RU2377066C1 - Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения - Google Patents

Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения Download PDF

Info

Publication number
RU2377066C1
RU2377066C1 RU2008148410/04A RU2008148410A RU2377066C1 RU 2377066 C1 RU2377066 C1 RU 2377066C1 RU 2008148410/04 A RU2008148410/04 A RU 2008148410/04A RU 2008148410 A RU2008148410 A RU 2008148410A RU 2377066 C1 RU2377066 C1 RU 2377066C1
Authority
RU
Russia
Prior art keywords
catalyst
carrier
isopentane
dehydrogenation
hours
Prior art date
Application number
RU2008148410/04A
Other languages
English (en)
Inventor
Александр Адольфович Ламберов (RU)
Александр Адольфович Ламберов
Владимир Михайлович Бусыгин (RU)
Владимир Михайлович Бусыгин
Хамит Хамисович Гильманов (RU)
Хамит Хамисович ГИЛЬМАНОВ
Разия Гусмановна Романова (RU)
Разия Гусмановна Романова
Original Assignee
Александр Адольфович Ламберов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Адольфович Ламберов filed Critical Александр Адольфович Ламберов
Priority to RU2008148410/04A priority Critical patent/RU2377066C1/ru
Application granted granted Critical
Publication of RU2377066C1 publication Critical patent/RU2377066C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

