RU2724902C1 - Высокоактивный катализатор дегидрирования алканов и способ его получения - Google Patents

Высокоактивный катализатор дегидрирования алканов и способ его получения Download PDF

Info

Publication number
RU2724902C1
RU2724902C1 RU2019134667A RU2019134667A RU2724902C1 RU 2724902 C1 RU2724902 C1 RU 2724902C1 RU 2019134667 A RU2019134667 A RU 2019134667A RU 2019134667 A RU2019134667 A RU 2019134667A RU 2724902 C1 RU2724902 C1 RU 2724902C1
Authority
RU
Russia
Prior art keywords
catalyst
group
carbonaceous material
metal
dehydrogenation
Prior art date
Application number
RU2019134667A
Other languages
English (en)
Inventor
Рам Мохан ТХАКУР
Хима Бинду ДУСА
Камлеш ГУПТА
Дебасис БХАТТАЧАРАЙЯ
Санджив Кумар МАЗУМДАР
Санкара Сри Венката РАМАКУМАР
Original Assignee
Индийская Нефтяная Корпорация Лимитэд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Индийская Нефтяная Корпорация Лимитэд filed Critical Индийская Нефтяная Корпорация Лимитэд
Application granted granted Critical
Publication of RU2724902C1 publication Critical patent/RU2724902C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Настоящее изобретение раскрывает новый способ получения высокоактивного и селективного катализатора дегидрирования, катализатор, полученный указанным способом, и способ дегидрирования алканов, который включает введение в контакт потока исходного материала, содержащего легкие парафины или смесь парафинов и разбавителей, с катализатором, причем соотношение алкана и разбавителя составляет от 1:0,1 до 1:10. Способ получения катализатора дегидрирования алкана включает: (a) мокрое измельчение углеродистого материала с получением пасты измельченного углеродистого материала; (b) добавление оксида алюминия в раствор органической кислоты при перемешивании в течение от 15 до 20 минут с получением геля оксида алюминия и старение геля в течение от 15 до 20 минут; (c) получение водного раствора солей металлов группы IA и группы VIB с применением подходящих солей металлов; (d) добавление пасты измельченного углеродистого материала, полученной на стадии (a), и водного раствора солей металлов, полученного на стадии (c), в гель оксида алюминия, полученный на стадии (b), с получением гомогенной суспензии катализатора; (e) высушивание суспензии катализатора, полученной на стадии (d), при температуре от 100 до 150°C в течение от 12 до 16 часов с получением сухого брикета катализатора; (f) дробление сухого брикета катализатора, полученного на стадии (e), и просеивание с получением частиц катализатора от 0,5 до 1,0 мм для эксплуатации в неподвижном слое и частиц от 20 до 200 мкм для эксплуатации в псевдоожиженном слое; (g) прокаливание частиц катализатора, полученных на стадии (f), при температуре от 600 до 650°C и нагревании со скоростью 2,0°C/мин в течение двух часов в присутствии воздуха; и (h) восстановление катализатора, полученного на стадии (g), в реакторе с неподвижным слоем/неподвижным псевдоожиженным слоем с применением газообразного водорода при температуре от 600 до 800°C и регулируемой скорости потока с получением конечного катализатора. Катализатор содержит: (i) от 0,01 до 20 мас.% металла группы VIB; (ii) от 0,001 до 5 мас.% металлов группы IA; (iii) необязательно от 0,001 до 5 мас.% металлов группы VIII и (iv) оксид алюминия, причем массовое процентное содержание определено по отношению к полной массе катализатора. Доступность активных центров и дисперсия оксидов металлов улучшены посредством добавления в ходе получения катализатора углеродистого материала, такого как кокс, полученный из угля, или нефтяной кокс, или любая другая форма углерода, и его сгорания в течение прокаливания. Технический результат - повышение активности и селективности в отношении легких олефинов. 3 н. и 9 з.п. ф-лы, 1 ил., 4 табл., 3 пр.

