RU2271860C1 - Катализатор для дегидрирования парафиновых углеводородов - Google Patents

Катализатор для дегидрирования парафиновых углеводородов Download PDF

Info

Publication number
RU2271860C1
RU2271860C1 RU2005107191/04A RU2005107191A RU2271860C1 RU 2271860 C1 RU2271860 C1 RU 2271860C1 RU 2005107191/04 A RU2005107191/04 A RU 2005107191/04A RU 2005107191 A RU2005107191 A RU 2005107191A RU 2271860 C1 RU2271860 C1 RU 2271860C1
Authority
RU
Russia
Prior art keywords
catalyst
oxide
catalyst according
carrier
promoter
Prior art date
Application number
RU2005107191/04A
Other languages
English (en)
Inventor
Тать на Владимировна Борисова (RU)
Татьяна Владимировна Борисова
Ольга Михайловна Мельникова (RU)
Ольга Михайловна Мельникова
Original Assignee
Татьяна Владимировна Борисова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Татьяна Владимировна Борисова filed Critical Татьяна Владимировна Борисова
Priority to RU2005107191/04A priority Critical patent/RU2271860C1/ru
Application granted granted Critical
Publication of RU2271860C1 publication Critical patent/RU2271860C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способам приготовления катализаторов для дегидрирования парафиновых углеводородов, C2-C5алканов, до соответствующих олефиновых углеводородов. Описан катализатор для дегидрирования парафиновых углеводородов, содержащий оксид хрома, соединение щелочного металла, диоксид циркония, промотор и оксид алюминия, предшественником которого является носитель - соединение алюминия формулы Al2О3·nH2О, где n=0,3-1,5, рентгеноаморфной структуры. Катализатор содержит в качестве промотора, по крайней мере, одно соединение металла, выбранного из группы: цинк, медь, железо в количестве 0,03-2,0 мас.%, и катализатор имеет следующий состав, мас.%, в пересчете на оксид: оксид хрома 10-20; соединение щелочного металла 1-2; оксид циркония 0,5-2; оксид промотора из группы: цинк, медь, железо 0,03-2; оксид алюминия - остальное. Технический эффект - повышение механической прочности, стабильности в рабочем режиме действия катализатора при дегидрировании парафиновых углеводородов. 8 з.п. ф-лы, 3 табл., 1 ил.

