RU2666542C1 - Способ получения олефиновых углеводородов - Google Patents

Способ получения олефиновых углеводородов Download PDF

Info

Publication number
RU2666542C1
RU2666542C1 RU2017142198A RU2017142198A RU2666542C1 RU 2666542 C1 RU2666542 C1 RU 2666542C1 RU 2017142198 A RU2017142198 A RU 2017142198A RU 2017142198 A RU2017142198 A RU 2017142198A RU 2666542 C1 RU2666542 C1 RU 2666542C1
Authority
RU
Russia
Prior art keywords
catalyst
mixture
dehydrogenation
catalysts
fluidized bed
Prior art date
Application number
RU2017142198A
Other languages
English (en)
Inventor
Станислав Михайлович Комаров
Александра Станиславовна Харченко
Алексей Александрович Крейкер
Original Assignee
Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" filed Critical Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Priority to RU2017142198A priority Critical patent/RU2666542C1/ru
Application granted granted Critical
Publication of RU2666542C1 publication Critical patent/RU2666542C1/ru
Priority to PCT/RU2018/000722 priority patent/WO2019112478A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/10Alkenes with five carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Предложен способ получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов, осуществляемый в системе реактор-регенератор с кипящим слоем смеси мелкодисперсных алюмохромовых катализаторов с разными индексами истирания. Смесь мелкодисперсных алюмохромовых катализаторов включает катализатор с индексом истирания 15-30 мас.% в количестве 41-97 мас.% и катализатор с индексом истирания 1-10 мас.% - остальное. Технический результат - увеличение производительности установок дегидрирования углеводородов С-Си уменьшение затрат в производстве. 2 табл., 6 пр.