Изобретение относится к области органической химии и нефтехимии, в частности к разработке и использованию катализаторов. Описан катализатор для дегидрирования изопентана и изопентан-изоамиленовых фракций на основе платины и олова, нанесенных на носитель - алюмоцинковую шпинель, отличающийся тем, что носитель представляет собой нанокристаллические частицы со средним размером кристаллитов 22-35 нм при следующем содержании компонентов, мас.%: платина 0,05-2,0, олово 0,1-6,0, алюмоцинковая шпинель остальное. Также описан способ получения вышеуказанного катализатора, включающий измельчение и перемешивание кислородсодержащих соединений цинка и алюминия, постепенное добавление воды до получения однородной пастообразной массы, перемешивание и формирование, сушку гранул при комнатной температуре и прокаливание, последующую пропитку образовавшегося носителя водным раствором соединений платины и олова, окончательную сушку на воздухе катализаторной массы, отличающийся тем, что прокаливание носителя проводят в режиме постепенного подъема температуры до 800-900°С со скоростью 10-200°С/час, затем в течение 5-40 часов при 850-1000°С при постоянном контроле размеров частиц образующихся кристаллитов до образования нанокристаллических частиц со средним размером кристаллитов 22-35 нм. Технический результат - повышение эффективности процесса дегидрирования за счет увеличения выхода изопрена, при высокой селективности по продуктам дегидрирования, а также за счет увеличения межрегенерационного периода катализатора. 2 н. и 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области органической химии и нефтехимии, в частности к разработке и использованию катализаторов дегидрирования парафиновых углеводородов фракции C3-C5 и соответствующих олефиновых углеводородов для получения диеновых углеводородов, в частности изопрена.
Процессы дегидрирования парафиновых углеводородов относятся к наиболее крупнотоннажным в технологиях нефтехимического и органического синтеза, позволяют получать ненасыщенные соединения, применяемые в качестве мономеров для производства синтетических каучуков, пластмасс, высокооктановых компонентов топлив и других ценных продуктов.
Реакция дегидрирования парафинов с образованием моно- и диолефинов протекает в присутствии катализаторов при температуре выше 500°C. Процесс регулируется термодинамическим равновесием и осуществляется двумя способами, в основе которых лежит принцип смещения равновесия в результате снижения парциального давления исходных компонентов путем либо создания вакуума, либо разбавления сырья инертным газом.
Известен катализатор, разработанный фирмой Гудри, применяемый в процессе одностадийного вакуумного дегидрирования изопентана или изопентан-изоамиленовых фракций [Огородников С.К., Идлис Г.С. Производство изопрена. Л.: Химия. 1973, С.133-171; US 3088986, А1, 1963.05.07]. Катализатор представляет собой таблетки размером 4×4 мм, состоящие, из оксида алюминия, пропитанного 20 мас.% оксидом хрома. В присутствии данного катализатора процесс протекает при температуре 535-650°С, давлении 0,16-0,21, МПа. После каждого цикла проводят восстановление водородом в течение 5-9 мин. Выход изопрена на пропущенное сырье (изопентан) составляет 12,8 мас.% при селективности около 52% и конверсии 30%.
Основным недостатком данного катализатора является то, что установленный срок его эксплуатации составляет всего 6 месяцев. После выгрузки из реактора катализатор должен быть утилизирован, а наличие токсичного вещества в виде соединений хрома в составе катализатора сохраняет проблему экологической опасности. Существенным недостатком является также короткий цикл работы катализатора (5-9 минут), после чего его необходимо регенерировать. Кроме того, процесс проводится в условиях вакуума, что существенно усложняет технологическую схему и имеет низкие показатели выхода изопрена, селективности и конверсии.
Для снижения коксообразования и уменьшения доли побочных реакций предложен катализатор, включающий также оксид хрома, где в качестве носителя используют алюмоцинковую шпинель [RU 2188073, C2, 2002.08.27]. Катализатор имеет следующее содержание компонентов в пересчете на оксиды, мас.%: Cr2O3 10,0-30,0, ZnO 30,0-45,0, Al2O3 остальное.
Для повышения эффективности процесса дегидрирования парафиновых углеводородов, а именно изобутана и пропана, предложен катализатор, в который дополнительно вводятся активные компоненты в виде оксида олова и платины [RU 2183988, C1, 2002.06.27], имеющий следующий состав, мас.%: Cr2O3 10,0-30,0, ZnO 30,0-45,0, SnO2 0,1-3,0, Pt 0,005-0,2, Al2O3 остальное. Носитель получают путем длительного (2-16 часов) перемешивания оксидов алюминия и цинка, оксалата или оксида олова и воды в шаровой либо бисерной мельнице при температуре 20-50°C с последующей термической обработкой образовавшейся суспензии в течение 6 часов при 120°C и прокаливании в течение 3-4 часов при 1050-1100°C в токе воздуха. Далее получают микросферический катализатор с диаметром частиц 5-250 микрон методом распыления-сушки суспензии, состоящей из носителя, оксида хрома (VI), раствора платинохлористоводородной кислоты и воды при перемешивании в течение 2-5 часов при температуре 20-50°С. Катализатор подвергают термообработке, состоящей из прокаливания при 680-760°C в течение 3-5 часов в токе воздуха.
Недостатком перечисленных выше катализаторов является содержание в них токсичного соединения Cr2O3, являющегося источником экологического загрязнения окружающей среды.
Известно использование в качестве катализатора дегидрирования парафиновых углеводородов при атмосферном давлении в среде водяного пара платиносодержащих катализаторов, получаемых путем нанесения соединений платины и олова на шпинельные носители [SU 1001545 А1, 2000.08.27; SU 1103405 A1, 2000.05.27; SU 1511894 A1, 1999.10.20; SU 665625 A1, 2001.06.10; SU 635652 A1, 2001.04.10].
