WO2010029770A1 - 構造体、アンテナ、通信装置、及び電子部品 - Google Patents
構造体、アンテナ、通信装置、及び電子部品 Download PDFInfo
- Publication number
- WO2010029770A1 WO2010029770A1 PCT/JP2009/004543 JP2009004543W WO2010029770A1 WO 2010029770 A1 WO2010029770 A1 WO 2010029770A1 JP 2009004543 W JP2009004543 W JP 2009004543W WO 2010029770 A1 WO2010029770 A1 WO 2010029770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor
- wiring
- electronic component
- opening
- antenna
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0031—Parallel-plate fed arrays; Lens-fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
Definitions
- the present invention relates to a structure having a characteristic as a metamaterial, an antenna, a communication device, and an electronic component.
- metamaterials have been proposed that artificially control the dispersion relation of electromagnetic waves propagating through a structure by periodically arranging conductor patterns and conductor structures. For example, if a metamaterial that is controlled so that the wavelength of electromagnetic waves is significantly shortened, the resonator antenna can be miniaturized.
- EBG electromagnetic band gap
- Patent Document 1 discloses a small antenna structure using a composite right-handed / left-handed (CRLH) line, which is a form of metamaterial.
- the decoding line in the antenna disclosed in Patent Document 1 periodically includes unit cells including a conductor plane, a conductor patch arranged in parallel with the conductor plane, and a conductor via connecting the conductor plane and the conductor patch. It is comprised by arranging.
- Patent Document 1 discloses that a conductor element is provided in a layer between a conductor plane and a conductor patch to increase the capacitance between adjacent conductor patches in order to operate as a left-handed medium on the lower frequency side. Yes.
- a slit is provided in the vicinity of the conductor via connection portion of the conductor plane to form a coplanar line to increase the inductance between the conductor plane and the conductor patch.
- Patent Document 2 discloses several EBG structures.
- FIG. 4 shows a cross-sectional structure of a resonant via type EBG structure and an equivalent circuit per unit cell thereof.
- FIG. 1 and FIG. 2 shows a top view of the inductive grid type EBG structure.
- 5 shows an equivalent circuit per unit cell of the inductive grid type EBG structure.
- Patent Document 3 discloses a Uniplanar Compact Photonic Bandgap structure (hereinafter referred to as a UC-PBG structure), which is one form of an inductive grid type EBG structure.
- the UC-PBG structure is composed of two conductor layers, and is composed of a first conductor plane having no opening and a conductor layer having a periodic structure of a conductor pattern.
- Patent Document 4 discloses an alternating-impedance-electromagnetic bandgap structure (hereinafter referred to as an AI-EBG structure), which is one form of an inductive grid type EBG structure.
- the UAI-EBG structure is also composed of two conductor layers like the UC-PBG structure, and is composed of a conductor pattern layer forming a periodic structure of conductor patterns and a conductor plane layer having no opening.
- the conductor pattern layer is shown in FIG. As shown in the layout shown in FIG. 1A, it is composed of an inductance element composed of a square large conductor patch having a periodic structure and a minute square conductor patch connecting between adjacent large conductor patches.
- the minute conductor patch functioning as an inductance element and each large conductor patch are connected at the apex of the large conductor patch.
- An object of the present invention is to provide a structure, an antenna, a communication device, and an electronic component that do not require a via, can be configured with two conductor layers, and can reduce the size of a unit cell.
- a first conductor A second conductor that is at least partially opposed to the first conductor; A plurality of first openings provided in the first conductor; A plurality of wires provided in the plurality of first openings and having one end connected to the first conductor; With A structure in which unit cells including the first opening and the wiring are repeatedly arranged is provided.
- a first conductor A second conductor that is at least partially opposed to the first conductor; A plurality of first openings provided in the first conductor; A plurality of island-shaped third conductors provided separately from the first conductor in the plurality of first openings; A chip inductor provided on the plurality of third conductors and connecting the third conductor to the first conductor; With A structure in which unit cells having the first opening, the third conductor, and the chip inductor are repeatedly arranged is provided.
- an antenna element A reflector provided facing the antenna element; With The reflector is A first conductor; A second conductor that is at least partially opposed to the first conductor; A plurality of first openings provided in the first conductor; A plurality of wires provided in the plurality of first openings and having one end connected to the first conductor; An antenna having a structure in which unit cells including the first opening and the wiring are repeatedly arranged is provided.
- a power supply layer to which power is supplied;
- a ground layer to which the ground is supplied,
- a first conductor provided on one of the power supply layer and the ground layer;
- a second conductor provided on the other of the power supply layer and the ground layer and at least partially facing the first conductor;
- a plurality of first openings provided in the first conductor;
- a plurality of wires provided in the plurality of first openings and having one end connected to the first conductor;
- an antenna, a communication device, and an electronic component that do not require a via can be configured with two conductor layers, and can reduce the size of a unit cell.
- FIG. 1 is sectional drawing of the structure which concerns on 1st Embodiment
- FIG. 1 is a perspective view of the structure shown to (a).
- FIG. 2 is an equivalent circuit diagram of the structure shown in FIG. 1.
- Each figure is a diagram showing a modification of wiring. It is a figure which shows the modification of arrangement
- FIG. 6 is a plan view of the unit cell of the structure shown in FIG. 6 seen through from above, and FIG. 6D is a perspective view of the unit cell.
- A) And (b) is a top view which shows the example in which a part of wiring is contained in 2nd opening when seeing through a unit cell from the upper surface. It is a figure which shows the example which used the chip inductor instead of the wiring. It is a perspective view of the structure concerning a 3rd embodiment.
- (A) is sectional drawing of the structure shown in FIG.
- FIG.10 (b) is a top view of the layer in which the 1st conductor pattern is provided.
- (A) is an equivalent circuit diagram of the unit cell shown in FIG. 10, and (b) is an equivalent of the unit cell when the unit cell shown in FIG. 10 is shifted by a half cycle a / 2 in the x direction in FIG. It is a circuit diagram. It is a figure which shows the dispersion curve which compared the electromagnetic wave propagation characteristic of the structure shown in FIG. 9, and a parallel plate waveguide. It is a figure which shows the example which is extended
- (A) is a figure which shows the example in which several wiring is provided in 1st opening
- (b) is a figure which shows the example in which the branch wiring branched from the wiring is provided in 1st opening. It is.
- FIG. 1A is a cross-sectional view of the structure 110 according to the first embodiment
- FIG. 1B is a perspective view of the structure 110 shown in FIG. 2A is a plan view of a layer on which the first conductor pattern 121 used in the structure 110 shown in FIG. 1 is formed
- FIG. 2B is a diagram of the layer shown in FIG. It is the figure which decomposed
- the structure 110 includes two conductive layers facing each other with a dielectric layer (for example, a dielectric plate) interposed therebetween.
- the first conductive pattern 121 as the first conductor and the second conductive layer as the second conductor.
- a conductor pattern 111, a plurality of first openings 104, and a plurality of wirings 106 are provided.
