WO2010024319A1 - オレフィンの製造方法 - Google Patents

オレフィンの製造方法 Download PDF

Info

Publication number
WO2010024319A1
WO2010024319A1 PCT/JP2009/064934 JP2009064934W WO2010024319A1 WO 2010024319 A1 WO2010024319 A1 WO 2010024319A1 JP 2009064934 W JP2009064934 W JP 2009064934W WO 2010024319 A1 WO2010024319 A1 WO 2010024319A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
olefin
metathesis
butene
reaction
Prior art date
Application number
PCT/JP2009/064934
Other languages
English (en)
French (fr)
Inventor
敏浩 高井
裕一 池永
小谷 誠
智 宮添
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2010526752A priority Critical patent/JP5432905B2/ja
Priority to US13/060,578 priority patent/US8299313B2/en
Priority to KR1020117003643A priority patent/KR101258347B1/ko
Priority to EP09809969A priority patent/EP2330091A4/en
Priority to CN2009801328580A priority patent/CN102131752A/zh
Publication of WO2010024319A1 publication Critical patent/WO2010024319A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • C07C6/04Metathesis reactions at an unsaturated carbon-to-carbon bond at a carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • C07C2527/232Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing an olefin by a metathesis reaction between the same or different olefins.
  • Patent Document 1 uses a mixed catalyst comprising a WO 3 / SiO 2 catalyst in which tungsten oxide is supported on a silica carrier and a magnesium oxide catalyst in a method for producing propylene by a metathesis reaction between ethylene and 2-butene.
  • Patent Document 2 discloses that in a method for producing propylene by a metathesis reaction of ethylene and n-butene, a small amount of hydrogen is allowed to coexist with a mixed catalyst composed of a metathesis catalyst and a cocatalyst, so that an industrial solution can be obtained. It is disclosed that the metathesis reaction proceeds at a sufficiently high reaction rate.
  • metalthesis catalyst the activity of the catalyst used in the metathesis reaction (hereinafter also referred to as “metathesis catalyst”) varies depending on the reaction conditions, the raw material olefin used, the type of the catalyst, etc., but there is a problem that both decrease with time. .
  • the catalytic activity rapidly decreases due to poisoning of the catalyst by impurities in the raw material olefin.
  • Non-Patent Document 1 catalyst poisoning due to impurities such as trace amounts of water contained in the raw material olefin, oxygen-containing compounds such as alcohols, ketones and ethers, and sulfur-containing compounds such as mercaptans and thiophenes It is known that the catalytic activity decreases with time due to caulking or the like, in which heavy substances by-produced during the reaction are deposited on the catalyst.
  • the impurities in the raw material olefin are sufficiently removed in advance by various operations such as distillation, hydrogenation, extraction or adsorption, or a gas containing oxygen is circulated at a high temperature inside the reactor, so that The catalyst activity is maintained by periodically performing a regeneration process of the catalyst for burning and removing poisonous substances or heavy substances adhering to the catalyst.
  • metathesis catalysts are extremely vulnerable to poisoning by impurities, and lose their activity rapidly due to the presence of trace amounts of impurities. Therefore, it is necessary to thoroughly refine the raw material olefin to remove impurities in the raw material olefin.
  • a purification method by adsorption is effective for removing a small amount of impurities. Specifically, it is a purification method by passing an unpurified raw material olefin through an adsorption purification tower packed with an inorganic material having high adsorption performance called an adsorbent.
  • Patent Document 3 describes that metathesis catalytic activity is remarkably improved by using magnesium oxide to remove a trace amount of impurities of unknown composition contained in the raw material olefin.
  • the performance of the adsorbent also decreases over time, so the gas containing oxygen is periodically circulated at a high temperature to burn and remove the adsorbent, or an inert gas such as nitrogen is circulated.
  • the performance can be maintained by the regeneration treatment for desorbing the catalyst from the catalyst.
  • the operation cycle consisting of the metathesis reaction process and the catalyst regeneration process is accelerated, and the regeneration process temperature is increased to shorten the time required for the regeneration process. It is also possible to repeat the method.
  • the surface area of isomerization catalysts such as magnesium oxide is greatly reduced when regenerated at a high temperature.
  • the surface area of the catalyst is one of the factors that determine the catalyst performance. The larger the surface area, the better the catalyst performance. Therefore, if the surface area of the catalyst is reduced due to the regeneration treatment at a high temperature, the catalyst activity is further lowered as a result. Therefore, a method that requires regeneration at a high temperature as described above is not realistic.
  • the present invention is a method for producing olefins by a metathesis reaction between the same or different olefins, and suppresses a decrease in metathesis catalytic activity due to impurities such as a small amount of a heteroatom-containing compound contained in the raw material olefin, and is stable and efficient.
  • An object of the present invention is to provide a method for producing olefins.
  • the activity of the metathesis catalyst can be stably maintained in the long term even if impurities such as a trace amount of heteroatom-containing compound are present in the raw material olefin.
  • No special equipment such as an adsorption purification tower for olefin purification is required, and olefins can be produced with significant advantages in terms of safety, process and economy.
  • the isomerization catalyst containing a hydrotalcite fired body or yttrium oxide has high thermal stability, the catalyst regeneration treatment temperature can be increased. As a result, the catalyst regeneration treatment time can be shortened, and hence the cycle between the metathesis reaction step and the catalyst regeneration treatment step can be accelerated, and olefins can be produced efficiently.
  • the method for producing olefin of the present invention comprises a raw material olefin containing one or more hetero atom-containing compounds of more than 0 ppm by weight and not more than 10 ppm by weight, a metathesis catalyst and an isomerization catalyst containing a hydrotalcite fired body or yttrium oxide. It is characterized in that it is fed into a coexisting reactor and subjected to metathesis reaction between the same or different olefins to produce olefins having different structures.
  • the raw material olefin used in the process for producing olefins contains one or more trace amounts of heteroatom-containing compounds within the above range as impurities.
  • impurities when such impurities are present in the raw material olefin, the metathesis catalytic activity is lowered, and it is difficult to stably produce the olefin in the long term. Therefore, in the conventional olefin production method, in the metathesis reaction between the same or different olefins, the decrease in metathesis catalyst activity is suppressed, and the olefin is stably produced in the long term, so that impurities in the raw material olefin are removed. A process was necessary and special equipment such as an adsorption purification tower was required.
  • the metathesis catalyst in the metathesis reaction between the same or different olefins, not only the metathesis catalyst, but also the hydrotalcite calcined product or the isomerization catalyst containing yttrium oxide coexists so that a trace amount in the raw material olefin. Even if it contains impurities, such as a hetero atom containing compound, degradation of a metathesis catalyst can be suppressed and metathesis reaction activity can be stably maintained over a long period of time. As a result, olefins having different structures can be stably and efficiently produced by a metathesis reaction between the same or different olefins.
  • the metathesis catalyst used in the present invention contains at least one metal element selected from the group consisting of tungsten, molybdenum and rhenium.
  • a metathesis catalyst containing tungsten is particularly preferable.
  • an oxide, sulfide, hydroxide, or the like can be used.
  • oxides such as WO 3 , MoO 3 or Re 2 O 7 are preferable, and WO 3 is more preferable.
  • oxides, sulfides or hydroxides can also be used by being supported on an inorganic compound called a carrier.
  • carrier For example, a silica, an alumina, or a titania can be used. Of these, silica is preferably used.
  • the supporting method can be any method known among those skilled in the art, and is not particularly limited.
  • the amount of the metal element supported on the support may be in the range of 0.01 wt% to 50 wt%, more preferably 0.1 wt% to 20 wt% in terms of oxide. It is a range.
  • the hydrotalcite fired body is obtained by firing hydrotalcite, which is a layered double hydroxide of magnesium and aluminum, represented by the following formula (i) at 300 ° C. or higher. MgO.Al 2 O 3 solid solution.
  • A is various anions
  • n is the valence of the anion A
  • x is usually in the range of 0.20 to 0.33.
  • m varies greatly depending on the degree of dehydration, it usually represents an integer of about 0 to 4.
  • anion A examples include carbonate ion, sulfate ion, hydroxide ion, fluoride ion, chloride ion, bromide ion, and iodide ion.