Description

Область техники настоящего изобретения
Настоящее изобретение относится к способу получения катализатора дегидрирования алканов до алкенов с применением углеродистых материалов, таких как нефтяной кокс, активированный древесный уголь и т. д., и с применением оксидов металлов в качестве активных компонентов. Настоящее изобретение также относится к катализатору, содержащему оксиды металлов в качестве активных компонентов и полученному с применением углеродистых материалов.
Уровень техники настоящего изобретения
В нефтехимической промышленности пропилен представляет собой важное исходное вещество, используемое для получения полипропилена и другие химических веществ, таких как пропиленоксид, акрилонитрил, акриловая кислота, кумол и т. д. Традиционные источники пропилена представляют собой паровой крекинг и каталитический крекинг в псевдоожиженном слое (FCC). С увеличением всемирного спроса на пропилен приобретают значение целевые технологии получения пропилена, такие как процесс дегидрирования пропана.
Для процесса дегидрирования пропана широко используют катализаторы, содержащие нанесенный на оксид алюминия благородный металл, такие как Pt/Аl2O3, Pt-Sn/Аl2O3, или катализаторы, содержащие нанесенный на оксид алюминия CrOx. В заявке на патент США US 2003/0163012 A1 раскрыта каталитическая композиция для получения ненасыщенных углеводородов из соответствующих парафиновых углеводородов, содержащая оксид переходного металла группы IVB периодической системы элементов, например, ТiO2 или ZrO2, и, возможно, по меньшей мере один переходный элемент, выбранный из группы VIII, например, Pd или Pt, и/или переходный элемент группы VI, например, Cr или Mo, и/или Rh, и/или Sn, а также, возможно, соединение щелочного металла или щелочноземельного металла, и соединение непереходного элемента группы III или переходного элемента группы III, или Zn.
В заявке на патент США US 2009/0182186 A1 описан способ превращения пропана в пропилен, где катализатор, содержащий диоксид кремния и хром, вводят в контакт с пропаном и CO2. Кроме того, катализатор (необязательно) содержит промотирующий компонент, выбранный из оксидов V, Ag, Ce, Mo, Zn, Zr и их комбинации.
Для улучшения эксплуатационных характеристик катализатора необходимо улучшение дисперсии активных центров (атомов металла) и доступности активных центров.
Краткое раскрытие настоящего изобретения
Соответственно, настоящее изобретение предлагает способ получения катализатора синтеза легких олефинов посредством дегидрирования соответствующих парафинов. Активность и селективность катализатора улучшают посредством добавления углеродистых материалов в ходе получения катализатора.
Настоящее изобретение относится к способу получения катализатора с применением углеродистых материалов, таких как нефтяной кокс, активированный древесный уголь и т. д. Добавление углеродистого материала, такого как нефтяной кокс, активированный древесный уголь и т. д., в ходе получения катализатора приводит к повышению доступности активных центров вследствие образования дополнительных пор и/или каналов в результате сгорания добавленного углеродистого материала в течение прокаливания.
Согласно одному из признаков настоящего изобретения способ получения катализатора дегидрирования алкана включает следующие стадии:
(a) мокрое измельчение углеродистого материала с получением пасты измельченного углеродистого материала;
(b) добавление оксида алюминия в раствор органической кислоты при перемешивании в течение от 15 до 20 минут с получением геля и старение геля в течение от 15 до 20 минут;
(c) получение водного раствора солей металлов групп IA, и/или VIB и/или VIII с применением подходящих солей металлов;
(d) добавление пасты измельченного углеродистого материала, полученной на стадии (a), и водного раствора солей металлов, полученного на стадии (c), в гель оксида алюминия, полученный на стадии (b), с получением гомогенной суспензии катализатора;
(e) высушивание суспензии катализатора, полученной на стадии (d), при температуре от 100 до 150°C в течение от 12 до 16 часов с получением сухого брикета катализатора;
(f) дробление сухого брикета катализатора, полученного на стадии (e), и просеивание с получением частиц катализатора от 0,5 до 1,0 мм для эксплуатации в неподвижном слое и частиц от 20 до 200 мкм для эксплуатации в псевдоожиженном слое;
(g) прокаливание частиц катализатора, полученных на стадии (f), при температуре от 600 до 650°C и нагревании со скоростью 2,0°C/мин в течение двух часов в присутствии воздуха; и