Для повышения активности и селективности в отношении образования диеновых и олефиновых углеводородов на стадии смешения гидроокиси алюминия с окисью цинка в катализатор вводят соединения щелочного металла в виде орто- или пирофосфата калия или цезия [SU 1001545 A1, 2000.08.27]. Смешение гидроокиси алюминия с окисью цинка проводят в присутствии воды до образования пластичной массы, далее проводят ее формирование, сушат на воздухе и прокаливают с последующей пропиткой носителя водным раствором платинохлористоводородной кислоты и неорганических соединений олова с окончательной сушкой катализаторной массы на воздухе.
Известен катализатор аналогичного состава с повышенной прочностью и активностью [SU 1103405 A1, 2000.05.27], отличительной особенностью которого является введение на стадии формирования шпинельного носителя выгорающей добавки в виде полидивинилбензола или сополимера стирола и дивинилбензола.
Аналогичный эффект был получен при использовании в процессе дегидрирования платиносодержащего катализатора на алюмоцинковом носителе, приготовленном с использованием в качестве цинкосодержащего компонента смеси оксида цинка и хлорида цинка в соотношении от 1:1 до 20:1 [SU 635652 A1, 2001.04.10].
Известно, что при дегидрировании ациклических углеводородов с целью повышения активности в катализатор, содержащий алюмоцинковую шпинель, платину, оксид цинка и диоксид олова, дополнительно вводили оксид марганца при следующем соотношении компонентов, мас.%: платина 0,1-0,5; оксид цинка 0,5-10; диоксид олова 0,3-5; оксид марганца 0,3-5; алюмоцинковая шпинель остальное [SU 1511894 A1, 1999.10.20].
Наиболее близким аналогом для катализатора является катализатор для дегидирования парафиновых и олефиновых углеводородов на основе платины, олова и соединения щелочного или щелочно-земельного металла на носителе - алюмоцинковой или алюмомагниевой шпинели, где в качестве соединения щелочного или щелочно-земельного металла он содержит силикат или хлорид при следующем соотношении компонентов: платина 0,1-5,0; олово 0,1-5,0; силикат или хлорид щелочного или щелочно-земельного металла 0,1-5,0; алюмоцинковая или алюмомагниевая шпинель остальное [SU 665625 A1, 2001.06.10].
Наиболее близким аналогом способа получения заявляемого катализатора является способ в соответствии с SU 1001545 «Способ получения катализатора для дегидрирования и дегидроциклизации ациклических углеводородов», МПК7 B01J 37/04, 27/18, С07С 5/32, опубл. 27.08.2000. В соответствии с указанным способом катализатор получают путем смешения гидроокиси алюминия с окисью цинка в присутствии воды до образования пластичной массы, ее формирования, сушки на воздухе и прокаливания с последующей пропиткой образовавшегося носителя водным раствором платинохлористоводородной кислоты и введения неорганических соединений олова с окончательной сушкой на воздухе катализаторной массы.
Недостатком в применении перечисленных платино-оловосодержащих катализаторов, полученных вышеописанными способами, является низкая эффективность процесса дегидрирования изопентана, обусловленная как высокой энергоемкостью, так и низким выходом изопрена и недостаточно высокой селективностью по продуктам дегидрирования, что приводит к значительному расходу сырья и энергоресурсов при проведении дегидрирования. Кроме того, такой катализатор быстро закоксовывается, что приводит к частым регенерациям, следовательно, к дополнительным энергетическим затратам на регенерацию.
Задачами изобретения является разработка:
- катализатора дегидрирования парафиновых углеводородов, в частности изопентана и изопентан-изоамиленовых фракций, позволяющего увеличить эффективность процесса за счет увеличения выхода диеновых углеводородов, в частности изопрена, при высокой селективности по продуктам дегидрирования, а также за счет увеличения межрегенерационного периода катализатора;
- способа получения данного эффективного катализатора.
Поставленные задачи решаются:
1. Разработкой катализатора для дегидрирования изопентана и изопентан-изоамиленовых фракций на основе платины и олова, нанесенных на носитель, содержащий алюмоцинковую шпинель, особенностью которого является носитель, представляющий собой нанокристаллические частицы со средним размером кристаллитов 22-35 нм при следующем содержании компонентов, мас.%:
платина 0,05-2,0
олово 0,1-6,0
алюмоцинковая шпинель остальное
2. Способом получения заявленного катализатора, включающим измельчение и перемешивание кислородсодержащих соединений цинка и алюминия, постепенное добавление воды до получения однородной пастообразной массы, перемешивание и формирование, сушку гранул при комнатной температуре и прокаливание, последующую пропитку образовавшегося носителя водным раствором соединений платины и олова, окончательную сушку на воздухе катализаторной массы, особенностью которого является проведение сушки гранул носителя при 100-200°C в течение 1-10 часов после сушки при комнатной температуре, прокаливание носителя проводят в режиме постепенного подъема температуры до 800-900°С со скоростью 10-200°C/час, затем в течение 5-40 часов при 850-1000°С при постоянном контроле размеров частиц образующихся кристаллитов носителя до образования нанокристаллических частиц со средним размером кристаллитов 22-35 нм, с последующим прокаливанием полученного катализатора при 400-500°С в течение 1-5 часов после сушки.
Технический результат изобретения определяется структурными характеристиками полученного катализатора: нанокристаллическая структура носителя позволяет эффективно интеркалировать в межслоевое пространство и прочно закрепить на его поверхности компоненты катализатора, что обусловливает его высокую активность и селективность в заданных условиях температуры, давления, скорости сырьевых потоков процесса дегидрирования, а также обеспечивает устойчивость к закоксовыванию катализатора при проведении процесса дегидрирования в течение длительного времени, что обусловливает увеличение межрегенерационного периода и, соответственно, снижение расхода пара и уменьшение энергетических затрат на процесс дегидрирования.
Средний размер нанокристаллитов или средний размер областей когерентного рассеяния D(OKP) рассчитывают из данных рентгенографии по уширению дифракционного пика, используя формулу Селякова-Шеррера:
Figure 00000001
, нм
