RU2388739C1 - Способ дегидрирования изопентана и изопентан-изоамиленовых фракций - Google Patents

Способ дегидрирования изопентана и изопентан-изоамиленовых фракций Download PDF

Info

Publication number
RU2388739C1
RU2388739C1 RU2008148409/04A RU2008148409A RU2388739C1 RU 2388739 C1 RU2388739 C1 RU 2388739C1 RU 2008148409/04 A RU2008148409/04 A RU 2008148409/04A RU 2008148409 A RU2008148409 A RU 2008148409A RU 2388739 C1 RU2388739 C1 RU 2388739C1
Authority
RU
Russia
Prior art keywords
dehydrogenation
isopentane
catalyst
isoamylene
hours
Prior art date
Application number
RU2008148409/04A
Other languages
English (en)
Inventor
Владимир Михайлович Бусыгин (RU)
Владимир Михайлович Бусыгин
Хамит Хамисович Гильманов (RU)
Хамит Хамисович ГИЛЬМАНОВ
Ахтям Талифович Амирханов (RU)
Ахтям Талифович Амирханов
Валерий Павлович Погребцов (RU)
Валерий Павлович Погребцов
Разия Гусмановна Романова (RU)
Разия Гусмановна Романова
Александр Адольфович Ламберов (RU)
Александр Адольфович Ламберов
Original Assignee
Александр Адольфович Ламберов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Адольфович Ламберов filed Critical Александр Адольфович Ламберов
Priority to RU2008148409/04A priority Critical patent/RU2388739C1/ru
Application granted granted Critical
Publication of RU2388739C1 publication Critical patent/RU2388739C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

