WO2010024268A1 - 長繊維不織布 - Google Patents

長繊維不織布 Download PDF

Info

Publication number
WO2010024268A1
WO2010024268A1 PCT/JP2009/064822 JP2009064822W WO2010024268A1 WO 2010024268 A1 WO2010024268 A1 WO 2010024268A1 JP 2009064822 W JP2009064822 W JP 2009064822W WO 2010024268 A1 WO2010024268 A1 WO 2010024268A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fiber
long
hollow
propylene
Prior art date
Application number
PCT/JP2009/064822
Other languages
English (en)
French (fr)
Inventor
暁雄 松原
横山 哲也
鈴木 健一
茂之 本村
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2010526728A priority Critical patent/JP5181028B2/ja
Priority to EP09809919A priority patent/EP2322703A4/en
Priority to US13/057,389 priority patent/US20110136402A1/en
Publication of WO2010024268A1 publication Critical patent/WO2010024268A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • D04H3/073Hollow cylinder shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/612Hollow strand or fiber material

Definitions

  • the present invention relates to a long-fiber nonwoven fabric made of a propylene-based polymer fiber having a high single yarn strength and a high hollowness even when a fine fiber is used.
  • polypropylene nonwoven fabrics are widely used for various applications because of their excellent breathability, flexibility and lightness.
  • the nonwoven fabric is required to have various properties according to its use and to improve the properties.
  • the fibers forming the nonwoven fabric are hollow fibers. If the die slit width is reduced, a polypropylene fiber having a higher hollow ratio can be obtained. However, if the die slit width is reduced, the pressure in the die increases, so there is a limit to reducing the thickness. Accordingly, in order to obtain a polypropylene fiber having a high hollow ratio, it is necessary to increase the diameter of the die, for example, a fiber diameter of 25 ⁇ m or more, and a hollow section having a hollow ratio of 10 to 60% by increasing the fiber diameter to some extent.
  • Patent Document 1 It has been proposed to obtain a long fiber nonwoven fabric made of polypropylene fibers (Patent Document 1).
  • Example 1 of Patent Document 1 describes that a long fiber nonwoven fabric having a fiber diameter of 33 ⁇ m and a hollow rate of 40% was obtained, and Example 2 that a long fiber nonwoven fabric having a fiber diameter of 40 ⁇ m and a hollow rate of 50% was obtained.
  • the tensile strengths are 7.4 kg / 5 cm (36.3 N / 25 mm) and 6.8 kg / 5 cm (33.3 N / 25 mm), respectively, and the strength is still insufficient.
  • Patent Document 2 a polypropylene nonwoven fabric having a fiber diameter of 20 ⁇ m or less and a hollowness of 5 to 70% has been proposed.
  • Table 1 (TABLE 1) and Table 2 (TABLE 2) of Patent Document 2 Only a polypropylene nonwoven fabric having a hollow ratio of 12.5 to 19% and a fiber diameter of about 20 ⁇ m is disclosed. When the fiber diameter is reduced to less than 25 ⁇ m, the hollow ratio is actually as small as 19% or less. In addition, it has been shown that it is difficult to obtain a polypropylene nonwoven fabric having a high hollow ratio.
  • the present inventors have aimed to develop a hollow fiber nonwoven fabric made of propylene polymer fiber having a high hollow ratio, a hollow fiber excellent in strength, in particular, a strong single yarn strength, and a high hollow ratio even in the case of a fine fiber,
  • a propylene polymer having a ratio (Mz / Mw) of a Z average molecular weight (Mz) to a weight average molecular weight (Mw) in a specific range as a propylene polymer is the object of the present invention. Found that it can be achieved.
  • the present invention relates to a long-fiber nonwoven fabric comprising propylene-based polymer hollow fibers having a ratio (Mz / Mw) of Z-average molecular weight (Mz) to weight-average molecular weight (Mw) in the range of 1.5 to 1.9.
  • a long-fiber non-woven fabric comprising hollow fibers having a fiber diameter of 15 to 50 ⁇ m and a hollow rate of 5 to 50% is provided.
  • a propylene polymer fiber having a hollow section with a fiber diameter of 15 to 24 ⁇ m and a hollow ratio of 22 to 35%, preferably a propylene polymer constituting the propylene polymer fiber has a Z average molecular weight.
  • the long fiber nonwoven fabric of the present invention has higher fiber strength, particularly single yarn strength, compared to conventional hollow fiber nonwoven fabrics, and even if the fiber diameter of the propylene polymer fiber forming the nonwoven fabric is reduced, the hollow ratio is high. In addition to these features, it has excellent breathability, especially lightness, concealment, and reflectivity.
  • the propylene polymer constituting the propylene polymer fiber forming the long fiber nonwoven fabric of the present invention has a ratio (Mz / Mw) of Z average molecular weight (Mz) to weight average molecular weight (Mw) of 1.5 to 1.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) is in the range of 2.0 to 2.9.
  • the propylene-type polymer which concerns on this invention exists in the said range means that there is little content of a high molecular weight component compared with a normal propylene-type polymer.
  • the propylene polymer according to the present invention has a melt flow rate (MFR) (ASTM D-1238, 230 ° C., load 2160 g) in the range of 10 to 100 g / 10 min, preferably 20 to 70 g / 10 min.
  • MFR melt flow rate
  • Propylene polymers having an MFR of less than 10 g / 10 min have a high melt viscosity and poor spinnability, so it may be difficult to obtain fine fibers having a high hollow ratio, while propylene exceeding 100 g / 10 min. There is a possibility that the tensile strength of the obtained long fiber nonwoven fabric is inferior in the polymer.
  • the propylene-based polymer according to the present invention includes a propylene homopolymer and propylene and ethylene having a carbon number of 2 or more, such as ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, Preferably, it is a random copolymer (propylene / ⁇ -olefin random copolymer) with one or two or more ⁇ -olefins of 2 to 8, and usually has a melting point (Tm) of 135 ° C. or higher, preferably 135 It is in the range of ⁇ 165 ° C.
  • Tm melting point
  • the copolymerization amount of the ⁇ -olefin is not particularly limited as long as the melting point (Tm) of the resulting propylene polymer is within the above range, but is usually 10 mol% or less, preferably 6 mol% or less.
  • Mn, Mw, Mz, Mw / Mn, and Mz / Mw of the propylene-based polymer can be measured by a known method by GPC (gel permeation chromatography).
  • the propylene polymer according to the present invention is manufactured and sold by Exxon Mobil Chemical as Achieve 3854 (trade name).
  • the propylene-based polymer according to the present invention is a polymer of propylene and, if necessary, an ⁇ -olefin having 2 or more carbon atoms using a specific metallocene catalyst described in JP-T-2001-508472. Is obtained.
  • the antioxidant in the propylene polymer according to the present invention, the antioxidant, weathering stabilizer, light stabilizer, antistatic agent, antifogging agent, antiblocking agent, lubricant, which are usually used within the range not impairing the object of the present invention.
  • Additives such as nucleating agents and pigments or other polymers can be blended as required.
  • the long fiber nonwoven fabric of the present invention is a hollow fiber of the propylene-based polymer, preferably a fiber diameter of 15 to 50 ⁇ m and a hollow ratio of 5 to 50%, more preferably a fiber diameter of 25 to 45 ⁇ m and a hollow ratio of 15 to 50. %, More preferably a long fiber nonwoven fabric made of hollow fibers having a fiber diameter of 35 to 45 ⁇ m and a hollowness ratio of 15 to 50%.
  • the long fiber nonwoven fabric of the present invention is a propylene-based heavy fiber having a hollow cross section with a high hollow ratio of 15 to 24 ⁇ m, preferably 19 to 22 ⁇ m, even if the hollow ratio is 22 to 35%, preferably 25 to 30%. Made of coalesced fibers.