(h) восстановление катализатора, полученного на стадии (g), в реакторе с неподвижным слоем/неподвижным псевдоожиженным слоем с применением газообразного водорода при температуре от 600 до 800°C и регулируемой скорости потока с получением конечного катализатора.
Согласно другому признаку настоящего изобретения углеродистый материал, используемый в способе получения катализатора, представляет собой любой известный углеродистый материал. Согласно предпочтительному признаку углеродистый материал выбирают из группы, которую составляют нефтяной кокс, активированный древесный уголь, графитовый порошок, или их комбинации.
Согласно другому признаку настоящее изобретение также относится к катализатору, содержащему оксиды металлов в качестве активных компонентов и полученному с применением углеродистых материалов на основе способа согласно настоящему изобретению. Катализатор дегидрирования алканов содержит:
(i) от 0,01 до 20 мас.% металла группы VIB;
(ii) от 0,001 до 5 мас.% металлов группы IA и/или группы VIII; и
(v) материал-носитель,
причем массовое процентное содержание определено по отношению к полной массе катализатора.
Согласно следующему признаку настоящего изобретения материал-носитель выбирают из оксида алюминия, диоксида кремния или их смеси.
Кроме того, настоящее изобретение относится к применению катализатора для превращения легких парафинов в легкие олефины со степенью превращения в диапазоне от 35 до 60 мас.% и селективностью в отношении соответствующего легкого олефина в диапазоне от 40 до 90 мас.%.
Задачи настоящего изобретения
Основная задача настоящего изобретения заключается в том, чтобы предложить новый способ получения пористого и высокодисперсного металлооксидного катализатора с применением углеродистых материалов, таких как нефтяной кокс, активированный древесный уголь и т. д., на подходящем носителе, таком как оксид алюминия или диоксид кремния, или их смесь.
Другая задача настоящего изобретения заключается в том, чтобы предложить катализатор дегидрирования алканов в алкены с повышенной активностью и селективностью в отношении легких олефинов.
Краткое описание фигур
На фиг. 1 схематически представлен раскрытый способ получения катализатора дегидрирования алканов.
Подробное раскрытие настоящего изобретения
Настоящее изобретение относится к способу получения катализатора дегидрирования алканов до алкенов с применением углеродистого материала, такого как нефтяной кокс, активированный древесный уголь и т. д. и неблагородных металлов или оксидов металлов в качестве активных компонентов. Доступность активных центров повышается вследствие образования каналов в результате сгорания добавленного углеродистого материала в течение прокаливания.
Согласно основному признаку настоящее изобретение описывает способ получения катализатора дегидрирования алканов до алкенов с применением углеродистого материала, такого как нефтяной кокс. В катализаторе созданы дополнительные поры и/или каналы для обеспечения доступности активных центров для молекул реагирующих веществ, и оксиды металлов равномерно диспергированы посредством добавления углеродистых материалов, таких как нефтяной кокс, активированный древесный уголь, в ходе получения катализатора и их последующего сгорания в течение прокаливания. Способ получения катализатора включает следующие стадии:
(a) мокрое измельчение углеродистого материала с получением пасты измельченного углеродистого материала;
(b) добавление оксида алюминия в раствор органической кислоты при перемешивании в течение от 15 до 20 минут с получением геля и старение геля в течение от 15 до 20 минут;
(c) получение водного раствора солей металлов групп IA, и/или VIB и/или VIII с применением подходящих солей металлов;
(d) добавление пасты измельченного углеродистого материала, полученной на стадии (a), и водного раствора солей металлов, полученного на стадии (c), в гель оксида алюминия, полученный на стадии (b), с получением гомогенной суспензии катализатора;
(e) высушивание суспензии катализатора, полученной на стадии (d), при температуре от 100 до 150°C в течение от 12 до 16 часов с получением сухого брикета катализатора;
(f) дробление сухого брикета катализатора, полученного на стадии (e), и просеивание с получением частиц катализатора от 0,5 до 1,0 мм для эксплуатации в неподвижном слое и частиц от 20 до 200 мкм для эксплуатации в псевдоожиженном слое;