Description

Изобретение относится к области нефтехимии, в частности к процессам дегидрирования парафиновых углеводородов в соответствующие олефиновые углеводороды, используемые для получения основных мономеров синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и др.
Известен способ получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов осуществляемый в системе реактор-регенератор с кипящим слоем мелкозернистого алюмохромового катализатора марки ИМ-2201, имеющего индекс истирания 20-30 мас. %, получаемый методом формования из золя (Кирпичников П.Л., Береснев В.В., Панов Л.М. «Альбом технологических схем основных производств промышленности синтетического каучука», Химия, Ленинград, 1986, стр. 8-12.; Котельников Г.Р., Патанов В.А., Шитиков И.А. «Разработка катализатора дегидрирования парафиновых углеводородов на основе активного оксида алюминия» в сборнике научных трудов НИИМСК «Исследование и разработка технологии производства мономеров и синтетическиз каучуков», ЦНИИТЭнефтехим, Москва, 1983, стр. 3-8, 1986, стр. 25-33). Главным недостатком указанного способа является большой расход катализатора, обусловленный его невысокой механической прочностью. Например, при дегидрировании н-бутана расход катализатора в расчете на подаваемое сырье составляет 1 мас. % или, соответственно, в расчете на получаемый олефин (бутилены) - 25 кг/т.
Известен также способ получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов в системе реактор-регенератор с кипящим слоем высокопрочных алюмохромовых катализаторов, имеющих индекс истирания 1-10 мас. %, получаемых, например, методом пропитки микросферического носителя (Патент SU 1366200, МПК В01J 37/02; B01J 23/26, опубл. 15.01.1988). Указанный катализатор имеет высокое сопротивление истиранию, химическую и термическую стабильность. В процессе работы частицы указанного катализатора не разрушаются, а лишь постепенно истираются с поверхности. Применение в данном способе более стабильного и прочного катализатора снижает его расход при осуществлении процессов дегидрирования парафинов по сравнению с катализаторами, получаемыми из золя. Однако при этом в ходе использования катализатора наблюдается вынос главным образом мелких фракций и сужение фракционного состава частиц катализатора в кипящем слое. Указанная ситуация приводит к снижению однородности кипения, росту пульсаций давления в кипящем слое, увеличению выбросов катализатора из кипящего слоя и, соответственно, повышению выноса катализатора из системы, ухудшению тепло-массообмена в кипящем слое. При росте количества крупных частиц в кипящем слое и, соответственно, сокращении количества мелких фракций возрастает эрозия оборудования и истирание частиц катализатора. К недостатку необходимо отнести также высокую стоимость высокопрочных катализаторов.
Наиболее близким по технической сущности и достигаемому результату является способ получения олефиновых углеводородов С35 путем дегидрирования соответствующих парафиновых углеводородов, осуществляемый в системе реактор-регенератор с кипящим слоем алюмохромового катализатора, состоящего из смеси малопрочного катализатора с индексом истирания 20-30 мас. % и высокопрочного - с индексом истирания 1-10 мас. % (Патент RU 2133726, МПК С07С 5/333, опубл. 27.07.1999). Существующий способ характеризуется использованием смеси катализаторов, в которой в качестве основного катализатора (имеющего большую долю в смеси) применяется высокопрочный катализатор, получаемый пропиткой носителя. Применение в качестве добавки в смеси катализаторов малопрочного катализатора, получаемого методом формования из золя, обеспечивает стабилизацию фракционного состава смеси катализаторов в части содержания мелких фракций, генерируемых непосредственно в кипящем слое в ходе разрушения катализатора из золя. Однако большая разница в индексах истирания применяемых катализаторов при большой доле в смеси высокопрочного катализатора приводит к резкому увеличению скорости разрушения частиц добавочного малопрочного катализатора. При этом добавочный катализатор в ходе разрушения по механизму дробления быстро теряет свою активность, снижая общую активность смеси катализаторов и, соответственно, снижая показатели дегидрирования. Количество образующихся при этом мелких фракций является избыточным в условиях возрастающей догрузки свежего катализатора в связи с необходимостью поддержания постоянства количества и активности катализатора в системе. Генерация избыточного количества мелких фракций приводит к необратимым потерям катализатора через узлы пылеулавливания системы реактор-регенератор требуя все большей догрузки свежего катализатора. Кроме того, в связи с большой долей в смеси высокопрочного катализатора уровень эрозии оборудования, а также ответного истирания этого катализатора весьма высок. Учитывая высокую стоимость высокопрочных катализаторов, их использование в качестве основной массы в смеси катализаторов приводит также к удорожанию первичной загрузки катализаторов в систему и их догрузки в ходе работы. Повышенный расход добавочного малопрочного катализатора приводит к увеличению запыленности контактного газа и газа регенерации, к забивкам оборудования катализаторной пылью и экологическим проблемам.
Задачей настоящего изобретения является улучшение технико-экономических показателей процессов дегидрирования парафиновых углеводородов путем оптимизации состава смеси используемых катализаторов, снижения расхода дорогостоящего высокопрочного катализатора, снижения затрат на первичное заполнение системы реактор-регенератор и догрузку используемых катализаторов, снижения эрозии оборудования и увеличения выходов олефиновых углеводородов.