  • Examples of means for confirming the fired hydrotalcite include powder X-ray diffraction (XRD).
  • XRD powder X-ray diffraction
  • the fired hydrotalcite exhibits a broad peak at the same diffraction angle as magnesium oxide.
  • XRD measurement shows a diffraction peak attributed to hydrotalcite.
  • the isomerization catalyst used in the present invention contains the calcined hydrotalcite or yttrium oxide.
  • a hydrotalcite fired body or yttrium oxide may be used as it is, or a hydrotalcite fired body or yttrium oxide supported on an inorganic compound called a carrier may be used. Methods known to those skilled in the art can be used to obtain the hydrotalcite fired body or yttrium oxide.
  • a method of decomposing at high temperature after producing yttrium hydroxide or hydrotalcite by a precipitation method or a coprecipitation method, or a method of decomposing commercially available yttrium acetate, yttrium nitrate, yttrium carbonate or the like at high temperature can be used.
  • the loading method a method known among those skilled in the art can be used. Neither method limits the present invention.
  • carrier For example, a silica, an alumina, or a titania etc. can be used.
  • the shape of the metathesis catalyst and the isomerization catalyst (hereinafter, both catalysts are also simply referred to as “catalyst”) is not limited, and the size may be selected according to the size of the reactor. Also, the method for molding the catalyst is not particularly limited, and any method known among those skilled in the art can be used.
  • the metathesis catalyst and isomerization catalyst may be physically mixed, or the metathesis catalyst and isomerization catalyst may be supported on one carrier.
  • the composition ratio of the metathesis catalyst and the isomerization catalyst in the total catalyst is not particularly limited, but if the weight of the isomerization catalyst is 50% or more based on the total catalyst weight, the metathesis reaction tends to proceed efficiently. .
  • the temperature of the metathesis reaction is usually in the range of 25 to 500 ° C., preferably in the range of 100 to 400 ° C., and more preferably in the range of 200 to 350 ° C.
  • the pressure of the metathesis reaction is usually in the range of 0.1 to 20 MPaG, preferably in the range of 0.1 to 10 MPaG.
  • the amount of the catalyst to be used is not particularly limited.
  • a value obtained by dividing the total amount of raw material olefin per unit time (weight) divided by the weight of the metathesis catalyst, i.e. indicated by WHSV it is preferably in the range of 1 ⁇ 500h -1, more preferably in the range of 1 ⁇ 250h -1.
  • the reaction format of the metathesis reaction is not limited, but a gas-phase flow reaction is particularly preferable.
  • a catalyst filling method various methods such as a fixed bed, a fluidized bed, and a suspended bed are adopted, and any method may be used.
  • pretreatment for the metathesis reaction water, carbon dioxide, organic substances, etc. adhering to the catalyst are desorbed and removed by calcining the catalyst at a high temperature under an inert gas such as nitrogen, followed by reduction such as carbon monoxide and hydrogen. It is preferable to carry out a reduction treatment using a reactive gas to activate the catalyst.
  • the method for producing an olefin of the present invention may include a step of regenerating the metathesis catalyst and the isomerization catalyst at 500 ° C. or higher after the above-described metathesis reaction.
  • the catalyst regeneration treatment temperature is preferably 500 to 700 ° C, more preferably 500 to 600 ° C. When the catalyst regeneration treatment temperature is within the above range, the catalyst regeneration time can be shortened, and as a result, the olefin can be produced efficiently.
  • Examples of the catalyst regeneration treatment method include a method of circulating a gas containing oxygen at a temperature of 500 ° C. or higher in order to burn and remove poisonous substances or heavy substances attached to the catalyst during the reaction in a short time. . Any method known to those skilled in the art can be used as the catalyst regeneration treatment method, and any method is not intended to limit the present invention.
  • the type of raw material olefin used in the present invention is not particularly limited, but a lower olefin is preferred.
  • olefins include ethylene, propylene, 1-butene, 2-butene, 2-pentene, 2-hexene, 4-methyl-2-pentene, 3-methyl-1-butene, and the like. In the present invention, these can be used alone or in combination.
  • propylene can be produced from a raw material olefin combining ethylene and 2-butene
  • propylene and 1-butene can be obtained from a raw material olefin combining ethylene and 2-pentene.
  • Propylene and 1-pentene can be obtained from a raw material olefin combined with hexene
  • propylene and isobutene can be obtained from a raw material olefin combined with ethylene and 2-methyl-2-butene
  • Propylene and 3-methyl-1-butene can be obtained from a raw material olefin combined with methyl-2-pentene. Since this metathesis reaction is a reversible reaction, in the reactions exemplified above, it is possible to produce a raw material olefin from the above-mentioned generated olefin by selecting reaction conditions.
  • olefin is used as a reaction raw material, from the viewpoint of production efficiency, methane, ethane, propane, n-butane, isobutane, pentane, hexane, which are saturated hydrocarbon compounds in the raw material olefin, are used.
  • these alkanes may be contained in the raw material olefin.
  • the amount (molar ratio) of olefins contained in the raw materials is not particularly limited, but ethylene is contained in two or more olefins. In this case, it is preferable to make the content of ethylene contained in the raw material olefin excessive compared to other olefins.
  • the molar ratio of ethylene to n-butene (total of 1-butene and 2-butene) (ethylene / n-butene) is usually from 1 to 50 Within the range, preferably within the range of about 1 to 5. When this ratio is too small, priority is given to the reaction between butenes, and when this ratio is too large, a large amount of equipment and energy are required to recover unreacted ethylene.
  • the raw material olefin contains ethylene and n-butene
  • the metathesis reaction includes a metathesis reaction of ethylene and 2-butene
  • the resulting olefin contains propylene.
  • propylene can be efficiently obtained by a metathesis reaction between ethylene and 2-butene.
  • the n-butene may be 2-butene necessary for producing propylene by a metathesis reaction with ethylene, and is 1-butene isomerized to 2-butene in the reactor by the isomerization catalyst. There may be.
  • a C4 mixture containing n-butene may be used instead of n-butene.
  • the C4 mixture refers to a mixture of two or more C4 compounds such as C4 olefin and C4 paraffin, and includes n-butene as an essential component.
  • An example of the C4 mixture is C4 raffinate in which C4 olefin and C4 paraffin are mixed.
  • Examples of the C4 olefin include isobutene in addition to n-butene (1-butene, 2-butene).
  • the C4 paraffin include n-butane and isobutane.
  • n-butene (total of 1-butene and 2-butene) weight with respect to the total weight of the C4 mixture is preferably 10% or more, more preferably 20% or more.
  • C4 paraffins such as n-butane and isobutane do not participate in the metathesis reaction and can be contained in any proportion, but the weight of butane (total of n-butane and isobutane) is 90% or less based on the total weight of the C4 mixture. Is more preferable, and 80% or less is more preferable.
  • Isobutene forms a by-product by a metathesis reaction with 1-butene and 2-butene that coexist, but can be included in the C4 mixture unless it is extremely high in concentration.
  • the isobutene weight relative to the total weight of the C4 mixture is preferably 30% or less, more preferably 20% or less. Further, it is preferable that the C4 mixture is sufficiently removed by extraction or hydrogenation of dienes such as butadiene and further trienes.
  • the raw material olefin does not contain any impurities such as oxygen-containing compounds, sulfur-containing compounds, or other heteroatom-containing compounds that can be a catalyst poison. In practice, however, it is very difficult to obtain such raw olefins from a process and economic point of view.
  • a raw material olefin containing one or more hetero atom-containing compounds exceeding 0 ppm by weight and not exceeding 10 ppm by weight can be used.
  • the heteroatom-containing compound include oxygen-containing compounds and sulfur-containing compounds.
  • the concentration of the heteroatom-containing compound in the raw material olefin is more than 0 ppm by weight and 10 ppm by weight or less, preferably more than 0 ppm by weight and 3 ppm by weight or less, more preferably more than 0.1 ppm by weight. 1 ppm by weight or less.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol (IPA), n-butanol, isobutanol or tertiary butanol (TBA), acetone.
  • ketones such as methyl ethyl ketone (MEK), aldehydes typified by acetaldehyde, dimethyl ether (DME), diethyl ether (DEE), tertiary amyl methyl ether (TAME), methyl tertiary butyl ether (MTBE) or ethyl tertiary
  • MEK methyl ethyl ketone
  • DME dimethyl ether
  • DEE diethyl ether
  • TAME tertiary amyl methyl ether
  • MTBE methyl tertiary butyl ether
  • EBE ethyl tertiary
  • oxygen-containing compounds such as propanol, butanol, and acetone are highly likely to be contained in the raw material olefin, and because of their large polarity, they are easily adsorbed on the catalyst, and thus have a great influence on the catalyst activity.