  • the propylene polymer fiber having a hollow cross section with a high hollow ratio and such a fine fiber has a ratio (Mz / Mw) of the Z average molecular weight (Mz) and the weight average molecular weight (Mw) described above as a propylene polymer.
  • the long fiber nonwoven fabric of the present invention usually has a basis weight in the range of 1 to 1000 g / m 2 , preferably 10 to 100 g / m 2 , more preferably 10 to 30 g / m 2 .
  • the long-fiber nonwoven fabric of the present invention can be used by various known entanglement methods, for example, a method using a needle punch, water jet, ultrasonic wave, or the like, or by using hot embossing or hot air through using an embossing roll. It may be entangled by a method of heat fusion of 1 part. Such entanglement methods may be used alone or in combination with a plurality of entanglement methods.
  • the embossed area ratio is in the range of 5 to 20%, preferably 5 to 10%, and the non-embossed unit area is 0.5 mm 2 or more, preferably 4 to 40 mm 2.
  • the non-embossed unit area is the maximum area of a quadrilateral inscribed in the embossment in the smallest unit of the non-embossed part surrounded on all four sides by the embossed part.
  • a known needle punch machine When entangled by needle punching, a known needle punch machine is used, and the strength and flexibility are excellent by adjusting conditions such as needle density, needle type, needle depth, and number of punches according to the properties of the fiber. Can create unemployed cloth. In some cases, confounding may be optimized through multiple needle punch machines.
  • the long fiber nonwoven fabric of the present invention can be produced by a known method for producing a spunbond nonwoven fabric using the propylene polymer.
  • the molten polymer has a die having a plurality of spinning holes (nozzles) as shown in FIG.
  • the melt-spun hollow propylene polymer long fiber is introduced into the cooling chamber, cooled by cooling air, and then drawn (pulled) and moved by the drawing air. It can be produced by a method of depositing on the collecting surface.
  • the melting temperature of the propylene-based polymer can be set to a temperature of usually 180 to 240 ° C, preferably 190 to 230 ° C, more preferably 200 to 225 ° C.
  • the temperature of the cooling air is not particularly limited as long as it is a temperature at which the propylene-based polymer is solidified, but is usually in the range of 5 to 50 ° C., preferably 10 to 40 ° C., more preferably 15 to 30 ° C.
  • the wind speed of the stretched air is usually in the range of 100 to 10,000 m / min, preferably 500 to 10,000 m / min.
  • the spinning hole In order to obtain a propylene polymer fiber having a hollow cross section having a fiber diameter of 15 to 50 ⁇ m and a hollow ratio of 5 to 50%, particularly a fiber diameter of 15 to 24 ⁇ m and a hollow ratio of 22 to 35%, the spinning hole (nozzle) ), It is necessary to use a die having a spinning hole having an outer diameter in the range of 0.5 to 5.0 mm and a slit width in the range of 0.05 to 0.5 mm. When a spinning hole with an outer diameter exceeding 5.0 mm is used, it may be difficult to obtain a long fiber having a fiber diameter of 24 ⁇ m or less, and when a spinning hole with a slit width exceeding 0.5 mm is used. May have difficulty in obtaining long fibers having a hollowness of more than 22%.
  • a hollow fiber having a fiber diameter of 24 ⁇ m or less and a hollow ratio of more than 22% needs to have a narrow slit width, and as a result, the yarn is broken in the spinning and is stably produced. Is difficult.
  • the long fiber nonwoven fabric of the present invention may be laminated with other layers according to various applications.
  • Other layers laminated on the long-fiber nonwoven fabric are not particularly limited, and various layers may be laminated depending on applications.
  • a knitted fabric, a woven fabric, a non-woven fabric, a film, and the like can be given.
  • thermal embossing thermal fusion methods such as ultrasonic fusion
  • mechanical entanglement methods such as needle punch and water jet
  • hot melt adhesion Various known methods such as a method using an adhesive such as an adhesive and a urethane-based adhesive, extrusion lamination, and the like can be adopted.
  • nonwoven fabric laminated with the long-fiber nonwoven fabric of the present invention examples include various known nonwoven fabrics such as ordinary spunbond nonwoven fabric, melt blown nonwoven fabric, wet nonwoven fabric, dry nonwoven fabric, dry pulp nonwoven fabric, flash spun nonwoven fabric, and spread nonwoven fabric. it can.
  • the film laminated with the long-fiber nonwoven fabric of the present invention is preferably a breathable (moisture-permeable) film that takes advantage of the breathability, flexibility, and lightness characteristic of the long-fiber nonwoven fabric of the present invention.
  • a breathable film include various known breathable films, for example, films made of thermoplastic elastomers such as moisture-permeable polyurethane elastomers, polyester elastomers, polyamide elastomers, and thermoplastic resins containing inorganic or organic fine particles. Examples thereof include a porous film formed by stretching a film to be porous.
  • thermoplastic resin used for the porous film is preferably a polyolefin such as high-pressure method low-density polyethylene, linear low-density polyethylene (so-called LLDPE), high-density polyethylene, polypropylene, polypropylene random copolymer, or a composition thereof.
  • a polyolefin such as high-pressure method low-density polyethylene, linear low-density polyethylene (so-called LLDPE), high-density polyethylene, polypropylene, polypropylene random copolymer, or a composition thereof.
  • the laminate with the breathable film can be a cross-like composite material that makes use of the flexibility of the long-fiber nonwoven fabric of the present invention and has extremely high water resistance.
  • the obtained sample solution was measured under the conditions of a column temperature of 140 ° C., a moving bed o-dichlorobenzene, and a flow rate of 1 mL using a gel permeation chromatograph apparatus (Waters Alliance GPC 2000 type), and the molecular weight distribution and average molecular weight were determined. Obtained.
  • Tm melting point
  • DSC differential scanning calorimeter
  • Fineness [d] 0.00225 ⁇ ⁇ ⁇ ⁇ [g / cm 3 ] ⁇ D 2 [ ⁇ m] ⁇ (1 ⁇ hollow rate [%])
  • ⁇ [g / cm 3 ] is the melt density at the use temperature of the resin
  • D is the fiber diameter.
  • Single yarn strength [gf / d] In accordance with JIS L1905 (7.5.1 method), 60 filaments were sampled in a temperature-controlled room with a temperature of 20 ⁇ 2 ° C and humidity of 65 ⁇ 2% specified in JIS Z8703 (standard condition of the test place).
  • Tensile tests were performed using a tensile tester (Instron Japan Model Instron 5564 type manufactured by Instron Japan Ltd.) under the conditions of a distance of 20 mm and a tensile speed of 20 mm / min, and the tensile load was measured for 60 test pieces. The average value of the maximum values was defined as the single yarn strength.
  • Hollow ratio [%] (Cross sectional area of hollow part / Cross sectional area of entire fiber) ⁇ 100 The value of the hollowness was an average value obtained by measuring 20 fibers. (7) Bulkiness [mm / (g / m 2 )]
  • MD flow direction
  • JIS Z8703 standard state of test place
  • a test piece of 10 cm in the horizontal direction (CD) and 10 cm in the lateral direction (CD) was collected, and the weight of the test piece was measured to obtain the basis weight (g / m 2 ).
  • the tip jig with a diameter of 1.6 cm was pressed against the test piece with a thickness measuring device (tester industry) at a fixed time (10 seconds) and a constant pressure (20 g) at a thickness of 5 mm on the test piece. ) was measured.
  • the thickness (mm) of the test piece was divided by the basis weight (g / m 2 ) to determine the bulkiness of the long fiber nonwoven fabric. The thicker the basis weight, the better the bulkiness of the long fiber nonwoven fabric.
  • MD flow direction