(g) прокаливание частиц катализатора, полученных на стадии (f), при температуре от 600 до 650°C и нагревании со скоростью 2,0°C/мин в течение двух часов в присутствии воздуха; и
(h) восстановление катализатора, полученного на стадии (g), в реакторе с неподвижным слоем/неподвижным псевдоожиженным слоем с применением газообразного водорода при температуре от 600 до 800°C и регулируемой скорости потока с получением конечного катализатора.
Согласно другому признаку настоящего изобретения углеродистый материал, используемый в способе получения катализатора, представляет собой любой известный углеродистый материал. Согласно предпочтительному признаку углеродистый материал выбирают из группы, которую составляют нефтяной кокс, активированный древесный уголь, графитовый порошок, или их комбинации.
Согласно предпочтительному признаку настоящего изобретения металл группы VIB выбирают из группы, которую составляют хром, молибден и вольфрам.
Согласно другому предпочтительному признаку настоящего изобретения металл группы VIII выбирают из группы, которую составляют железо, кобальт, родий, иридий, никель, палладий и платина, и металл группы IA выбирают из группы, которую составляют литий, натрий, калий, рубидий и цезий.
Согласно признаку настоящего изобретения, углеродистый материал, используемый на стадии (a) способа получения катализатора, подвергают мокрому измельчению до размера частиц, составляющего от 1 до 5 мкм.
Согласно предпочтительному признаку настоящего изобретения органическая кислота, используемая для получения геля оксида алюминия, представляет собой муравьиную кислоту.
Согласно следующему признаку настоящего изобретения раствор муравьиной кислоты получают посредством добавления 10 об.% муравьиной кислоты в дистиллированную воду.
Согласно следующему признаку настоящее изобретение описывает катализатор дегидрирования алканов, причем катализатор содержит оксиды металлов переходной группы в качестве активных ингредиентов, в частности, металлов групп VIB и/или VIII, и, возможно, одного металла из группы щелочных металлов, которые нанесены на оксид алюминия или диоксид кремния, или их смесь. Катализатор получают с применением углеродистых материалов на основе способа согласно настоящему изобретению. Катализатор дегидрирования алканов содержит:
(i) от 0,01 до 20 мас.% металла группы VIB;
(ii) от 0,001 до 5 мас.% металлов группы IA и/или группы VIII; и
(iii) материал-носитель,
причем массовое процентное содержание определено по отношению к полной массе катализатора.
Согласно признаку настоящего изобретения в качестве материала-носителя выбирают оксид алюминия или диоксид кремния, или их смесь.
Согласно предпочтительному признаку содержание металла группы VIB в катализаторе составляет от 0,1 до 12 мас.%.
Согласно предпочтительному признаку содержание металлов группы VIII и группы IA в катализаторе составляет от 0,005 до 2,5 мас.%.
Согласно следующему признаку настоящее изобретение раскрывает стадию введения в контакт полученного катализатора с потоком исходного материала, содержащим легкие парафины или смесь парафинов и разбавителей, причем разбавители могут представлять собой CO2, N2, пар, инертный газ, топочный газ или их комбинацию, что осуществляют при температуре от 500 до 700°C, давлении от 0,01 до 10 бар и объемной скорости подачи газа (GHSV) от 500 до 3000 ч-1 в реакторе с неподвижным слоем или псевдоожиженным слоем или подвижным слоем или их комбинации. Соотношение алкана и разбавителя или смеси разбавителей составляет от 1:0,1 до 1:10. Достигаемая степень превращения легких парафинов составляет от 35 до 60 мас.% при селективности в отношении соответствующего легкого олефина, составляющей от 40 до 90 мас.%.
Согласно предпочтительному признаку каталитическая композиция, полученная способом, описанным в настоящем изобретении, проявляет селективность в отношении пропилена в диапазоне от 40 до 90 мас.%.
Описанный способ получения катализатора не ограничен только получением катализаторов для процесса дегидрирования алканов, но является применимым к любому процессу, для которого требуется пористый катализатор и/или высокодисперсные металлы, внедренные в катализатор. Примеры таких процессов представляют собой каталитический риформинг, гидрообработка и т. д.
Настоящее изобретения имеет следующие преимущества:
1. Новый способ получения катализатора дегидрирования парафинов до легких олефинов с высокой селективностью в отношении пропилена.
2. Повышение активности и селективности катализатора посредством добавления углеродистых материалов в течение процесса получения катализатора.
Следующие примеры представлены для цели дополнительной иллюстрации настоящего изобретения. Все процентные соотношения и доли представлены по отношению к массе, если не указаны иные условия.
Углеродистый материал, используемый в получении катализатора
Нефтяной кокс, используемый в следующих примерах, получали посредством пульверизации кокса, полученного на установке замедленного коксования, с последующим прокаливанием при 1250°C (скорость нагрева 5°C/мин) в течение 4 часов в атмосфере азота. Результаты анализа металлов в прокаленном коксе представлены в таблице 1.
Таблица 1. Результаты анализа металлов в прокаленном нефтяном коксе
Металл Концентрация (ч./млн.)
Fe 283
Mg 15
Na 5,4
Ni 169
V 78
Si 102
Активированный древесный уголь, использованный в следующих примерах, имеет удельную площадь поверхности 926 м2/г и удельный объем пор 0,7 см3/г.
Пример 1. Получение катализатора дегидрирования с применением нефтяного кокса или активированного древесного угля
Для получения катализатора дегидрирования с применением прокаленного нефтяного кокса использовали 38,5 г оксида алюминия (в пересчете на сухую массу) и 4,0 г нефтяного кокса.
(i) Кокс подвергали мокрому измельчению с получением размеров частиц менее 5 мкм.
(ii) В лабораторный стакан помещали 120 мл разбавленного раствора муравьиной кислоты (содержащего 10 об.% HCOOH в дистиллированной воде) и выдерживали при непрерывном перемешивании.
(iii) В лабораторный стакан добавляли взвешенное количество оксида алюминия и перемешивали в течение от 15 до 20 минут с получением геля. Полученный гель подвергали последующему старению в течение от 15 до 20 минут,
(iv) Одновременно 29,5 г нонагидрата нитрата хрома (чистота 98% чистота) и 0,974 г безводного нитрата калия (чистота 99%) совместно растворяли в 20 мл деминерализованной воды.
(v) Пасту измельченного кокса, полученную на стадии (i), а затем раствор, полученный на стадии (iv), добавляли в гель оксида алюминия при непрерывном перемешивании с получением гомогенной суспензии катализатора (постепенно добавляли 15 мл воды для предотвращения образования комков и поддержания консистенции/текучести).
(vi) Суспензию катализатора высушивали в печи при 120°C в течение от 12 до 16 часов с получением сухого брикета катализатора.
(vii) Сухой брикет подвергали дроблению и просеиванию с получением частиц, имеющих размеры от 0,5 до 1,0 мм, которые являются подходящими для эксплуатации в неподвижном слое. В качестве альтернативы, катализатор может быть подвергнут дроблению и просеиванию с получением частиц, имеющих размеры от 20 до 200 мкм для эксплуатации в псевдоожиженном слое,
(viii) Катализатор затем прокаливали при 600°C (скорость нагревания 2,0°C/мин) в течение двух часов в присутствии воздуха.
Катализатор, полученный таким способом с применением нефтяного кокса, обозначен как Cat-1A, и его физические свойства представлены в таблице 2. Катализатор Cat-2A получали согласно описанной выше процедуре с применением активированного древесного угля вместо нефтяного кокса, причем остальные стадии процедуры совпадали. Кроме того, получали катализатор Cat-3A без добавления кокса с применением описанной выше процедуры. В таблице 2 представлено сравнение физико-химических свойств катализаторов Cat-1A, Cat-2A и Cat-3A. Эксплуатационные характеристики катализаторов Cat-1A, Cat-2A и Cat-3 A исследовали способом, представленным в примере 2.
Катализатор Cat-1B получали, подвергая катализатор Cat-1A восстановлению в реакторе с неподвижным слоем/неподвижным псевдоожиженным слоем с применением газообразного водорода при температуре от 600 до 800°C и регулируемой скорости потока. Катализаторы Cat-2B и Cat-3B получали аналогичным способом. Эксплуатационные характеристики катализаторов Cat-1B, Cat-2B и Cat-3B оценивали способом, представленным в примере 3.
Таблица 2. Физико-химические свойства катализаторов, полученных с применением нефтяного кокса и активированного древесного угля
Катализатор Количество добавленного углеродистого материала (% по отношению к массе катализатора) Удельная площадь поверхности (м2/г) Удельный объем пор (см3/г) Концентрация металла (мас.%) Состав катализатора (мас.%)
Cat-1A 9 216 0,242 Cr: 8,4; K: 0,82 CrxOy: 12,28;
K2O: 0,99;
Al2O3: 86,7;
следовое количество
Na, Fe, Ni и V
Cat-2A 9 201 0,232 Cr: 8,35; K: 0,81 CrxOy: 12,20;
K2O: 0,98;
Al2O3: 86,8;
следовое количество Na
Cat-3A 0 196 0,234 Cr: 8,6; K: 0,8 CrxOy: 12,57;
K2O: 0,96;
Al2O3: 86,4;
следовое количество Na
Пример 2. Оценка эксплуатационных характеристик катализаторов процесса окислительного дегидрирования пропана
Эксплуатационные характеристики катализаторов Cat-1A, Cat-2A и Cat-3A оценивали с применением трубчатого реактора с неподвижным слоем, имеющего внутренний диаметр 9 мм и содержащего от 1 до 2 г катализатора при температуре реакции, составляющей от 630 до 700°C и измеряемой термопарой, расположенной в слое катализатора. Поток исходного материала содержал пропан, CO2 и N2 в молярном соотношении C3:CO2:N2 = 26:53:21, и объемная скорость подачи газа (GHSV) составляла от 800 до 2000 ч-1. Скорости потоков впускаемых газов регулировали с помощью регуляторов массового расхода. Составы газов на впуске и выпуске анализировали с регулярными интервалами, используя анализатор газов нефтепереработки, снабженный детектором теплопроводности (TCD) и пламенно-ионизационным детектором (FID). Степень превращения пропана, выход пропилена и селективность вычисляли с применением следующих формул, и селективность в отношении пропилена, достигнутая в каждом случае, представлена в таблице 3. Данные, представленные в таблице 3, вычислены на основании состава продукта через 20 минут после начала эксперимента.
Степень превращения (%) = [масса пропана (впуск) - масса пропана (выпуск)]/[масса пропана (впуск)]×100
Выход (%) = [масса полученного пропилена]/[масса пропана (впуск)]×100
Селективность (%) = [выход пропилена]/[степень превращения пропана]×100
Таблица 3. Селективность в отношении пропилена, достигнутая с помощью катализаторов, полученных для процесса окислительного дегидрирования пропана (PDH) с применением CO2
Катализатор Селективность в отношении пропилена (мас.%) Соотношение выходов пропилена и этилена
Cat-1A 46 3,7
Cat-2A 49,1 5,2
Cat-3A 44,4 3,5
Пример 3. Оценка эксплуатационных характеристик катализаторов процесса неокислительного дегидрирования пропана
Эксплуатационные характеристики катализаторов Cat-1B, Cat-2B и Cat-3B оценивали с применением трубчатого реактора с неподвижным слоем, имеющего внутренний диаметр 9 мм и содержащего от 1 до 2 г катализатора при температуре реакции, составляющей от 600 до 650°C и измеряемой термопарой, расположенной в слое катализатора. Поток исходного материала содержал пропан и N2 в молярном соотношении C3:N2 = 1:2, и объемная скорость подачи газа (GHSV) составляла от 1000 до 3500 ч-1. Скорости потоков впускаемых газов регулировали с помощью регуляторов массового расхода. Составы газов на впуске и выпуске анализировали с регулярными интервалами, используя анализатор газов нефтепереработки, снабженный детектором теплопроводности (TCD) и пламенно-ионизационным детектором (FID). Степень превращения пропана, выход пропилена и селективность вычисляли с применением формул, представленных в примере 2, и полученные результаты кратко представлены в таблице 4. Данные, представленные в таблице 4, вычислены на основании состава продукта через 20 минут после начала эксперимента.
Таблица 4. Селективность в отношении пропилена, достигнутая с помощью катализаторов, полученных для процесса неокислительного дегидрирования пропана (PDH)
Катализатор Селективность в отношении пропилена (мас.%) Соотношение выходов пропилена и этилена
Cat-1B 87,1 80,2
Cat-2B 87,5 91,0
Cat-3B 85,8 78,5
Задача настоящего изобретения заключается в том, чтобы улучшать активность и селективность катализатора дегидрирования посредством добавления углеродистых материалов в ходе получения и их последующего сгорания в ходе прокаливания. Из примеров 2 и 3 оказывается очевидным, что посредством применения способа получения катализатора, описанного в настоящем изобретении, селективность в отношении пропилена увеличилась от 44,4 мас.% до 49,1 мас.% для процесса окислительного дегидрирования пропана с применением CO2 (OPDH) и увеличилась от 85,8 мас.% до 87,5 мас.% в случае процесса неокислительного дегидрирования пропана (PDH). Соотношение выхода пропилена и выхода этилена в продуктах увеличилось от 3,5 до 5,2 в случае OPDH и увеличилось от 78,5 до 91,0 в случае PDH, указывая на то, что раскрытый в настоящем изобретении способ в значительной степени подавляет образование продуктов крекинга. Структура/состав катализатора существенно регулирует селективность в отношении продуктов, в то время как степень превращения реагентов представляет собой, главным образом, технологический фактор. Таким образом, имеет значение повышение селективности в отношении желательного продукта посредством структуры катализатора.