- the first conductor pattern 121 has a sheet shape, for example.
- the second conductor pattern 111 has, for example, a sheet shape, and at least a part (but may be substantially the whole) of the first conductor pattern 121 faces the first conductor pattern 121.
- the plurality of first openings 104 are provided in the first conductor pattern 121.
- the wiring 106 is provided in each of the plurality of first openings 104, and one end thereof is connected to the first conductor pattern 121.
- the unit cells 107 including the first openings 104 and the wirings 106 are repeatedly arranged, for example, periodically.
- the structure 110 functions as a metamaterial, for example, EBG (Electromagnetic Band Band Gap).
- the unit cell 107 of the structure 110 according to the present embodiment further includes a third conductor pattern 105 as a third conductor.
- the third conductor pattern 105 is an island-like pattern provided separately from the first conductor pattern 121 in the first opening 104, and the other end 129 of the wiring 106 is connected.
- the unit cell 107 is constituted by a region facing the first opening 104, the wiring 106, the third conductor pattern 105, and the second conductor pattern 111.
- the unit cell 107 has a two-dimensional array. More specifically, the unit cell 107 is arranged at each lattice point of a square lattice having a lattice constant a. Therefore, the plurality of first openings 104 have the same center distance. The same applies to the examples shown in FIGS. 4 (a) to 4 (c), FIG. 5 (a) and FIG. 5 (b) which will be described later.
- the unit cell 107 may be a one-dimensional array.
- the plurality of unit cells 107 have the same structure and are arranged in the same direction.
- the first opening 104 and the third conductor pattern 105 are square, and are arranged in the same direction so that their centers overlap each other.
- the wiring 106 has one end 119 connected to the center of one side of the first opening 104 and extends linearly perpendicular to the one side.
- the wiring 106 functions as an inductance element.
- a capacitance C is generated between the third conductor pattern 105 and the second conductor pattern 111.
- a wiring 106 inductance L as a planar inductance element is electrically connected between the third conductor pattern 105 and the first conductor pattern 121. Therefore, the series resonant circuit 118 is shunted between the second conductor pattern 111 and the first conductor pattern 121, and the circuit is equivalent to the structure shown in FIG.
- the required number of conductor layers is two, and since no via is used, the structure can be simplified and thinned, and the manufacturing cost can be reduced.
- the wiring 110 is used in the structure 110, the inductance can be significantly increased as compared with a structure in which inductance is formed by vias.
- the frequency band of the stop band (band gap) is determined by the series resonance frequency due to inductance and capacitance.
- the inductance can be greatly increased by providing the wiring 106, so that the capacitance can be kept small. Therefore, since the third conductor pattern 105 can be downsized, the length a of the opening 104 and the unit cell 107 can be reduced as a result, and the structure 110 can be downsized.
- the direct current does not pass through the wiring 106 but passes through the first conductor pattern 121.
- the reason why the direct current does not pass through the wiring 106 is that the third conductor pattern 105 connected to the wiring 106 is open. That is, if the first opening 104 is made small, the first conductor pattern 121 through which the direct current passes can be widened, and the resistance to the direct current can be reduced.
- the wiring 106 is linear, but the wiring 106 may be meandered as shown in FIG. 4 (a) or spiraled as shown in FIG. 4 (b). May be. Further, as shown in FIG. 4C, the wiring 106 may be formed in a polygonal line shape.
- FIG. 2 shows an example in which one third conductor pattern 105 and one wiring 106 are formed in each first opening 104, but two or more third conductor patterns 105 are formed in each first opening 104.
- the wiring 106 can also be formed.
- the example shown in FIG. 5A is a plan view showing a layout of the first conductor pattern 121 when two third conductor patterns 105 and two wirings 106 are formed in the first opening 104.
- two sets of the third conductor pattern 105 and the wiring 106 are arranged in the first opening 104 so as to be line-symmetric.
- the first opening 104 is square, and the two third conductor patterns 105 are rectangular.
- the sides of the first opening 104 and the third conductor pattern 105 are parallel to each other.
- the two third conductor patterns 105 are arranged in line with each other about a straight line connecting the center of the first opening 104 and the center of one side of the first opening 104.
- the wiring 106 has one end 119 extending linearly from the center of one side of the first opening 104 perpendicularly to the one side, and the other end 129 connected to the center of the long side of the third conductor pattern 105. Yes.
- FIG. 5B is a plan view showing a layout of the first conductor pattern 121 when the four third conductor patterns 105 and the four wirings 106 are formed in the first opening 104.
- four sets of third conductor patterns 105 and wirings 106 are arranged at 90 ° intervals in the first opening 104 so as to be point-symmetric about the center of the first opening 104.
- the first opening 104 is square, and the four third conductor patterns 105 are also square.
- the sides of the first opening 104 and the third conductor pattern 105 are parallel to each other.
- the four third conductor patterns 105 are arranged in a point manner with the center of the first opening 104 as an axis.
- the wiring 106 has one end 119 extending straight from the corner of the first opening 104 in a direction of 45 ° with respect to one side of the first opening 104, and the other end 129 is connected to the corner of the third conductor pattern 105. is doing.
- the equivalent circuit per unit cell 107 is that a plurality of series resonant circuits 118 are connected in parallel as shown in FIG. 5C. Become.
- the circuit is equivalent to the circuit shown in FIG. 3, and therefore one third conductor pattern 105 and one wiring 106 are formed in each first opening 104. The same characteristics can be obtained.
- the stop band can be widened or multi-banded.
- the layout of the first openings 104 is not limited to the square in FIG. 2A.
- the regular hexagonal first opening 104 may be a polygon such as a regular hexagon or a circle.
- the first openings 104 may be arranged in a triangular lattice shape.
- a conductive film is formed on both surfaces of a sheet-like dielectric layer. Then, a mask pattern is formed on one conductive film, and the conductive film is etched using the mask pattern as a mask. Thus, the conductive film is selectively removed, and the first conductor pattern 121, the plurality of first openings 104, and the plurality of wirings 106 are integrally formed.
- the other conductive film can be used as the second conductor pattern 111 as it is.
- the structure 110 can also be manufactured by sequentially forming a first conductor pattern 121, a dielectric film such as a silicon oxide film, and a second conductor pattern 111 on a glass substrate or a silicon substrate using a thin film process. It is. Alternatively, nothing may be provided in the space where the layers of the second conductor pattern 111 and the first conductor pattern 121 face each other (air may be used).
- FIG. 6A is a cross-sectional view of the structure 110 according to the second embodiment.
- the structure 110 according to the present embodiment has the same configuration as the structure 110 according to the first embodiment except that the second conductor pattern 111 has a plurality of second openings 114.
- the second opening 114 overlaps each of the plurality of wirings 106 in plan view.
- FIG. 6B is a plan view of the second conductor pattern 111 of the structure 110 shown in FIG.
- the second openings 114 are periodically arranged in the second conductor pattern 111.
- the period of the second opening 114 is a, which is equal to the length of one side of the unit cell 107 and the period of the first opening 104.
