10、41」を評価した。その結果、本発明の構成を有するものはいずれも前記「実験その1」のときに得られた結果とほぼ同等の結果が得られた。また、「感光体11~20」、「感光体21~30」についても上記露光条件で評価を行ったところ、本発明の構成を有するものはいずれも前記「実験その2」で得られた結果とほぼ同等の結果が得られた。
前記「実験その1」の評価実験において、像露光光源を405nmの短波長レーザ光源から405nmの発光ダイオードに変更した。その他は同様にして「感光体1~10、41」を評価した。その結果、前記表1に示す結果とほぼ同等の結果が得られた。また、「感光体11~20」、「感光体21~30」についても上記405nmの発光ダイオードを用いて評価を行ったところ、前記「実験その2」で得られた表2と表3に示す結果とほぼ同等の結果が得られた。
前記「実験その3」の評価実験において、像露光光源を405nmの短波長レーザ光源から405nmの発光ダイオードに変更した。その他は同様にして「感光体1~10、41」を評価した。その結果、前記「実験その3」のときと同様、1ドットライン画像とベタ黒画像濃度が全体に低下する傾向になったが、本発明の構成を有するものはいずれも実用上問題のないものであった。また、他の評価についても、前記「実験その3」のときに得られた結果とほぼ同等の結果が得られた。
前記「実験その4」の評価実験において、像露光光源を405nmの短波長レーザ光源から405nmの発光ダイオードに変更した。その他は同様にして「感光体1~10、41」を評価した。その結果、いずれの感光体も前記「実験その4」のときに得られた結果とほぼ同等の結果が得られた。また、「感光体11~20」、「感光体21~30」についても上記露光条件で評価を行ったところ、いずれも前記「実験その4」で得られた結果とほぼ同等の結果が得られた。
前記「実験その1」の評価実験において、像露光光源を405nmの短波長レーザ光源から350nmの短波長レーザ光源に変更し、書き込み光源の主査方向の露光径を10μm(2400dpi)、該露光径のスポット露光が感光体面上で0.5mWになる様に設定を変更した。その他は同様にして「感光体1~10、41」の評価を行った。その結果、露光径が10μmであっても、本発明の構成を有するものはいずれも1ドットライン画像とベタ黒画像濃度が前記「実験その1」と同じレベルのものになった。また、他の評価についても、前記「実験その1」のときに得られた結果と同等の結果が得られた。
前記「実験その1」の評価実験において、像露光光源を405nmの短波長レーザ光源から500nmのレーザ光源に変更し、その他は同様にして「感光体1~10、41」の評価を行った。その結果、本発明の構成を有するものはいずれも前記「実験その1」と同じレベルのものになった。また、「感光体11~20」、「感光体21~30」についても上記露光条件で評価したところ、本発明の構成を有するものはいずれも「実験その2」のときに得られた結果と同等の結果が得られた。
1(1Y、1M、1C、1Bk) 感光体(導電性支持体)
2(2Y、2M、2C、2Bk) 帯電手段
3(3Y、3M、3C、3Bk) 露光手段
4(4Y、4M、4C、4Bk) 現像手段
M 導電性支持体の感光層側表面の幅方向における中心
P、Q 導電性支持体の感光層側表面の幅方向における端部
R、U 中心と端部の中点
Claims (13)
- 導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、
前記導電性支持体の断面曲線のスキューネス(Rsk)が、-8<Rsk<0の範囲にあり、
前記電荷発生層が金属フタロシアニン顔料を含有することを特徴とする電子写真感光体。 - 前記導電性支持体の断面曲線のスキューネス(Rsk)が、-4<Rsk<-1の範囲にあることを特徴とする請求項1に記載の電子写真感光体。
- 前記金属フタロシアニン顔料が、ガリウムフタロシアニン顔料またはチタニルフタロシアニン顔料であることを特徴とする請求項1または2に記載の電子写真感光体。
- 前記ガリウムフタロシアニン顔料が、Cu-Kα特性X線回折における回折角(2θ±0.2)で、少なくとも7.4°及び28.2°にピークを有するヒドロキシガリウムフタロシアニン顔料であることを特徴とする請求項1~3のいずれか1項に記載の電子写真感光体。
- 前記ガリウムフタロシアニン顔料が、Cu-Kα特性X線回折における回折角(2θ±0.2)で、少なくとも7.4°、16.6°、25.5°、28.3°にピークを有するクロロガリウムフタロシアニン顔料であることを特徴とする請求項1~3のいずれか1項に記載の電子写真感光体。
- 前記ガリウムフタロシアニン顔料が、Cu-Kα特性X線回折における回折角(2θ±0.2)で、少なくとも6.8°、12.8°、15.8°、26.6°にピークを有するガリウムフタロシアニン顔料であることを特徴とする請求項1~3のいずれか1項に記載の電子写真感光体。
- 前記チタニルフタロシアニン顔料が、Cu-Kα特性X線回折における回折角(2θ±0.2)で、少なくとも27.3°にピークを有するY-型オキシチタニルフタロシアニン顔料であることを特徴とする請求項1~3のいずれか1項に記載の電子写真感光体。
- 前記中間層が、N型半導性粒子を含有することを特徴とする請求項1~7のいずれか1項に記載の電子写真感光体。
- 前記N型半導性粒子が、酸化チタンまたは酸化亜鉛であることを特徴とする請求項8に記載の電子写真感光体。