где λ - длина волны рентгеновского излучения, нм, β - интегральная ширина профиля дифракционной линии, или физическое уширение, рад. [Рентгенографический и электронно-оптический анализ. С.А.Горелик, Ю.А.Скаков, Л.Н. Расторгуев.: Учеб. Пособие для вузов. - 4-е изд. Доп.и перераб. - М.:МИСИС. 2002. - 360 с.].
Фазовый состав носителя определяют методом дифракции рентгеновских лучей. Съемку рентгенограмм проводят с использованием длинноволнового излучения CuKα и графитового монохроматора на дифрагирующем пучке. Диапазон записи углов в шкале 2θ составляет от 5 до 95 град.
Носитель заявленного катализатора обладает величиной внешней удельной поверхности более 1 м2/г.
Величину общей удельной поверхности и объема пор определяют методом низкотемпературной адсорбции азота (БЭТ). Сущность метода определения параметров пористой системы изложена в методике ASTM D 3663-99 «Стандартный метод исследования площади поверхности и объема пор катализаторов и носителей катализаторов».
Катализатор имеет насыпной вес в интервале 0,80-1,10 г/см3. Насыпной вес катализатора определяют согласно ТУ 2173-075-00206457-2007 «Катализатор дегидрирования легких парафиновых углеводородов (КДИ)».
Процесс дегидрирования C3-C5 парафиновых углеводородов с использованием заявляемого катализатора осуществляют при температуре 560-620°C, объемной скорости подачи сырья 300-500 ч-1 в присутствии водорода и водяного пара. Соотношение сырье:водород:пар составляет 1:0,5-2,0:5-20 моль:моль:моль. Процесс проводят в реакторе со стационарным слоем катализатора. Процесс ведут циклами: дегидрирование - регенерация. Регенерацию осуществляют паровоздушной смесью при температуре 600-640°C до тех пор, пока содержание углекислого газа CO2 в газах регенерации не снизится до величины не более 0,1 мас.%. Контактный газ (выходной газ из реактора после дегидрирования) анализируют методом газовой хроматографии. По результатам хроматографического анализа рассчитывают выход целевого изопрена и изоамилена (на пропущенный и разложенный парафин - активность и селективность катализатора соответственно).
По результатам хроматографического анализа рассчитывают массовое содержание CO2, которое затем пересчитывают в объемное содержание CO2 с помощью поправочного коэффициента.
Каталитические показатели: выход изопрена на пропущенное сырье (ВП) и выход изопрена на разложенное сырье (ВР) рассчитывают на основе хроматографического анализа сырья и продуктов реакции.
Выход изопрена на пропущенный изопентан (ВП, мас.%) рассчитывают по формуле
Figure 00000002
где C(iC5H8)к/газ - массовая доля изопрена в контактном газе, мас.%;
С(iC5H12)сырье - массовая доля изопентана в сырье, мас.%;
C(iC5H8)сырье - массовая доля изопрена в сырье, мас.%.
Выход изоамиленов на пропущенный изопентан (ВР, мас.%) рассчитывают по формуле
Figure 00000003
где C(iC5H10)к/газ - массовая доля изоамиленов в контактном газе, мас.%;
С(iC5H10)сырье - массовая доля изоамиленов в сырье, мас.%;
С(iC5H12)сырье - массовая доля изопентана в сырье, мас.%;
С(iC5H12)к/газ - массовая доля изопентана в контактном газе, мас.%.
Выход непредельных углеводородов (изопрен + изоамилены) на пропущенное сырье - изопентан (ВП непред., мас.%) рассчитывают по формуле
Figure 00000004
где C(iC5H8)к/газ - массовая доля изопрена в контактном газе, мас.%;
C(iC5H10)к/газ - массовая доля суммы изамиленов в контактном газе, мас.%;
С(iC5H12)сырье - массовая доля изопентана в сырье, мас.%.
Выход непредельных углеводородов (изопрен + изоамилены) на разложенное сырье - изопентан (ВРнепред, мас.%) рассчитывают по формуле
Figure 00000005
где C(iC5H8)к/газ - массовая доля изопрена в контактном газе, мас.%;
C(iC5H10)к/газ - массовая доля суммы изоамиленов в контактном газе, мас.%;
C(iC5H12)сырье - массовая доля изопентана в сырье, мас.%;
C(iC5H12)к/газ - массовая доля изопентана в контактном газе, мас.%.
Конверсию (глубину превращения) (K, %) как соотношение выхода изопрена на пропущенное и разложенное сырье рассчитывают по формуле
Figure 00000006
Изобретение подтверждается примерами конкретного выполнения, которые вместе с полученными результатами отражены в таблице.
Пример 1
Для приготовления катализатора №1 тщательно перетирают в ступке 78,08 г оксида цинка (0,96 моль) и 400,0 г гидроксида алюминия с содержанием (Al2O3)=0,00241 моль/г (0,96 моль), после чего при перемешивании постепенно добавляют 70 мл дистилдированной воды до получения однородной пастообразной массы. Полученную массу экструдируют, в результате получают гранулы цилиндрической формы диаметром 2,0 мм и длиной 5,0 мм. Полученные гранулы сушат при комнатной температуре в течение 20 часов, а затем прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°C со скоростью 50°C/час. После этого прокаливают образец еще 20 час при 900°С и 15 час при 950°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 31,5 нм.
25,00 г полученного носителя пропитывают раствором, состоящим из 11 мл раствора платинохлористоводородной кислоты H2PtCl6 (T(Pt)=0,01138 г/мл) и 15,0 мл раствора хлорида олова SnCl2 (T=0,028917 г/мл). Полученный катализатор просушивают при 130°C в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллов 31,5 нм 98,59.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 580°C, объемной скорости подачи углеводородов 400 ч-1, мольном соотношении сырье: водород:пар, равном 1:1:12,5.
В реакции дегидрирования изопентана и изопентан-изоамиленовых фракций получены следующие результаты: ВП(изопрен) = 16,49 мас.%, ВП(изоамилены) = 27,08 мас.%, ВР(изопрен + изоамилены) = 86,63 мас.%, конверсия 46,81%.
Пример 2
Носитель для катализатора №2, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°C со скоростью 50°C/час. После этого прокаливают образец 10 час при 800°C и 10 час при 900°С. Полученный носитель имеет следующие характеристики: насыпная плотность 0,85 г/см3, размер нанокристаллитов 26,0 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу. Полученный катализатор после просушки прокаливают при 400°С в течение 5 часов.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 26,0 нм 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 18,30 мас.%, ВП(изоамилены) = 33,70 мас.%, ВР(изопрен + изоамилены) = 84,05 мас.%, конверсия 61,87%.