Изобретение относится к способу дегидрирования изопентана и изопентан-изоамиленовых фракций, проводимому при атмосферном давлении в среде водяного пара циклами дегидрирование-регенерация в стационарном слое катализатора на основе платины и олова, нанесенных на алюмоцинковую шпинель, характеризующемуся тем, что используют катализатор со средним размером кристаллитов 22-35 нм при следующем содержании компонентов, мас.%: платина - 0,05-2,0, олово - 0,1-6,0, алюмоцинковая шпинель - остальное, процесс дегидрирования осуществляют при температуре 560-620°С, объемной скорости подачи сырья 300-500 ч-1 в присутствии водорода и водяного пара, соотношение сырье:водород:пар составляет 1:0,5-2,0:5-20 моль:моль:моль. Применение данного способа позволяет более эффективно осуществлять дегидрирование изопентана и изопентан-изоамиленовых фракций. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области органической химии и нефтехимии, в частности к проведению процессов дегидрирования парафиновых углеводородов фракции С35 и соответствующих олефиновых углеводородов для получения диеновых углеводородов - моно- и диолефинов (изопрена, изоамилена), в частности изопрена.
Процессы дегидрирования парафиновых углеводородов относятся к наиболее крупнотоннажным в технологиях нефтехимического и органического синтеза, позволяют получать ненасыщенные соединения, применяемые в качестве мономеров для производства синтетических каучуков, пластмасс, высокооктановых компонентов топлив и других ценных продуктов.
Реакция дегидрирования парафинов с образованием моно- и диолефинов протекает в присутствии катализаторов при температуре выше 500°С. Процесс регулируется термодинамическим равновесием и осуществляется двумя способами, в основе которых лежит принцип смещения равновесия в результате снижения парциального давления исходных компонентов путем либо создания вакуума, либо разбавления сырья инертным газом.
Известен процесс одностадийного вакуумного дегидрирования изопентана или изопентан-изоамиленовых фракций с использованием катализатора, разработанного фирмой Гудри [Огородников С.К., Идлис Г.С. Производство изопрена. Л.: Химия, 1973, с.133-171; US 3088986 A1, 1963.05.07]. Катализатор представляет собой таблетки размером 4×4 мм, состоящие из оксида алюминия, пропитанного 20 мас.% оксидом хрома. В присутствии данного катализатора процесс протекает при температуре 535-650°С, давлении 0,16-0,21 МПа. После каждого цикла проводят восстановление водородом в течение 5-9 мин. Выход изопрена на пропущенное сырье (изопентан) составляет 12,8 мас.% при селективности около 52% и конверсии 30%.
Основным недостатком процесса является то, что он проводится в условиях вакуума, что существенно усложняет технологическую схему и имеет низкие показатели выхода изопрена, селективности и конверсии. Установленный срок эксплуатации используемого катализатора составляет всего 6 месяцев. После выгрузки из реактора катализатор должен быть утилизирован, а наличие токсичного вещества в виде соединений хрома в составе катализатора сохраняет проблему экологической опасности. Существенным недостатком является также короткий цикл работы катализатора (5-9 минут), после чего его необходимо регенерировать. Все это отрицательно сказывается на результаты процесса дегидрирования.
Для снижения коксообразования и уменьшения доли побочных реакций известен катализатор, включающий также оксид хрома, где в качестве носителя используют алюмоцинковую шпинель [RU 2188073 С2, 2002.08.27]. Катализатор имеет следующее содержание компонентов в пересчете на оксиды, мас.%: Cr2O3 - 10,0-30,0, ZnO - 30,0-45,0, Al2O3 - остальное.
Для повышения эффективности процесса дегидрирования парафиновых углеводородов, а именно изобутана и пропана, предложен катализатор, в который дополнительно вводятся активные компоненты в виде оксида олова и платины [RU 2183988 C1, 2002.06.27], имеющий следующий состав, мас.%: Cr2O3 - 10,0-30,0, ZnO - 30,0-45,0, SnO2 - 0,1-3,0, Pt - 0,005-0,2, Al2O3 - остальное. Носитель получают путем длительного (2-16 часов) перемешивания оксидов алюминия и цинка, оксалата или оксида олова и воды в шаровой либо бисерной мельнице при температуре 20-50°С с последующей термической обработкой образовавшейся суспензии в течение 6 часов при 120°С и прокаливании в течение 3-4 часов при 1050-1100°С в токе воздуха. Далее получают микросферический катализатор с диаметром частиц 5-250 микрон методом распыления-сушки суспензии, состоящей из носителя, оксида хрома (VI), раствора платинохлористоводородной кислоты и воды при перемешивании в течение 2-5 часов при температуре 20-50°С. Катализатор подвергают термообработке, состоящей из прокаливания при 680-760°С в течение 3-5 часов в токе воздуха.
Недостатками перечисленных выше способов дегидрирования является использование катализаторов с содержанием в них токсичного соединения Cr2O3, являющегося источником экологического загрязнения окружающей среды.
Известен процесс дегидрирования парафиновых углеводородов при атмосферном давлении в среде водяного пара с использованием в качестве катализатора платиносодержащих катализаторов, получаемых путем нанесения соединений платины и олова на шпинельные носители [SU 1001545 А1, 2000.08.27; SU 1103405 А1, 2000.05.27; SU 1511894 А1, 1999.10.20; SU 665625 А1, 2001.06.10; SU 635652 A1, 2001.04.10].
Для повышения активности и селективности в отношении образования диеновых и олефиновых углеводородов при получении катализатора на стадии смешения гидроокиси алюминия с окисью цинка в него вводят соединения щелочного металла в виде орто- или пирофосфата калия или цезия [SU 1001545 A1, 2000.08.27]. Смешение гидроокиси алюминия с окисью цинка проводят в присутствии воды до образования пластичной массы, далее проводят ее формирование, сушат на воздухе и прокаливают с последующей пропиткой носителя водным раствором платинохлористоводородной кислоты и неорганических соединений олова, с окончательной сушкой катализаторной массы на воздухе.