- 前記酸化チタンが、ルチル形酸化チタンまたはアナターゼ形酸化チタンであることを特徴とする請求項9に記載の電子写真感光体。
- 少なくとも、
請求項1~10のいずれか1項に記載の電子写真感光体上に帯電電位を付与する帯電工程と、
帯電電位が付与された前記電子写真感光体上に350nm以上500nm以下の波長光で露光して静電潜像を形成する露光工程と、
前記電子写真感光体上にトナーを供給して前記静電潜像をトナー像に顕像化する現像工程と、
前記電子写真感光体上に形成された前記トナー像を転写媒体に転写する工程を有することを特徴とする画像形成方法。 - 前記露光工程で使用される露光光源の主査方向の露光径が、10μm以上50μm以下であることを特徴とする請求項11に記載の画像形成方法。
- 少なくとも、
請求項1~10のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体に帯電電位を付与する帯電手段と、
帯電電位が付与された前記電子写真感光体上に350nm以上500nm以下の波長光で露光する露光手段を有することを特徴とする画像形成装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/989,403 US8551678B2 (en) | 2008-09-09 | 2009-09-02 | Electrophotographic photoreceptor, image forming method, image forming apparatus |
JP2010528708A JPWO2010029877A1 (ja) | 2008-09-09 | 2009-09-02 | 電子写真感光体、画像形成方法、画像形成装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008230576 | 2008-09-09 | ||
JP2008-230576 | 2008-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010029877A1 true WO2010029877A1 (ja) | 2010-03-18 |
Family
ID=42005134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/065310 WO2010029877A1 (ja) | 2008-09-09 | 2009-09-02 | 電子写真感光体、画像形成方法、画像形成装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8551678B2 (ja) |
JP (1) | JPWO2010029877A1 (ja) |
WO (1) | WO2010029877A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019211619A (ja) * | 2018-06-05 | 2019-12-12 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6478021B2 (ja) * | 2014-02-12 | 2019-03-06 | 株式会社リコー | 光導電体とそれを用いた画像形成方法および画像形成装置 |
CN105988337B (zh) * | 2015-03-18 | 2020-03-10 | 株式会社理光 | 显影辊,调色剂以及图像形成装置 |
JP6489432B2 (ja) * | 2015-03-18 | 2019-03-27 | 株式会社リコー | 感光体とそれを用いた画像形成方法および画像形成装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0777814A (ja) * | 1993-07-16 | 1995-03-20 | Konica Corp | 電子写真感光体基体の表面加工方法及びその装置 |
JPH07199504A (ja) * | 1993-12-28 | 1995-08-04 | Kobe Steel Ltd | 電子写真感光体ドラム基盤及びその製造方法 |
JPH08123058A (ja) * | 1994-10-20 | 1996-05-17 | Fuji Electric Co Ltd | 電子写真感光体 |
JPH08292592A (ja) * | 1995-04-24 | 1996-11-05 | Canon Inc | 電子写真感光体用基体およびその製造方法 |
JP2003057926A (ja) * | 2001-08-08 | 2003-02-28 | Ricoh Co Ltd | 画像形成装置、プロセスカートリッジおよび画像形成方法 |
JP2003107757A (ja) * | 2001-07-25 | 2003-04-09 | Mitsubishi Chemicals Corp | 電子写真感光体用支持体 |
JP2005292363A (ja) * | 2004-03-31 | 2005-10-20 | Canon Inc | 円筒状電子写真感光体用基体の製造方法及びそれに用いる切削加工装置 |
JP2005338446A (ja) * | 2004-05-27 | 2005-12-08 | Konica Minolta Business Technologies Inc | 有機感光体、プロセスカートリッジ及び画像形成装置 |