Description

Изобретение относится к способам приготовления катализаторов для дегидрирования парафиновых углеводородов, С25алканов, до соответствующих олефиновых углеводородов.
Олефиновые углеводороды являются важнейшими продуктами органического синтеза, используемыми в промышленности синтетического каучука для производства основных мономеров - бутадиена, изопрена, изобутилена, а также в производстве полимеров, высокооктановых компонентов моторных топлив (МТБЭ).
Технология дегидрирования парафиновых углеводородов в олефиновые базируется на использовании реактора со стационарным слоем гранулированного катализатора или реактора с псевдоожиженным слоем микросферического катализатора, циркулирующего в системе реактор - регенератор. Процесс проводят непрерывно при температуре 540-650°С. Катализаторы для этих процессов должны обладать высокой механической прочностью на истирание, высокой термостойкостью в переменных средах и стабильностью.
Эффективными и доступными являются катализаторы дегидрирования углеводородов, которые содержат оксиды хрома в количестве 9-17% и оксид алюминия. В качестве промоторов используют соединения щелочных и щелочноземельных металлов в количестве до 5% (Производство изопрена / С.К.Огородников, Г.С.Идлис. - Л.: Химия, 1973. - с.112-118). В связи с известной вредностью соединений хрома существует проблема прочного закрепления хрома в катализаторе, а также повышение его активности и эксплуатационной стабильности. Эксплуатационная стабильность зависит от способности катализатора сохранять в переменных условиях процесса (температура 540-650°С, окислительная и восстановительная среды, механическое воздействие) длительное время свои каталитические и механические свойства.
Известны решения этой проблемы при приготовлении хромсодержащих катализаторов.
Одним из них является усложнение состава катализатора за счет внесения промоторов или модификаторов в сам катализатор, или в носитель в виде оксида алюминия.
Известен катализатор, который содержит оксид хрома в количестве 25%, соединение щелочного и/или щелочноземельного металла, преимущественно цезия в количестве 0,7-4,5% и промотор в виде диоксида циркония в количестве 0,9% на носителе - оксиде алюминия (Патент СССР №1836140, Кл. B 01 J 23/26, 1993).
Катализатор имеет высокую активность, но низкую механическую прочность и стабильность.
Известен катализатор для дегидрирования парафиновых углеводородов (Патент РФ №2167709, Кл. B 01 J 23/26, 2001), который получают нанесением соединений хрома в количестве 10-25%, соединения калия в количестве 0,5-2% на носитель в виде оксида алюминия, модифицированного соединениями циркония (0,5-2%), бора (0,5-2%) и кремния (0,5-1,5%).
Этот катализатор имеет недостаточную селективность и стабильность, а также низкую механическую прочность.
Для решения проблемы повышения эффективности работы применяют катализаторы, которые в качестве носителя содержат алюмоцинковую шпинель, на которую наносят соединения хрома, олова и платины.
Известен катализатор, содержащий оксид хрома 10-30% и дополнительно оксид олова в количестве 0,1-3% на носителе из оксида алюминия и оксида цинка в количестве 30-45% (Патент РФ №2177827, Кл. B 01 J 23/26, 2002).
Известен катализатор, содержащий оксид хрома 10-30%, оксид олова в количестве 0,1-3% и дополнительно платину в количестве 0,005-2% на носителе из оксида алюминия и оксида цинка (Патент РФ №2183988, Кл. B 01 J 23/26, 2002).
Эти катализаторы, несмотря на сложный состав и многостадийный способ получения, не достигают стабильных показателей активности и селективности. Плохая прочность закрепления активных компонентов на таком носителе приводит к их уносу в процессе эксплуатации и снижению первоначальной активности катализаторов. Невысока и механическая прочность таких катализаторов.
Известен катализатор для дегидрирования парафиновых углеводородов (Патент РФ №2148430, Кл. B 01 J 23/26, 2000), который содержит оксиды хрома 12-23%, соединение щелочного и/или щелочноземельного металла в количестве 0,5-3,5% и соединение неметалла: бора и/или кремния в количестве 0,1-10%. Катализатор содержит также, по крайней мере, одно соединение модифицирующего металла (Ti, Zr, Sn, Fe, Ga, Co, Mn, Mo) в количестве 0,5-1,5%. Катализатор сформирован в результате термообработки соединения алюминия формулы Al2О3·nH2O, где n=0,3-1,5, рентгеноаморфной структуры совместно с остальными соединениями.
Катализатор обладает высокой активностью и селективностью, но недостаточной эксплуатационной стабильностью. Химический состав его достаточно сложен, что создает определенные трудности при воспроизведении его свойств в ходе приготовления.