Предлагается способ получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов, осуществляемый в системе реактор-регенератор с кипящим слоем смеси мелкодисперсных алюмохромовых катализаторов с разными индексами истирания.
Смесь мелкодисперсных алюмохромовых катализаторов включает катализатор с индексом истирания 15-30 мас. % в количестве 41-97 мас. % и катализатор с индексом истирания 1-10 мас. % - остальное.
Алюмохромовый катализатор с индексом истирания 15-30 мас. % получают, например, методом формования из золя с использованием распылительной сушки. Широко используемым в промышленности катализатором такого типа является катализатор ИМ-2201. Катализатор с индексом истирания 1-10 мас. % получают, например, методом пропитки высокопрочного носителя.
Индекс истирания используемых катализаторов оценивается по методике, хорошо моделирующей характер истирания гранул в промышленных системах с кипящим слоем (Котельников Г.Р., Патанов В.А., Щукин Е.Д., Козина Л.Н., «Коллоидный журнал», 1975, т. 37, №5, стр. 875).
Основным отличием заявляемого способа от прототипа является применение смеси малопрочных и высокопрочных катализаторов, в которой в качестве основного катализатора (имеющего большую долю в смеси) используется главным образом малопрочный катализатор, получаемый, например, формованием из золя, при предлагаемом оптимальном соотношении количеств указанных катализаторов в смеси, обеспечивающим снижение затрат на первичное заполнение системы реактор-регенератор и догрузку используемых катализаторов при осуществлении процессов дегидрирования парафиновых углеводородов.
Техническим результатом заявленного изобретения по сравнению с прототипом является увеличение производительности установок дегидрирования углеводородов С35 и уменьшение затрат в производстве.
Изобретение иллюстрируется следующими примерами.
В примерах используются катализаторы, имеющие химический состав согласно таблице 1.
Примеры 1 и 2.
Дегидрирование изобутана в изобутилен осуществляется на установке с кипящим слоем алюмохромового катализатора, состоящей из реактора и регенератора с циркуляцией катализатора между ними. Поток контактного газа из реактора проходит последовательно сухую (в выносных циклонах) и мокрую (в орошаемом водой скруббере) очистку от катализаторной пыли, уносимой из кипящего слоя реактора, после чего направляется на узлы выделения изобутилена. Поток газов регенерации подвергается сухой очистке от катализаторной пыли последовательно в системах выносных циклонов, фильтров санитарной очистки и сбрасывается в атмосферу. Уловленный в выносных циклонах катализатор непрерывно возвращается в регенератор. Величина потерь (расхода) катализатора при осуществлении процесса дегидрирования определяется путем измерения количества загружаемых в систему реактор-регенератор свежих катализаторов и их дальнейшей догрузки (подпитки) в ходе осуществления процесса при сохранении постоянными уровней кипящего слоя (количества катализатора) в реакторе и регенераторе. Расход свежих катализаторов балансируется с выводом отработанного катализатора из системы, включающем катализатор, уловленный в скруббере водной очистки контактного газ (в виде шламов), в фильтрах санитарной очистки газов регенерации и дополнительного вывода из регенератора части катализатора, циркулирующего в системе реактор-регенератор для поддержания постоянства активности катализатора в системе.
Процесс дегидрирования изобутана проводят при загрузке в систему реактор-регенератор 240 тонн смеси алюмохромовых катализаторов, при температуре в зоне дегидрирования реактора 575°С, при температуре регенерации катализатора 650°С и при давлении 35 кПа. Подача паров сырья на дегидрирование составляет 30 т/час. Другие условия осуществления процесса и показатели дегидрирования как по прототипу так и по изобретению приведены в таблице 2.
Примеры 3 и 4.
Дегидрирование н-бутана в бутилены осуществляют аналогично примерам 1-2 при температуре дегидрирования 590°С, температуре регенерации - 650°С, давлении 40 кПа, подаче сырья 26 т/час. Другие условия осуществления процесса и показатели дегидрирования как по прототипу так и по изобретению приведены в таблице 2.
Примеры 5 и 6.
Дегидрирование изопентана в изоамилены осуществляют аналогично примерам 1-2 при температуре дегидрирования 575°С, температуре регенерации 650°С, давлении 40 кПа, подаче сырья 22 т/час. Другие условия осуществления процесса и показатели дегидрирования как по прототипу так и по изобретению приведены в таблице 2.
Как видно из таблицы 2, нижний предел заявляемой доли катализатора с индексом истирания 15-30 мас. % в смеси катализаторов (41%) ограничивается снижением выходов олефинов, а верхний (97%) - повышенным расходом этого катализатора. В таблице 1 приведен также сопоставительный анализ стоимости первичной загрузки катализаторов в систему реактор-регенератор и догрузки этих катализаторов в ходе осуществления процессов. Анализ выполнен в предположении, что стоимость катализатора на носителе в 2-3 раза выше, чем полученный из золя, что определяется конъюнктурой рынка катализаторов на момент подготовки данной заявки. Представленные в таблице 2 данные демонстрируют улучшение технико-экономических показателей процессов дегидрирования парафиновых углеводородов в предлагаемом изобретении по сравнению с прототипом путем оптимизации состава смеси используемых катализаторов, снижения расхода дорогостоящего высокопрочного катализатора, снижения затрат на первичное заполнение системы реактор-регенератор и догрузку используемых катализаторов, снижения эрозии оборудования и увеличения выходов олефиновых углеводородов.
Figure 00000001
Figure 00000002