Известен катализатор аналогичного состава с повышенной прочностью и активностью [SU 1103405 A1, 2000.05.27], отличительной особенностью которого является введение на стадии формирования шпинельного носителя выгорающей добавки в виде полидивинилбензола или сополимера стирола и дивинилбензола.
Аналогичный эффект был получен при использовании в процессе дегидрирования платиносодержащего катализатора на алюмоцинковом носителе, приготовленном с использованием в качестве цинкосодержащего компонента смеси оксида цинка и хлорида цинка в соотношении от 1:1 до 20:1 [SU 635652 A1, 2001.04.10].
Известно, что при дегидрировании ациклических углеводородов с целью повышения активности в катализатор, содержащий алюмоцинковую шпинель, платину, оксид цинка и диоксид олова, дополнительно вводили оксид марганца при следующем соотношении компонентов, мас.%: платина - 0,1-0,5; оксид цинка - 0,5-10; диоксид олова - 0,3-5; оксид марганца - 0,3-5; алюмоцинковая шпинель - остальное [SU 1511894 A1, 1999.10.20].
Известен катализатор для дегидирования парафиновых и олефиновых углеводородов на основе платины, олова и соединения щелочного или щелочноземельного металла на носителе - алюмоцинковой или алюмомагниевой шпинели, где в качестве соединения щелочного или щелочно-земельного металла он содержит силикат или хлорид при следующем соотношении компонентов: платина - 0,1-5,0; олово - 0,1-5,0; силикат или хлорид щелочного или щелочно-земельного металла - 0,1-5,0; алюмоцинковая или алюмомагниевая шпинель - остальное [SU 665625 A1, 2001.06.10].
При использовании перечисленных выше катализаторов, содержащих нанесенную на шпинель платину, модифицированную добавками олова, процесс дегидрирования парафинов можно проводить при атмосферном давлении в среде водяного пара. Процесс осуществляют короткими циклами дегидрирование-регенерация в стационарном слое катализатора в адиабатическом реакторе. Продолжительность цикла составляет 4 часа, в том числе дегидрирование - 3 часа, регенерация - 1 час [Котельников Г.Р., Патанов В.А., Буянов Р.А., Бушин А.Н. Исследование и разработка технологии производства мономеров и синтетических каучуков. М., Цниитэнефтехим, 1979, вып.3, с.11-13]. Этот способ дегидрирования является наиболее близким аналогом предлагаемому способу. Как показывают исследования результатов дегидрирования тех же авторов, выход изопрена за проход достигает 13,5 мас.%, выход изоамилена 25,6 мас.%, конверсия 46,66 мас.% при селективности по продуктам дегидрирования 82-84 мас.% [Катализаторы и процессы дегидрирования парафинов и олефинов. Р.А.Буянов, Н.А.Пахомов. Кинетика и катализ, 2001, том 42, №1, с.72-85].
Недостатком вышеприведенного способа дегидрирования изопентана является низкая эффективность процесса, обусловленная как высокой энергоемкостью, так и низким выходом изопрена и недостаточно высокой селективностью по продуктам дегидрирования, что приводит к значительному расходу сырья и энергоресурсов при проведении дегидрирования. Кроме того, используемый катализатор быстро закоксовывается, что приводит к частым регенерациям в процессе дегидрирования, следовательно, к дополнительным энергетическим затратам на регенерацию и проведение самого процесса дегидрирования.
Задачей изобретения является разработка эффективного способа дегидрирования изопентана и изопентан-изоамиленовых фракций с использованием эффективного катализатора.
Поставленная задача решается способом дегидрирования С35 парафиновых углеводородов (изопентана и изопента-изоамиленовых фракций), проводимом при атмосферном давлении в среде водяного пара; процесс осуществляют циклами дегидрирование-регенерация в стационарном слое катализатора в адиабатическом реакторе. Особенностью способа дегидрирования является использование катализатора на основе платины и олова, нанесенных на алюмоцинковую шпинель, со средним размером кристаллитов носителя 22-35 нм при следующем содержании компонентов, мас.%:
платина - 0,05-2,0
олово - 0,1-6,0
алюмоцинковая шпинель - остальное;
циклический процесс ведут в следующей последовательности: дегидрирование - 4-7 ч, продувка паром - 5 мин, регенерация паровоздушной смесью - 0,5-0,9 ч, продувка паром - 5 мин, регенерацию осуществляют паровоздушной смесью при температуре 600-640°С до тех пор, пока содержание углекислого газа CO2 в газах регенерации не снизится до величины не более 0,1 мас.%.
Технический результат изобретения определяется структурными характеристиками применяемого катализатора: нанокристаллическая структура носителя позволяет эффективно интеркалировать в межслоевое пространство и прочно закрепить на его поверхности компоненты катализатора, что обуславливает его высокую активность и селективность в заданных условиях температуры, давления, скорости сырьевых потоков процесса дегидрирования, а также обеспечивает устойчивость к закоксовыванию катализатора при проведении процесса дегидрирования в течение длительного времени, что обуславливает увеличение межрегенерационного периода и соответственно снижение расхода пара и уменьшение энергетических затрат на процесс дегидрирования.
Средний размер нанокристаллитов или средний размер областей когерентного рассеяния D(OKP) рассчитывают из данных рентгенографии по уширению дифракционного пика, используя формулу Селякова-Шеррера
Figure 00000001
где λ - длина волны рентгеновского излучения, нм, β - интегральная ширина профиля дифракционной линии или физическое уширение, рад [Рентгенографический и электроно-оптический анализ. С.А.Горелик, Ю.А.Скаков, Л.Н.Расторгуев.: Учеб. Пособие для вузов. - 4-е изд. Доп. и перераб. - М.: МИСИС, 2002. - 360 с.].
Фазовый состав носителя определяют методом дифракции рентгеновских лучей. Съемку рентгенограмм проводят с использованием длинноволнового излучения CuKα и графитового монохроматора на дифрагирующем пучке. Диапазон записи углов в шкале 2θ составляет от 5 до 95 град.
Носитель заявленного катализатора обладает величиной внешней удельной поверхности более 1 м2/г.