  • CD transverse direction
  • Three test pieces of 13 cm are taken out and a load is 4 kgf using a tensile tester (Instron 5564, manufactured by Instron Japan Ltd.) under conditions of 210 mm between chucks and a pulling speed of 50 mm / min.
  • Tensile test is performed until the length Amm in the CD direction at the center in the MD direction is measured to obtain (A / 130) ⁇ 100 (%), and the average value of these values for the three test pieces is the morphological stability. It was. The higher the morphological stability, the better the necking resistance in processing long fiber nonwoven fabrics.
  • test piece is manually slid gently in the direction of the slope, and when the central point of one end of the test piece comes into contact with the slope, the moving length of the other end is read on the scale.
  • the bending resistance was indicated by the length (mm) of the test piece moved, measured for each of the five front and back sides, and expressed as an average value in each of the flow direction (MD) and the transverse direction (CD).
  • the number 1 is the first extruder, the number 1 'is the second extruder, and the same propylene polymer is used for the first extruder and the second extruder.
  • Number 2 is the spinneret
  • Number 3 is the continuous filament
  • Number 4 is the cooling air
  • Number 5 is the ejector
  • Number 6 is the catcher
  • Number 7 is the suction device
  • Number 8 is the web
  • Number 9 Is an embossing device
  • number 10 is a winding roll.
  • the nozzle pitch is 4.5 mm in the vertical direction, 4.0 mm in the horizontal direction, and has a hole shape as shown in FIG. 3 using a non-woven fabric manufacturing apparatus (spun bond molding machine, length in the direction perpendicular to the machine flow direction on the collecting surface: 320 mm) in which the spinneret having the fiber cross section of FIG. 2 is arranged. Then, using air at 25 ° C.
  • the nozzle pitch is 4.5 mm in the vertical direction, 4.0 mm in the horizontal direction, and has a hole shape as shown in FIG. 3 using a non-woven fabric manufacturing apparatus (spun bond molding machine, length in the direction perpendicular to the machine flow direction on the collecting surface: 320 mm) in which the spinneret having the fiber cross section of FIG. 2 is arranged. Then, using air at 25 ° C.
  • the nozzle pitch is 4.5 mm in the vertical direction, 4.0 mm in the horizontal direction, and has a hole shape as shown in FIG. 3 using a non-woven fabric manufacturing apparatus (spun bond molding machine, length in the direction perpendicular to the machine flow direction on the collecting surface: 320 mm) in which the spinneret having the fiber cross section of FIG. 2 is arranged. Then, using air at 25 ° C.
  • a non-woven fabric manufacturing apparatus spunbond molding machine, machined on the collecting surface as shown in FIG. 3 having a hole shape as shown in FIG. (Length in the vertical direction: 320 mm), using air at 25 ° C.
  • FIG. 1 A nonwoven fabric manufacturing apparatus (spun bond molding machine, direction perpendicular to the flow direction of the machine on the collection surface) having a hole shape as shown in FIG. The length is 320 mm), air at 25 ° C. is used as the cooling fluid, and the single-hole discharge rate of the propylene-based polymer is 0.6 g / min and the yarn speed is 2545 m / min by the spunbond method.
  • the filaments and long fiber nonwoven fabric obtained were evaluated by measuring the fineness, single yarn strength, hollowness, bulkiness, form stability, bending resistance, and tensile strength. The results are shown in Table 1.
  • PP-4 used in Comparative Example 1 was used as a propylene polymer and melted at a molding temperature of 210 ° C. by an extruder (screw diameter: 75 mm ⁇ ).
  • the nozzle pitch was 4.5 mm in the vertical direction and 4.0 mm in the horizontal direction. 3 having a hole shape as shown, but using a nozzle whose slit width is 1 ⁇ 2 of the slit width of the nozzle used in Comparative Example 1, and arranging a spinneret having a fiber cross section of FIG.
  • Comparative Example 6 PP-4 used in Comparative Example 1 was used as a propylene polymer and melted at a molding temperature of 210 ° C. by an extruder (screw diameter: 75 mm ⁇ ). The nozzle pitch was 4.5 mm in the vertical direction and 4.0 mm in the horizontal direction.
  • Non-woven fabric manufacturing apparatus as shown in FIG. 3 (spun bond forming machine, in a direction perpendicular to the machine flow direction on the collecting surface) having a hole shape as shown in FIG. Length: 320 mm), using air at 25 ° C.
  • the obtained filaments and long-fiber nonwoven fabric were evaluated by measuring the fineness, hollowness, single yarn strength, and tensile strength. The results are shown in Table 2.
  • the hollowness ratio was 22.1% even when the fiber diameter was narrowed to 18.5 ⁇ m.
  • the single yarn strength is as strong as 3.62 gf / d
  • the long fiber nonwoven fabric is rigid
  • the tensile strength is 58.45 N / 25 mm for MD and 18.22 N for CD.
  • a long fiber nonwoven fabric having a strong strength of / 25 mm can be obtained.
  • the hollowness ratio was 30.3% even when the fiber diameter was reduced to 20.9 ⁇ m.
  • the single yarn strength is as strong as 4.22 gf / d
  • the long fiber nonwoven fabric is rigid
  • the tensile strength is 60.00 N / 25 mm for MD and 20.10 N for CD.
  • a long fiber nonwoven fabric having a strong strength of / 25 mm can be obtained.
  • the fiber diameter is 20.1 ⁇ m.
  • the hollow fiber as thin as 1 could only obtain a long fiber with a hollow ratio as low as 18.4%.
  • the single yarn strength is weak as 3.34 gf / d
  • the long fiber nonwoven fabric has low rigidity
  • the tensile strength is 53.65 N / 25 mm for MD, and 16.6 for CD. Only a long-fiber nonwoven fabric having a low strength of 57 N / 25 mm was obtained.
  • the fiber diameter is 20.1 ⁇ m, which is about the same as Example 1.
  • PP-4 propylene homopolymer obtained with a titanium-based catalyst having Mz / Mw of 2.5
  • the fiber diameter is 20.1 ⁇ m, which is about the same as Example 1.
  • the single yarn strength is weak as 2.36 gf / d
  • the long-fiber nonwoven fabric is slightly low in rigidity
  • the tensile strength is 43.21 N / 25 mm for MD and 16 for CD. Only a long-fiber nonwoven fabric having an even lower strength of 28 N / 25 mm was obtained.
  • Example 4 Also in the case of using a propylene homopolymer (PP-7) obtained with a titanium-based catalyst having an Mz / Mw of 4.0 (Comparative Example 4), the fiber diameter was 21.5 ⁇ m, the same as in Example 1. Only hollow fibers with a hollow ratio as low as 20.3% can be obtained with hollow fibers that are as thin as possible. Moreover, although the hollowness is lower than that of Example 1, the single yarn strength is still weaker at 1.92 gf / d, the long-fiber nonwoven fabric is slightly less rigid, and the tensile strength is 49.77 N / 25 mm for MD and CD. Only a long-fiber nonwoven fabric having a lower strength of 18.80 N / 25 mm was obtained.
  • PP-7 propylene homopolymer obtained with a titanium-based catalyst having an Mz / Mw of 4.0
  • Example 7 is a long fiber non-woven fabric having a strong single yarn strength of 4.00 gf / d and a tensile strength of 45.6 N / 25 mm for MD and 40.3 N / 25 mm for CD.
  • the long fiber nonwoven fabric (Comparative Example 7) obtained by using the propylene homopolymer (PP-4) having an Mz / Mw of 2.5 is substantially the same as the fiber diameter of 40.3 ⁇ m, but the hollow ratio is 10.2. %,
  • the single yarn strength was as low as 2.06 gf / d.
  • the long fiber nonwoven fabric of the present invention has higher fiber strength, particularly single yarn strength, compared to conventional hollow fiber nonwoven fabrics, and even if the fiber diameter of the propylene polymer fiber forming the nonwoven fabric is reduced, the hollow ratio is high.
  • various applications such as hygiene materials, industrial materials related applications such as oil-absorbing mats, etc. Development can also be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