Claims (1)

  1. Способ получения олефиновых углеводородов дегидрированием соответствующих парафиновых углеводородов, осуществляемый в системе реактор-регенератор с кипящим слоем смеси мелкодисперсных алюмохромовых катализаторов с разными индексами истирания, отличающийся тем, что смесь мелкодисперсных алюмохромовых катализаторов включает катализатор с индексом истирания 15-30 мас.% в количестве 41-97 мас.% и катализатор с индексом истирания 1-10 мас.% - остальное.
RU2017142198A 2017-12-04 2017-12-04 Способ получения олефиновых углеводородов RU2666542C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2017142198A RU2666542C1 (ru) 2017-12-04 2017-12-04 Способ получения олефиновых углеводородов
PCT/RU2018/000722 WO2019112478A1 (ru) 2017-12-04 2018-11-06 Способ получения олефиновых углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017142198A RU2666542C1 (ru) 2017-12-04 2017-12-04 Способ получения олефиновых углеводородов

Publications (1)

Publication Number Publication Date
RU2666542C1 true RU2666542C1 (ru) 2018-09-11

Family

ID=63580169

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017142198A RU2666542C1 (ru) 2017-12-04 2017-12-04 Способ получения олефиновых углеводородов

Country Status (2)

Country Link
RU (1) RU2666542C1 (ru)
WO (1) WO2019112478A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566569B1 (en) * 2000-06-23 2003-05-20 Chevron U.S.A. Inc. Conversion of refinery C5 paraffins into C4 and C6 paraffins
US20040092391A1 (en) * 2002-11-08 2004-05-13 Andrzej Rokicki Fluid bed catalyst for dehydrogenation of hydrocarbons
RU2271860C1 (ru) * 2005-03-15 2006-03-20 Татьяна Владимировна Борисова Катализатор для дегидрирования парафиновых углеводородов
RU2325227C1 (ru) * 2007-03-15 2008-05-27 Открытое акционерное общество "Нижнекамскнефтехим" Способ получения катализатора дегидрирования парафиновых углеводородов
RU2432203C1 (ru) * 2010-07-15 2011-10-27 Открытое акционерное общество "Синтез-Каучук" Катализатор для дегидрирования парафиновых углеводородов и способ его применения

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2133726C1 (ru) * 1998-01-05 1999-07-27 Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" Способ получения олефиновых углеводородов c3-c5

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566569B1 (en) * 2000-06-23 2003-05-20 Chevron U.S.A. Inc. Conversion of refinery C5 paraffins into C4 and C6 paraffins
US20040092391A1 (en) * 2002-11-08 2004-05-13 Andrzej Rokicki Fluid bed catalyst for dehydrogenation of hydrocarbons
RU2271860C1 (ru) * 2005-03-15 2006-03-20 Татьяна Владимировна Борисова Катализатор для дегидрирования парафиновых углеводородов
RU2325227C1 (ru) * 2007-03-15 2008-05-27 Открытое акционерное общество "Нижнекамскнефтехим" Способ получения катализатора дегидрирования парафиновых углеводородов
RU2432203C1 (ru) * 2010-07-15 2011-10-27 Открытое акционерное общество "Синтез-Каучук" Катализатор для дегидрирования парафиновых углеводородов и способ его применения

Also Published As

Publication number Publication date
WO2019112478A1 (ru) 2019-06-13

Similar Documents

Publication Publication Date Title
EP2089156B1 (en) Process for producing alkenes from oxygenates by using supported heteropolyacid catalysts
JP6883100B2 (ja) 酸素含有化合物からプロピレン及びc4の炭化水素類を製造する乱流流動床式反応器、装置及び方法
KR102479867B1 (ko) 철 제올라이트를 포함하는 촉매 상에서의 알킬기에 의해 위치 2 가 치환된 1차 알콜의 이성질체화 탈수 방법
EP1982761A1 (en) Supported heteropolyacid catalysts
EP1925363A1 (en) Process for producing alkenes from oxygenates by using supported heteropolyacid catalysts
RU2747925C1 (ru) Способ каталитического дегидрирования
CN1213662A (zh) 通过相应链烷烃脱氢得到轻质烯烃的方法
CN104169244A (zh) 与新鲜催化剂相比显示出减慢的活性损失的再生脱氢催化剂
TW201938268A (zh) 用於低聚合化烯烴的含鎳觸媒
RU2619128C1 (ru) Способ получения олефиновых углеводоров C3-C5
US8431761B2 (en) Hydrocarbon dehydrogenation with zirconia
RU2666542C1 (ru) Способ получения олефиновых углеводородов
US20090325791A1 (en) Hydrocarbon Dehydrogenation with Zirconia
WO2014123243A1 (ja) オレフィン低重合方法およびそれに用いる触媒
US10737990B2 (en) Olefin production method using circulating fluidized bed process
US8404104B2 (en) Hydrocarbon dehydrogenation with zirconia
US2346657A (en) Treatment of butane
CN106068253A (zh) 一种低碳烯烃的制造方法
CN105585400A (zh) 一种由低碳烷烃制取低碳烯烃的方法
US2598309A (en) Catalytic cracking of hydrocarbon oil
RU2133726C1 (ru) Способ получения олефиновых углеводородов c3-c5
US2377352A (en) Isomerization of normal butene
JP5771358B2 (ja) 再生フィッシャー・トロプシュ合成触媒の製造方法及び炭化水素の製造方法
Lamberov et al. Pilot tests of the microspherical aluminochromium KDI-M catalyst for iso-butane dehydrogenation
US2432912A (en) Catalytic treatment of hydrocarbons