  • COS carbonyl sulfide
  • hydrogen sulfide carbon disulfide
  • carbon disulfide methyl mercaptan
  • DMDS dimethyl disulfide
  • DEDS diethyl disulfide
  • Examples thereof include, but are not limited to, methyl ethyl sulfide (MES) or thiophene.
  • GC-MS gas chromatograph mass spectrometer
  • Karl Fischer method As a method for quantifying the concentrations of acetone, methanol, ethanol, n-propanol, IPA, and TBA, for example, a certain amount of raw olefin is passed through water, these impurities are absorbed and concentrated in water, and then FID-GC is added.
  • the raw material olefin may contain not only olefins used in the metathesis reaction, but also paraffins such as methane, ethane or propane, olefins other than olefins used in the metathesis reaction, and hydrogen and nitrogen.
  • the raw material olefin gas is preferably supplied into the reactor at a superficial velocity of 0.01 to 2.0 m / sec, and is preferably supplied into the reactor at 0.014 to 1.5 m / sec. Is more preferable.
  • the superficial velocity in the present invention will be described as a typical case where a plug-flow flow can be realized in a fixed bed reactor, and the raw olefin gas line when passing through the metathesis catalyst and isomerization catalyst in the reactor.
  • the speed is represented by the following formula (1).
  • a hydrotalcite fired body or an isomerization catalyst containing yttrium oxide in addition to the metathesis catalyst, can be used in combination to suppress deterioration of the catalyst and maintain the metathesis catalyst activity for a long period of time. . Therefore, in order to suppress a decrease in metathesis catalyst activity, it is not necessary to add a very small amount of hydrogen in the reaction system, and by-products of paraffin such as ethane and propane due to the addition of hydrogen can be suppressed.
  • the superficial velocity of the raw olefin gas is set in the high speed region as described above, the amount of adsorption of impurities such as heteroatom-containing compounds in the raw olefin to the catalyst decreases due to the diffusion effect in the reactor. As a result, deterioration of the catalyst is suppressed, metathesis catalyst activity is maintained for a long time, and olefin can be produced stably and efficiently.
  • Example 1 (Metathesis catalyst) A SiO 2 carrier (Fuji Silysia, CARiACT-Q10 molded product) was impregnated with ammonium metatungstate and then air-fired at 550 ° C. for 5 hours to obtain WO 3 / SiO 2 . The obtained WO 3 / SiO 2 was pulverized and classified to a size of 150 to 500 ⁇ m and used as a metathesis catalyst.
  • a catalyst layer is prepared by charging 1.2 g of the metathesis catalyst (WO 3 / SiO 2 ) and 3.38 g of the isomerization catalyst (hydrotalcite calcined product (Kyowa Chemical, KW-2000)) in the center of the reactor. Formed. The upper and lower portions of the reactor were filled with alumina balls to fix the catalyst layer.
  • the metathesis catalyst WO 3 / SiO 2
  • the isomerization catalyst hydrotalcite calcined product (Kyowa Chemical, KW-2000)
  • ethylene high-purity ethylene (purity: 99.9% or more) manufactured by Sumitomo Seika was used, and the company's own C4 mixture was used.
  • the main composition of the C4 mixture analyzed by FID-GC was as follows.
  • the trace impurities in the C4 mixture were as shown in Table 1.
  • ethylene and a C4 mixture were supplied into the reactor, and a metathesis reaction was performed at a reaction temperature of 300 ° C. and a reaction pressure of 3.5 MPaG.
  • Ethylene and C4 mixture such that the molar ratio of ethylene to n-butene (sum of 1-butene and 2-butene) (ethylene / n-butene) is 1.5 and the space velocity WHSV is 20 h -1
  • the supply amount (weight) per unit time was controlled.
  • the space velocity WHSV was a value represented by the ratio between the supply amount (weight) of ethylene and n-butene per unit time and the amount of metathesis catalyst (WO 3 / SiO 2 ) used.
  • the total feed amount (Fv) of the raw material olefin at a reaction temperature of 300 ° C. and a reaction pressure of 3.5 MPaG was 3.3 ⁇ 10 ⁇ 7 m 3 / sec.
  • the superficial velocity (Uavg) in the reactor determined by the above formula (1) from the reactor inner diameter (Di) and the total feed amount (Fv) of the raw material olefin was 0.0065 m / sec.
  • the n-butene conversion ratios after 2 hours and 20 hours from the start of the reaction were 70.4% and 70.5%, respectively, showing an equilibrium value, and 59.7% as high as 40 hours after the start of the reaction. It was. In either case, the main product was propylene.
  • the results are shown in Table 2.
  • the n-butene conversion rate was calculated from the ratio of n-butene consumed by the reaction.
  • the water concentration was analyzed by the Karl Fischer method, but was not detected.
  • DME dimethyl ether
  • MTBE methyl tertiary butyl ether
  • IPA isopropanol
  • TSA tertiary butanol
  • Example 2 Ammonia water was dropped into an aqueous yttrium nitrate solution to obtain a precipitate. The obtained precipitate was filtered and washed, and then calcined at 500 ° C. for 3 hours to prepare yttrium oxide (Y 2 O 3 ).
  • a reactor was formed in the same manner as in Example 1 except that 4.8 g was contained in the catalyst layer, and a metathesis reaction was carried out to produce propylene. Manufactured.
  • Example 1 A reactor was formed in the same manner as in Example 1 except that magnesium oxide (MgO, Kyowa Chemical, KM-150) was used as an isomerization catalyst and 4.8 g was contained in the catalyst layer, and a metathesis reaction was performed. Propylene was produced.
  • magnesium oxide MgO, Kyowa Chemical, KM-150
  • n-butene conversion rate after 2 hours from the start of the reaction was 70.5%, but decreased to 29.4% after 20 hours, and showed no activity after 40 hours from the start of the reaction.
  • the results are shown in Table 2.
  • Example 3 (Metathesis catalyst) WO 3 / SiO 2 prepared by the same method as in Example 1 was used as a metathesis catalyst without pulverization and classification.
  • the temperature was raised to 550 ° C. while circulating nitrogen gas from the top of the reactor, and the temperature was maintained for about 10 hours.
  • hydrogen gas and nitrogen gas were passed at the same temperature for 3 hours to reduce the catalyst, and then the temperature was lowered to 300 ° C., which was the reaction temperature.
  • the reaction gas was composed of ethylene and a C4 mixture, and the C4 mixture contained 2-butene (including cis and trans isomers), and isobutene, isobutane and n-butane in addition to 1-butene.
  • a typical C4 mixture composition contained 50-60% by weight of n-butene (sum of 2-butene and 1-butene).
  • Ethylene and C4 mixture were fed into the reactor at a rate of 2.1 kg / hr and 4.7 kg / hr, respectively.
  • the total feed amount (Fv) of the raw material olefin at a reaction temperature of 300 ° C. and a reaction pressure of 2.7 MPaG was 7.6 ⁇ 10 ⁇ 5 m 3 / sec. It was 24 h -1 in space velocity WHSV represented by the ratio of the sum of the feeding rates of ethylene and n-butene and the amount of metathesis catalyst (WO 3 / SiO 2 ) used.
  • the superficial velocity (Uavg) in the reactor determined by the above formula (1) from the reactor inner diameter (Di) and the total feed amount (Fv) of the raw material olefin was 0.055 m / sec.
  • N-Butene conversion 24 hours after the start of the reaction was 71%.
  • the n-butene conversion rate after 60 hours from the start of the reaction was 60%.
  • the results are shown in Table 3.
  • the gas at the reactor inlet and the reactor outlet was sampled at the same time and analyzed by FID-GC.
  • the concentration of n-butene (total of 2-butene and 1-butene) in the inlet gas and the outlet gas From the concentration of n-butene (total of 2-butene and 1-butene), the ratio of n-butene consumed by the reaction was calculated to obtain the n-butene conversion.
  • Example 4 A metathesis reaction was conducted in the same manner as in Example 3 except that yttrium oxide (Y 2 O 3 ) prepared by the same method as in Example 2 was used as an isomerization catalyst and 670 g was used in the catalyst layer. Propylene was produced.
  • Y 2 O 3 yttrium oxide
  • Example 2 Example in which magnesium oxide (MgO, Kyowa Chemical Co., Ltd., KM-150) was used as the isomerization catalyst instead of hydrotalcite fired body (made in-house), and 790 g was used in the catalyst layer. A metathesis reaction was carried out in the same manner as in Example 3 to produce propylene.
  • magnesium oxide MgO, Kyowa Chemical Co., Ltd., KM-150
  • hydrotalcite fired body made in-house
  • the thermal stability of the catalyst during catalyst regeneration was evaluated by the specific surface area retention rate (%) of the catalyst.
  • the higher the specific surface area retention (%) value the higher the thermal stability of the catalyst during catalyst regeneration.
  • the specific surface area retention (%) was a value obtained by dividing the specific surface area of the catalyst after calcination at 600 ° C. by the specific surface area of the catalyst after calcination at 500 ° C.
  • the specific surface area of the catalyst after calcination at 500 ° C. or 600 ° C. was determined as follows. First, the catalyst was air calcined at 500 ° C. or 600 ° C. for 24 hours.
  • the temperature elevation rate until reaching each temperature was 5 ° C./min, and air was circulated at a rate of 2 liters / min. After completion of firing, the mixture was cooled to room temperature, and the specific surface area was measured by a nitrogen adsorption method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