 強度に優れた中空繊維、とりわけ単糸強度が強く、しかも、細繊維にした場合でも中空率が高い長繊維不織布を開発することを目的とする。 Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.5~1.9、好ましくは、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0~2.9の範囲にあるプロピレン系重合体の中空繊維からなる長繊維不織布を提供するものである。

Description

長繊維不織布
 本発明は、単糸強度が強く、しかも、細繊維にした場合でも中空率が高いプロピレン系重合体繊維からなる長繊維不織布に関する。
 近年、ポリプロピレン不織布は通気性、柔軟性、軽量性に優れることから各種用途に幅広く用いられている。そのため、不織布には、その用途に応じた各種の特性が求められるとともに、その特性の向上が要求されている。
 不織布を軽量化する目的の一つとして、不織布を形成する繊維を中空繊維とする方法が種々提案されている。ダイのスリット幅を薄くすればより中空率が高いポリプロピレン繊維が得られるが、ダイのスリット幅を薄くするとダイ内の圧力が高くなるので、薄くするには限界がある。したがって、中空率が高いポリプロピレン繊維を得るには、ダイの径を大きくする必要、例えば、繊維径が25μm以上と、ある程度繊維径を大きくすることで中空率が10~60%の中空断面を有するポリプロピレン系繊維よりなる長繊維不織布を得ることが提案されている(特許文献1)。特許文献1の実施例1には繊維径が33μmで中空率が40%の長繊維不織布、実施例2には繊維径が40μmで中空率が50%の長繊維不織布を得たことが記載されているが、引張強度はそれぞれ7.4kg/5cm(36.3N/25mm)、6.8kg/5cm(33.3N/25mm)とあり、未だ強度が不十分である。
 一方、繊維径が20μm以下で中空率が5~70%のポリプロピレン不織布(特許文献2)が提案されているが、特許文献2の表1(TABLE 1)及び表2(TABLE 2)には、中空率が12.5~19%の繊維径が約20μmからなるポリプロピレン不織布が開示されているのみで、繊維径が25μm未満と細くなると、実際には中空率が19%以下と小さく、細繊維で且つ中空率が高いポリプロピレン不織布を得ることは困難であることが示されている。
特開平8-126440号公報、特許請求の範囲、実施例1、実施例2 米国特許明細書第6,368,990号、特許請求の範囲、表1、表2
 本発明者らは、強度に優れた中空繊維、とりわけ単糸強度が強く、しかも、細繊維にした場合でも中空率が高いプロピレン系重合体繊維からなる長繊維不織布を開発することを目的とし、種々検討した結果、プロピレン系重合体としてZ平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が特定の範囲にあるプロピレン系重合体を用いることにより、本発明の目的を達成し得ることを見出した。
 本発明は、Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.5~1.9の範囲にあるプロピレン系重合体の中空繊維からなる長繊維不織布、好ましくは繊維径が15~50μm及び中空率が5~50%である中空繊維からなる長繊維不織布を提供するものである。
 また、本発明は、繊維径が15~24μm及び中空率が22~35%の中空断面を有するプロピレン系重合体繊維、好ましくはプロピレン系重合体繊維を構成するプロピレン系重合体が、Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.5~1.9の範囲にあることを特徴とする長繊維不織布を提供するものである。
 本発明の長繊維不織布は、従来の中空繊維不織布に比べ、繊維の強度、とりわけ単糸強度が強く、しかも、不織布を形成するプロピレン系重合体繊維の繊維径を細くしても中空率が高いという特徴に加え、通気性、特に軽量性、隠蔽性、反射性に優れる。
は、本発明に係るノズル孔形状の模式図である。 は、本発明に係る長繊維不織布の繊維断面の模式図である。 は、本発明の実施例及び比較例に用いたスパンボンド装置の概略図である。
 <プロピレン系重合体>
 本発明の長繊維不織布を形成するプロピレン系重合体繊維を構成するプロピレン系重合体は、Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.5~1.9の範囲、好ましくは、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0~2.9の範囲にある。Mz/Mwが1.9を超えるプロピレン系重合体を用いた場合は、繊維径を24μm以下で中空率が22%以上の長繊維を得ることは困難である。
 本発明に係るプロピレン系重合体が上記範囲にあるということは、通常のプロピレン系重合体に比べて、高分子量成分の含有量が少ないことを意味する。
 本発明に係るプロピレン系重合体は、メルトフローレート(MFR)(ASTM D-1238、230℃、荷重2160g)が10~100g/10分、好ましくは20~70g/10分の範囲にある。MFRが10g/10分未満のプロピレン系重合体は、溶融粘度が高く紡糸性に劣るので、中空率が高い細繊維を得ることは困難となる虞があり、一方、100g/10分を超えるプロピレン系重合体は、得られる長繊維不織布の引張強度等が劣る虞がある。
 本発明に係るプロピレン系重合体は、プロピレンの単独重合体及びプロピレンとエチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等の炭素数2以上、好ましくは2~8の1種または2種以上のα-オレフィンとのランダム共重合体(プロピレン・α―オレフィンランダム共重合体)であり、通常、融点(Tm)が135℃以上、好ましくは135~165℃の範囲にある。α-オレフィンの共重合量は、得られるプロピレン系重合体の融点(Tm)が上記範囲にある限り特に限定はされないが、通常、10モル%以下、好ましくは6モル%以下である。
 本発明において、プロピレン系重合体のMn、Mw、Mz、Mw/Mn、及びMz/Mwは、GPC(ゲルパーミエーションクロマトグラフィー)によって、公知の方法で測定することができる。
 本発明に係るプロピレン系重合体は、Exxon Mobil ChemicalからAchieve3854(商品名)として製造・販売されている。また、本発明に係るプロピレン系重合体は、例えば、特表2001-508472号公報に記載された特定のメタロセン触媒を用いてプロピレン及び必要に応じて炭素数2以上のα-オレフィンを重合することにより得られる。
 本発明に係るプロピレン系重合体には、本発明の目的を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、防曇剤、ブロッキング防止剤、滑剤、核剤、顔料等の添加剤或いは他の重合体を必要に応じて配合することができる。
 <長繊維不織布>
 本発明の長繊維不織布は、前記プロピレン系重合体の中空繊維、好ましくは繊維径が15~50μm及び中空率が5~50%、より好ましくは繊維径が25~45μm及び中空率が15~50%、さらに好ましくは繊維径が35~45μm及び中空率が15~50%である中空繊維からなる長繊維不織布である。
 また、本発明の長繊維不織布は、15~24μm、好ましくは19~22μmの細繊維でも、中空率が22~35%、好ましくは25~30%と中空率が高い中空断面を有するプロピレン系重合体繊維からなる。
 かかる細繊維で中空率が高い中空断面を有するプロピレン系重合体繊維は、プロピレン系重合体として、前記記載のZ平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.5~1.9の範囲、好ましくは、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0~2.9の範囲にあるプロピレン系重合体を用いることにより、上記範囲にある中空断面を有するプロピレン系重合体からなる長繊維不織布を容易に得ることができる。
 本発明の長繊維不織布は、通常、目付が1~1000g/m2、好ましくは10~100g/m2、より好ましくは10~30g/m2の範囲にある。