Наиболее близким техническим решением является катализатор, который содержит оксид хрома в количестве 12-23%, соединение щелочного и/или щелочноземельного металла в количестве 0,5-3,5%, диоксид циркония в количестве 0,1-5% и, по крайней мере, один оксидный промотор из группы: ниобий, тантал, гафний в количестве 0,001-2% на оксиде алюминия (Патент РФ №2200143, Кл. С 07 С 5/333, 2003). Катализатор сформирован в процессе термообработки соединения алюминия формулы Al2O3·nH2О. Где n=0,3-1,5, рентгеноаморфной структуры совместно с соединениями вышеназванных элементов.
Недостатком данного катализатора является то, что он не имеет практического применения ввиду дефицитности и дороговизны используемых соединений гафния, ниобия, тантала. Кроме того, такой катализатор не решает проблему стабильности.
Задачей данного изобретения является разработка катализатора для дегидрирования парафиновых углеводородов, обладающего высокой механической прочностью, каталитической активностью и стабильностью.
Поставленная задача решается с помощью катализатора для дегидрирования парафиновых углеводородов, содержащего оксид хрома, соединение щелочного металла, диоксид циркония, промотор и оксид алюминия, предшественником которого является носитель - соединение алюминия формулы Al2O3·nH2О, где n=0,3-1,5, ренггеноаморфной структуры. Катализатор содержит в качестве промотора, по крайней мере, одно соединение металла, выбранного из группы: цинк, медь, железо в количестве 0,03-2,0 мас.% и катализатор имеет следующий состав, мас.% (в пересчете на оксид):
Оксид хрома 10-20
Соединение щелочного металла 1-2
Оксид циркония 0,5-2
Оксид промотора из группы:
цинк, медь, железо 0,03-2
Оксид алюминия остальное
Катализатор предпочтительно сформирован в процессе термообработки носителя - соединения алюминия формулы Al2О3·nH2О, где n=0,3-1,5, рентгеноаморфной структуры, совместно с соединениями хрома, циркония, щелочного металла, промотора из группы: цинк, медь, железо.
Носитель - соединение алюминия формулы Al2О3·nH2О, где n=0,5-1,0, рентгеноаморфной структуры, предпочтительно представляет собой сфероидные частицы, состоящие из гексагональных стержней с системой плоских параллельных пор, соответствующих расщеплению по грани (001), с удельной поверхностью 80-250 м2/г, объемом пор 0,1-0,3 см3/г и размером 20-250 мкм.
Катализатор имеет величину удельной поверхности предпочтительно 80-200 м2/г.
Катализатор содержит оксид хрома (VI) предпочтительно не менее 0,13 мас.% перед регенерацией.
Катализатор содержит оксид хрома (VI) предпочтительно в количестве 0,8-1,2 мас.% после регенерации.
Катализатор представляет собой предпочтительно микросферический порошок с размером частиц 70-250 мкм.
Катализатор представляет собой предпочтительно микросферический порошок с размером частиц 20-250 мкм.
Катализатор может представлять собой гранулы диаметром 3-5 мм.
Отличием заявляемого катализатора от прототипа является то, что в состав катализатора в качестве промотора вводят, по крайней мере, одно соединение металла из группы: цинк, медь, железо.
Использование предлагаемых промоторов совместно с другими компонентами катализатора и соединения алюминия формулы Al2O3·nH2O, где n=0,3-1,5, рентгеноаморфной структуры, полученное быстрой частичной дегидратацией гидраргиллита, позволило получить катализатор, обладающий повышенной активностью, прочностью, стабильностью.
Под соединением Al2O3·nH2О, где n=0,3-1,5, рентгеноаморфной структуры понимается такое соединение, рентгенографический анализ которого не обнаруживает никаких линий, характерных для какой бы то ни было кристаллической фазы. Такое соединение обладает повышенной реакционной способностью, в результате которой становится возможной ингеркаляция соединений компонентов катализатора в межслоевое пространство между алюмогидроксидными пакетами.
Носитель - соединение алюминия формулы Al2O3·nH2О, где n=0,5-1,0, рентгеноаморфной структуры, может содержать в качестве примесей соединения кремния, железа, натрия в количестве, мас.% (в пересчете на оксиды):
кремния оксид - не более 0,03
железа оксид - не более 0,05
натрия оксид - не более 0,3
Эти примеси не ухудшают свойства носителя.
Нами было найдено, что при термообработке носителя - соединения алюминия формулы Al2O3·nH2О, где n=0,3-1,5, рентгеноаморфной структуры, совместно с соединениями хрома, циркония, щелочного металла и промотора из группы: цинк или медь, или железо, формируется катализатор, который обладает высокой активностью, высокой прочностью, а также высокой стабильностью в рабочем режиме действия катализатора при дегидрировании.
Такую высокую стабильность катализатора в условиях процесса дегидрирования парафиновых углеводородов (восстановления - окисления) можно объяснить образованием активных центров в виде твердых растворов хроматов и хромитов цинка или меди, или железа, в которых оксид хрома (VI), далее Cr6+, находится в активной форме.
При термообработке происходит образование высокодисперсных рентгеноаморфных твердых растворов хроматов и хромитов цинка, меди, железа, прочно связанных со структурой образовавшегося оксида алюминия. Катализатор после термообработки имеет удельную поверхность 80-200 м2/г, высокую механическую прочность.
Стабилизация соединений хрома в твердых растворах с цинком, медью и железом препятствует образованию твердых растворов хрома с алюминием, что способствует увеличению активности и стабильности катализатора, увеличению его срока службы.
Для получения высокоактивного, стабильного катализатора с высокой механической прочностью, но при этом с малым эрозионным воздействием на оборудование, предлагается использовать предпочтительно носитель - соединение алюминия формулы Al2O3·nH2О, где n=0,5-1,0, рентгеноаморфной структуры, состоящее из сфероидных частиц с размером 20-250 мкм. Частицы состоят из гексагональных стержней с системой плоских параллельных пор, соответствующих расщеплению на грани (001) с удельной поверхностью 80-250 м2/г и объемом пор 0,1 - удельной поверхностью 80-250 м2/г и объемом пор 0,1-0,3 см3/г. На фиг.1 показан этот носитель: а) схема гексагонального стержня частицы носителя с расщеплением по грани (001) на поры; б) вид гексагонального стержня частицы носителя с расщеплением по грани (001) на параллельные поры.
В процессе получения носителя путем дегидратации гидраргиллита образуется система плоских параллельных пор относительно грани (001) в гексагональной структуре стержней гидраргиллита (см. чертеж). Символ (001) является обозначением грани с наибольшим количеством положительных индексов (Основы минералогии и кристаллографии / В.П.Бондарев. - М.: Высшая школа, 1978. - с.59).
Известно, что катализаторы дегидрирования содержат оксид хрома в виде смеси оксидов Cr3+ и Cr6+ (Производство изопрена / С.К.Огородников, Г.С.Идлис. - Л.: Химия, 1973. - с.112-118). Содержание Cr6+ в предлагаемом катализаторе не превышает 4 мас.%.
В рабочем режиме действия известных катализаторов при дегидрировании происходит уменьшение Cr6+ ниже 0,1%, при этом катализатор дезактивируется. В предлагаемом катализаторе снижения содержания Cr6+ ниже 0,13% не наблюдается, и катализатор длительное время не теряет активности.
В ходе регенерации катализатора происходит выжиг кокса и окисление Cr3+ до Cr6+. При этом содержание Cr6+ от минимального содержания 0,13% перед регенерацией увеличивается до 0,8-1,2% после регенерации в отличие от известных катализаторов. Это гарантирует стабильную работу катализатора в реакции дегидрирования.
Предлагаемый катализатор в отличие от известных обладает свойством стабилизировать содержание Cr6+ в рабочем режиме действия катализатора до количества, при котором катализатор сохраняет свою активность. Таким образом, предлагаемый катализатор является стабилизатором Cr6+ в процессах дегидрирования парафиновых углеводородов.
Нами было также найдено, что добавка предлагаемого катализатора к применяемым в промышленности быстро дезактивирующимся хромсодержащим катализаторам приводит к увеличению срока их службы за счет стабилизации Cr6+.
Размер частиц катализатора определяется условиями проведения процесса. Для кипящего слоя применяют катализатор с размером частиц 70-250 мкм. Размер частиц катализатора, который используется как добавка к известным хромсодержащим катализаторам для стабилизации хрома, составляет 20-250 мкм. Катализатор для стационарного слоя может быть приготовлен в виде гранул диаметром 3-5 мм.
Таким образом, предложенная совокупность признаков привела к получению нового технического результата - получению высокоактивного, стабильного в переменных условиях процесса дегидрирования катализатора, обладающего высокой механической прочностью.
Определение фазового состава материалов, используемых в технологии получения катализатора дегидрирования, проводят рентгенографическим методом, основанным на дифракции рентгеновских лучей. Съемку образцов проводят в Cu-К-α-излучении с использованием дифференциальной дискриминации монохроматора. Интервал углов по шкале 2θ от 10 до 75°, угловая скорость движения детектора 1/60°.
Удельную поверхность определяют методом БЭТ, объем пор - адсорбцией воды, размер частиц - ситовым методом.
Прочность на истирание определяют по массовой доле потерь при истирании катализатора. Метод основан на разрушении частиц катализатора в кипящем слое и измерении массы частиц, унесенных потоком воздуха, скорость которого стабилизирована.