- FIG. 6 (c) is a plan view of the unit cell 107 of the structure 110 shown in FIG. 6 (a) seen through from above
- FIG. 6 (d) is a perspective view of the unit cell 107.
- FIG. In these drawings all the wirings 106 are located in the second opening 114 in a plan view. As a result, the inductance per unit length of the wiring 106 can be increased. Accordingly, since the wiring 106 can be made small in designing to a desired inductance value, the area occupied by the wiring 106 can be reduced, and as a result, the unit cell 107 can be miniaturized.
- FIG. 6C shows an example in which all of the wiring 106 is included in the second opening 114 when the unit cell 107 is seen through from above, but part of the wiring 106 is in the second opening 114 in plan view. It is also possible to design it so that it is located inside.
- FIGS. 7A and 7B are plan views showing an example in which a part of the wiring 106 is included in the second opening 114 when the unit cell 107 is seen through from above. Such a structure is effective in reducing the size of the second opening 114 and increasing the inductance.
- a chip inductor 500 is used instead of the wiring 106 as shown in the plan view of FIG. 8A and the cross-sectional view of FIG. Also good.
- FIG. 9 is a perspective view of the structure 110 according to the third embodiment.
- FIG. 10A is a cross-sectional view of the structure 110 shown in FIG. 9, and
- FIG. 10B is a plan view of a layer in which the first conductor pattern 121 is provided.
- the structure 110 has the same configuration as the structure 110 according to the first embodiment except that the structure 110 does not have the third conductor pattern 105 and the other end 129 of the wiring 106 is an open end. It is.
- the wiring 106 functions as an open stub, and the portion of the second conductor pattern 111 facing the wiring 106 and the wiring 106 form a transmission line 101, for example, a microstrip line.
- the manufacturing method of the structure 110 according to the present embodiment is the same as that of the first embodiment.
- a unit cell 107 including a region facing the first opening 104, the wiring 106, and the second conductor pattern 111 is configured.
- the unit cell 107 has a two-dimensional array in plan view. More specifically, the unit cell 107 is arranged at each lattice point of a square lattice having a lattice constant a. For this reason, the plurality of first openings 104 are arranged such that the distance between the centers is the same.
- the plurality of unit cells 107 have the same structure and are arranged in the same direction.
- the first opening 104 is square.
- the wiring 106 extends straight from the center of one side of the first opening 104 perpendicularly to the one side.
- FIG. 11A is an equivalent circuit diagram of the unit cell 107 shown in FIG.
- a parasitic capacitance CR is formed between the first conductor pattern 121 and the second conductor pattern 111.
- an inductance LR is formed in the first conductor pattern 121.
- the first conductor pattern 121 when viewed in the unit cell 107, the first conductor pattern 121 is divided into two equal parts by the first opening 104, and the wiring 106 is arranged at the center of the first opening 106. R is also divided into two equal parts around the wiring 106.
- the wiring 106 functions as an open stub, and the portion of the second conductor pattern 111 facing the wiring 106 and the wiring 106 form a transmission line 101, for example, a microstrip line.
- the other end of the transmission line 101 is an open end.
- FIG. 11B is an equivalent circuit diagram of the unit cell 107 when the unit cell 107 shown in FIG. 10 is shifted by a half cycle a / 2 in the x direction in FIG.
- the inductance LR is not divided by the wiring 106.
- the characteristics of the structure 110 shown in FIG. 9 do not change due to the difference in how the unit cells 107 are taken.
- the characteristics of an electromagnetic wave propagating structure 110 includes a series impedance Z based on the inductance L R, determined by the admittance based on the transmission line 101 and the parasitic capacitance C R.
- FIG. 12 shows dispersion curves comparing the electromagnetic wave propagation characteristics of the structure 110 and the parallel plate waveguide shown in FIG.
- the solid line indicates the dispersion relationship when the unit cell 107 is periodically arranged in the structure 110 shown in FIG.
- the broken line indicates the dispersion relation in the parallel plate waveguide formed by replacing the first conductor pattern 121 in FIG. 9 with a conductor pattern without the first opening 104 and the wiring 106.
- the wave number rapidly increases as compared with the parallel plate waveguide indicated by the broken line, and when the wave number reaches 2 ⁇ / a, the frequency band becomes higher. A band gap appears. And when the frequency goes up again, the path span appears again. For the passband appearing on the lowest frequency side, the phase velocity is smaller than the phase velocity of the parallel plate waveguide indicated by the dotted line.
- the band gap is shifted to the low frequency side by increasing the line length of the transmission line 101.
- the band gap band shifts to the high frequency side.
- the unit cell size can be reduced without changing the lower limit frequency of the band gap. It becomes possible.
- the phase velocity in the passband that appears on the lowest frequency side also decreases.
- the condition that the wave number of the electromagnetic wave in the structure 110 shown in FIG. 9 is larger than the wave number of the electromagnetic wave in the parallel plate waveguide is satisfied. It is. For this reason, the wavelength of the electromagnetic wave in the structure 110 shown in FIG. 9 is shorter than the wavelength of the electromagnetic wave in the parallel plate waveguide. That is, by using the structure 110 shown in FIG. 9, the resonator can be miniaturized.
- the admittance Y is determined from the input admittance and capacitance C L of the transmission line 101.
- the input admittance of the transmission line 101 is determined by the line length of the transmission line 101 (that is, the length of the wiring 106) and the effective dielectric constant of the transmission line 101.
- the input admittance of the transmission line 101 at a certain frequency is capacitive or inductive depending on the length of the transmission line 101 and the effective dielectric constant.
- the effective dielectric constant of the transmission line 101 is determined by the dielectric material constituting the waveguide.
- the line length of the transmission line 101 has a degree of freedom, and the line length of the transmission line 101 can be designed so that the admittance Y is inductive in a desired band. In this case, the structure 110 illustrated in FIG. 9 behaves so as to have a band gap in the desired band described above.
- the line lengths of the wirings 106 in the respective first openings 104 are equal and one end 119 of the wiring 106 is used.
- the first conductor pattern 121 are periodically arranged, and the position of the one end 119 in each unit cell 107 may be the same.
- the line length of the transmission line 101 that is, the length of the wiring 106 can be adjusted by appropriately changing the extending shape of the wiring 106.
- the wiring 106 extends so as to form a meander.
- the wiring 106 extends so as to form a loop along the edge of the first opening 104.
- the wiring 106 extends so as to form a spiral.
- the design is facilitated if the periodic arrangement of the unit structure has the same shape, size, and orientation of the wiring 106 in the first opening 104.
- at least one of the plurality of wirings 106 may be different from the others.
- the shapes of the wirings 106 are different from each other, and one of them is a polygonal line shape.
- the lengths of the wirings 106 are equal to each other.
- the position of the one end 119 of the wiring 106 is the same in each unit cell 107, the position of the one end 119 maintains periodicity.
- the array of unit cells 107 may be a one-dimensional array. However, also in this case, each unit cell 107 faces the same direction.
- the first opening 104 does not have to be a square, and may be another polygon.
- the first opening 104 may be rectangular as shown in FIG. 18, or may be a regular hexagon as shown in FIG.
- the wiring 106 extends from the corner of the first opening 104 in a direction of 60 ° with respect to the side of the first opening 104.
- one end 119 of the wiring 106 may be connected to a corner of the first opening 104 having a square shape.
- the wiring 106 extends from the corner of the first opening 104 in a direction of 45 ° with respect to the side of the first opening 104.
- the width of the wiring 106 may change midway.
- one end 119 connected to the first conductor pattern 121 after the wiring 106 is wider than the other end 129 which is an open end.
- one end 119 is narrower than the other end 129.
- a plurality of wirings 106 may be provided in the first opening 104. In this case, it is preferable that the wirings 106 located in the same first opening 104 have different lengths.
- a branch wiring 109 branched from the wiring 106 may be provided in the first opening 104. In this case, the length from one end of the wiring 106 to the open end of the branch wiring 109 and the length of the wiring 106 are preferably different from each other.
- the unit cells 107 preferably have the same configuration and face the same direction.
- the shapes of the plurality of first openings 104 may be different from each other.
- the position of the one end 119 of the wiring 106 needs to have periodicity.
- the structure 110 that does not require a via, can be configured with two conductor layers, and can downsize the unit cell 107.
- the equivalent circuit of the unit cell 107 has a plurality of transmission paths having different lengths. You will have in parallel. For this reason, since the structure 110 has a band gap in the frequency band corresponding to the length of each transmission path, it can have a plurality of band gaps (multiband).
- FIG. 23 is a cross-sectional view of an electronic component according to the fourth embodiment.
- the electronic component according to the present embodiment is a circuit board 213, and includes a power layer 113 on which a power plane is formed and a ground layer 122 on which a ground plane is formed.
- the power supply layer 113 and the ground layer 122 are used to configure the structure 110 shown in any of the first to third embodiments.
- the first conductor pattern 121, the plurality of first openings 104, the plurality of wirings 106, and the third conductor pattern 105 as necessary are formed on one of the power supply layer 113 and the ground layer 122.
- a second conductor pattern 111 is formed on the other of the power supply layer 113 and the ground layer 122.
- the structure 110 is provided as a noise filter in a partial region of the circuit board 213 in plan view. Thereby, it can suppress that noise propagates in the circuit board 213. Details will be described below.
- the circuit board 213 is composed of four conductor layers.
- the structure 110 as a noise filter is formed by two inner conductor layers formed in the circuit board 213.
- the signal layers 203 are formed on the upper side of the second conductor pattern 111 and the lower side of the first conductor pattern 121 constituting the structure 110, respectively.
- One of the first conductor pattern 121 and the second conductor pattern 111 is connected to the power plane, and the other is connected to the ground plane.
- the second conductor pattern 111 of the structure 110 is formed on the upper layer side and the first conductor pattern 121 is formed on the lower layer side, but the second conductor pattern 111 is formed on the lower layer side.
- the pattern 121 may be formed on the upper layer side.
- the signal layer 203 is disposed on the first conductor pattern 121 and the second conductor pattern 111, but is provided on only one conductor pattern of the first conductor pattern 121 and the second conductor pattern 111. Also good.
- the structure 110 as a noise filter can be built in the circuit board 213 even when the circuit board 213 is constituted by two conductor layers.
- the signal layer 203 is formed on either the power supply layer or the ground layer (for example, the power supply layer).
- the second conductor pattern 111 or the first conductor pattern 121 may be included in the signal layer 203.
- the second conductor pattern 111 is formed on the lower layer side, and the first conductor pattern 121 is formed on the upper layer side. Structures 110 are provided on the left and right in the figure, and a microstrip line 204 composed of the signal wiring 202 and the second conductor pattern 111 is provided therebetween. In the example of FIG. 24A, since the signal wiring 202 is provided in the same layer as the first conductor pattern 121, the first conductor pattern 121 is included in the signal layer 203.
- the second conductor pattern 111 is formed on the upper layer side, and the second conductor plane 122 layer is formed on the lower layer side. Structures 110 are provided on the left and right in the figure, and a microstrip line 204 including a signal wiring 202 and a first conductor pattern 121 is provided therebetween. Thus, by providing the signal wiring 202 in the layer of the second conductor pattern 111, the second conductor pattern 111 is included in the signal layer 203.
- a transmission line structure other than the microstrip line can be used.
- the structures 110 are provided on the left and right, and the coplanar waveguide 205 configured by the signal wiring 202 and the second conductor pattern 111 is provided therebetween.
- the signal wiring 202 is provided in the layer of the second conductor pattern 111, the second conductor pattern 111 is included in the signal layer 203.
- FIG. 25 is a plan view illustrating an arrangement example of the structure 110 including the structure 110 on the circuit board 213, and FIG. 26 is a cross-sectional view of FIG.
- a semiconductor package 215 serving as a noise source is mounted in the first region
- a semiconductor package 225 that is susceptible to noise is mounted in the second region.
- the respective semiconductor packages are shown in FIG.
- the power plane 204 and the ground plane 206 of the power layer are electrically connected via vias.
- the structure 110 as a power supply noise suppression filter is arranged in the entire region between the power supply and ground layers in the circuit board 213.
- one of the first conductor pattern 121 and the second conductor pattern 111 constituting the structure 110 is connected to the power supply layer, and the other is connected to the ground layer.
- the structure 110 is not necessarily provided in the entire region between the power supply and ground layers in the circuit board 213.
- the structure 110 is disposed in a band shape between the semiconductor package 215 side that is a noise source and the semiconductor package 225 that is susceptible to noise.
- the structure 110 is disposed so as to surround the semiconductor package 225 that is susceptible to noise, and in the example of FIG. 25D, the structure 110 surrounds the semiconductor package 215 that is a noise source. Is arranged.
- the power supply-ground plane is separated from the semiconductor package 215 side that is a noise source and the semiconductor package 225 side that is susceptible to noise with the structure 110 as a boundary.
- the layout is such that it can be separated.
- the structure 110 as a noise filter in a part or all of the power supply / ground layer, power supply noise is propagated from the semiconductor package 215 serving as a noise source through the power supply / ground layer of the circuit board 213. Can be suppressed. Then, it is possible to suppress malfunction of the semiconductor package 225 that is easily affected by noise and to suppress unnecessary electromagnetic radiation from the circuit board 213.
- FIG. 27 is a plan view of the circuit board 213 shown in FIG. 23 as viewed from below.
- the signal wiring 202 formed in the lower signal layer 203 extends to avoid the first opening 104 in the first conductor pattern 121.
- the first conductor pattern 121 functions as a return path of the signal wiring, so that it is possible to prevent deterioration of signal quality.
- the effect of the structure 110 functioning as a return path of the transmission line will be described with reference to FIG. First, the second conductor pattern 111 without the first opening 104 functions as a return path unconditionally.
- the portion of the first conductor pattern 121 located between the first openings 104 is wider than the signal wiring, and there is no slit at the location where the signal line passes. Is required. (NG in the situation of FIG. 28B).
- the portion of the first conductor pattern 121 located between the first openings 104 is required to be about four times the signal wiring width w or more. ing.
- the first opening 104 can be made small as described above. Therefore, the conductor width as a return path is secured, thereby functioning as a return path for signal wiring. It becomes like this.
- FIG. 29 is a cross-sectional view of an electronic component according to the fifth embodiment.
- This electronic component has an interposer 410.
- the interposer 410 is composed of four conductor layers.
- a structure 110 as a noise filter is formed by two inner conductor layers formed in the interposer 410.
- the structure body 110 is formed on the entire surface of the interposer 410 in a plan view, but may be provided at least in a region where the semiconductor chip 420 is mounted, preferably in the periphery thereof.
- a signal layer 203 is formed on the lower side of the second conductor pattern 111 and the upper side of the first conductor pattern 121 constituting the structure 110, respectively.
- One of the first conductor pattern 121 and the second conductor pattern 111 functions as the power plane 411 and the other functions as the ground plane 412.
- the first conductor pattern 121 functions as the power plane 411
- the second conductor pattern 111 functions as the ground plane 412.
- a semiconductor chip 420 is mounted on one surface of the interposer 410 (for example, flip chip mounting).
- the semiconductor chip 420 is connected to the power plane 411 and the ground plane 412 via vias 413 and 414 provided in the interposer 410.
- the power plane 411 and the ground plane 412 are connected to solder balls 430 provided on the other surface of the interposer 410 via vias 415 and 416 provided in the interposer 410.
- a part of the structure 110 is located between the vias 413 and 414 and the vias 415 and 416.
- the semiconductor chip 420 becomes a noise source, the noise generated in the semiconductor chip 420 is blocked by the structure 110 located between the vias 413 and 414 and the vias 415 and 416. Therefore, noise generated in the semiconductor chip 420 is suppressed from coming out of the semiconductor package 400 as power supply noise. Further, when the semiconductor chip 420 is easily affected by power supply noise, it is possible to suppress external power supply noise from propagating to the semiconductor chip 420.
- FIG. 30 is a cross-sectional view of the antenna according to the sixth embodiment.
- This antenna includes an antenna element 310 and a reflecting plate 320 provided to face the antenna element 310.
- the reflection plate 320 is composed of the structure 110 shown in any of the first to third embodiments.
- the structure 110 is used as an EBG structure.
- the frequency at which the antenna element 310 communicates is included in the stop band (band gap) of the structure 110.
- the antenna shown in FIG. 30 is an inverted L antenna.
- the antenna element 310 is disposed so as to face the first conductor pattern 121.
- the electromagnetic wave radiated from the antenna element 310 is reflected in the same phase with respect to the reflector 320 made of the structure 110.
- the radiation efficiency of the antenna is the highest. Therefore, by arranging the antenna element 310 so as to face the first conductor pattern 121 of the structure 110, the entire inverted L-type antenna can be thinned.
- a coaxial cable 330 as a feed line is connected to the back side of the reflector 320.
- an opening 112 is provided in the second conductor pattern 111 of the structure 110, and a coaxial cable 330 is attached to the opening.
- the inner conductor 332 of the coaxial cable 330 extends through the opening 112 and the reflector 320 and is connected to the antenna element 310.
- the outer conductor 334 of the coaxial cable 330 is connected to the second conductor pattern 111.
- the communication device can be configured by connecting the coaxial cable 330 to the communication processing unit 340.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Structure Of Printed Boards (AREA)
- Waveguide Connection Structure (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に設けられ、一端が前記第1導体に接続している複数の配線と、
を備え、
前記第1開口及び前記配線を含む単位セルが繰り返し配列されている構造体が提供される。
前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に前記第1導体から分離して設けられている複数の島状の第3導体と、
前記複数の第3導体に設けられ、前記第3導体を前記第1導体に接続するチップインダクタと、
を備え、
前記第1開口、前記第3導体、及び前記チップインダクタを有する単位セルが繰り返し配列されている構造体が提供される。
前記アンテナエレメントに対向して設けられた反射板と、
を備え、
前記反射板は、
第1導体と、
前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に設けられ、一端が前記第1導体に接続している複数の配線と、
を備えた構造体であって、前記第1開口及び前記配線を含む単位セルが繰り返し配列されている構造体を有しているアンテナが提供される。
グラウンドが供給されるグラウンド層と、
前記電源層及び前記グラウンド層の一方に設けられた第1導体と、
前記電源層及び前記グラウンド層の他方に設けられ、前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に設けられ、一端が前記第1導体に接続している複数の配線と、
を備え、
前記第1開口及び前記配線を含む単位セルが繰り返し配列されている電子部品が提供される。
図1(a)は、第1の実施形態に係る構造体110の断面図であり、図1(b)は図1(a)に示した構造体110の斜視図である。図2(a)は図1に示した構造体110に用いられる第1導体パターン121が形成されている層の平面図であり、図2(b)は図1(a)に示した層の各構成を分解して示した図である。
図6(a)は第2の実施形態に係る構造体110の断面図である。本実施形態に係る構造体110は、第2導体パターン111に複数の第2開口114を有している点を除いて、第1の実施形態に係る構造体110と同様の構成である。第2開口114は、平面視において複数の配線106それぞれと重なっている。第2開口114を設けることにより、配線106と第2導体パターン111の間を鎖交する磁束が増加するため、これによって配線106の単位長さ当たりのインダクタンスが増加する。
図9は、第3の実施形態に係る構造体110の斜視図である。図10(a)は、図9に示した構造体110の断面図であり、図10(b)は第1導体パターン121が設けられている層の平面図である。この構造体110は、第3導体パターン105を有しておらず、配線106の他端129が開放端になっている点を除いて、第1の実施形態に係る構造体110と同様の構成である。そして本実施形態では、配線106はオープンスタブとして機能しており、第2導体パターン111のうち配線106に対向する部分及び配線106が、伝送線路101、例えばマイクロストリップ線路を形成している。本実施形態に係る構造体110の製造方法は、第1の実施形態と同様である。
f/β=c/(2π・(εr・μr)1/2)・・・(1)
図23は、第4の実施形態に係る電子部品の断面図である。本実施形態に係る電子部品は回路基板213であり、電源プレーンが形成されている電源層113、及びグラウンドプレーンが形成されているグラウンド層122を備えている。そして電源層113及びグラウンド層122を用いて、第1~第3の実施形態のいずれかに示した構造体110が構成されている。具体的には、電源層113及びグラウンド層122の一方に第1導体パターン121、複数の第1開口104、及び複数の配線106、並びに必要に応じて第3導体パターン105が形成されている。また電源層113及びグラウンド層122の他方に第2導体パターン111が形成されている。本実施形態において構造体110は、ノイズフィルタとして、平面視において回路基板213の一部の領域に設けられている。これにより、ノイズが回路基板213内を伝播することを抑制できる。以下、詳細に説明する。
図29は、第5の実施形態に係る電子部品の断面図である。この電子部品は、インターポーザ410を有している。本図に示す例においてインターポーザ410は導体4層により構成されている。そしてノイズフィルタとしての構造体110が、インターポーザ410内に形成された内側の2導体層で形成されている。構造体110は、平面視においてインターポーザ410の全面に形成されているが、少なくとも半導体チップ420が搭載される領域、好ましくはさらにその周囲に設けられていれば良い。構造体110を構成する第2導体パターン111の下側及び第1導体パターン121の上側に信号層203がそれぞれ形成されている。そして第1導体パターン121及び第2導体パターン111のうちいずれか一方が電源プレーン411として機能し、他方がグラウンドプレーン412として機能する。本図に示す例では、第1導体パターン121が電源プレーン411として機能し、第2導体パターン111がグラウンドプレーン412として機能する。
図30は、第6の実施形態に係るアンテナの断面図である。このアンテナは、アンテナエレメント310と、アンテナエレメント310に対向して設けられた反射板320を備える。反射板320は、第1~第3の実施形態のいずれかに示した構造体110から構成されている。
104 第1開口
105 第3導体パターン
106 配線
107 単位セル
109 分岐配線
110 構造体
111 第2導体パターン
112 開口
113 電源層
114 第2開口
118 直列共振回路
119 一端
121 第1導体パターン
122 グラウンド層
129 他端
202 信号配線
203 信号層
204 マイクロストリップ線路
205 コプレナ導波路
206 グラウンドプレーン
213 回路基板
215 半導体パッケージ
225 半導体パッケージ
310 アンテナエレメント
320 反射板
330 同軸ケーブル
332 内部導体
334 外部導体
340 通信処理部
400 半導体パッケージ
410 インターポーザ
411 電源プレーン
412 グラウンドプレーン
413 ビア
414 ビア
415 ビア
416 ビア
420 半導体チップ
430 ハンダボール
500 チップインダクタ
Claims (32)
- 第1導体と、
前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に設けられ、一端が前記第1導体に接続している複数の配線と、
を備え、
前記第1開口及び前記配線を含む単位セルが繰り返し配列されている構造体。 - 請求項1に記載の構造体において、
前記配線の他端は開放端である構造体。 - 請求項2に記載の構造体において、
前記複数の配線、前記複数の第1開口、及び前記第1導体は、一体的に形成されている構造体。 - 請求項2又は3に記載の構造体において、
前記配線と前記第2導体のうち前記配線に対向する部分が伝送線路を形成している構造体。 - 請求項4に記載の構造体において、
前記伝送線路はマイクロストリップ線路である構造体。 - 請求項2~5のいずれか一つに記載の構造体において、
前記複数の配線の長さが互いに等しい構造体。 - 請求項2~6のいずれか一つに記載の構造体において、
前記複数の配線は、前記一端が周期的な配列を有している構造体。 - 請求項2~7のいずれか一つに記載の構造体において、
前記複数の単位セルは、前記第1開口内に位置し、前記配線から分岐している分岐配線を備える構造体。 - 請求項1に記載の構造体において、
前記複数の単位セルは、前記第1開口の中に前記第1導体から分離して設けられ、前記配線の他端が接続している島状の第3導体を備える構造体。 - 請求項9に記載の構造体において、
前記第1導体、前記複数の第1開口、前記複数の配線、及び前記複数の第3導体は一体的に形成されている構造体。 - 請求項9又は10に記載の構造体において、
前記単位セルは、前記第1開口内に複数の前記第3導体を有しており、かつ、前記複数の第3導体毎に前記配線を有している構造体。 - 請求項9~11のいずれか一つに記載の構造体において、
前記第2導体に設けられ、平面視において前記複数の配線と重なっている複数の第2開口を備える構造体。 - 請求項1~12のいずれか一つに記載の構造体において、
前記配線は直線状又は折れ線形状に延伸している構造体。 - 請求項1~12のいずれか一つに記載の構造体において、
前記配線はミアンダ、ループ、又はスパイラルを形成するように延伸している構造体。 - 第1導体と、
前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に前記第1導体から分離して設けられている複数の島状の第3導体と、
前記複数の第3導体に設けられ、前記第3導体を前記第1導体に接続するチップインダクタと、
を備え、
前記第1開口、前記第3導体、及び前記チップインダクタを有する単位セルが繰り返し配列されている構造体。 - 請求項1~15のいずれか一つに記載の構造体において、
前記複数の単位セルが2次元配列を有している構造体。 - 請求項1~16のいずれか一つに記載の構造体において、
前記複数の単位セルが1次元配列を有している構造体。 - 請求項1~17のいずれか一つに記載の構造体において、
前記複数の単位セルは、互いに同じ構造を有しており、かつ同じ向きを向いている構造体。 - 請求項1~18のいずれか一つに記載の構造体において、
前記複数の開口は、多角形を有している構造体。 - アンテナエレメントと、
前記アンテナエレメントに対向して設けられた反射板と、
を備え、
前記反射板は、
第1導体と、
前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に設けられ、一端が前記第1導体に接続している複数の配線と、
を備えた構造体であって、前記第1開口及び前記配線を含む単位セルが繰り返し配列されている構造体を有しているアンテナ。 - 請求項20に記載のアンテナにおいて、
前記構造体はEBG(Electromagnetic Band Gap)構造体として使用され、
前記アンテナが通信を行う周波数は、前記EBG構造体が有するバンドギャップに含まれているアンテナ。 - 請求項20又は21に記載のアンテナにおいて、
前記アンテナは逆Lアンテナであり、
アンテナエレメントは、前記第1導体に対向するように配置されているアンテナ。 - 請求項20~22のいずれか一つに記載のアンテナと、
前記アンテナに接続された通信処理手段と、
を備える通信装置。 - 電源が供給される電源層と、
グラウンドが供給されるグラウンド層と、
前記電源層及び前記グラウンド層の一方に設けられた第1導体と、
前記電源層及び前記グラウンド層の他方に設けられ、前記第1導体に少なくとも一部が対向している第2導体と、
前記第1導体に設けられた複数の第1開口と、
前記複数の第1開口の中に設けられ、一端が前記第1導体に接続している複数の配線と、
を備え、
前記第1開口及び前記配線を含む単位セルが繰り返し配列されている電子部品。 - 請求項24に記載の電子部品において、
前記電源層及び前記グラウンド層とは異なる層に形成された信号線をさらに備える電子部品。 - 請求項24に記載の電子部品において、
前記電源層及び前記グラウンド層の少なくとも一方に形成された信号線をさらに備える電子部品。 - 請求項24~26のいずれか一つに記載の電子部品において、
前記電子部品は回路基板である電子部品。 - 請求項27に記載の電子部品において、
第1の半導体パッケージが搭載される第1領域と、
第2の半導体パッケージが搭載される第2領域と、
を備え、
前記第1領域と前記第2領域の間に、前記単位セルが繰り返し配置されている第3領域を有している電子部品。 - 請求項28に記載の電子部品において、
さらに前記第1の半導体パッケージ及び前記第2の半導体パッケージを備えている電子部品。 - 請求項24~26のいずれか一つに記載の電子部品において、
前記電子部品はインターポーザである電子部品。 - 請求項30に記載の電子部品において、
一面に半導体チップが搭載される第1領域を有しており、
少なくとも前記第1領域に、前記単位セルが繰り返し配置されている電子部品。 - 請求項31に記載の電子部品において、
さらに前記第1の半導体チップを備えている電子部品。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010528663A JP5516407B2 (ja) | 2008-09-11 | 2009-09-11 | 構造体、アンテナ、通信装置、及び電子部品 |
US13/062,452 US9570814B2 (en) | 2008-09-11 | 2009-09-11 | Structure, antenna, communication device and electronic component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-233359 | 2008-09-11 | ||
JP2008233359 | 2008-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010029770A1 true WO2010029770A1 (ja) | 2010-03-18 |
Family
ID=42005034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004543 WO2010029770A1 (ja) | 2008-09-11 | 2009-09-11 | 構造体、アンテナ、通信装置、及び電子部品 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9570814B2 (ja) |
JP (1) | JP5516407B2 (ja) |
WO (1) | WO2010029770A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068238A1 (ja) * | 2009-12-04 | 2011-06-09 | 日本電気株式会社 | 構造体、プリント基板、アンテナ、伝送線路導波管変換器、アレイアンテナ、および電子装置 |
WO2011114622A1 (ja) * | 2010-03-19 | 2011-09-22 | 日本電気株式会社 | 電子機器 |
WO2011121956A1 (ja) * | 2010-03-31 | 2011-10-06 | 日本電気株式会社 | 無線通信装置および電流低減方法 |
CN102754276A (zh) * | 2009-12-07 | 2012-10-24 | 日本电气株式会社 | 结构和天线 |
US20120299787A1 (en) * | 2010-03-31 | 2012-11-29 | Nec Corporation | Radio communication apparatus |
JP2015226091A (ja) * | 2014-05-26 | 2015-12-14 | 日本電信電話株式会社 | フィルタ |
CN106356635A (zh) * | 2016-09-14 | 2017-01-25 | 安徽大学 | 一种类十字锚型超材料微单元结构 |
WO2017038045A1 (ja) * | 2015-08-31 | 2017-03-09 | パナソニックIpマネジメント株式会社 | アンテナ装置 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7420756B2 (en) | 2003-05-20 | 2008-09-02 | Donnelly Corporation | Mirror reflective element |
JP2011238016A (ja) * | 2010-05-10 | 2011-11-24 | Sony Corp | 非接触通信媒体、アンテナパターン配置媒体、通信装置及びアンテナ調整方法 |
JP5591587B2 (ja) * | 2010-05-21 | 2014-09-17 | Necトーキン株式会社 | ノイズ抑制伝送路及びそれに用いられるシート状構造体 |
CN102956978B (zh) * | 2011-08-19 | 2015-11-18 | 深圳光启高等理工研究院 | 一种高磁导率的超材料 |
CN103001000B (zh) * | 2011-09-16 | 2015-10-21 | 深圳光启高等理工研究院 | 一种具有宽频高折射率和低色散特性的人工电磁材料 |
US9231309B2 (en) * | 2012-07-27 | 2016-01-05 | Toyota Motor Engineering & Manufacturing North America, Inc. | Metamaterial magnetic field guide |
TWI545840B (zh) * | 2012-10-02 | 2016-08-11 | 仁寶電腦工業股份有限公司 | 具有頻率選擇結構的天線 |
JP5542902B2 (ja) * | 2012-11-29 | 2014-07-09 | 日本電業工作株式会社 | アンテナ |
JP2014200031A (ja) * | 2013-03-29 | 2014-10-23 | 富士通株式会社 | アンテナ及び無線通信装置 |
KR102139217B1 (ko) * | 2014-09-25 | 2020-07-29 | 삼성전자주식회사 | 안테나 장치 |
TW201644096A (zh) * | 2015-06-01 | 2016-12-16 | 華碩電腦股份有限公司 | 人工磁導結構及其電子裝置 |
KR102176897B1 (ko) * | 2016-07-27 | 2020-11-10 | 고꾸리츠 다이가꾸 호우징 오까야마 다이가꾸 | 인쇄 배선판 |
US10454180B2 (en) * | 2016-12-14 | 2019-10-22 | Raytheon Company | Isolation barrier |
US10553935B2 (en) * | 2017-11-22 | 2020-02-04 | Google Llc | Planar RF antenna with duplicate unit cells |
JP7060114B2 (ja) * | 2018-12-18 | 2022-04-26 | 富士通株式会社 | 電磁波制御装置 |
WO2020179381A1 (ja) * | 2019-03-07 | 2020-09-10 | 株式会社フェニックスソリューション | Rfタグおよびrfタグ付き導体 |
US10840587B2 (en) * | 2019-03-11 | 2020-11-17 | Alstom Transport Technologies | Antenna for railway vehicles |
WO2021095789A1 (ja) * | 2019-11-14 | 2021-05-20 | Nissha株式会社 | アンテナ機能付きカバー |
KR20230004521A (ko) * | 2020-05-01 | 2023-01-06 | 소니그룹주식회사 | 파동 제어 매질, 파동 제어 소자, 파동 제어 장치, 및 파동 제어 매질의 제조 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005538623A (ja) * | 2002-09-10 | 2005-12-15 | フラクトゥス・ソシエダッド・アノニマ | 結合されたマルチバンドアンテナ |
JP2008010859A (ja) * | 2006-06-02 | 2008-01-17 | Renesas Technology Corp | 半導体装置 |
JP2008131505A (ja) * | 2006-11-22 | 2008-06-05 | Nec Tokin Corp | 高表面インピーダンス構造体、アンテナ装置、及びrfidタグ |
JP2008131509A (ja) * | 2006-11-22 | 2008-06-05 | Nec Tokin Corp | Ebg構造体及びノイズフィルタ |
JP2008147763A (ja) * | 2006-12-06 | 2008-06-26 | Mitsubishi Electric Corp | Ebg構造 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6262495B1 (en) * | 1998-03-30 | 2001-07-17 | The Regents Of The University Of California | Circuit and method for eliminating surface currents on metals |
US6518930B2 (en) | 2000-06-02 | 2003-02-11 | The Regents Of The University Of California | Low-profile cavity-backed slot antenna using a uniplanar compact photonic band-gap substrate |
US6411261B1 (en) * | 2001-02-26 | 2002-06-25 | E-Tenna Corporation | Artificial magnetic conductor system and method for manufacturing |
US7215007B2 (en) * | 2003-06-09 | 2007-05-08 | Wemtec, Inc. | Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards |
US7190315B2 (en) * | 2003-12-18 | 2007-03-13 | Intel Corporation | Frequency selective surface to suppress surface currents |