 本発明の長繊維不織布は、用途により、種々公知の交絡方法、例えば、ニードルパンチ、ウォータージェット、超音波等の手段を用いる方法、あるいはエンボスロールを用いる熱エンボス加工またはホットエアースルーを用いることにより1部熱融着する方法により交絡しておいてもよい。かかる交絡方法は単独でも複数の交絡方法を組合わせて用いてもよい。
 熱エンボス加工により熱融着する場合は、通常、エンボス面積率が5~20%、好ましくは5~10%、非エンボス単位面積が0.5mm2以上、好ましくは4~40mm2の範囲にある。非エンボス単位面積とは、四方をエンボス部で囲まれた最小単位の非エンボス部において、エンボスに内接する四角形の最大面積である。かかる範囲のエンボスを有することにより、強度と柔軟性に優れた不織布を作成することができる。
 ニードルパンチ加工により交絡処理する場合は、公知のニードルパンチ機を使用し、繊維の性状に応じ、針密度、ニードル種類、ニードル深度、パンチ数といった条件を調整することで強度と柔軟性に優れた不職布を作成することができる。場合によっては、複数のニードルパンチ機を通して交絡を最適化してもよい。
 <長繊維不織布の製造方法>
 本発明の長繊維不織布は、前記プロピレン系重合体を用いて公知のスパンボンド不織布の製造方法により製造し得る。
 具体的には、前記プロピレン系重合体を押出機で溶融した後、溶融した重合体を繊維断面が中空断面を形成する例えば図1に示すような多数の紡糸孔(ノズル)を備えた口金(ダイ)に導入して吐出させた後、溶融紡糸された中空状のプロピレン系重合体長繊維を冷却室に導入し、冷却風により冷却した後、延伸エアにより長繊維を延伸(牽引)し、移動捕集面上に堆積させる方法により製造し得る。プロピレン系重合体の溶融温度は、通常180~240℃、好ましくは190~230℃、より好ましくは200~225℃の温度に設定し得る。
 冷却風の温度はプロピレン系重合体が固化する温度であれば特に限定はされないが、通常5~50℃、好ましくは10~40℃、より好ましくは15~30℃の範囲にある。延伸エアの風速は、通常100~10,000m/分、好ましくは500~10,000m/分の範囲にある。
 繊維径が15~50μm及び中空率が5~50%、とりわけ繊維径が15~24μm及び中空率が22~35%の中空断面を有するプロピレン系重合体繊維を得るには、前記紡糸孔(ノズル)として、外径が0.5~5.0mmの範囲で、且つスリット幅が0.05~0.5mmの範囲にある紡糸孔を備えた口金を用いることが必要である。なお外径が5.0mmを超える紡糸孔を用いた場合は、繊維径が24μm以下の長繊維を得ることが困難となる虞があり、スリット幅が0.5mmを超える紡糸孔を用いた場合は、中空率が22%を超える長繊維を得ることが困難となる虞がある。
 また、0.05mm未満のスリット幅の紡糸孔では、設備制約上、前記記載のプロピレン系重合体を用いても紡糸孔直前の圧力が高くなり、紡糸が困難であった。したがって、繊維径が24μm以下で、中空率が22%を超える中空繊維は、同じように、スリット幅を狭くする必要があり、その結果、紡糸に糸切れしたりして、安定して製造することが困難である。
 <長繊維不織布積層体>
 本発明の長繊維不織布は、種々用途応じて、他の層を積層してもよい。長繊維不織布に積層される他の層は、特に限定はされず、用途により種々の層が積層し得る。
 具体的には、例えば、編布、織布、不織布、フィルム等を挙げることができる。本発明の長繊維不織布と他の層を積層する(貼り合せる)場合は、熱エンボス加工、超音波融着等の熱融着法、ニードルパンチ、ウォータージェット等の機械的交絡法、ホットメルト接着剤、ウレタン系接着剤等の接着剤による方法、押出しラミネート等をはじめ、種々公知の方法を採り得る。
 本発明の長繊維不織布と積層される不織布としては、通常のスパンボンド不織布、メルトブローン不織布、湿式不織布、乾式不織布、乾式パルプ不織布、フラッシュ紡糸不織布、開繊不織布等、種々公知の不織布を挙げることができる。
 本発明の長繊維不織布と積層されるフィルムとしては、本発明の長繊維不織布の特徴である通気性、柔軟性及び軽量性を生かす、通気性(透湿性)フィルムが好ましい。かかる通気性フィルムとしては、種々公知の通気性フィルム、例えば、透湿性を有するポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマーからなるフィルム、無機あるいは有機微粒子を含む熱可塑性樹脂からなるフィルムを延伸して多孔化してなる多孔フィルム等を挙げることができる。多孔フィルムに用いる熱可塑性樹脂としては、高圧法低密度ポリエチレン、線状低密度ポリエチレン(所謂LLDPE)、高密度ポリエチレン、ポリプロピレン、ポリプロピレンランダム共重合体あるいはそれらの組成物等のポリオレフィンが好ましい。
 通気性フィルムとの積層体は、本発明の長繊維不織布の柔軟性を生かすとともに、極めて高い耐水性を有する、クロスライクな複合素材となり得る。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例及び比較例における物性値等は、以下の方法により測定した。
 (1)プロピレン系重合体の分子量分布、平均分子量
 プロピレン系重合体30mgをo-ジクロロベンゼン20mLに145℃で完全に溶解した後、その溶液を孔径が1.0μmの焼結フィルターで濾過し、試料溶液を得た。
 得られた試料溶液をゲル浸透クロマトグラフ装置〔Waters社製 alliance GPC 2000型〕を用いて、カラム温度140℃、移動層o-ジクロロベンゼン、流速1mLの条件で測定し、分子量分布および平均分子量を得た。
 (2)プロピレン系重合体の融点(Tm)の測定方法
 プロピレン系重合体の融点(Tm)は、示差走査熱量計(DSC)を用い、次の公知の方法で実施した。(DSC)を用いて次の公知の方法で実施した。昇温速度;10℃/分で昇温したときの融解吸熱曲線の極値を与える温度より50℃程度高い温度まで昇温して、この温度で10分間保持した後、降温速度;10℃/分で30℃まで冷却し、再度、昇温速度;10℃/分で所定の温度まで昇温したときの融解曲線を測定し、かかる融解曲線から、ASTM D3419の方法に習い、融解吸熱曲線の極値を与える温度を求め、かかるピーク温度の吸熱ピークを融点(Tm)とした。
 (3)繊維径(μm)
 得られた長繊維不織布を光学顕微鏡〔Nikon社製 ECLIPSE E-400〕で観察し、画面上のフィラメントから30本を選びその繊維径を測定し、その平均値を当該不織布の繊維径とした。
 (4)繊度[d]
 当該長繊維不織布の繊度は以下の式を用いて算出した。
   繊度[d]=0.00225×π×ρ[g/cm3]×D2[μm]×(1-中空率[%])
   ここで、ρ[g/cm3]は樹脂の使用温度における溶融密度、Dは繊維径である。
 (5)単糸強度[gf/d]
 JIS L1905(7.5.1法)に準拠して、JIS Z8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内でフィラメントを60本採取し、チャック間20mm、引張速度20mm/分の条件で引張り試験機(インストロン・ジャパン・カンパニイリミテッド製 インストロン5564型)を用いて引張試験を行い、60本分の試験片について引張荷重を測定し、それらの最大値の平均値を単糸強度とした。
 (6)中空率[%]
 長繊維不織布をエポキシ樹脂に包埋して、次いでミクロトームで切断し、試料片を得る。これを電子顕微鏡〔(株)日立製作所製S-3500N形 走査型電子顕微鏡〕で観察し、得られた断面像より観察された繊維断面像のおける繊維全体の断面積と中空部断面積を求め、以下の式より算出した。
   中空率[%]=(中空部の断面積/繊維全体の断面積)×100
 中空率の値は繊維20本を測定した平均値とした。
 (7)嵩高性[mm/(g/m2)]
 JIS L1906(6.5)に準拠して、JIS Z8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で、長繊維不織布から、流れ方向(MD)に10cm、横方向(CD)に10cmの試験片を1枚採取し、試験片の重量を測定して、目付(g/m2)を求めた。次いで、当該試験片の5箇所を厚み測定器(テスター産業)により一定時間(10秒)、一定圧力(20g)のもとでφ1.6cmの先端冶具を試験片に押し付けて、厚さ(mm)を測定した。次いで、試験片の厚さ(mm)を目付(g/m2)で割って、長繊維不織布の嵩高性を求めた。目付当たりの厚さが厚いほど、長繊維不織布の嵩高性が良好である。