Прочность на раздавливание определяют по усилию на разрушение гранулы между двумя плоскостями.
Внешнюю форму частиц катализатора определяли с помощью сканирующего микроскопа.
Нижеследующие примеры иллюстрируют прелагаемое решение.
Пример 1
Носитель микросферический АОК-1 - соединение алюминия формулы Al2O3·nH2О, где n=0,5, ренггеноаморфной структуры, со свойствами, представленными в таблице №1, загружают в пропитыватель. Туда же заливают пропиточный раствор, содержащий каталитические компоненты в количествах, необходимых для получения катализатора состава, мас.% (в пересчете на оксиды):
оксид хрома - 10,
в т.ч. оксид хрома (Cr6+) - 3,8
оксида калия - 2,0
оксид циркония - 2,0
оксид цинка - 2,0
оксид алюминия - остальное.
Катализатор после сушки прокаливают при 700°С. Катализатор имеет состав, представленный в таблице №2, и эксплуатационные свойства, представленные в таблице №3.
Примеры 2-5
Катализаторы готовят аналогично примеру 1. Отличается применяемым носителем, составом активных компонентов и получаемыми свойствами. Данные о носителях представлены в таблице №1, о составе катализатора - в таблице №2, эксплуатационные свойства - в таблице №3.
Пример 6
Катализатор аналогичен примеру 1, отличается свойствами носителя. Составом катализатора (табл.№№1, 2). После прокаливания из микросферического катализатора с размером частиц 20-250 мкм готовят шихту, способную к формованию. Шихту формуют в гранулы диаметром 3-5 мм и прокаливают при температуре 750°С. Получают катализатор со свойствами, представленными в таблице №3. Прочность определяют раздавливанием гранул по образующей в МПа.
Пример 7 (по прототипу)
Носитель микросферический АОК-4 - соединение алюминия формулы Al2O3·nH2О, где n=1,5, рентгеноаморфной структуры, со свойствами, представленными в таблице №1, загружают в смеситель, туда же заливают раствор, содержащий соединения хрома, калия, циркония, ниобия в количествах, необходимых для получения катализатора состава, % мас. (в пересчете на оксиды):
оксид хрома - 16,
в т.ч. оксид хрома (Cr6+) - 2,9
оксид калия + оксид лития - 2,1
оксид циркония - 0,1
оксид ниобия - 2,0
оксид алюминия - остальное.
Полученный после сушки и прокаливания при 750°С катализатор имеет состав, представленный в таблице №2, и свойства, представленные в таблице №3.
Как видно из представленных примеров, катализатор предлагаемого состава обладает высокой механической прочностью, стабильностью в рабочем режиме действия катализатора при дегидрировании парафиновых углеводородов.
Таблица №1.
Свойства носителей - соединений алюминия формулы Al2O3·nH2О рентгеноаморфной структуры
Носитель
Параметр
АОК-1 АОК-2 АОК-3 АОК-4 АОК-5
1. Значение «n» в формуле Al2O3·nH2О 0,5 1,0 0,7 1,5 0,3
2. Форма частиц Сфероидные частицы, состоящие из гексагональных стержней с размером сторон шестиугольника 1-10 мкм с системой плоских параллельных пор, соответствующих расщеплению по грани (001) Аналогично АОК-1 Аналогично АОК-1 Сфероидные монолитные частицы Аналогично АОК-4
3. Размер частиц, мкм 70-250 20-250 70-250 40-200 70-250
4. Удельная поверхность, м2 145 80 250 145 200
5. Объем пор, см3 0,18 0,1 0,3 0,13 0.25
6. Степень регидратации до псевдобемита, % 45 35 41 33 30
Таблица №2.
Состав катализаторов дегидрирования парафиновых углеводородов
Пример 1 2 3 4 5 6 7 по прототипу
Параметр
1. Носитель-соединение алюминия формулы Al2O3·nH2О рентгеноаморфной структуры из таблицы №1 АОК-1 АОК-2 АОК-3 АОК-4 АОК-5 АОК-1 АОК-4
2. Состав, мас.%:
- оксид хрома, в том числе: 10 16 20 14 15 20 16
оксида хрома (VI) 3,8 3,4 4,0 3,5 3,0 3,0 2,9
соединение щелочного металла (К2O) 2 1,5 1 1,5 2 1 (Na2O) 2 (К2О), 0,1 (Li2O)
- оксид циркония 2 1 0,5 1,5 1 1 0,1
- оксид промотора из группы:
цинка 2 - 0,07 - 1,8 - -
меди - - 0,03 1 - - -
железа - 0,03 - - 0,2 0,03 -
оксид ниобия - - - - - - 2
- оксид алюминия остальное остальное остальное остальное остальное остальное остальное
Таблица №3.
Свойства катализаторов дегидрирования парафиновых углеводородов
Пример
Параметр
1 2 3 4 5 6 7 по прототипу
1. Размер частиц катализатора:
- микросферического, мкм 70-250 20-250 70-250 40-200 70-250 40-200
- гранулированного, мм 3-5
2. Удельная поверхность, м2 138 80 200 110 90 100 85
3. Эксплуатационные свойства катализатора дегидрирования:
- активность, ВП, % 54 53 56 52 53 60 52
- селективность, ВР, 90 91 94 89 90 94 88,7
- механическая прочность (потеря массы при истирании), мас.% 1,5 3,2 2,0 4,0 3,8 4,6
- механическая прочность на раздавливание, МПа 12
4. Содержание оксида хрома (VI) в рабочем режиме действия катализатора, мас.%:
- перед регенерацией 0,20 0,15 0,3 0,13 0,14 0,25 0,08
- после регенерации 1,0 0,88 1,2 0,8 0,85 0,9 0,5