Пример 3
Носитель для катализатора №3, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°C со скоростью 50°C/час. После этого прокаливают образец 10 час при 800°С и 20 час при 900°C.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 28,3 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу. Полученный катализатор просушивают при 130°C в течение 2-х часов, затем прокаливают при 500°C в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 28,3 нм 98, 59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 16,36 мас.%, ВП(изоамилены) = 39,20 мас.%, ВР(изопрен + изоамилены) = 83,90 мас.%, конверсия 66,27%.
Пример 4
Носитель для катализатора №4, полученный по описанному в примере 2 способу, имеет следующие характеристики: насыпная плотность 0,85 г/см3, размер нанокристаллитов 26,0 нм.
25,00 г полученного носителя пропитывают раствором, состоящим из 11,0 мл раствора H2PtCl6 (T(Pt) = 0,01138 г/мл) и 25,0 мл раствора SnCl2 (T=0,028917 г/мл). Полученный катализатор просушивают при 130°C в течение 2-х часов, затем прокаливают при 500°C в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn 1,52 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 26,0 нм 97,98.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 15,65 мас.%, ВП(изоамилены) = 25,65 мас.%, ВР(изопрен + изоамилены) = 83,82 мас.%, конверсия 49,10%.
Из этих результатов следует, что для катализаторов с размерами нанокристаллитов 26,0 нм при увеличении содержания промотора (олова) каталитическая активность остается высокой.
Пример 5
Носитель для катализатора №5, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 10°С/час. После этого прокаливают образец 10 час при 800°С и 30 час при 850°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,85 г/см3, размер нанокристаллитов 27,7 нм.
25,00 г полученного носителя пропитывают раствором, состоящим из 2,4 мл раствора H2PtCl6 (T(Pt)=0,01138 г/мл), 3,9 мл раствора SnCl2 (T=0,028917 г/мл) и 10,0 мл воды. Полученный катализатор просушивают при 130°C в течение 5 часов, затем прокаливают при 500°C в течение 2-х часов.
Полученный катализатор имеет состав: Pt 0,10 мас.%, Sn 0,18 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 27,7 нм 99,72.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 600°C, объемной скорости подачи углеводородов 500 ч-1, мольном соотношении сырье:водород:пар, равном 1:1,5:10. Результаты испытаний приведены в таблице:
ВП(изопрен) = 15,42 мас.%, ВП(изоамилены) = 28,98 мас.%, ВР(изопрен + изоамилены) = 83,90 мас.%, конверсия 52,92%.
Из приведенных результатов видно, что для катализаторов с размерами нанокристаллитов 27,7 нм даже при уменьшении содержания активного компонента (платины) в 5 раз каталитическая активность остается высокой.
Пример 6
Носитель для катализатора №6, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 1100°C со скоростью 50°C/час. После этого прокаливают образец 10 час при 1100°C.
Полученный носитель имеет следующие характеристики: насыпная плотность 1,10 г/см3, размер нанокристаллитов 47,1 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°C в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имел состав: Pt 0,50 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 47,1 нм 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 0,05 мас.%, ВП(изоамилены) = 0,40 мас.%, ВР(изопрен + изоамилены) = 90,0 мас.%, конверсия 0,50%.
Этот пример демонстрирует, что при размере кристаллитов более 35 нм каталитической активности нет.
Пример 7
Носитель для катализатора №7, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°C со скоростью 50°C/час. После этого прокаливают образец 20 час при 800°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 1,00 г/см3, размер нанокристаллитов 21,8 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 21,8 нм 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 10,37 мас.%, ВП(изоамилены) = 12,05 мас.%, ВР(изопрен + изоамилены) = 91,89 мас.%, конверсия 25,08%.
Как видно из приведеных данных, при размере кристаллитов менее 22 нм каталитическая активность снижается.
Пример 8
Носитель для катализатора №8, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°C со скоростью 50°C/час. После этого прокаливают образец 10 час при 800°С и 10 час при 850°C. Полученный носитель имеет следующие характеристики: насыпная плотность 0,80 г/см3, размер нанокристаллитов 20,5 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу. Полученный катализатор просушивают при 130°C в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 20,5 нм 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 12,37 мас.%, ВП(изоамилены) = 19,81 мас.%, ВР(изопрен + изоамилены) = 76,65 мас.%, конверсия 62,10%.
Как видно из приведенных результатов, при размере кристаллитов менее 22 нм снижается не только каталитическая активность, но и селективность по продуктам дегидрирования.
Пример 9
Носитель для катализатора №9, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°C со скоростью 10°C/час. После этого прокаливают образец 14 час при 900°C и 10 час при 950°C. Полученный носитель имеет следующие характеристики: насыпная плотность 0,92 г/см3, размер нанокристаллитов 30,7 нм.
Пропитку носителя проводят раствором, состоящим из 11 мл раствора H2PtCl6 (T(Pt)=0,01138 г/мл) и 10,0 мл раствора SnCl2 (T=0,028917 г/мл). Полученный катализатор просушивают при 130°C в течение 2-х часов, затем прокаливают при 500°C в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn 0,61 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 30,7 нм 98,89.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 16,19 мас.%, ВП(изоамилены) = 31,76 мас.%, ВР(изопрен + изоамилены) = 83,86 мас.%, конверсия 57,18%.
Пример 10
Носитель для катализатора №10, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 10°С/час. После этого прокаливают образец 10 часов при 800°С и 15 часов при 850°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,90 г/см3, размер нанокристаллитов 35,0 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 3 часов, затем прокаливают при 500°С в течение 3 часов.