 (8)形態安定性
 JIS Z8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で長繊維不織布から流れ方向(MD)に26cm、横方向(CD)に13cmの試験片を3枚採取し、チャック間210mm、引張速度50mm/分の条件で引張り試験機(インストロン・ジャパン・カンパニイリミテッド製 インストロン5564型)を用いて、荷重が4kgfとなるところまで引張試験を行い、MD方向の中央におけるCD方向の長さAmmを測定し、(A/130)×100(%)を求め、3枚の試験片についてのこの値の平均値を形態安定性とした。形態安定性が高い数値を示すほど、長繊維不織布の加工における耐ネッキング特性に優れる。
 (9)剛軟性[45°カンチレバー法]
 JIS L1096(6.19.1 A法)に準拠して、JIS Z  8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で、長繊維不織布から幅20mm×150mmの試験片を流れ方向(MD)と横方向(CD)でそれぞれ5枚採取し、45°の斜面をもつ表面の滑らかな水平台の上に試験片の短辺をスケール基線に合わせて置く。次に、手動により試験片を斜面の方向に緩やかに滑らせて試験片の一端の中央点が斜面と接したとき他端の位置の移動長さをスケールによって読む。剛軟度は試験片の移動した長さ(mm)で示され、それぞれ5枚の裏表について測定し、流れ方向(MD)および横方向(CD)それぞれの平均値で表した。
 (10)引張強度
 JIS L1906(6.12.1 A法)に準拠して、JIS Z8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で流れ方向(MD)に25cm、横方向(CD)に2.5cmの不織布試験片を3枚採取し、チャック間30mm、引張速度30mm/分の条件で引張り試験機(インストロン ジャパン カンパニイリミテッド製 インストロン5564型)を用いて引張試験を行い、3枚の試験片について引張荷重を測定し、それらの最大値の平均値を引張強度とした。
 〔実施例1〕
 プロピレン系重合体として荷重2160g、230℃のMFRが24g/10分のプロピレン単独重合体(PP-1)〔Exxon Mobil Chemical製、商品名:Achieve3854、Mw/Mn=2.3、Mz/Mw=1.8、融点(Tm):148℃:メタロセン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度210℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度2550m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度140℃)し、目付量が30g/m2の長繊維不織布を得た。
 なお、図3において、付番1は、第1の押出機、付番1’は第2の押出機であり、第1押出機および第2押出機には同じプロピレン系重合体が用いられる。付番2は紡糸口金、付番3は連続フィラメント、付番4は冷却風、付番5はエジェクター、付番6は捕捉装置、付番7は吸引装置、付番8はウエブ、付番9はエンボス装置、付番10は巻取りロールである。
 得られたフィラメントおよび長繊維不織布について、繊度、単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度を測定して評価した。結果を表1に示す。
 〔実施例2〕
 プロピレン系重合体として荷重2160g、230℃のMFRが65g/10分のプロピレン単独重合体(PP-2)〔Mw/Mn=2.6、Mz/Mw=1.7、融点(Tm):155℃:メタロセン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度190℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度3158m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度140℃)し、目付量が30g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度を測定して評価した。結果を表1に示す。
 〔実施例3〕
 プロピレン系重合体として荷重2160g、230℃のMFRが65g/10分のプロピレン単独重合体(PP-3)〔Mw/Mn=2.8、Mz/Mw=1.8、融点(Tm):155℃:メタロセン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度190℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度2769m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度140℃)し、目付量が30g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度を測定して評価した。結果を表1に示す。
 〔比較例1〕
 プロピレン系重合体として荷重2160g、230℃のMFRが60g/10分のプロピレン単独重合体(PP-4)〔Mw/Mn=2.9、Mz/Mw=2.5、融点(Tm):163℃:チタン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度210℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度2506m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度140℃)し、目付量が30g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度を測定して評価した。結果を表1に示す。
 〔比較例2〕
 プロピレン系重合体として荷重2160g、230℃のMFRが60g/10分のプロピレン・エチレンランダム共重合体(PP-5)〔Mw/Mn=2.8、Mz/Mw=2.2、融点(Tm);145℃、エチレン含有量;4モル%:チタン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度210℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度2496m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度130℃)し、目付量が30g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度を測定して評価した。結果を表1に示す。
 〔比較例3〕
 プロピレン系重合体として荷重2160g、230℃のMFRが65g/10分のプロピレン重合体(PP-6)〔FINA社製、商品名:MM302、Mw/Mn=2.5、Mz/Mw=2.0、融点(Tm):156℃;メタロセン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度210℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度2545m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度140℃)し、目付量が30g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度を測定して評価した。結果を表1に示す。
 〔比較例4〕
 プロピレン系重合体として荷重2160g、230℃のMFRが15g/10分のプロピレン単独重合体(PP-7)〔Mw/Mn=6.0、Mz/Mw=4.0、融点(Tm):163℃;チタン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度260℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度2282m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度140℃)し、目付量が30g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度を測定して評価した。結果を表1に示す。