Claims (9)

1. Катализатор для дегидрирования парафиновых углеводородов, включающий оксид хрома, соединение щелочного металла, диоксид циркония, промотор и оксид алюминия, предшественником которого является носитель - соединение алюминия формулы Al2O3·nH2О, где n=0,3-1,5, рентгеноаморфной структуры, отличающийся тем, что содержит в качестве промотора, по крайней мере, одно соединение металла, выбранного из группы цинк, медь, железо, в количестве 0,03-2,0 мас.% и катализатор имеет следующий состав, мас.% в пересчете на оксид:
Оксид хрома 10-20 Соединение щелочного металла 1-2 Оксид циркония 0,5-2 Оксид промотора из группы: цинк, медь, железо 0,03-2 Оксид алюминия Остальное
2. Катализатор по п.1, отличающийся тем, что он сформирован в процессе термообработки носителя - соединения алюминия формулы Al2О3·nH2O, где n=0,3-1,5, рентгеноаморфной структуры совместно с соединениями хрома, циркония, щелочного металла, промотора из группы цинк, медь, железо.
3. Катализатор по п.1, отличающийся тем, что носитель - соединение алюминия формулы Al2О3·nH2О, где n=0,5-1,0, рентгеноаморфной структуры представляет собой сфероидные частицы, состоящие из гексагональных стержней с системой плоских параллельных пор, соответствующих расщеплению по грани (001), с удельной поверхностью 80-250 м2/г, объемом пор 0,1-0,3 см3/г и размером 20-250 мкм.
4. Катализатор по п.1, отличающийся тем, что он имеет величину удельной поверхности 80-200 м2/г.
5. Катализатор по п.1, отличающийся тем, что он содержит оксида хрома (VI) не менее 0,13 мас.% перед регенерацией.
6. Катализатор по п.1, отличающийся тем, что он содержит оксид хрома (VI) в количестве 0,8-1,2 мас.% после регенерации.
7. Катализатор по п.1, отличающийся тем, что представляет собой микросферический порошок с размером частиц 70-250 мкм.
8. Катализатор по п.1, отличающийся тем, что представляет собой микросферический порошок с размером частиц 20-250 мкм.
9. Катализатор по п.1, отличающийся тем, что представляет собой гранулы диаметром 3-5 мм.
RU2005107191/04A 2005-03-15 2005-03-15 Катализатор для дегидрирования парафиновых углеводородов RU2271860C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005107191/04A RU2271860C1 (ru) 2005-03-15 2005-03-15 Катализатор для дегидрирования парафиновых углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005107191/04A RU2271860C1 (ru) 2005-03-15 2005-03-15 Катализатор для дегидрирования парафиновых углеводородов