[課題]同種または異種のオレフィン同士のメタセシス反応によるオレフィンの製造方法において、原料オレフィン中に含まれる微量のヘテロ原子含有化合物などの不純物によるメタセシス触媒活性の低下を抑制し、安定的かつ効率的にオレフィンを製造する方法を提供する。 [解決手段]本発明のオレフィンの製造方法は、0重量ppmを超え10重量ppm以下のヘテロ原子含有化合物を一種以上含む原料オレフィンを、タングステン、モリブデンおよびレニウムよりなる群から選ばれる少なくとも一種類の金属元素を含むメタセシス触媒と、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒とが共存する反応器内に供給し、同種または異種のオレフィン同士のメタセシス反応を行うことを特徴とする。

Description

オレフィンの製造方法
 本発明は、同種または異種のオレフィン同士のメタセシス反応によるオレフィンの製造方法に関する。
 同種または異種のオレフィン同士が反応し、異なる構造のオレフィンを与えるメタセシス反応は、例えば、ナフサクラッカーからある一定の割合で生産されるエチレン、プロピレン、ブテン類を相互に変換し、オレフィンの需要構造の変化に対応することができるので大きな利益をもたらす。
 近年、メタセシス反応によるオレフィンの製造方法において、様々な改良が行われている。例えば特許文献1には、エチレンと2-ブテンとのメタセシス反応によるプロピレンの製造方法において、シリカ担体上に酸化タングステンを担持したWO3/SiO2触媒と、酸化マグネシウム触媒とからなる混合触媒を用いることによって、転化率を向上させることが開示されている。また、特許文献2には、エチレンとn-ブテンとのメタセシス反応によるプロピレンの製造方法において、メタセシス触媒と共触媒とからなる混合触媒とともに、少量の水素を共存させることによって、低温度領域でも工業的に充分な反応速度でメタセシス反応が進行することが開示されている。
 しかしながら、メタセシス反応に用いる触媒(以下「メタセシス触媒」とも記す。)の活性は、反応条件や使用する原料オレフィン、触媒の種類などにより程度は異なるものの、いずれも経時的に低下するという問題がある。特に、原料オレフィン中の不純物による触媒の被毒などで、触媒活性は急速に低下する。例えば、非特許文献1に記載されているように、原料オレフィン中に含まれる微量の水、アルコール、ケトン、エーテルといった含酸素化合物、メルカプタンやチオフェンといった含硫黄化合物などの不純物による触媒の被毒や、反応中に副生した重質物が触媒上に堆積するコーキングなどにより、触媒活性が経時的に低下することが知られている。
 これらの問題に対して、蒸留、水添、抽出あるいは吸着といった各種操作により予め原料オレフィン中の不純物を充分に除去することによって、あるいは反応器内部に酸素を含むガスを高温で流通させ、触媒上に付着した被毒物質もしくは重質物を燃焼除去する触媒の再生処理を定期的に施すことによって、触媒活性の維持が図られる。
 特に、メタセシス触媒は不純物による被毒に極めて弱く、極微量の不純物の存在によりその活性を急速に失う。そのため、原料オレフィンの精製を徹底的に実施し、原料オレフィン中の不純物を除去する必要がある。一般的に、微量の不純物除去には、吸着による精製方法が有効である。具体的には、吸着剤とよばれる吸着性能の高い無機材料を充填した吸着精製塔内に未精製の原料オレフィンを通過させることによる精製方法である。特許文献3には、原料オレフィン中に含まれる組成の不明な極微量の不純物の除去に酸化マグネシウムを用いることによって、メタセシス触媒活性が著しく向上することが記載されている。
 触媒と同様、吸着剤の性能も経時的に低下するため、定期的に高温で酸素を含むガスを流通させて吸着物質を燃焼除去するか、もしくは窒素などの不活性ガスを流通させて吸着物質を触媒から脱離させる再生処理によって、性能の維持が図られる。
 しかしながら、再生処理が不充分、もしくは吸着剤の経時的な劣化により、極めて微量の不純物が吸着除去されずメタセシス反応器に送られ、その結果、これら不純物が触媒を被毒してメタセシス触媒活性の著しい低下をまねくという問題がある。これに対し、吸着剤の交換頻度の増加、もしくは吸着精製塔の増設などによる対応が考えられるが、いずれもコストの大幅な増加を招く。
 その他の対応策として、メタセシス反応工程と触媒再生処理工程とからなる運転サイクルを早めるとともに、再生処理温度を上げて再生処理に要する時間を短縮することにより、短期間だが触媒活性の高い運転を頻繁に繰り返す方法も考えられる。しかしながら、特に酸化マグネシウムなどの異性化触媒は、高温で再生処理すると、表面積が大幅に減少する。触媒の表面積は、触媒性能を決定する因子の一つであり、より大きいほど触媒性能が優れている。そのため、高温での再生処理により触媒の表面積が減少すると、結果的に更なる触媒活性の低下をまねくことになる。したがって、上述のような高温で再生処理を要する方法は現実的ではない。
米国特許第4,575,575号明細書 国際公開第2006/093058号パンフレット 米国特許第3,658,929号明細書
Applied  Industrial  Catalysis Volume3,p.220
 本発明は、同種または異種のオレフィン同士のメタセシス反応によるオレフィンの製造方法において、原料オレフィン中に含まれる微量のヘテロ原子含有化合物などの不純物によるメタセシス触媒活性の低下を抑制し、安定的かつ効率的にオレフィンを製造する方法を提供することを目的とする。
 我々は鋭意検討を行った結果、同種または異種のオレフィン同士のメタセシス反応において、メタセシス触媒だけでなく、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒を共存させることにより、原料オレフィン中に含まれる微量のヘテロ原子含有化合物などの不純物によって引き起こされるメタセシス触媒活性の低下を抑制し、その結果、長期にわたって安定的かつ効率的にオレフィンを製造することが可能であることを見出した。この効果は、原料オレフィンのガスの空塔速度を、0.01~2.0m/秒の範囲内に設定することによって一層顕著となる。
 本発明のオレフィンの製造方法によれば、原料オレフィン中に微量のヘテロ原子含有化合物などの不純物が存在していても、長期的に安定してメタセシス触媒の活性を維持することができるため、原料オレフィン精製のための吸着精製塔など特別な設備を必要とせず、安全上、プロセス上および経済上著しく優位にオレフィンを製造することができる。さらに、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒は高い熱安定性を有するため、触媒再生処理温度を高くすることができる。その結果、触媒再生処理時間の短縮が可能となり、ひいてはメタセシス反応工程と触媒再生処理工程とのサイクルを早めることが可能となり、効率良くオレフィンを製造することができる。
 本発明のオレフィンの製造方法は、0重量ppmを超え10重量ppm以下のヘテロ原子含有化合物を一種以上含む原料オレフィンを、メタセシス触媒と、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒とが共存する反応器内に供給し、同種または異種のオレフィン同士のメタセシス反応を行い、異なる構造のオレフィンを製造することを特徴としている。
 通常、オレフィンの製造方法に用いる原料オレフィン中には、不純物として、上記範囲内のような微量のヘテロ原子含有化合物が一種以上含まれている。一般的に、このような不純物が原料オレフィン中に存在すると、メタセシス触媒活性の低下を引き起し、長期的に安定してオレフィンを製造することが困難となる。したがって、従来のオレフィンの製造方法では、同種または異種のオレフィン同士のメタセシス反応において、メタセシス触媒活性の低下を抑制し、長期的に安定してオレフィンを製造するため、原料オレフィン中の不純物を除去する工程が必要であり、吸着精製塔など特別な設備を必要としていた。
 本発明のオレフィンの製造方法では、同種または異種のオレフィン同士のメタセシス反応において、メタセシス触媒だけでなく、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒を共存させることにより、原料オレフィン中に微量のヘテロ原子含有化合物などの不純物を含んでいても、メタセシス触媒の劣化を抑制することができ、メタセシス反応活性を長期的に安定して維持することができる。結果として、同種または異種のオレフィン同士のメタセシス反応により、異なる構造のオレフィンを安定して効率良く製造することができる。
 本発明で使用するメタセシス触媒とは、タングステン、モリブデンおよびレニウムよりなる群から選ばれる金属元素を少なくとも1種類以上含むものである。中でもタングステンを含むメタセシス触媒が特に好ましい。タングステン、モリブデン、レニウムの構造に制限はなく、例えば酸化物、硫化物または水酸化物等を使用できる。中でも、WO3、MoO3またはRe27等の酸化物が好ましく、さらにはWO3が好ましい。また、これらの酸化物、硫化物または水酸化物等を担体とよばれる無機化合物に担持して使用することもできる。担体の種類についても制限はなく、例えば、シリカ、アルミナまたはチタニアなどを使用することができる。中でもシリカが好ましく使用される。担持方法は、当業者の間で公知の方法を用いることができ、特に制限されない。担体に対する金属元素の担持量は、例えば、酸化物の場合、酸化物換算で、0.01重量%~50重量%の範囲であれば良く、さらに好ましくは0.1重量%~20重量%の範囲である。
 本発明において、ハイドロタルサイト焼成体とは、以下に示す式(i)で表される、マグネシウムとアルミニウムとの層状複水酸化物であるハイドロタルサイトを、300℃以上で焼成することによって得られるMgO・Al23固溶体を指す。
    [Mg2+ 1-xAl3+ x(OH)2]x+ [(An-x/n・mH2O]x-・・・(i)
 但し、式(i)中、Aは各種アニオンであり、nはアニオンAの価数であり、xは通常0.20~0.33の範囲である。mは、脱水の程度により大きく異なるが、通常は0~4程度の整数を表す。
 アニオンAとして、例えば炭酸イオン、硫酸イオン、水酸化物イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどが挙げられる。
 ハイドロタルサイト焼成体を確認する手段として、例えば粉末X線回折法(XRD)が挙げられる。ハイドロタルサイト焼成体は酸化マグネシウムと同じ回折角度においてブロードなピークを示す。一方、ハイドロタルサイト焼成体を一晩水に浸漬させた後、100℃程度で乾燥させたものをXRD測定すると、ハイドロタルサイトに帰属される回折ピークを示す。
 本発明で使用する異性化触媒は、前記ハイドロタルサイト焼成体または酸化イットリウムを含むものである。前記異性化触媒としては、ハイドロタルサイト焼成体もしくは酸化イットリウムをそのまま用いてもよく、またはハイドロタルサイト焼成体もしくは酸化イットリウムを担体とよばれる無機化合物に担持したものを用いてもよい。ハイドロタルサイト焼成体または酸化イットリウムを得るには当業者の間で公知の方法を用いることができる。例えば沈殿法もしくは共沈法によって水酸化イットリウムまたはハイドロタルサイトを生成した後に高温で分解する方法や、市販の酢酸イットリウム、硝酸イットリウム、炭酸イットリウムなどを高温で分解する方法を用いることができる。担持方法についても、当業者の間で公知の方法を用いることができる。いずれの方法も本発明を制限するものではない。担体の種類についても制限はなく、例えば、シリカ、アルミナまたはチタニアなどを使用することができる。
 メタセシス触媒および異性化触媒(以下両触媒を併せて単に「触媒」とも記す。)とも、その形状に制限はなく、またその大きさも反応器の大きさに応じて選定すればよい。また、触媒を成型する方法も、当業者の間で公知の方法を用いることができ、特に制限されない。
 メタセシス触媒および異性化触媒は物理混合されてもよいし、1つの担体上にメタセシス触媒および異性化触媒が担持された構成とすることもできる。全触媒中に占めるメタセシス触媒と異性化触媒との構成比率について特に制限されないが、異性化触媒の重量が全触媒重量に対し50%以上であると、メタセシス反応が効率的に進行する傾向がある。
 メタセシス反応の温度は、通常25~500℃の範囲であり、好ましくは100~400℃の範囲であり、さらに好ましくは200~350℃の範囲である。メタセシス反応の温度が前記範囲内であると、原料オレフィン中に含まれるヘテロ原子含有化合物などの不純物の触媒への吸着量が減少するため、触媒の劣化が抑制され、メタセシス反応活性が長期間持続する傾向がある。特に反応温度が高いとその傾向がより顕著になる。メタセシス反応の圧力は、通常0.1~20MPaGの範囲であり、好ましくは0.1~10MPaGの範囲である。
 また、使用する触媒の量は特に制限されないが、例えば、固定床流通装置を用いてメタセシス反応を行う場合、単位時間あたりの原料オレフィン総供給量(重量)をメタセシス触媒の重量で割った値、即ちWHSVで示すと、1~500h-1の範囲であることが好ましく、さらに好ましくは1~250h-1の範囲である。
 メタセシス反応の反応形式は制限されないが、特に気相流通式反応が好ましい。触媒の充填方式としては、固定床、流動床、懸濁床等種々の方式が採用され、いずれの方式で実施してもよい。
 メタセシス反応の前処理として、窒素のような不活性ガス流通下で触媒を高温で焼成することにより触媒に付着した水や炭酸ガス、有機物等を脱離除去した後、一酸化炭素や水素といった還元性ガスを用いて還元処理を行い、触媒を活性化することが好ましい。これらの前処理方法は当業者の間で公知の方法を用いることができ、特に制限されない。
 本発明のオレフィンの製造方法は、上述のメタセシス反応後、前記メタセシス触媒および前記異性化触媒を500℃以上で再生処理する工程を含んでいてもよい。触媒再生処理温度は、500~700℃であることが好ましく、500~600℃であることがさらに好ましい。触媒再生処理温度が前記範囲内であると、触媒再生時間を短縮でき、結果としてオレフィンを効率良く製造することができる。
 上記触媒再生処理の方法としては、例えば、反応中に触媒に付着した被毒物質もしくは重質物を短時間で燃焼除去するために500℃以上の温度で酸素を含むガスを流通させる方法が挙げられる。触媒再生処理の方法は当業者の間で公知の方法を用いることができ、いずれの方法も本発明を制限するものではない。
 本発明で用いる原料オレフィンの種類としては、特に制限されないが、低級オレフィンが好ましい。このようなオレフィンの例としては、エチレン、プロピレン、1-ブテン、2-ブテン、2-ペンテン、2-ヘキセン、4-メチル-2-ペンテン、3-メチル-1-ブテンなどが挙げられる。本発明ではこれらを単独で或いは組み合わせて使用することができる。たとえば、エチレンと2-ブテンとを組み合わせた原料オレフィンからプロピレンを製造することができ、エチレンと2-ペンテンとを組み合わせた原料オレフィンからプロピレンと1-ブテンとを得ることができ、エチレンと2-ヘキセンとを組み合わせた原料オレフィンからプロピレンと1-ペンテンとを得ることができ、エチレンと2-メチル-2-ブテンとを組み合わせた原料オレフィンからプロピレンとイソブテンとを得ることができ、エチレンと4-メチル-2-ペンテンとを組み合わせた原料オレフィンからプロピレンと3-メチル-1-ブテンとを得ることができる。このメタセシス反応は可逆反応であるために、上記例示列挙した反応においては、反応条件を選定することにより、上述の生成オレフィンから原料オレフィンを製造することも可能である。
 このようにメタセシス反応においては、反応原料としてオレフィンが使用されるため、生産効率の観点からは原料オレフィン中に飽和炭化水素化合物である、メタン、エタン、プロパン、n-ブタン、イソブタン、ペンタン、ヘキサンなどは含有されていないことが望ましいが、アルカン類の存在によってメタセシス反応が阻害されることはないため、原料オレフィン中にこれらアルカン類が含有されていても構わない。
 二種類以上のオレフィンを原料としてメタセシス反応により新たなオレフィンを製造する場合、原料中に含有されるオレフィンの量(モル比)は特に限定されないが、二種類以上のオレフィンの内にエチレンが含有される場合には、原料オレフィン中に含有されるエチレンの含有率を他のオレフィンより過剰にすることが好ましい。例えば、エチレンと2-ブテンとからプロピレンを得る反応の場合、n-ブテン(1-ブテンと2-ブテンとの合計)に対するエチレンのモル比(エチレン/n-ブテン)は、通常は1~50の範囲内、好ましくは1~5程度の範囲内に設定する。この比が小さすぎるとブテン同士の反応が優先され、またこの比が大きすぎると未反応エチレンを回収するために多大な設備とエネルギーを要する。
 本発明のオレフィンの製造方法は、前記原料オレフィンがエチレンおよびn-ブテンを含み、前記メタセシス反応がエチレンと2-ブテンとのメタセシス反応を含み、得られるオレフィンがプロピレンを含むことが特に好ましい。本発明のオレフィンの製造方法において、前記原料オレフィン中にエチレンおよびn-ブテンが含まれていると、エチレンと2-ブテンとのメタセシス反応により、効率よくプロピレンを得ることができる。
 n-ブテンとしては、エチレンとのメタセシス反応によりプロピレンを生成するのに必要な2-ブテンであってもよく、上記異性化触媒によって反応器内で2-ブテンに異性化される1-ブテンであってもよい。また、n-ブテンの代わりに、n-ブテンを含むC4混合物を用いてもよい。本発明において、C4混合物は、C4オレフィン、C4パラフィンなどのC4化合物が2種以上混合したものをいい、n-ブテンを必須成分として含む。C4混合物の一例として、C4オレフィンとC4パラフィンとが混在するC4ラフィネートなどが挙げられる。前記C4オレフィンとしては、n-ブテン(1-ブテン、2-ブテン)以外にイソブテンが挙げられる。前記C4パラフィンとしては、n-ブタン、イソブタンが挙げられる。
 C4混合物全重量に対するn-ブテン(1-ブテンと2-ブテンとの合計)重量が10%以上であることが好ましく、さらに好ましくは20%以上である。n-ブタンやイソブタンといったC4パラフィンは、メタセシス反応に関与しないため任意の割合で含むことができるが、C4混合物全重量に対するブタン(n-ブタンとイソブタンとの合計)重量が90%以下であることが好ましく、さらに好ましくは80%以下である。イソブテンは、共存する1-ブテンや2-ブテンとのメタセシス反応によって副産物を生成するが、極端に高濃度でない限りはC4混合物中に含むことができる。C4混合物全重量に対するイソブテン重量は30%以下であることが好ましく、さらに好ましくは20%以下である。また、C4混合物は、ブタジエンのようなジエン類、さらにトリエン類は抽出もしくは水添により充分に除去されていることが好ましい。
 メタセシス反応にとって、原料オレフィン中に触媒毒となり得る含酸素化合物、含硫黄化合物またはその他のヘテロ原子含有化合物などの不純物を全く含まないことが理想的ではある。しかしながら、実際にはそのような原料オレフィンを得るのはプロセス上および経済上の観点から非常に困難である。