 〔比較例5〕
 プロピレン重合体として比較例1で用いたPP-4を用い、押出機(スクリュー径75mmφ)により成形温度210℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有すが、そのスリット幅が比較例1において使用したノズルのスリット幅の1/2であるノズルを使用し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度2501m/分で紡糸を試みたが、ノズル内の樹脂圧が耐圧を上回ってしまい、紡糸不可であった。
 〔比較例6〕
 プロピレン重合体として比較例1で用いたPP-4を用い、押出機(スクリュー径75mmφ)により成形温度210℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.3g/分、糸速度1255m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをエンボスロールで加熱加圧処理(エンボス面積率20.6%、エンボス温度140℃)し、目付量が30g/m2の長繊維不織布を得た。
前記長繊維不織布の繊度は比較例1で得た長繊維不織布の繊度とほぼ同等であり、その他の特性(単糸強度、中空率、嵩高性、形態安定性、剛軟性、引張強度)についても、比較例1の結果と変わらなかった。
Figure JPOXMLDOC01-appb-T000001
 〔実施例4〕
 プロピレン系重合体として荷重2160g、230℃のMFRが24g/10分のプロピレン単独重合体(PP-1)〔Exxon Mobil Chemical製、商品名:Achieve3854、Mw/Mn=2.3、Mz/Mw=1.8、融点(Tm):148℃:メタロセン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度225℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度646m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをニードルパンチで機械的交絡処理(針深度10mm、打込み回数150回/min)し、目付量が341g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、中空率、単糸強度、引張強度を測定して評価した。結果を表2に示す。
 〔比較例7〕
 プロピレン系重合体として荷重2160g、230℃のMFRが60g/10分のプロピレン単独重合体(PP-4)〔Mw/Mn=2.9、Mz/Mw=2.5、融点(Tm):163℃:チタン系触媒〕を用い、押出機(スクリュー径75mmφ)により成形温度220℃で溶融し、ノズルピッチが縦方向4.5mm、横方向4.0mm、図1に示すような孔形状を有し、図2の繊維断面となる紡糸口金を配置した図3に示すような不織布製造装置(スパンボンド成形機、捕集面上の機械の流れ方向に垂直な方向の長さ:320mm)を用いて、冷却流体に25℃のエアーを用い、スパンボンド法によりプロピレン系重合体の単孔吐出量を0.6g/分、糸速度576m/分で紡糸し、捕集ベルト上に堆積させ、次いで、これをニードルパンチで機械的交絡処理(針深度10mm、打込み回数150回/min)し、目付量が352g/m2の長繊維不織布を得た。
 得られたフィラメントおよび長繊維不織布について、繊度、中空率、単糸強度、引張強度を測定して評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、Mz/Mwが1.8のプロピレン単独重合体(PP-1)を用いた場合(実施例1)は、繊維径を21.5μmと細くしても、中空率が28.5%と高い中空率の長繊維を得ることができ、しかも、単糸強度も4.02gf/dと強く、長繊維不織布は剛性があり、引張強度もMDが58.00N/25mm及びCDが19.10N/25mmと強い強度を有する長繊維不織布を得ることができる。
 また、Mz/Mwが1.7のプロピレン単独重合体(PP-2)を用いた場合(実施例2)は、繊維径を18.5μmと細くしても、中空率が22.1%と高い中空率の長繊維を得ることができ、しかも、単糸強度も3.62gf/dと強く、長繊維不織布は剛性があり、引張強度もMDが58.45N/25mm及びCDが18.22N/25mmと強い強度を有する長繊維不織布を得ることができる。
 さらに、Mz/Mwが1.8のプロピレン単独重合体(PP-3)を用いた場合(実施例3)は、繊維径を20.9μmと細くしても、中空率が30.3%と高い中空率の長繊維を得ることができ、しかも、単糸強度も4.22gf/dと強く、長繊維不織布は剛性があり、引張強度もMDが60.00N/25mm及びCDが20.10N/25mmと強い強度を有する長繊維不織布を得ることができる。
 一般的に、繊維径が同じ中空繊維を比較した場合、中空率が低いほど、繊維の強度が高い傾向が見られる。本願発明の比較例として、メタロセン系触媒を用いてもMz/Mwが2.0のプロピレン重合体(PP-6)を用いた場合(比較例3)は、繊維径を20.1μmと実施例1と同程度に細い中空繊維は、中空率が18.4%と低い中空率の長繊維しか得ることができなかった。また中空率が実施例1よりも低いにも関わらず、単糸強度も3.34gf/dと弱く、長繊維不織布は剛性が低く、引張強度はMDが53.65N/25mm及びCDが16.57N/25mmと低い強度を有する長繊維不織布しか得られなかった。
 また、Mz/Mwが2.5のチタン系触媒で得られたプロピレン単独重合体(PP-4)を用いた場合(比較例1)は、繊維径を20.1μmと実施例1と同程度に細い中空繊維は、中空率が16.8%と更に低い中空率の長繊維しか得ることができなかった。また中空率が実施例1よりも低いにも関わらず、単糸強度も2.36gf/dと弱く、長繊維不織布は剛性がやや低く、引張強度はMDが43.21N/25mm及びCDが16.28N/25mmと更に低い強度を有する長繊維不織布しか得られなかった。
 Mz/Mwが2.5のチタン系触媒で得られたプロピレン・エチレンランダム共重合体(PP-5)を用いた場合(比較例2)でも、繊維径を19.8μmと実施例1と同程度に細い中空繊維は、中空率が13.8%と更に低い中空率の長繊維しか得ることができなかった。また中空率が実施例1よりも低いにも関わらず、単糸強度も2.40gf/dと弱く、長繊維不織布は剛性が低く、引張強度はMDが27.43N/25mm及びCDが15.23N/25mmと更に低い強度を有する長繊維不織布しか得られなかった。
 そして、Mz/Mwが4.0のチタン系触媒で得られたプロピレン単独重合体(PP-7)を用いた場合(比較例4)においても、繊維径を21.5μmと実施例1と同程度に細い中空繊維は、中空率が20.3%と低い中空率の長繊維しか得ることができなかった。また中空率が実施例1よりも低いにも関わらず、単糸強度も1.92gf/dと更に弱く、長繊維不織布は剛性がやや低く、引張強度はMDが49.77N/25mm及びCDが18.80N/25mmと更に低い強度を有する長繊維不織布しか得られなかった。
 また、表2から明らかなように、Mz/Mwが1.8のプロピレン単独重合体(PP-1)を用いて得られた繊維径が40.4μm及び中空率20.4%の長繊維不織布(実施例7)は単糸強度が4.00gf/dと強く、引張強度もMDが45.6N/25mm及びCDが40.3N/25mmと強い強度を有する長繊維不織布であるのに対し、Mz/Mwが2.5のプロピレン単独重合体(PP-4)を用いて得られた長繊維不織布(比較例7)は、繊維径40.3μとほぼ同じであるが、中空率10.2%と低く、単糸強度は2.06gf/dと低い強度を示した。
 本発明の長繊維不織布は、従来の中空繊維不織布に比べ、繊維の強度、とりわけ単糸強度が強く、しかも、不織布を形成するプロピレン系重合体繊維の繊維径を細くしても中空率が高いという特徴に加え、通気性、特に軽量性、隠蔽性、反射性に優れるので、かかる特性を活かして、種々の用途、例えば、衛生材料をはじめ、油吸着性マット等の産業材関連用途への展開も期待できる。
 1;第1の押出機、1’;第2の押出機、2;紡糸口金、3;連続フィラメント、4;冷却風、5;エジェクター、6;捕捉装置、7;吸引装置、8;ウエブ、9;エンボス装置、10;巻取りロール