Полученный катализатор имеет состав: Pt 0,05 мас.%, Sn 0,10 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 35,0 нм 99,85.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 15,65 мас.%, ВП(изоамилены) = 25,71 мас.%, ВР(изопрен + изоамилены) = 83,81 мас.%, конверсия 49,35%.
Из приведенных результатов видно, что для катализаторов с размерами нанокристаллитов 35,0 нм даже при уменьшении содержания активного компонента (платины) в 10 раз каталитическая активность остается высокой.
Пример 11
Для приготовления катализатора №11 тщательно перетирают в ступке 78,08 г оксида цинка (0,96 моль) и 400,0 г гидрооксида алюминия с содержанием (Al2O3)=0,00241 моль/г (0,96 моль), после чего при перемешивании постепенно добавляют 70 мл дистиллированной воды до получения однородной пастообразной массы. Полученную массу экструдируют, в результате получают гранулы цилиндрической формы диаметром 2,0 мм и длиной 5,0 мм. Полученные гранулы сушат при комнатной температуре в течение 10 часов, а затем прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°C со скоростью 100°C/час. После этого прокаливают образец еще 20 часов при 900°C и 20 часов при 950°C.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 29,3 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 110°C в течение 4-х часов, затем прокаливают при 500°C в течение 1 часа.
Полученный катализатор имеет состав: Pt 2,0 мас.%, Sn 6,00 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 29,3 нм 92,0.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 580°С, объемной скорости подачи углеводородов 400 ч-1, мольном соотношении сырье:водород:пар, равном 1:0,5:20.
В реакции дегидрирования изопентана и изопентан-изоамиленовых фракций получены следующие результаты: ВП(изопрен) = 16,30 мас.%, ВП(изоамилены) = 25,65 мас.%, ВР(изопрен + изоамилены) = 84,10 мас.%, конверсия 49,88%.
Пример 12
Для приготовления катализатора №12 тщательно перетирают в ступке 78,08 г оксида цинка (0,96 моль) и 400,0 г гидрооксида алюминия с содержанием (Al2O3) = 0,00241 моль/г (0,96 моль), после чего при перемешивании постепенно добавляют 70 мл дистиллированной воды до получения однородной пастообразной массы. Продолжают перемешивание еще 30 мин. Полученную массу экструдируют, в результате получают гранулы цилиндрической формы диаметром 2,0 мм и длиной 5,0 мм. Полученные гранулы сушат при комнатной температуре в течение 20 часов, а затем прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°C со скоростью 50°C/час. После этого прокаливают образец еще 20 часов при 900°C, 25 часов при 950°С и 5 часов при 1000°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 32,0 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,5 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 32,0 нм 98,59.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 580°C, объемной скорости подачи углеводородов 400 ч-1, мольном соотношении сырье:водород:пар, равном 1:1:12,5.
В реакции дегидрирования изопентана и изопентан-изоамиленовых фракций получены следующие результаты: ВП(изопрен) = 16,03 мас.%, ВП(изоамилены) = 27,12 мас.%, ВР(изопрен + изоамилены) = 85,13 мас.%, конверсия 50,69%.
Пример 13
Носитель для катализатора №13, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 50°С/час. После этого прокаливают образец 10 часов при 800°C и 10 часов при 850°C.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 22 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°C в течение 1 часа, затем прокаливают при 500°С в течение 3 часов.
Полученный катализатор имеет состав: Pt 0,5 мас.%, Sn 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 22,0 нм 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в таблице:
ВП(изопрен) = 14,61 мас.%, ВП(изоамилены) = 26,84 мас.%, ВР(изопрен + изоамилены) = 84,50 мас.%, конверсия 49,04%.
Пример 14
Носитель для катализатора №14, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°С со скоростью 10°С/час. После этого прокаливают образец 14 час при 900°С и 10 час при 950°C. Полученный носитель имеет следующие характеристики: насыпная плотность 0,92 г/см3, размер нанокристаллитов 30,7 нм.
Пропитку носителя проводят раствором, состоящим из 11,0 мл раствора H2PtCl6 (T(Pt)=0,01138 г/мл) и 10,0 мл раствора SnCl2 (Т=0,028917 г/мл). Полученный катализатор просушивают при 130°C в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt 0,50 мас.%, Sn - 0,61 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 30,7 нм 98,89 мас.%.
Процесс дегидрирования проводят также в следующих условиях: температура реакции 600°С, объемной скорости подачи углеводородов 300 ч-1, мольном соотношении сырье:водород:пар, равном 1:2:5, результаты испытаний приведены в таблице:
ВП(изопрен) = 15,61 мас.%, ВП(изоамилены) = 26,00 мас.%, ВР(изопрен + изоамилены) = 84,02 мас.%, конверсия 49,52%.
Как видно из приведенных примеров, предлагаемый катализатор дегидрирования изопентана и изопентан-изоамиленовых фракций позволяет повысить эффективность процесса за счет более полного превращения исходных парафинов при высокой селективности по диолефиновым углеводородам.
Увеличение активности. катализатора обусловлено оптимизацией структурных характеристик катализатора. Использование катализатора с оптимальной структурой позволяет уменьшить энергетические затраты на процесс вследствие увеличения продолжительности цикла дегидрирования.
Таким образом, предложен новый катализатор дегидрирования изопентана и изопентан-изоамиленовых фракций, а также способ его получения. В результате использования заявляемого катализатора при дегидрировании парафиновых углеводородов процесс осуществляется более эффективно, что отражается в (1) увеличении выхода диеновых и олефиновых углеводородов вследствие применения высокоактивного и селективного катализатора с плотной упаковкой нанокристаллических частиц в гранулах алюмоцинкового шпинельного носителя; (2) снижении расходных норм сырья вследствие увеличения выхода целевых продуктов; (3) снижении энергетических затрат вследствие увеличения периода между регенерациями, обусловленного стабильной работой катализатора и большей устойчивостью его к закоксовыванию.
Figure 00000007