Величину общей удельной поверхности и объема пор определяют методом низкотемпературной адсорбции азота (БЭТ). Сущность метода определения параметров пористой системы изложена в методике ASTM D 3663-99 «Стандартный метод исследования площади поверхности и объема пор катализаторов и носителей катализаторов».
Катализатор имеет насыпной вес в интервале 0,80-1,10 г/см3. Насыпной вес катализатора определяют согласно ТУ 2173-075-00206457-2007 «Катализатор дегидрирования легких парафиновых углеводородов (КДИ)».
Процесс дегидрирования С35 парафиновых углеводородов с использованием заявляемого катализатора осуществляют при температуре 560-620°С, объемной скорости подачи сырья 300-500 ч-1 в присутствии водорода и водяного пара. Соотношение сырье:водород:пар составляет 1:0,5-2,0:5-20 моль: моль: моль. Процесс проводят в реакторе со стационарным слоем катализатора. Процесс ведут циклами: дегидрирование-регенерация. Регенерацию осуществляют паровоздушной смесью при температуре 600-640°С до тех пор, пока содержание углекислого газа CO2 в газах регенерации не снизится до величины не более 0,1 мас.%. Контактный газ (выходной газ из реактора после дегидрирования) анализируют методом газовой хроматографии. По результатам хроматографического анализа рассчитывают выход целевого изопрена и изоамилена (на пропущенный и разложенный парафин - активность и селективность катализатора соответственно).
По результатам хроматографического анализа рассчитывают массовое содержание СО2, которое затем пересчитывают в объемное содержание СО2 с помощью поправочного коэффициента.
Каталитические показатели: выход изопрена на пропущенное сырье (ВП) и выход изопрена на разложенное сырье (ВР), рассчитывают на основе хроматографического анализа сырья и продуктов реакции.
Выход изопрена на пропущенный изопентан (ВП, мас.%) рассчитывают по формуле
Figure 00000002
где C(iC5H8)к/газ - массовая доля изопрена в контактном газе, мас.%;
С(iC5H12) сырье - массовая доля изопентана в сырье, мас.%;
C(iC5H8)сырье - массовая доля изопрена в сырье, мас.%. Выход изоамиленов на пропущенный изопентан (ВР, мас.%) рассчитывают
по формуле
Figure 00000003
где C(iC5H10) к/газ - массовая доля изоамиленов в контактном газе, мас.%;
C(iC5H10) сырье - массовая доля изоамиленов в сырье, мас.%;
C(iC5H12) сырье - массовая доля изопентана в сырье, мас.%;
C(iC5H12) к/газ - массовая доля изопентана в контактном газе, мас.%.
Выход непредельных углеводородов (изопрен + изоамилены) на пропущенное сырье - изопентан (ВП непред., мас.%) рассчитывают по формуле
Figure 00000004
где C(iC5H8) к/газ - массовая доля изопрена в контактном газе, мас.%;
C(iC5H10) к/газ - массовая доля суммы изамиленов в контактном газе, мас.%;
С(iC5H12) сырье - массовая доля изопентана в сырье, мас.%.
Выход непредельных углеводородов (изопрен + изоамилены) на разложенное сырье - изопентан (ВР непред., мас.%) рассчитывают по формуле
Figure 00000005
где C(iC5H8) к/газ - массовая доля изопрена в контактном газе, мас.%;
C(iC5H10) к/газ -массовая доля суммы изоамиленов в контактном газе, мас.%;
C(iC5H12) сырье - массовая доля изопентана в сырье, мас.%;
С(iC5H12) к/газ - массовая доля изопентана в контактном газе, мас.%.
Конверсию (глубину превращения) (К, %), как соотношение выхода изопрена на пропущенное и разложенное сырье рассчитывают по формуле
Figure 00000006
Изобретение подтверждается примерами конкретного выполнения, которые вместе с полученными результатами отражены в Таблице.
Пример 1
Для приготовления катализатора №1 тщательно перетирают в ступке 78,08 г оксида цинка (0,96 моль) и 400,0 г гидроксида алюминия с содержанием (Al2O3)=0,00241 моль/г (0,96 моль), после чего при перемешивании постепенно добавляют 70 мл дистиллированной воды до получения однородной пастообразной массы. Полученную массу экструдируют, в результате получают гранулы цилиндрической формы диаметром 2,0 мм и длиной 5,0 мм. Полученные гранулы сушат при комнатной температуре в течение 20 часов, а затем прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°С со скоростью 50°С/ч. После этого прокаливают образец еще 20 ч при 900°С и 15 ч при 950°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 31,5 нм.
25,00 г полученного носителя пропитывают раствором, состоящим из 11 мл раствора платинохлористоводородной кислоты H2PtCl6 (T(Pt)=0,01138 г/мл) и 15,0 мл раствора хлорида олова SnCl2 (T=0,028917 г/мл). Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 0,50 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллов 31,5 нм - 98,59.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 580°С, объемной скорости подачи углеводородов 400 ч-1, мольном соотношении сырье:водород:пар, равном 1:1:12,5.
В реакции дегидрирования изопентана и изопентан-изоамиленовых фракций получены следующие результаты: ВП(изопрен)=16,49 мас.%, ВП (изоамилены)=27,08 мас.%, ВР (изопрен + изоамилены)=86,63 мас.%, конверсия 46,81%.
Пример 2
Носитель для катализатора №2, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 50°С/ч. После этого прокаливают образец 10 ч при 800°С и 10 ч при 900°С. Полученный носитель имеет следующие характеристики: насыпная плотность 0,85 г/см3, размер нанокристаллитов 26,0 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу. Полученный катализатор после просушки прокаливают при 400°С в течение 5 часов.
Полученный катализатор имеет состав: Pt - 0,50 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 26,0 нм - 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП(изопрен)=18,30 мас.%, ВП (изоамилены)=33,70 мас.%, ВР (изопрен + изоамилены)=84,05 мас.%, конверсия 61,87%.
Пример 3
Носитель для катализатора №3, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 50°С/ч. После этого прокаливают образец 10 ч при 800°С и 20 ч при 900°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 28,3 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу. Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имел состав: Pt - 0,50 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 28,3 нм - 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП(изопрен)=16,36 мас.%, ВП (изоамилены)=39,20 мас.%, ВР (изопрен + изоамилены)=83,90 мас.%, конверсия 66,27%.