JP2007226146A (ja) * | 2006-02-27 | 2007-09-06 | Canon Inc | 円筒状電子写真感光体用支持体の切削方法 |
JP2007334342A (ja) * | 2006-05-18 | 2007-12-27 | Mitsubishi Chemicals Corp | 電子写真感光体及び導電性基体の製造方法、並びに、画像形成装置及び電子写真カートリッジ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4217353B2 (ja) | 1998-07-31 | 2009-01-28 | キヤノン株式会社 | 電子写真装置 |
JP4208324B2 (ja) | 1999-02-24 | 2009-01-14 | キヤノン株式会社 | 電子写真装置 |
CN100442146C (zh) * | 2003-03-04 | 2008-12-10 | 三菱化学株式会社 | 用于电子照相光感受器的基底、其生产方法及使用其的电子照相光感受器 |
JP4264370B2 (ja) * | 2003-03-04 | 2009-05-13 | 三菱化学株式会社 | 電子写真感光体用基体、該基体の製造方法および該基体を用いた電子写真感光体、並びに該電子写真感光体を用いた電子写真感光体カートリッジ及び画像形成装置 |
JP2006201686A (ja) * | 2005-01-24 | 2006-08-03 | Canon Inc | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
US7531282B2 (en) * | 2005-02-21 | 2009-05-12 | Konica Minolta Business Technologies, Inc. | Organic photoreceptor, image forming apparatus, image forming method and process cartridge |
JP4201007B2 (ja) * | 2005-02-21 | 2008-12-24 | コニカミノルタビジネステクノロジーズ株式会社 | 有機感光体、画像形成装置、画像形成方法及びプロセスカートリッジ |
JP4571561B2 (ja) * | 2005-09-08 | 2010-10-27 | トーカロ株式会社 | 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法 |
JP5239488B2 (ja) * | 2008-05-07 | 2013-07-17 | コニカミノルタビジネステクノロジーズ株式会社 | 有機感光体、画像形成方法、画像形成装置および画像形成ユニット |
JP5597967B2 (ja) * | 2008-10-24 | 2014-10-01 | コニカミノルタ株式会社 | 有機感光体、画像形成方法、画像形成装置 |
-
2009
- 2009-09-02 JP JP2010528708A patent/JPWO2010029877A1/ja active Pending
- 2009-09-02 US US12/989,403 patent/US8551678B2/en active Active
- 2009-09-02 WO PCT/JP2009/065310 patent/WO2010029877A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0777814A (ja) * | 1993-07-16 | 1995-03-20 | Konica Corp | 電子写真感光体基体の表面加工方法及びその装置 |
JPH07199504A (ja) * | 1993-12-28 | 1995-08-04 | Kobe Steel Ltd | 電子写真感光体ドラム基盤及びその製造方法 |
JPH08123058A (ja) * | 1994-10-20 | 1996-05-17 | Fuji Electric Co Ltd | 電子写真感光体 |
JPH08292592A (ja) * | 1995-04-24 | 1996-11-05 | Canon Inc | 電子写真感光体用基体およびその製造方法 |
JP2003107757A (ja) * | 2001-07-25 | 2003-04-09 | Mitsubishi Chemicals Corp | 電子写真感光体用支持体 |
JP2003057926A (ja) * | 2001-08-08 | 2003-02-28 | Ricoh Co Ltd | 画像形成装置、プロセスカートリッジおよび画像形成方法 |
JP2005292363A (ja) * | 2004-03-31 | 2005-10-20 | Canon Inc | 円筒状電子写真感光体用基体の製造方法及びそれに用いる切削加工装置 |
JP2005338446A (ja) * | 2004-05-27 | 2005-12-08 | Konica Minolta Business Technologies Inc | 有機感光体、プロセスカートリッジ及び画像形成装置 |