Publications (1)

Publication Number Publication Date
RU2271860C1 true RU2271860C1 (ru) 2006-03-20

Family

ID=36117188

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005107191/04A RU2271860C1 (ru) 2005-03-15 2005-03-15 Катализатор для дегидрирования парафиновых углеводородов

Country Status (1)

Country Link
RU (1) RU2271860C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448770C1 (ru) * 2010-09-30 2012-04-27 Учреждение Российской Академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН (ИК СО РАН) Катализатор дегидрирования парафиновых углеводородов c3-c5, способ его получения и способ дегидрирования парафиновых углеводородов c3-c5
RU2627667C1 (ru) * 2016-11-30 2017-08-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Катализатор с низким содержанием оксида хрома для дегидрирования изобутана и способ дегидрирования изобутана с его использованием
RU2666542C1 (ru) * 2017-12-04 2018-09-11 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения олефиновых углеводородов
RU2698308C1 (ru) * 2019-06-24 2019-08-26 Общество С Ограниченной Ответственностью "Научно-Производственная Компания "Синтез" Катализатор для дегидрирования парафиновых с3-с5 углеводородов
RU2705808C1 (ru) * 2019-08-15 2019-11-12 Александр Адольфович Ламберов Катализатор дегидрирования c4-c5 парафиновых углеводородов

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448770C1 (ru) * 2010-09-30 2012-04-27 Учреждение Российской Академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН (ИК СО РАН) Катализатор дегидрирования парафиновых углеводородов c3-c5, способ его получения и способ дегидрирования парафиновых углеводородов c3-c5
RU2627667C1 (ru) * 2016-11-30 2017-08-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Катализатор с низким содержанием оксида хрома для дегидрирования изобутана и способ дегидрирования изобутана с его использованием
RU2666542C1 (ru) * 2017-12-04 2018-09-11 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения олефиновых углеводородов
RU2698308C1 (ru) * 2019-06-24 2019-08-26 Общество С Ограниченной Ответственностью "Научно-Производственная Компания "Синтез" Катализатор для дегидрирования парафиновых с3-с5 углеводородов
RU2705808C1 (ru) * 2019-08-15 2019-11-12 Александр Адольфович Ламберов Катализатор дегидрирования c4-c5 парафиновых углеводородов

Similar Documents

Publication Publication Date Title
US8071655B2 (en) Cobalt-based catalyst for fischer-tropsch synthesis
KR102359554B1 (ko) 응집된 odh 촉매
PL177721B1 (pl) Katalizator epoksydowania i sposób wytwarzania nośnika katalizatora
RU2271860C1 (ru) Катализатор для дегидрирования парафиновых углеводородов
EA007872B1 (ru) Композиции молекулярных сит, их катализатор, их приготовление и применение в процессах превращения
CN111511707A (zh) 附聚的odh催化剂
CN110237859B (zh) 催化剂及其制备方法和应用以及1,3-丁二烯的制备方法
JP3553878B2 (ja) 固体酸触媒、その製造方法およびそれを用いる反応方法
RU2322290C1 (ru) Катализатор, способ его получения и процесс дегидрирования c3-c5-парафиновых углеводородов в олефины
RU2350594C1 (ru) Алюмооксидный носитель, способ получения алюмооксидного носителя и способ получения катализатора дегидрирования c3-c5 парафиновых углеводородов на этом носителе
US20240034701A1 (en) Mixed metal oxide catalyst containing tantalum for odh of ethane
WO2014123243A1 (ja) オレフィン低重合方法およびそれに用いる触媒
RU2501604C2 (ru) Слоистые сферические катализаторы с высоким коэффициентом доступности
KR20220103803A (ko) 탄화수소 전환 반응에 적합한 촉매, 그의 제조 방법 및 그의 용도
RU2622035C1 (ru) Катализатор дегидрирования парафиновых углеводородов, способ его получения и способ дегидрирования углеводородов с использованием этого катализатора
RU2200143C1 (ru) Катализатор для дегидрирования углеводородов и способ его получения
RU2148430C1 (ru) Катализатор для дегидрирования углеводородов и способ его получения
RU2271248C1 (ru) Носитель микросферический для катализаторов
RU2301108C1 (ru) Катализатор для дегидрирования углеводородов и способ его получения
RU2349378C1 (ru) Микросферический катализатор для дегидрирования парафиновых углеводородов
RU2432203C1 (ru) Катализатор для дегидрирования парафиновых углеводородов и способ его применения
RU2792028C1 (ru) Катализатор для процесса дегидрирования парафинов (варианты)
RU2724048C1 (ru) Носитель для катализатора дегидрирования парафиновых углеводородов в стационарном слое на основе активного оксида алюминия
RU2620815C1 (ru) Способ получения микросферического катализатора дегидрирования парафиновых C3-C5 углеводородов
RU2828534C1 (ru) Катализатор для дегидрирования парафиновых углеводородов в стационарном слое

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20070116