Пример 4
Носитель для катализатора №4, полученный по описанному в примере 2 способу, имеет следующие характеристики: насыпная плотность 0,85 г/см3, размер нанокристаллитов 26,0 нм.
25,00 г полученного носителя пропитывают раствором, состоящим из 11,0 мл раствора H2PtCl6 (T(Pt)=0,01138 г/мл) и 25,0 мл раствора SnCl2 (T=0,028917 г/мл). Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 0,50 мас.%, Sn - 1,52 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 26,0 нм - 97,98.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП(изопрен)=15,65 мас.%, ВП (изоамилены)=25,65 мас.%, ВР (изопрен + изоамилены)=83,82 мас.%, конверсия 49,10%.
Из этих результатов следует, что для катализаторов с размерами нанокристаллитов 26,0 нм при увеличении содержания промотора (олова) каталитическая активность остается высокой.
Пример 5
Носитель для катализатора №5, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 10°С/ч. После этого прокаливают образец 10 ч при 800°С и 30 ч при 850°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,85 г/см3, размер нанокристаллитов 27,7 нм.
25,00 г полученного носителя пропитывают раствором, состоящим из 2,4 мл раствора H2PtCl6 (T(Pt)=0,01138 г/мл), 3,9 мл раствора SnCl2 (T=0,028917 г/мл) и 10,0 мл воды. Полученный катализатор просушивают при 130°С в течение 5 часов, затем прокаливают при 500°С в течение 2-х часов.
Полученный катализатор имеет состав: Pt - 0,10 мас.%, Sn - 0,18 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 27,7 нм - 99,72.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 600°С, объемной скорости подачи углеводородов 500 ч-1, мольном соотношении сырье:водород:пар, равном 1:1,5:10. Результаты испытаний приведены в Таблице:
ВП(изопрен)=15,42 мас.%, ВП (изоамилены)=28,98 мас.%, ВР (изопрен + изоамилены)=83,90 мас.%, конверсия 52,92%.
Из приведенных результатов видно, что для катализаторов с размерами нанокристаллитов 27,7 нм даже при уменьшении содержания активного компонента (платины) в 5 раз каталитическая активность остается высокой.
Пример 6
Носитель для катализатора №6, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 1100°С со скоростью 50°С/ч. После этого прокаливают образец 10 ч при 1100°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 1,10 г/см3, размер нанокристаллитов 47,1 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имел состав: Pt - 0,50 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 47,1 нм - 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП(изопрен)=0,05 мас.%, ВП (изоамилены)=0,40 мас.%, ВР (изопрен + изоамилены)=90,0 мас.%, конверсия 0,50%.
Этот пример демонстрирует, что при размере кристаллитов более 35 нм каталитической активности нет.
Пример 7
Носитель для катализатора №7, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 50°С/ч. После этого прокаливают образец 20 ч при 800°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 1,00 г/см3, размер нанокристаллитов 21,8 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 0,50 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 21,8 нм - 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП(изопрен)=10,37 мас.%, ВП (изоамилены)=12,05 мас.%, ВР (изопрен + изоамилены)=91,89 мас.%, конверсия 25,08%.
Как видно из приведенных данных, при размере кристаллитов менее 22 нм каталитическая активность снижается.
Пример 8
Носитель для катализатора №8, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 50°С/ч. После этого прокаливают образец 10 ч при 800°С и 10 ч при 850°С. Полученный носитель имеет следующие характеристики: насыпная плотность 0,80 г/см3, размер нанокристаллитов 20,5 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу. Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 0,50 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 20,5 нм - 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице;
ВП(изопрен)=12,37 мас.%, ВП (изоамилены)=19,81 мас.%, ВР (изопрен + изоамилены)=76,65 мас.%, конверсия 62,10%.
Как видно из приведенных результатов, при размере кристаллитов менее 22 нм снижается не только каталитическая активность, но и селективность по продуктам дегидрирования.
Пример 9
Носитель для катализатора №9, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°С со скоростью 10°С/ч. После этого прокаливают образец 14 ч при 900°С и 10 ч при 950°С. Полученный носитель имеет следующие характеристики: насыпная плотность 0,92 г/см3, размер нанокристаллитов 30,7 нм.
Пропитку носителя проводят раствором, состоящим из 11 мл раствора H2PtCl6 (T(Pt)=0,01138 г/мл) и 10,0 мл раствора SnCl2 (Т=0,028917 г/мл). Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 0,50 мас.%, Sn - 0,61 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 30,7 нм - 98,89.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП(изопрен)=16,19 мас.%, ВП (изоамилены)=31,76 мас.%, ВР (изопрен + изоамилены)=83,86 мас.%, конверсия 57,18%.
Пример 10
Носитель для катализатора №10, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 10°С/ч. После этого прокаливают образец 10 часов при 800°С и 15 часов при 850°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,90 г/см3, размер нанокристаллитов 35,0 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 3 часов, затем прокаливают при 500°С в течение 3 часов.
Полученный катализатор имеет состав: Pt - 0,05 мас.%, Sn - 0,10 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 35,0 нм - 99,85.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП(изопрен)=15,65 мас.%, ВП (изоамилены)=25,71 мас.%, ВР (изопрен + изоамилены)=83,81 мас.%, конверсия 49,35%.
Из приведенных результатов видно, что для катализаторов с размерами нанокристаллитов 35,0 нм даже при уменьшении содержания активного компонента (платины) в 10 раз каталитическая активность остается высокой.
Пример 11