JP2007226146A (ja) * | 2006-02-27 | 2007-09-06 | Canon Inc | 円筒状電子写真感光体用支持体の切削方法 |
JP2007334342A (ja) * | 2006-05-18 | 2007-12-27 | Mitsubishi Chemicals Corp | 電子写真感光体及び導電性基体の製造方法、並びに、画像形成装置及び電子写真カートリッジ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019211619A (ja) * | 2018-06-05 | 2019-12-12 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
JP7075288B2 (ja) | 2018-06-05 | 2022-05-25 | キヤノン株式会社 | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
Also Published As
Publication number | Publication date |
---|---|
US8551678B2 (en) | 2013-10-08 |
JPWO2010029877A1 (ja) | 2012-02-02 |
US20110033791A1 (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5597967B2 (ja) | 有機感光体、画像形成方法、画像形成装置 | |
JP2010127963A (ja) | 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ | |
JP2010186123A (ja) | 有機感光体、画像形成方法及び画像形成装置 | |
WO2010029877A1 (ja) | 電子写真感光体、画像形成方法、画像形成装置 | |
US8518616B2 (en) | Electrophotographic photoreceptor and image forming method | |
JP2007108482A (ja) | 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ | |
JP2009015112A (ja) | 電子写真感光体とそれを用いた画像形成方法及び画像形成装置 | |
JP2003307861A (ja) | 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ | |
JP3988685B2 (ja) | 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法 | |
JP2008076809A (ja) | 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ | |
JP2002091043A (ja) | 電子写真感光体、それを有するプロセスカートリッジ及び電子写真装置 | |
JP5387298B2 (ja) | 有機感光体、画像形成装置及びプロセスカートリッジ | |
JP5821428B2 (ja) | 画像形成装置および画像形成方法 | |
JP2007003676A (ja) | 画像形成装置、画像形成方法、有機感光体及びプロセスカートリッジ | |
JP2010164952A (ja) | 電子写真感光体と画像形成装置 | |
JP4853272B2 (ja) | 有機感光体の表面保護層の分散液の製造方法、有機感光体、画像形成装置及び画像形成ユニット | |
US8669031B2 (en) | Electrophotographic photoreceptor and image forming method | |
JP2009086413A (ja) | 電子写真感光体、プロセスカートリッジ及び画像形成装置 | |
JP2009301016A (ja) | 有機感光体、画像形成装置、プロセスカートリッジ及びカラー画像形成装置 | |
JP2006337633A (ja) | 画像形成装置、画像形成方法及び該画像形成装置に用いられる有機感光体、プロセスカートリッジ | |
JP5266985B2 (ja) | 有機感光体、画像形成方法、画像形成装置 | |
JP5375304B2 (ja) | 画像形成方法及び画像形成装置 | |
JP4816361B2 (ja) | 画像形成方法及び画像形成装置 | |
JP5381068B2 (ja) | 有機感光体とそれを用いた画像形成方法及び画像形成装置とプロセスカートリッジ | |
JP5790338B2 (ja) | 電子写真感光体用円筒状基体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09813023 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010528708 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12989403 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09813023 Country of ref document: EP Kind code of ref document: A1 |