US7215301B2 (en) | 2004-09-08 | 2007-05-08 | Georgia Tech Research Corporation | Electromagnetic bandgap structure for isolation in mixed-signal systems |
US7626216B2 (en) | 2005-10-21 | 2009-12-01 | Mckinzie Iii William E | Systems and methods for electromagnetic noise suppression using hybrid electromagnetic bandgap structures |
US7446712B2 (en) | 2005-12-21 | 2008-11-04 | The Regents Of The University Of California | Composite right/left-handed transmission line based compact resonant antenna for RF module integration |
GB0616391D0 (en) * | 2006-08-18 | 2006-09-27 | Bae Systems Plc | Electromagnetic band-gap structure |
TWI375499B (en) * | 2007-11-27 | 2012-10-21 | Asustek Comp Inc | Improvement method for ebg structures and multi-layer board applying the same |
-
2009
- 2009-09-11 US US13/062,452 patent/US9570814B2/en active Active
- 2009-09-11 JP JP2010528663A patent/JP5516407B2/ja active Active
- 2009-09-11 WO PCT/JP2009/004543 patent/WO2010029770A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005538623A (ja) * | 2002-09-10 | 2005-12-15 | フラクトゥス・ソシエダッド・アノニマ | 結合されたマルチバンドアンテナ |
JP2008010859A (ja) * | 2006-06-02 | 2008-01-17 | Renesas Technology Corp | 半導体装置 |
JP2008131505A (ja) * | 2006-11-22 | 2008-06-05 | Nec Tokin Corp | 高表面インピーダンス構造体、アンテナ装置、及びrfidタグ |
JP2008131509A (ja) * | 2006-11-22 | 2008-06-05 | Nec Tokin Corp | Ebg構造体及びノイズフィルタ |
JP2008147763A (ja) * | 2006-12-06 | 2008-06-26 | Mitsubishi Electric Corp | Ebg構造 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068238A1 (ja) * | 2009-12-04 | 2011-06-09 | 日本電気株式会社 | 構造体、プリント基板、アンテナ、伝送線路導波管変換器、アレイアンテナ、および電子装置 |
US9350078B2 (en) | 2009-12-04 | 2016-05-24 | Nec Corporation | Structural body, printed substrate, antenna, transmission line waveguide converter, array antenna, and electronic device |
US9000997B2 (en) | 2009-12-07 | 2015-04-07 | Nec Corporation | Structure and antenna |
CN102754276A (zh) * | 2009-12-07 | 2012-10-24 | 日本电气株式会社 | 结构和天线 |
CN102823059A (zh) * | 2010-03-19 | 2012-12-12 | 日本电气株式会社 | 电子装置 |
JP5726856B2 (ja) * | 2010-03-19 | 2015-06-03 | レノボ・イノベーションズ・リミテッド(香港) | 電子機器 |
WO2011114622A1 (ja) * | 2010-03-19 | 2011-09-22 | 日本電気株式会社 | 電子機器 |
EP2555323A4 (en) * | 2010-03-31 | 2016-11-30 | Nec Corp | WIRELESS COMMUNICATION DEVICE AND POWER REDUCTION PROCESS |
JP2016007059A (ja) * | 2010-03-31 | 2016-01-14 | レノボ・イノベーションズ・リミテッド(香港) | 無線通信装置 |
CN102834969B (zh) * | 2010-03-31 | 2015-02-11 | 联想创新有限公司(香港) | 无线通信装置和电流减小方法 |
US9065891B2 (en) | 2010-03-31 | 2015-06-23 | Lenovo Innovations Limited | Radio communication apparatus and current reducing method |
US9105980B2 (en) * | 2010-03-31 | 2015-08-11 | Lenovo Innovations Limited (Hong Kong) | Radio communication apparatus |
JP5805626B2 (ja) * | 2010-03-31 | 2015-11-04 | レノボ・イノベーションズ・リミテッド(香港) | 無線通信装置および電流低減方法 |
EP2555317A4 (en) * | 2010-03-31 | 2017-12-20 | Nec Corporation | Wireless communication device |
WO2011121956A1 (ja) * | 2010-03-31 | 2011-10-06 | 日本電気株式会社 | 無線通信装置および電流低減方法 |
CN102834969A (zh) * | 2010-03-31 | 2012-12-19 | 日本电气株式会社 | 无线通信装置和电流减小方法 |
JP2016178684A (ja) * | 2010-03-31 | 2016-10-06 | レノボ・イノベーションズ・リミテッド(香港) | 無線通信装置 |
US20120299787A1 (en) * | 2010-03-31 | 2012-11-29 | Nec Corporation | Radio communication apparatus |
JP2015226091A (ja) * | 2014-05-26 | 2015-12-14 | 日本電信電話株式会社 | フィルタ |
WO2017038045A1 (ja) * | 2015-08-31 | 2017-03-09 | パナソニックIpマネジメント株式会社 | アンテナ装置 |
JPWO2017038045A1 (ja) * | 2015-08-31 | 2018-06-07 | パナソニックIpマネジメント株式会社 | アンテナ装置 |
CN106356635A (zh) * | 2016-09-14 | 2017-01-25 | 安徽大学 | 一种类十字锚型超材料微单元结构 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010029770A1 (ja) | 2012-02-02 |
US9570814B2 (en) | 2017-02-14 |
JP5516407B2 (ja) | 2014-06-11 |
US20110170267A1 (en) | 2011-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5516407B2 (ja) | 構造体、アンテナ、通信装置、及び電子部品 | |
JP5617836B2 (ja) | 共振器アンテナ及び通信装置 | |
JP5673553B2 (ja) | 構造体及びアンテナ | |
JP5550100B2 (ja) | 電磁バンドギャップ素子及びそれを用いたアンテナ並びにフィルタ | |
JP5522042B2 (ja) | 構造体、プリント基板、アンテナ、伝送線路導波管変換器、アレイアンテナ、電子装置 | |
JP5527316B2 (ja) | 共振器アンテナ | |
JP5533860B2 (ja) | 構造体、プリント基板、アンテナ、伝送線路導波管変換器、アレイアンテナ、電子装置 | |
US9385428B2 (en) | Metamaterial structure | |
JP5712931B2 (ja) | 構造体 | |
US9653767B2 (en) | Antenna and printed-circuit board using waveguide structure | |
JP5733303B2 (ja) | 配線基板及び電子装置 | |
WO2012093603A1 (ja) | 電磁波伝播シート | |
JP6512837B2 (ja) | 電子回路及び構造体 | |
JP5761184B2 (ja) | 配線基板及び電子装置 | |
WO2010044276A1 (ja) | 構造体、電子装置、及び配線基板 | |
US8921711B2 (en) | Wiring substrate and electronic device | |
JP5556162B2 (ja) | 電子装置及びノイズ抑制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09812919 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010528663 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13062452 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09812919 Country of ref document: EP Kind code of ref document: A1 |