Для приготовления катализатора №11 тщательно перетирают в ступке 78,08 г оксида цинка (0,96 моль) и 400,0 г гидрооксида алюминия с содержанием (Al2O3)=0,00241 моль/г (0,96 моль), после чего при перемешивании постепенно добавляют 70 мл дистиллированной воды до получения однородной пастообразной массы. Полученную массу экструдируют, в результате получают гранулы цилиндрической формы диаметром 2,0 мм и длиной 5,0 мм. Полученные гранулы сушат при комнатной температуре в течение 10 часов, а затем прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°С со скоростью 100°С/ч. После этого прокаливают образец еще 20 часов при 900°С и 20 часов при 950°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 29,3 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 110°С в течение 4-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 2,0 мас.%, Sn - 6,00 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 29,3 нм - 92,0.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 580°С, объемной скорости подачи углеводородов 400 ч-1, мольном соотношении сырье:водород:пар, равном 1:0,5:20.
В реакции дегидрирования изопентана и изопентан-изоамиленовых фракций получены следующие результаты: ВП(изопрен)=16,30 мас.%, ВП (изоамилены)=25,65 мас.%, ВР (изопрен + изоамилены)=84,10 мас.%, конверсия 49,88%.
Пример 12
Для приготовления катализатора №12 тщательно перетирают в ступке 78,08 г оксида цинка (0,96 моль) и 400,0 г гидрооксида алюминия с содержанием (Al2O3)=0,00241 моль/г (0,96 моль), после чего при перемешивании постепенно добавляют 70 мл дистиллированной воды до получения однородной пастообразной массы. Продолжают перемешивание еще 30 мин. Полученную массу экструдируют, в результате получают гранулы цилиндрической формы диаметром 2,0 мм и длиной 5,0 мм. Полученные гранулы сушат при комнатной температуре в течение 20 часов, а затем прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°С со скоростью 50°С/ч. После этого прокаливают образец еще 20 часов при 900°С, 25 часов при 950°С и 5 часов при 1000°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 32,0 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 0,5 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 32,0 нм - 98,59.
Процесс дегидрирования изопентана и изопентан-изоамиленовых фракций проводят в проточном кварцевом трубчатом реакторе при температуре реакции 580°С, объемной скорости подачи углеводородов 400 ч-1, мольном соотношении сырье: водород: пар, равном 1:1:12,5.
В реакции дегидрирования изопентана и изопентан-изоамиленовых фракций получены следующие результаты: ВП(изопрен)=16,03 мас.%, ВП (изоамилены)=27,12 мас.%, ВР (изопрен + изоамилены)=85,13 мас.%, конверсия 50,69%.
Пример 13
Носитель для катализатора №13, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 800°С со скоростью 50°С/ч. После этого прокаливают образец 10 часов при 800°С и 10 часов при 850°С.
Полученный носитель имеет следующие характеристики: насыпная плотность 0,95 г/см3, размер нанокристаллитов 22 нм.
Пропитку носителя проводят аналогично описанному в примере 1 способу.
Полученный катализатор просушивают при 130°С в течение 1 часа, затем прокаливают при 500°С в течение 3 часов.
Полученный катализатор имеет состав: Pt - 0,5 мас.%, Sn - 0,91 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 22,0 нм - 98,59.
Процесс дегидрирования проводят в условиях, описанных в примере 1, результаты испытаний приведены в Таблице:
ВП (изопрен)=14,61 мас.%, ВП (изоамилены)=26,84 мас.%, ВР (изопрен + изоамилены)=84,50 мас.%, конверсия 49,04%.
Пример 14
Носитель для катализатора №14, полученный по описанному в примере 1 способу, после сушки при комнатной температуре прокаливают в муфельной печи в режиме постепенного подъема температуры до 900°С со скоростью 10°С/ч. После этого прокаливают образец 14 ч при 900°С и 10 ч при 950°С. Полученный носитель имеет следующие характеристики: насыпная плотность 0,92 г/см3, размер нанокристаллитов 30,7 нм.
Пропитку носителя проводят раствором, состоящим из 11,0 мл раствора H2PtCl6 (Т(Pt)=0,01138 г/мл) и 10,0 мл раствора SnCl2 (Т=0,028917 г/мл). Полученный катализатор просушивают при 130°С в течение 2-х часов, затем прокаливают при 500°С в течение 1 часа.
Полученный катализатор имеет состав: Pt - 0,50 мас.%, Sn - 0,61 мас.%, алюмоцинковая шпинель с размерами нанокристаллитов 30,7 нм - 98,89 мас.%.
Процесс дегидрирования проводят также в следующих условиях:
температура реакции 600°С, объемной скорости подачи углеводородов 300 ч-1, мольном соотношении сырье:водород:пар, равном 1:2:5, результаты испытаний приведены в Таблице:
ВП (изопрен)=15,61 мас.%, ВП(изоамилены)=26,00 мас.%, ВР (изопрен+изоамилены)=84,02 мас.%, конверсия 49,52%.
Как видно из приведенных примеров, процесс дегидрирования изопентана и изопентан-изоамиленовых фракций позволяет повысить эффективность его процесса за счет более полного превращения исходных парафинов при высокой селективности по диолефиновым углеводородам за счет использования вышеуказанного катализатора.
Увеличение активности катализатора обусловлено оптимизацией структурных характеристик катализатора. Использование катализатора с оптимальной структурой позволяет уменьшить энергетические затраты на процесс вследствие увеличения продолжительности цикла дегидрирования.
Таким образом, предложен новый способ дегидрирования парафиновых углеводородов. В результате при дегидрировании парафиновых углеводородов процесс осуществляется более эффективно, что отражается в (1) увеличении выхода диеновых и олефиновых углеводородов вследствие применения высокоактивного и селективного катализатора с плотной упаковкой нанокристаллических частиц в гранулах алюмоцинкового шпинельного носителя; (2) снижении расходных норм сырья вследствие увеличения выхода целевых продуктов; (3) снижении энергетических затрат вследствие увеличения периода между регенерациями, обусловленного стабильной работой катализатора и большей устойчивостью его к закоксовыванию.
Figure 00000007

Claims (3)

1. Способ дегидрирования изопентана и изопентан-изоамиленовых фракций, проводимый при атмосферном давлении в среде водяного пара циклами дегидрирование-регенерация в стационарном слое катализатора на основе платины и олова, нанесенных на алюмоцинковую шпинель, отличающийся тем, что используют катализатор со средним размером кристаллитов 22-35 нм при следующем содержании компонентов, мас.%:
платина 0,05-2,0 олово 0,1-6,0 алюмоцинковая шпинель остальное

процесс дегидрирования осуществляют при температуре 560-620°С, объемной скорости подачи сырья 300-500 ч-1 в присутствии водорода и водяного пара, соотношение сырье : водород : пар составляет 1 : 0,5-2,0 : 5-20 моль.
2. Способ дегидрирования по п.1, отличающийся тем, что циклический процесс ведут в следующей последовательности: дегидрирование 4-7 ч, продувка паром 5 мин, регенерация паровоздушной смесью 0,5-0,9 ч, продувка паром 5 мин.
3. Способ дегидрирования по п.1, отличающийся тем, что регенерацию осуществляют паровоздушной смесью при температуре 600-640°С до тех пор, пока содержание углекислого газа в газах регенерации не снизится до величины не более 0,1 мас.%.
RU2008148409/04A 2008-12-08 2008-12-08 Способ дегидрирования изопентана и изопентан-изоамиленовых фракций RU2388739C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008148409/04A RU2388739C1 (ru) 2008-12-08 2008-12-08 Способ дегидрирования изопентана и изопентан-изоамиленовых фракций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008148409/04A RU2388739C1 (ru) 2008-12-08 2008-12-08 Способ дегидрирования изопентана и изопентан-изоамиленовых фракций

Publications (1)

Publication Number Publication Date
RU2388739C1 true RU2388739C1 (ru) 2010-05-10

Family

ID=42673916

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008148409/04A RU2388739C1 (ru) 2008-12-08 2008-12-08 Способ дегидрирования изопентана и изопентан-изоамиленовых фракций

Country Status (1)

Country Link
RU (1) RU2388739C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Котельников Г.Р., Патанов В.А., Буянов Р.А., Бушин А.Н. Исследование и разработка технологии производства мономеров и синтетических каучуков. - М.: ЦНИИТЭНЕФТЕХИМ, 1979, вып.3, с.11-13. *

Similar Documents

Publication Publication Date Title
US3446865A (en) Catalyst and catalytic process
JP5432905B2 (ja) オレフィンの製造方法
Lei et al. Silica-doped TiO2 as support of gallium oxide for dehydrogenation of ethane with CO2
Carniti et al. Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas
EP0894781B1 (en) Process for obtaining light olefins by the dehydrogenation of the corresponding paraffins
EA017327B1 (ru) Катализатор дегидрирования углеводородов
WO2012020743A1 (ja) 不飽和炭化水素の製造方法および当該方法に使用される脱水素用触媒
TWI729287B (zh) 觸媒再生之方法
Liu et al. Enhanced propane dehydrogenation to propylene over zinc-promoted chromium catalysts
RU2350594C1 (ru) Алюмооксидный носитель, способ получения алюмооксидного носителя и способ получения катализатора дегидрирования c3-c5 парафиновых углеводородов на этом носителе
JP2000317310A (ja) 優れたアクセシビリティーを有する、第8、9または10族の元素を含む触媒、およびパラフィン脱水素方法におけるその使用
RU2404950C2 (ru) Способ гидрирования бензола, смесей бензола и толуола, смесей бензола и ксилола, или изомерной смеси ксилола, или смесей бензола, толуола и ксилола, или изомерной смеси ксилола, содержащих сернистые ароматические соединения, и способ их десульфирования
US20080154074A1 (en) Catalyst prepared by impregnation of an aqueous solution containing oxy(hydroxide) particles of a cation in interaction with a molecular species of a group viii metal
Kogan et al. Selective propane dehydrogenation to propylene on novel bimetallic catalysts
JP7360835B2 (ja) 最適である酸度と孔隙を有する構造とを有するアルミナ
WO2020059889A1 (ja) 触媒、及びこれを用いた1,3-ブタジエンの製造方法
KR100939608B1 (ko) 탄화수소의 이성화방법
Wang et al. Isomerization of n-butane by gallium-promoted sulfated zirconia supported on MCM-41
RU2388739C1 (ru) Способ дегидрирования изопентана и изопентан-изоамиленовых фракций
RU2377066C1 (ru) Катализатор для дегидрирования изопентана и изопентанизоамиленовых фракций и способ его получения
WO2015152159A1 (ja) 不飽和炭化水素の製造方法
JP7160604B2 (ja) 1,3-ブタジエン及びアセトアルデヒドジエチルアセタールの製造方法
RU2705574C1 (ru) Каталитическая композиция для превращения алканов в алкены и способ ее получения
RU2724902C1 (ru) Высокоактивный катализатор дегидрирования алканов и способ его получения
RU2402514C1 (ru) Способ получения олефинов с3-с5 и катализатор для его осуществления

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20120618

PC41 Official registration of the transfer of exclusive right

Effective date: 20140811

MM4A The patent is invalid due to non-payment of fees

Effective date: 20151209