Claims (25)

1. Способ получения катализатора дегидрирования алкана, причем способ включает:
(a) мокрое измельчение углеродистого материала с получением пасты измельченного углеродистого материала;
(b) добавление оксида алюминия в раствор органической кислоты при перемешивании в течение от 15 до 20 минут с получением геля оксида алюминия и старение геля в течение от 15 до 20 минут;
(c) получение водного раствора солей металлов группы IA и группы VIB с применением подходящих солей металлов;
(d) добавление пасты измельченного углеродистого материала, полученной на стадии (a), и водного раствора солей металлов, полученного на стадии (c), в гель оксида алюминия, полученный на стадии (b), с получением гомогенной суспензии катализатора;
(e) высушивание суспензии катализатора, полученной на стадии (d), при температуре от 100 до 150°C в течение от 12 до 16 часов с получением сухого брикета катализатора;
(f) дробление сухого брикета катализатора, полученного на стадии (e), и просеивание с получением частиц катализатора от 0,5 до 1,0 мм для эксплуатации в неподвижном слое и частиц от 20 до 200 мкм для эксплуатации в псевдоожиженном слое;
(g) прокаливание частиц катализатора, полученных на стадии (f), при температуре от 600 до 650°C и нагревании со скоростью 2,0°C/мин в течение двух часов в присутствии воздуха; и
(h) восстановление катализатора, полученного на стадии (g), в реакторе с неподвижным слоем/неподвижным псевдоожиженным слоем с применением газообразного водорода при температуре от 600 до 800°C и регулируемой скорости потока с получением конечного катализатора.
2. Способ по п. 1, в котором углеродистый материал выбирают из группы, которую составляют нефтяной кокс, активированный древесный уголь, графитовый порошок и их комбинации.
3. Способ по п. 1, в котором на стадии (a) углеродистый материал измельчают до размера частиц, составляющего от 1 до 5 мкм.
4. Способ по п. 1, в котором на стадии (b) органическая кислота представляет собой муравьиную кислоту.
5. Способ по п. 1, в котором на стадии (b) раствор муравьиной кислоты получают посредством добавления 10 об.% муравьиной кислоты в дистиллированную воду.
6. Способ по п. 1, в котором металл группы VIB выбирают из группы, которую составляют хром, молибден и вольфрам.
7. Способ по п. 1, в котором металл группы IA выбирают из группы, которую составляют литий, натрий, калий, рубидий и цезий.
8. Катализатор дегидрирования алкана, полученный способом по п. 1, причем катализатор содержит:
(i) от 0,01 до 20 мас.% металла группы VIB;
(ii) от 0,001 до 5 мас.% металлов группы IA;
(iii) необязательно от 0,001 до 5 мас.% металлов группы VIII и
(iv) оксид алюминия,
причем массовое процентное содержание определено по отношению к полной массе катализатора.
9. Способ дегидрирования алканов, причем способ включает введение в контакт потока исходного материала, содержащего легкие парафины или смесь парафинов и разбавителей, с катализатором, полученным способом по п. 1, причем соотношение алкана и разбавителя составляет от 1:0,1 до 1:10.
10. Способ по п. 9, причем вышеупомянутый способ осуществляют при температуре в диапазоне от 500 до 700°C, давлении в диапазоне от 0,01 до 10 бар и объемной скорости подачи газа (GHSV) в диапазоне от 500 до 3000 ч-1.
11. Способ по п. 9, в котором разбавители выбирают из группы, которую составляют CO2, N2, пар, инертный газ, топочный газ или их комбинации.
12. Катализатор по п. 8, в котором металл группы VIII выбирают из группы, состоящей из железа, кобальта, родия, иридия, никеля, палладия и платины.
RU2019134667A 2018-11-21 2019-10-29 Высокоактивный катализатор дегидрирования алканов и способ его получения RU2724902C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201821043912 2018-11-21
IN201821043912 2018-11-21

Publications (1)

Publication Number Publication Date
RU2724902C1 true RU2724902C1 (ru) 2020-06-26

Family

ID=71099135

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019134667A RU2724902C1 (ru) 2018-11-21 2019-10-29 Высокоактивный катализатор дегидрирования алканов и способ его получения

Country Status (4)

Country Link
US (1) US10947172B2 (ru)
RU (1) RU2724902C1 (ru)
SA (1) SA119410146B1 (ru)
ZA (1) ZA201906807B (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2318593C1 (ru) * 2006-11-17 2008-03-10 Некоммерческая организация учреждение Институт проблем химической физики Российской академии наук Способ получения катализатора для дегидрирования углеводородов и катализатор, полученный этим способом
RU2323043C2 (ru) * 2002-06-12 2008-04-27 Энгельхард Корпорейшн Катализатор для дегидрогенизации парафина
RU2350594C1 (ru) * 2007-08-13 2009-03-27 Общество с ограниченной ответственностью "Катализ" Алюмооксидный носитель, способ получения алюмооксидного носителя и способ получения катализатора дегидрирования c3-c5 парафиновых углеводородов на этом носителе
EA017327B1 (ru) * 2008-07-14 2012-11-30 Сюд-Кеми Инк. Катализатор дегидрирования углеводородов
CN106140155A (zh) * 2015-04-01 2016-11-23 中国科学院大连化学物理研究所 一种戊烷或己烷脱氢制烯烃的催化剂及其制备方法和应用
CN107488093A (zh) * 2016-06-13 2017-12-19 中国石油天然气股份有限公司 一种低碳烷烃的脱氢工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727052A (en) * 1986-06-27 1988-02-23 Engelhard Corporation Catalyst compositions and methods of making the same
DE19654391A1 (de) 1996-12-27 1998-07-02 Basf Ag Katalysator zur selektiven Herstellung von Propylen aus Propan
US8680357B1 (en) * 2002-01-14 2014-03-25 Clariant Corporation Dehydrogenation catalyst
EP1675678B1 (en) * 2003-10-16 2011-09-28 Dow Technology Investments LLC Catalysts having enhanced stability, efficiency and/or activity for alkylene oxide production
JP2009167171A (ja) 2008-01-11 2009-07-30 Rohm & Haas Co プロパンをプロペンに転化するための担持触媒およびその転化のためのプロセスにおけるその使用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2323043C2 (ru) * 2002-06-12 2008-04-27 Энгельхард Корпорейшн Катализатор для дегидрогенизации парафина
RU2318593C1 (ru) * 2006-11-17 2008-03-10 Некоммерческая организация учреждение Институт проблем химической физики Российской академии наук Способ получения катализатора для дегидрирования углеводородов и катализатор, полученный этим способом
RU2350594C1 (ru) * 2007-08-13 2009-03-27 Общество с ограниченной ответственностью "Катализ" Алюмооксидный носитель, способ получения алюмооксидного носителя и способ получения катализатора дегидрирования c3-c5 парафиновых углеводородов на этом носителе
EA017327B1 (ru) * 2008-07-14 2012-11-30 Сюд-Кеми Инк. Катализатор дегидрирования углеводородов
CN106140155A (zh) * 2015-04-01 2016-11-23 中国科学院大连化学物理研究所 一种戊烷或己烷脱氢制烯烃的催化剂及其制备方法和应用
CN107488093A (zh) * 2016-06-13 2017-12-19 中国石油天然气股份有限公司 一种低碳烷烃的脱氢工艺

Also Published As

Publication number Publication date
ZA201906807B (en) 2020-07-29
US20200199043A1 (en) 2020-06-25
SA119410146B1 (ar) 2022-07-26
US10947172B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
US8101541B2 (en) Catalyst for dehydrogenation of hydrocarbons
ZA200302305B (en) Method for the dehydrogenation of hydrocarbons.
TWI729287B (zh) 觸媒再生之方法
EP2858752A1 (en) A catalyst composition and a process for selective hydrogenation of methyl acetylene and propadiene
KR101644665B1 (ko) 알킨의 대응 알켄으로의 선택적 촉매 수소화
JP5543062B2 (ja) 第viii族金属の分子種と相互作用するカチオンのオキシ(ヒドロキシド)粒子を含有する水溶液の含浸によって調製される触媒
EP1970117A1 (en) Gold-based catalysts for selective hydrogenation of unsaturated compounds
Xu et al. Framework Zr Stabilized PtSn/Zr‐MCM‐41 as a Promising Catalyst for Non‐oxidative Ethane Dehydrogenation
Cordoba et al. Olefin purification and selective hydrogenation of alkynes with low loaded Pd nanoparticle catalysts
CN108786801B (zh) Pt基脱氢催化剂及其制备方法
RU2724902C1 (ru) Высокоактивный катализатор дегидрирования алканов и способ его получения
WO2015152159A1 (ja) 不飽和炭化水素の製造方法
RU2705574C1 (ru) Каталитическая композиция для превращения алканов в алкены и способ ее получения
WO2005044762A1 (en) Selective hydrogenation catalyst
RU2517187C2 (ru) Способ применения слоистых сферических катализаторов с высоким коэффициентом доступности
JP7160604B2 (ja) 1,3-ブタジエン及びアセトアルデヒドジエチルアセタールの製造方法
RU2402514C1 (ru) Способ получения олефинов с3-с5 и катализатор для его осуществления
JP2017159198A (ja) 低級炭化水素用の脱水素触媒、及び芳香族化合物の製造方法
RU2809169C2 (ru) Композиция катализатора дегидрирования
RU2377066C1 (ru) Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения
US20230201805A1 (en) Dehydrogenation catalyst composition
RU2388739C1 (ru) Способ дегидрирования изопентана и изопентан-изоамиленовых фракций
SU471781A1 (ru) Способ получени диолефиновых углеводородов
KR20230060032A (ko) 높은 아세틸렌 함량을 갖는 가스 혼합물의 선택적 수소화 공정
TW202402389A (zh) 觸媒組成物及其製造和使用方法