Claims (3)

1. Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций на основе платины и олова, нанесенных на носитель - алюмоцинковую шпинель, отличающийся тем, что носитель представляет собой нанокристаллические частицы со средним размером кристаллитов 22-35 нм при следующем содержании компонентов, мас.%:
платина 0,05-2,0 олово 0,1-6,0 алюмоцинковая шпинель остальное
2. Способ получения катализатора для дегидрирования изопентана и изопентанизоамиленовых фракций, включающий измельчение и перемешивание кислородсодержащих соединений цинка и алюминия, постепенное добавление воды до получения однородной пастообразной массы, перемешивание и формирование, сушку гранул при комнатной температуре и прокаливание, последующую пропитку образовавшегося носителя водным раствором соединений платины и олова, окончательную сушку на воздухе катализаторной массы, отличающийся тем, что прокаливание носителя проводят в режиме постепенного подъема температуры до 800-900°С со скоростью 10-200°С/ч, затем в течение 5-40 ч при 850-1000°С при постоянном контроле размеров частиц образующихся кристаллитов до образования нанокристаллических частиц со средним размером кристаллитов 22-35 нм при следующем содержании компонентов, мас.%:
платина 0,05-2,0 олово 0,1-6,0 алюмоцинковая шпинель остальное
3. Способ по п.2, отличающийся тем, что после сушки полученного катализатора проводят его прокаливание при 400-500°С в течение 1-5 ч.
RU2008148410/04A 2008-12-08 2008-12-08 Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения RU2377066C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008148410/04A RU2377066C1 (ru) 2008-12-08 2008-12-08 Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008148410/04A RU2377066C1 (ru) 2008-12-08 2008-12-08 Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения

Publications (1)

Publication Number Publication Date
RU2377066C1 true RU2377066C1 (ru) 2009-12-27

Family

ID=41642896

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008148410/04A RU2377066C1 (ru) 2008-12-08 2008-12-08 Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения

Country Status (1)

Country Link
RU (1) RU2377066C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468066C1 (ru) * 2011-07-07 2012-11-27 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Нижегородский Государственный Университет Им. Н.И. Лобачевского" Способ получения низших олефиновых углеводородов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468066C1 (ru) * 2011-07-07 2012-11-27 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Нижегородский Государственный Университет Им. Н.И. Лобачевского" Способ получения низших олефиновых углеводородов

Similar Documents

Publication Publication Date Title
Lei et al. Silica-doped TiO2 as support of gallium oxide for dehydrogenation of ethane with CO2
JPWO2010024319A1 (ja) オレフィンの製造方法
Xia et al. Analysis of the catalytic activity induction and deactivation of PtIn/Mg (Al) O catalysts for propane dehydrogenation reaction
RU2595341C1 (ru) Катализатор изомеризации парафиновых углеводородов и способ его приготовления
JP2002114717A (ja) 第viii族金属とスズとの強力な相互作用を有する二金属担持触媒の存在下での有機化合物の脱水素方法
RU2350594C1 (ru) Алюмооксидный носитель, способ получения алюмооксидного носителя и способ получения катализатора дегидрирования c3-c5 парафиновых углеводородов на этом носителе
CN104941616B (zh) 一种催化生物乙醇制备烯烃的催化剂及其制备方法
US20200368734A1 (en) A composition comprising a mixed metal oxide and a molding comprising a zeolitic material having framework type cha and an alkaline earth metal
JPH10180101A (ja) 脱水素触媒
RU2377066C1 (ru) Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения
JP7365354B2 (ja) 触媒、及びこれを用いた1,3-ブタジエンの製造方法
KR20190093382A (ko) 탈수소화 촉매
JP4344853B2 (ja) 脱アルミニウムゼオライトnu―86および炭化水素の転換におけるその使用法
RU2271860C1 (ru) Катализатор для дегидрирования парафиновых углеводородов
Wang et al. Isomerization of n-butane by gallium-promoted sulfated zirconia supported on MCM-41
WO2015152159A1 (ja) 不飽和炭化水素の製造方法
JP2004269847A (ja) C7+パラフィンの異性化方法及びそれのための触媒
RU2388739C1 (ru) Способ дегидрирования изопентана и изопентан-изоамиленовых фракций
JP3730792B2 (ja) 炭化水素の異性化方法
JP7160604B2 (ja) 1,3-ブタジエン及びアセトアルデヒドジエチルアセタールの製造方法
RU2724902C1 (ru) Высокоактивный катализатор дегидрирования алканов и способ его получения
RU2779074C2 (ru) Твердый суперкислотный катализатор для процесса изомеризации легких углеводородов
JPH10180102A (ja) 脱水素触媒
CN114588934B (zh) 一种硅改性铟基氧化物-分子筛复合材料及其制备方法和应用
RU2806559C2 (ru) Твердый кислотный катализатор, его получение и применение

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20120618

PC41 Official registration of the transfer of exclusive right

Effective date: 20140811

MM4A The patent is invalid due to non-payment of fees

Effective date: 20151209