 本発明では、0重量ppmを超え10重量ppm以下のヘテロ原子含有化合物を一種以上含む原料オレフィンを用いることができる。前記ヘテロ原子含有化合物としては、含酸素化合物、含硫黄化合物などが挙げられる。原料オレフィン中のヘテロ原子含有化合物の濃度は0重量ppmを超えて10重量ppm以下であり、好ましくは0重量ppmを超えて3重量ppm以下であり、さらに好ましくは0.1重量ppmを超えて1重量ppm以下である。前記濃度範囲内のヘテロ原子含有化合物などの不純物が原料オレフィン中に含まれると、通常メタセシス触媒活性が著しく低下する。しかしながら、本発明では、メタセシス反応において、メタセシス触媒以外に、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒を併用することにより、原料オレフィン中に含まれる極微量のヘテロ原子含有化合物などの不純物によってもたらされるメタセシス触媒活性の著しい低下を抑制することが可能である。
 原料オレフィン中に含まれ得る含酸素化合物として、例えば水、二酸化炭素、またはメタノール、エタノール、n-プロパノール、イソプロパノール(IPA)、n-ブタノール、イソブタノールもしくはターシャリーブタノール(TBA)といったアルコール類、アセトンもしくはメチルエチルケトン(MEK)といったケトン類、アセトアルデヒドに代表されるアルデヒド類、さらにはジメチルエーテル(DME)、ジエチルエーテル(DEE)、ターシャリーアミルメチルエーテル(TAME)、メチルターシャリーブチルエーテル(MTBE)もしくはエチルターシャリーブチルエーテル(ETBE)といったエーテル類が挙げられるが、これらに限定されるものではない。特に、プロパノール、ブタノール、アセトンといった含酸素化合物は、原料オレフィンに含まれる可能性が高く、なおかつ極性が大きいため触媒に吸着しやすいので触媒活性に及ぼす影響が大きい。
 原料オレフィン中に含まれ得る含硫黄化合物として、例えば硫化カルボニル(COS)、硫化水素、二硫化炭素、メチルメルカプタン、エチルメルカプタン、ジメチルスルフィド(DMS)、ジメチルジスルフィド(DMDS)、ジエチルジスルフィド(DEDS)、メチルエチルスルフィド(MES)またはチオフェンなどが挙げられるが、これらに限定されるものではない。
 原料オレフィン中に含まれ得るその他のヘテロ原子含有化合物として、例えばアンモニア、ホスフィンまたはアルシンなどが挙げられるが、これらに限定されるものではない。
 原料オレフィン中の上記ヘテロ原子含有化合物の濃度を定量する方法は、各化合物に応じて各種公知の方法を用いることができる。例えば、DMEおよびMTBEの濃度を定量する方法としては、GC-MS(ガスクロマトグラフ質量分析計)が用いられる。水の濃度を定量する方法としては、カールフィッシャー法が挙げられる。またアセトン、メタノール、エタノール、n-プロパノール、IPA、TBAの濃度を定量する方法としては、例えば水に原料オレフィンを一定量通過させ、これら不純物を水中に吸収、濃縮させた後、FID-GCを用いて分析する方法が挙げられるが、いずれもこれらに限定されるものではない。
 これらのヘテロ原子含有化合物が原料オレフィン中に存在する場合であっても、メタセシス反応において、メタセシス触媒以外に、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒を併用することにより、触媒の劣化を抑制し、メタセシス触媒活性を長期間維持することができる。
 また、原料オレフィン中には、メタセシス反応に用いられるオレフィンだけでなく、メタン、エタンもしくはプロパンといったパラフィンやメタセシス反応に用いられるオレフィン以外のオレフィン、さらには水素や窒素を含有していても構わない。
 本発明では、前記原料オレフィンのガスを空塔速度0.01~2.0m/秒で反応器内に供給することが好ましく、0.014~1.5m/秒で反応器内に供給することがさらに好ましい。
 本発明における空塔速度は、固定床反応装置でなおかつプラグフロー的な流れが実現できる場合を代表として説明すると、反応装置内のメタセシス触媒および異性化触媒を通過する際の原料オレフィンのガスの線速であり、次式(1)で表される。
 [数1]
 Uavg(m/秒)=Fv/[π×(Di/2)2] ・・・(1)
    Uavg:空塔速度(m/秒)
    Fv:原料オレフィンの供給量(m3/秒)
    Di:反応装置の内径(m)
 我々は既に特願2007-118891において、反応系内に微量の水素を添加するとともに、上述のように空塔速度を高速領域に設定することにより、エタンやプロパンといったパラフィンの副生を最小限に抑えつつメタセシス触媒活性の低下を抑制する方法を見出しているが、それでも水素添加による微量のパラフィンの副生は免れない。
 本発明では、メタセシス反応において、メタセシス触媒以外に、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒を併用することにより、触媒の劣化を抑制し、メタセシス触媒活性を長期間維持することができる。したがって、メタセシス触媒活性の低下を抑制するために、反応系内に微量の水素を添加しなくてもよく、水素の添加によるエタン、プロパンといったパラフィンの副生を抑制することができる。さらに原料オレフィンのガスの空塔速度を上述のように高速領域に設定すると、反応器内の拡散効果により原料オレフィン中のヘテロ原子含有化合物などの不純物の触媒への吸着量が減少する。その結果、触媒の劣化が抑制され、メタセシス触媒活性が長期間持続し、安定的かつ効率的にオレフィンを製造することができる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
 (メタセシス触媒)
 SiO2担体(富士シリシア、CARiACT-Q10成型品)にメタタングステン酸アンモニウムを含浸担持した後、550℃で5時間空気焼成してWO3/SiO2を得た。得られたWO3/SiOを、150~500μmの大きさに粉砕分級したものをメタセシス触媒として用いた。
 (異性化触媒)
 ハイドロタルサイト焼成体(協和化学、KW-2000)の粉末を圧縮成型した後、150~500μmの大きさに粉砕分級したものを異性化触媒として用いた。
 (反応器)
 反応器として内径8mm、長さ420mmのステンレス管を用いた。
 前記メタセシス触媒(WO3/SiO)1.2gと、前記異性化触媒(ハイドロタルサイト焼成体(協和化学、KW-2000))3.38gとを前記反応器の中心に充填して触媒層を形成した。反応器の上部および下部にはアルミナボールを充填し、触媒層を固定した。
 (プロピレンの製造)
 エチレンおよびC4混合物を前記反応器に供給し、メタセシス反応を行ってプロピレンを製造した。以下、詳細に説明する。
 前記エチレンとしては住友精化製の高純度エチレン(純度99.9%以上)を使用し、前記C4混合物としては自社のものを使用した。FID-GCにより分析したC4混合物の主な組成は以下のとおりであった。また、C4混合物中の微量不純物は表1のとおりであった。
     ・C4混合物の主な組成
     n-ブテン(1-ブテンと2-ブテンとの合計) :50重量%
     ブタン(イソブタンとn-ブタンとの合計)   :36重量%
     イソブテン                  :13重量%
 まず、前記反応器内を、窒素ガスを流通させながら500℃まで昇温し、500℃で2時間水素ガスを流通させ、触媒を還元した後、反応温度である300℃まで降温した。
 次に、エチレンおよびC4混合物を前記反応器内に供給し、反応温度300℃、反応圧力3.5MPaGでメタセシス反応を行った。エチレンとn-ブテン(1-ブテンと2-ブテンとの合計)とのモル比(エチレン/n-ブテン)が1.5となり、かつ空間速度WHSVが20h-1となるようにエチレンおよびC4混合物の単位時間当たりの供給量(重量)をコントロールした。なお、空間速度WHSVは、エチレンおよびn-ブテンの単位時間当たりの供給量(重量)と、メタセシス触媒(WO3/SiO2)使用量との比によって表される値とした。
 反応温度300℃、反応圧力3.5MPaGにおける原料オレフィンの総供給量(Fv)は3.3×10-73/秒であった。反応器内径(Di)および原料オレフィンの総供給量(Fv)より上述の式(1)で求めた反応器内の空塔速度(Uavg)は、0.0065m/秒であった。
 反応開始2時間後および20時間後のn-ブテン転化率は、順に70.4%、70.5%といずれも平衡値を示し、反応開始40時間後でも59.7%と高い値を示した。いずれの場合も主生成物はプロピレンであった。結果を表2に示す。なお、n-ブテン転化率は、反応によって消費されたn-ブテンの割合から算出した。
Figure JPOXMLDOC01-appb-T000001
 (微量不純物濃度の分析方法)
 C4混合物中の微量不純物濃度は、各化合物に応じて以下のとおり分析した。
 水の濃度はカールフィッシャー法により分析したが、不検出であった。
 エーテル類であるジメチルエーテル(DME)およびメチルターシャリーブチルエーテル(MTBE)の濃度はGC-MSにより分析した。一方、ケトン類であるアセトン、アルコール類であるメタノール、エタノール、n-プロパノール、イソプロパノール(IPA)、n-ブタノール、ターシャリーブタノール(TBA)の濃度は、水にC4混合物100gを通過させることによりケトン類、アルコール類を水中に吸収、濃縮した後、FID-GCにより分析した。
 分析の結果、アセトンおよびイソプロパノール(IPA)に関してはピークの存在が確認され、アセトンの濃度は、0.2重量ppm、IPAの濃度は、0.7重量ppmであった。他の不純物については、ピークが検出されなかった。
 [実施例2]
 硝酸イットリウム水溶液にアンモニア水を滴下して沈殿物を得た。得られた沈殿物をろ過、洗浄後、500℃で3時間焼成することにより、酸化イットリウム(Y23)を調製した。
 前記調製した酸化イットリウム(Y23)を、異性化触媒として用いて、触媒層に4.8g含有させた以外は実施例1と同様にして反応器を形成し、メタセシス反応を行ってプロピレンを製造した。
 反応開始2時間後および20時間後のn-ブテン転化率は、順に70.3%、70.4%といずれも平衡値を示し、反応開始40時間後でも64.3%と高い値を示した。結果を表2に示す。
 [比較例1]
 酸化マグネシウム(MgO、協和化学、KM-150)を、異性化触媒として用いて、触媒層に4.8g含有させた以外は実施例1と同様にして反応器を形成し、メタセシス反応を行ってプロピレンを製造した。
 反応開始2時間後のn-ブテン転化率は70.5%であったが、20時間後には29.4%まで低下し、反応開始40時間後では全く活性を示さなかった。結果を表2に示す。
 [参考例1]
 実施例1で使用したものと同じC4混合物を過剰量のγ―アルミナ(住友化学、NKHD-24)で前処理精製した以外は比較例1と同様にしてメタセシス反応を行ってプロピレンを製造した。なお、精製後のC4混合物を分析したところ、精製前に確認されたアセトンおよびイソプロパノール(IPA)のピークは検出されなかった。
 反応開始2時間後、20時間後および40時間後のn-ブテン転化率は、順に70.5%、70.4%、70.5%といずれも平衡値を示した。結果を表2に示す。この結果は、C4混合物中の微量不純物を徹底的に除去すればメタセシス触媒活性が著しく改善されることを示唆しており、言い換えれば今回用いたC4混合物中における微量不純物の存在を示唆するものである。
Figure JPOXMLDOC01-appb-T000002
 [実施例3]
 (メタセシス触媒)
 実施例1と同様の方法で調製したWO3/SiO2を、粉砕分級することなくメタセシス触媒として用いた。
 (異性化触媒)
 ハイドロタルサイト焼成体(自社製)を打錠成型したものを異性化触媒として用いた。
 (反応器)
 反応器として外径48.6mm、内径41.2mm、長さ2mのSUS製円筒状反応器を用いた。
 前記メタセシス触媒(WO3/SiO2)180gと、前記異性化触媒(ハイドロタルサイト焼成体(自社製))610gとを前記反応器の中心に充填して触媒層を形成した。反応器の上部および下部にはアルミナボールを充填し、触媒層を固定した。このときの触媒層高は約1mであった。
 (プロピレンの製造)
 エチレンおよびC4混合物を前記反応器に供給し、メタセシス反応を行ってプロピレンを製造した。以下、詳細に説明する。
 まず、常圧下、前記反応器の上部から窒素ガスを流通させながら550℃まで昇温し、約10時間保持した。次いで、同一温度で水素ガスおよび窒素ガスを3時間流通させて触媒を還元した後、反応温度である300℃まで降温した。
 次に反応器内を2.7MPaGに保圧して、反応温度300℃で反応を開始した。
 前記反応ガスは、エチレンおよびC4混合物から構成され、C4混合物中には2-ブテン(シス体、トランス体を含む)、1-ブテン以外にイソブテン、イソブタン、n-ブタンが含まれていた。典型的なC4混合物の組成は、n-ブテン(2-ブテンと1-ブテンとの合計)を50~60重量%含んでいた。
 エチレンおよびC4混合物をそれぞれ2.1kg/時間、4.7kg/時間の速度で、反応器内に供給した。反応温度300℃、反応圧力2.7MPaGにおける原料オレフィンの総供給量(Fv)は7.6×10-53/秒であった。エチレンおよびn-ブテンの前記供給速度の和と、メタセシス触媒(WO3/SiO2)使用量との比によって表される空間速度WHSVで表すと、24h-1であった。また、反応器内径(Di)および原料オレフィンの総供給量(Fv)より上述の式(1)で求めた反応器内の空塔速度(Uavg)は、0.055m/秒であった。
 反応開始24時間後のn-ブテン転化率は71%であった。さらに継続して反応を行ったところ、反応開始500時間後のn-ブテン転化率は60%であった。結果を表3に示す。なお、反応器入口および反応器出口のガスを同時刻にサンプリングしてFID-GCで分析し、入口ガス中のn-ブテン(2-ブテンと1-ブテンとの合計)濃度と、出口ガス中のn-ブテン(2-ブテンと1-ブテンとの合計)濃度から、反応によって消費されたn-ブテンの割合を算出してn-ブテン転化率を得た。
  [実施例4]
 実施例2と同様の方法で調製した酸化イットリウム(Y23)を、押し出し成型したものを異性化触媒とし、触媒層中に670g用いた以外は実施例3と同様にしてメタセシス反応を行い、プロピレンを製造した。
 反応開始24時間後のn-ブテン転化率は70.3%であった。さらに継続して反応を行ったところ、反応開始500時間後のn-ブテン転化率は58.7%であった。結果を表3に示す。
 [比較例2]
 異性化触媒として、ハイドロタルサイト焼成体(自社製)の代わりに、酸化マグネシウム(MgO、協和化学、KM-150)を打錠成型したものを用い、触媒層中に790g用いた以外は実施例3と同様にしてメタセシス反応を行い、プロピレンを製造した。
 反応開始24時間後のブテン転化率は70%であったが、反応開始500時間後のブテン転化率は40%まで低下した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 [触媒再生時の触媒の熱安定性の評価]
 触媒再生時の触媒の熱安定性を、触媒の比表面積保持率(%)によって評価した。比表面積保持率(%)の値が高いほど、触媒再生時の触媒の熱安定性が高いことを示す。比表面積保持率(%)は、600℃焼成後の触媒の比表面積を500℃焼成後の触媒の比表面積で割って得られた値とした。500℃もしくは600℃焼成後の触媒の比表面積は、以下のように求めた。まず、触媒を500℃もしくは600℃で24時間空気焼成した。各温度に到達するまでの昇温速度は5℃/分で、空気を2リットル/分の速度で流通させた。焼成終了後に室温まで冷却し、窒素吸着法による比表面積測定を行った。
 (評価1)
 触媒としてハイドロタルサイト焼成体(協和化学、KW-2000)を用いて、上述のとおり触媒再生時の触媒の熱安定性を評価した。結果を表4に示す。
 (評価2)
 触媒として実施例2で調製した酸化イットリウム(Y23)を用いて、上述のとおり触媒再生時の触媒の熱安定性を評価した。結果を表4に示す。
 (評価3)
 触媒として酸化マグネシウム(MgO、協和化学、KM-150)を用いて、上述のとおり触媒再生時の触媒の熱安定性を評価した。結果を表4に示す。酸化マグネシウム(MgO)の比表面積保持率は46%と、ハイドロタルサイト焼成体に比べて著しく低い値を示した。
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  0重量ppmを超え10重量ppm以下のヘテロ原子含有化合物を一種以上含む原料オレフィンを、タングステン、モリブデンおよびレニウムよりなる群から選ばれる少なくとも一種類の金属元素を含むメタセシス触媒と、ハイドロタルサイト焼成体または酸化イットリウムを含む異性化触媒とが共存する反応器内に供給し、同種または異種のオレフィン同士のメタセシス反応を行い、異なる構造のオレフィンを得ることを特徴とするオレフィンの製造方法。
  2.  前記ヘテロ原子含有化合物が含酸素化合物であることを特徴とする請求項1に記載のオレフィンの製造方法。
  3.  前記含酸素化合物がアルコール類、エーテル類またはケトン類であることを特徴とする請求項2に記載のオレフィンの製造方法。
  4.  前記含酸素化合物がプロパノール、ブタノールまたはアセトンであることを特徴とする請求項2または3に記載のオレフィンの製造方法。
  5.  前記ヘテロ原子含有化合物の濃度が0.1~1重量ppmであることを特徴とする請求項1~4のいずれか一項に記載のオレフィンの製造方法。
  6.  前記原料オレフィンのガスを空塔速度0.01~2.0m/秒で反応器内に供給することを特徴とする請求項1~5のいずれか一項に記載のオレフィンの製造方法。
  7.  前記メタセシス触媒がタングステンを含むことを特徴とする請求項1~6のいずれか一項に記載のオレフィンの製造方法。
  8.  前記メタセシス触媒および前記異性化触媒を500℃以上で再生処理する工程を含むことを特徴とする請求項1~7のいずれか一項に記載のオレフィンの製造方法。
  9.  前記原料オレフィンがエチレンおよびn-ブテンを含み、前記メタセシス反応がエチレンと2-ブテンとのメタセシス反応を含み、得られるオレフィンがプロピレン含むことを特徴とする請求項1~8のいずれか一項に記載のオレフィンの製造方法。
PCT/JP2009/064934 2008-08-28 2009-08-27 オレフィンの製造方法 WO2010024319A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010526752A JP5432905B2 (ja) 2008-08-28 2009-08-27 オレフィンの製造方法
US13/060,578 US8299313B2 (en) 2008-08-28 2009-08-27 Olefin production process
KR1020117003643A KR101258347B1 (ko) 2008-08-28 2009-08-27 올레핀의 제조 방법
EP09809969A EP2330091A4 (en) 2008-08-28 2009-08-27 PREPARATION FOR OLEFIN
CN2009801328580A CN102131752A (zh) 2008-08-28 2009-08-27 烯烃制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-219626 2008-08-28
JP2008219626 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010024319A1 true WO2010024319A1 (ja) 2010-03-04

Family

ID=41721485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064934 WO2010024319A1 (ja) 2008-08-28 2009-08-27 オレフィンの製造方法

Country Status (8)

Country Link
US (1) US8299313B2 (ja)
EP (1) EP2330091A4 (ja)
JP (1) JP5432905B2 (ja)
KR (1) KR101258347B1 (ja)
CN (1) CN102131752A (ja)
MY (1) MY150586A (ja)
TW (1) TW201016657A (ja)
WO (1) WO2010024319A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525361A (ja) * 2010-04-26 2013-06-20 サウディ ベーシック インダストリーズ コーポレイション メタセシスおよび芳香族化による、ブテン類からのプロピレンおよび芳香族化合物の製造法
WO2014054185A1 (ja) 2012-10-06 2014-04-10 クラリアント触媒株式会社 オレフィンメタセシス反応用混合触媒およびその製造方法並びにそれを用いたプロピレン製造方法
JP2018505047A (ja) * 2015-01-30 2018-02-22 エスエムエイチ カンパニー,リミテッド オレフィンを製造するための触媒及びプロセス

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163267B2 (en) * 2012-04-11 2015-10-20 REG Life Sciences, LLC Metathesis transformations of microbially-produced fatty acids and fatty acid derivatives
CN105378486B (zh) 2013-06-14 2024-05-14 基因组股份公司 生产omega-羟基化的脂肪酸衍生物的方法
EP3690035A3 (en) 2014-06-16 2020-10-21 Genomatica, Inc. Omega-hydroxylase-related fusion polypeptides with improved properties
US9834497B2 (en) 2015-07-02 2017-12-05 Saudi Arabian Oil Company Systems and methods for producing propylene
KR102178406B1 (ko) 2015-07-02 2020-11-16 사우디 아라비안 오일 컴퍼니 프로필렌 제조용의 이중 촉매 시스템
CN107921425B (zh) 2015-07-02 2021-11-30 沙特阿拉伯石油公司 使用介孔二氧化硅泡沫复分解催化剂生产丙烯
EP3317236B1 (en) 2015-07-02 2019-09-18 Saudi Arabian Oil Company Methods for producing propylene
WO2017101987A1 (en) 2015-12-15 2017-06-22 REG Life Sciences, LLC Omega-hydroxylase-related fusion polypeptide variants with improved properties
MY185577A (en) * 2016-01-29 2021-05-22 Lyondell Chemical Tech Lp Catalysts and methods for producing propylene from ethylene and butene
US10329225B2 (en) 2017-01-20 2019-06-25 Saudi Arabian Oil Company Dual catalyst processes and systems for propylene production
US10934231B2 (en) 2017-01-20 2021-03-02 Saudi Arabian Oil Company Multiple-stage catalyst systems and processes for propene production
US10550048B2 (en) 2017-01-20 2020-02-04 Saudi Arabian Oil Company Multiple-stage catalyst system for self-metathesis with controlled isomerization and cracking
US11242299B2 (en) 2018-10-10 2022-02-08 Saudi Arabian Oil Company Catalyst systems that include metal oxide co-catalysts for the production of propylene
US10961171B2 (en) 2018-10-10 2021-03-30 Saudi Arabian Oil Company Catalysts systems that include metal co-catalysts for the production of propylene
US11311869B2 (en) 2019-12-03 2022-04-26 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11517892B2 (en) 2019-12-03 2022-12-06 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11339332B2 (en) 2020-01-29 2022-05-24 Saudi Arabian Oil Company Systems and processes integrating fluidized catalytic cracking with metathesis for producing olefins
US11572516B2 (en) 2020-03-26 2023-02-07 Saudi Arabian Oil Company Systems and processes integrating steam cracking with dual catalyst metathesis for producing olefins
US11679378B2 (en) 2021-02-25 2023-06-20 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11845705B2 (en) 2021-08-17 2023-12-19 Saudi Arabian Oil Company Processes integrating hydrocarbon cracking with metathesis for producing propene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658929A (en) 1970-11-16 1972-04-25 Phillips Petroleum Co Conversion of olefins
US4575575A (en) 1984-04-05 1986-03-11 Phillips Petroleum Company Catalysts and process for olefin conversion
WO2006093058A1 (ja) 2005-03-03 2006-09-08 Mitsui Chemicals, Inc. オレフィン類の製造方法
JP2007118891A (ja) 2005-10-31 2007-05-17 Japan Aerospace Exploration Agency リフトファン垂直離着陸機及びその姿勢運動制御方法
WO2007055361A1 (ja) * 2005-11-14 2007-05-18 Mitsui Chemicals, Inc. バイオマス由来の炭素を含むプロピレンの製造方法
WO2008136280A1 (ja) * 2007-04-27 2008-11-13 Mitsui Chemicals, Inc. オレフィンの製造方法
WO2009013964A1 (ja) * 2007-07-26 2009-01-29 Mitsui Chemicals, Inc. メタセシス触媒の再活性化方法およびその再活性化工程を含むオレフィン類の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120894A (en) * 1988-09-19 1992-06-09 Lyondell Petrochemical Company Olefin conversion process
US6683019B2 (en) 2001-06-13 2004-01-27 Abb Lummus Global Inc. Catalyst for the metathesis of olefin(s)
US20050124839A1 (en) 2001-06-13 2005-06-09 Gartside Robert J. Catalyst and process for the metathesis of ethylene and butene to produce propylene
US7214841B2 (en) 2003-07-15 2007-05-08 Abb Lummus Global Inc. Processing C4 olefin streams for the maximum production of propylene
DE10360026A1 (de) 2003-12-19 2005-07-21 Basf Ag Verfahren zur Herstellung von Alkylaryl-Verbindungen
DE102004049940A1 (de) 2004-10-13 2006-04-20 Basf Ag Verfahren zur Herstellung eines C4-Olefin-Gemisches durch Selektivhydrierung und Metatheseverfahren zur Verwendung dieses Stroms
FR2880018B1 (fr) 2004-12-27 2007-02-23 Inst Francais Du Petrole Production de propylene mettant en oeuvre la dimerisation de l'ethylene en butene-1, l'hydro-isomerisation en butene-2 et la metathese par l'ethylene
DE102005009596A1 (de) 2005-02-28 2006-08-31 Basf Ag Verfahren zur Metathese umfassend die Reinigung der Ausgangsstoffe
US20080146856A1 (en) 2006-12-19 2008-06-19 Leyshon David W Propylene production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658929A (en) 1970-11-16 1972-04-25 Phillips Petroleum Co Conversion of olefins
US4575575A (en) 1984-04-05 1986-03-11 Phillips Petroleum Company Catalysts and process for olefin conversion
WO2006093058A1 (ja) 2005-03-03 2006-09-08 Mitsui Chemicals, Inc. オレフィン類の製造方法
JP2007118891A (ja) 2005-10-31 2007-05-17 Japan Aerospace Exploration Agency リフトファン垂直離着陸機及びその姿勢運動制御方法
WO2007055361A1 (ja) * 2005-11-14 2007-05-18 Mitsui Chemicals, Inc. バイオマス由来の炭素を含むプロピレンの製造方法
WO2008136280A1 (ja) * 2007-04-27 2008-11-13 Mitsui Chemicals, Inc. オレフィンの製造方法
WO2009013964A1 (ja) * 2007-07-26 2009-01-29 Mitsui Chemicals, Inc. メタセシス触媒の再活性化方法およびその再活性化工程を含むオレフィン類の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED INDUSTRIAL CATALYSIS, vol. 3, pages 220
See also references of EP2330091A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525361A (ja) * 2010-04-26 2013-06-20 サウディ ベーシック インダストリーズ コーポレイション メタセシスおよび芳香族化による、ブテン類からのプロピレンおよび芳香族化合物の製造法
WO2014054185A1 (ja) 2012-10-06 2014-04-10 クラリアント触媒株式会社 オレフィンメタセシス反応用混合触媒およびその製造方法並びにそれを用いたプロピレン製造方法
US10328417B2 (en) 2012-10-06 2019-06-25 Clariant Catalysts (Japan) K.K. Catalyst mixture for olefin metathesis reactions, method of producing same, and method of producing propylene using same
JP2018505047A (ja) * 2015-01-30 2018-02-22 エスエムエイチ カンパニー,リミテッド オレフィンを製造するための触媒及びプロセス

Also Published As

Publication number Publication date
US8299313B2 (en) 2012-10-30
US20110152595A1 (en) 2011-06-23
KR101258347B1 (ko) 2013-04-30
EP2330091A1 (en) 2011-06-08
CN102131752A (zh) 2011-07-20
JPWO2010024319A1 (ja) 2012-01-26
KR20110043674A (ko) 2011-04-27
MY150586A (en) 2014-01-30
EP2330091A4 (en) 2013-02-06
JP5432905B2 (ja) 2014-03-05
TW201016657A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
JP5432905B2 (ja) オレフィンの製造方法
US20180093933A1 (en) Catalyst and Process for Olefin Metathesis Reaction
JP5584791B2 (ja) オレフィンの製造方法
US9713804B2 (en) Catalyst composition for the dehydrogenation of alkanes
JP5385972B2 (ja) オレフィンの製造方法
JP6595606B2 (ja) オレフィンを製造するための触媒及びプロセス
EP2184106A1 (en) Process for reactivation of metathesis catalysts and process for production of olefins comprising the reactivation
JP7174947B2 (ja) 固体触媒およびブタジエンの製造方法
JP6446033B2 (ja) 不飽和炭化水素の製造方法
JP7160604B2 (ja) 1,3-ブタジエン及びアセトアルデヒドジエチルアセタールの製造方法
JP2010018556A (ja) エタノールからの低級オレフィンの製造方法
WO2014054185A1 (ja) オレフィンメタセシス反応用混合触媒およびその製造方法並びにそれを用いたプロピレン製造方法
US11517892B2 (en) Methods of producing isomerization catalysts
CN105408013A (zh) 用于烯烃生产的改进催化剂床配置
KR102544676B1 (ko) 알킬할라이드로부터 경질 올레핀 제조용 촉매 및 이를 이용한 경질올레핀 제조방법
US11352307B2 (en) Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene
RU2377066C1 (ru) Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132858.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526752

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117003643

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13060578

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809969

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1676/DELNP/2011

Country of ref document: IN