Claims (6)

  1.  Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.5~1.9の範囲にあるプロピレン系重合体の中空繊維からなる長繊維不織布。
  2.  プロピレン系重合体が、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0~2.9である請求項1に記載の長繊維不織布。
  3.  中空繊維が、繊維径が15~50μm及び中空率が5~50%の中空断面を有する中空繊維である請求項1または2記載の長繊維不織布。
  4.  繊維径が15~24μm及び中空率が22~35%の中空断面を有するプロピレン系重合体繊維からなることを特徴とする長繊維不織布。
  5.  プロピレン系重合体繊維を構成するプロピレン系重合体が、Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.5~1.9の範囲にある請求項4に記載の長繊維不織布。
  6.  プロピレン系重合体が、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0~2.9の範囲にある請求項5に記載の長繊維不織布。
PCT/JP2009/064822 2008-09-01 2009-08-26 長繊維不織布 WO2010024268A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010526728A JP5181028B2 (ja) 2008-09-01 2009-08-26 長繊維不織布
EP09809919A EP2322703A4 (en) 2008-09-01 2009-08-26 NONWOVEN FABRIC IN CONTINUOUS YARN
US13/057,389 US20110136402A1 (en) 2008-09-01 2009-08-26 Continuous fiber nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008223545 2008-09-01
JP2008-223545 2008-09-01

Publications (1)

Publication Number Publication Date
WO2010024268A1 true WO2010024268A1 (ja) 2010-03-04

Family

ID=41721435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064822 WO2010024268A1 (ja) 2008-09-01 2009-08-26 長繊維不織布

Country Status (4)

Country Link
US (1) US20110136402A1 (ja)
EP (1) EP2322703A4 (ja)
JP (1) JP5181028B2 (ja)
WO (1) WO2010024268A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179222A (ja) * 2009-02-04 2010-08-19 Mitsui Chemicals Inc 油吸着用マット
JP2012021260A (ja) * 2011-04-06 2012-02-02 Asahi Kasei Fibers Corp 熱安定性、柔軟性に優れる不織布
WO2012111723A1 (ja) * 2011-02-15 2012-08-23 三井化学株式会社 スパンボンド不織布
JPWO2017006972A1 (ja) * 2015-07-06 2018-03-15 三井化学株式会社 スパンボンド不織布及び衛生材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017006786A (es) 2014-12-19 2017-09-05 Kimberly Clark Co Fibras huecas finas que tienen una fraccion de vacios alta.
JP6822979B2 (ja) * 2015-05-20 2021-01-27 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Tpu製の非常に細いチューブとその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249257A (ja) * 1990-02-21 1991-11-07 Unitika Ltd スパンボンド不織布及びその製造方法
JPH08126440A (ja) 1994-11-02 1996-05-21 Unitika Ltd 農業用シート
JP2001508472A (ja) 1996-02-23 2001-06-26 エクソン・ケミカル・パテンツ・インク 担持触媒系
JP2001355172A (ja) * 2000-06-09 2001-12-26 Mitsui Chemicals Inc スパンボンド不織布
US6368990B1 (en) 1997-08-04 2002-04-09 Bba Nonwovens Sweden Ab Fabrics formed of hollow filaments and fibers and methods of making the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044411A1 (en) * 1999-01-27 2000-08-03 Kimberly-Clark Worldwide, Inc. Hollow polymer fiber nonwoven web material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249257A (ja) * 1990-02-21 1991-11-07 Unitika Ltd スパンボンド不織布及びその製造方法
JPH08126440A (ja) 1994-11-02 1996-05-21 Unitika Ltd 農業用シート
JP2001508472A (ja) 1996-02-23 2001-06-26 エクソン・ケミカル・パテンツ・インク 担持触媒系
US6368990B1 (en) 1997-08-04 2002-04-09 Bba Nonwovens Sweden Ab Fabrics formed of hollow filaments and fibers and methods of making the same
JP2001355172A (ja) * 2000-06-09 2001-12-26 Mitsui Chemicals Inc スパンボンド不織布

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179222A (ja) * 2009-02-04 2010-08-19 Mitsui Chemicals Inc 油吸着用マット
WO2012111723A1 (ja) * 2011-02-15 2012-08-23 三井化学株式会社 スパンボンド不織布
CN103370464A (zh) * 2011-02-15 2013-10-23 三井化学株式会社 纺粘非织造布
JP5717769B2 (ja) * 2011-02-15 2015-05-13 三井化学株式会社 スパンボンド不織布
KR101536494B1 (ko) * 2011-02-15 2015-07-13 미쓰이 가가쿠 가부시키가이샤 스펀본드 부직포
EP2677074A4 (en) * 2011-02-15 2016-12-21 Mitsui Chemicals Inc SPIN FIBER FLEECE
US9693912B2 (en) 2011-02-15 2017-07-04 Mitsui Chemicals, Inc. Spunbonded nonwoven fabrics
JP2012021260A (ja) * 2011-04-06 2012-02-02 Asahi Kasei Fibers Corp 熱安定性、柔軟性に優れる不織布
WO2012137378A1 (ja) * 2011-04-06 2012-10-11 旭化成せんい株式会社 熱安定性、柔軟性に優れる不織布
JPWO2017006972A1 (ja) * 2015-07-06 2018-03-15 三井化学株式会社 スパンボンド不織布及び衛生材料

Also Published As

Publication number Publication date
EP2322703A4 (en) 2011-10-12
EP2322703A1 (en) 2011-05-18
US20110136402A1 (en) 2011-06-09
JPWO2010024268A1 (ja) 2012-01-26
JP5181028B2 (ja) 2013-04-10

Similar Documents

Publication Publication Date Title
DK2650419T3 (en) Melt-blown non-woven-textile fabric and manufacturing method and devices thereof
JP5717769B2 (ja) スパンボンド不織布
JP5181028B2 (ja) 長繊維不織布
US20110183568A1 (en) Fibers and nonwovens with increased surface roughness
JP7308223B2 (ja) 不織布積層体、並びに、伸縮性不織布積層体、繊維製品、吸収性物品及び衛生マスク
JP6715056B2 (ja) スパンボンド不織布および衛生材料
CN113677516B (zh) 无纺布层叠体及卫生用品
CN113348277A (zh) 纺粘无纺布、纺粘无纺布的制造方法、压纹辊
JP5334583B2 (ja) 分割型複合長繊維、分割型複合長繊維からなる不織布および分割繊維不織布
JP2022132044A (ja) スパンボンド不織布および芯鞘型複合繊維
TW201920795A (zh) 熔噴不織布、不織布積層體和過濾器
KR102500062B1 (ko) 스펀본드 부직포, 위생 재료, 및 스펀본드 부직포의 제조 방법
KR102398859B1 (ko) 스펀본드 부직포, 위생 재료, 및 스펀본드 부직포의 제조 방법
JP6533025B1 (ja) スパンボンド不織布の製造方法及びスパンボンド不織布
JP2022183506A (ja) スパンボンド不織布および芯鞘型複合繊維
WO2022181590A1 (ja) スパンボンド不織布および複合繊維
JP2022135776A (ja) 不織布、不織布積層体及び吸収性物品
WO2020095947A1 (ja) 不織布及びその製造方法
JP2021161564A (ja) スパンボンド不織布、衛生材料、及びスパンボンド不織布の延伸方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809919

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13057389

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009809919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009809919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010526728

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE