WO2010022601A1 - 高纯度硅的制造方法 - Google Patents

高纯度硅的制造方法 Download PDF

Info

Publication number
WO2010022601A1
WO2010022601A1 PCT/CN2009/071476 CN2009071476W WO2010022601A1 WO 2010022601 A1 WO2010022601 A1 WO 2010022601A1 CN 2009071476 W CN2009071476 W CN 2009071476W WO 2010022601 A1 WO2010022601 A1 WO 2010022601A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
purity
zinc
vessel
container
Prior art date
Application number
PCT/CN2009/071476
Other languages
English (en)
French (fr)
Inventor
大石直明
桥本明
Original Assignee
北京中晶华业科技有限公司
李润源
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中晶华业科技有限公司, 李润源 filed Critical 北京中晶华业科技有限公司
Publication of WO2010022601A1 publication Critical patent/WO2010022601A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to the field of manufacturing silicon, and more particularly to a method for producing high purity silicon for solar cell raw materials.
  • High-purity silicon is used as a silicon single crystal material for semiconductor devices, generally using the Siemens method (Siemens).
  • high-purity silicon is a raw material for silicon single crystal or polycrystalline ingot for solar cells, which has a huge demand in the future. Due to the high cost of the Siemens method, various manufacturing methods other than the Siemens method are now being produced in order to manufacture low-cost high-purity silicon. It is being proposed and even under development.
  • This method was carried out by the step of recovering zinc and chlorine from a by-product zinc chloride by a molten salt, and combining and recycling them for the purpose of cost reduction.
  • This method (hereinafter referred to as BCL method) is characterized in that silicon tetrachloride and zinc as raw materials are introduced into a reaction furnace in a vapor state, solid phase precipitates granular or even powdery silicon, and by-product zinc chloride and Unreacted silicon tetrachloride and zinc are separated and recovered by a condenser, and zinc obtained by electrolysis of silicon tetrachloride and zinc and zinc chloride is reused in the reduction step.
  • the method since various problems occur in the reaction furnace and the agglomerator for the incomplete separation of the respective substances, the method has not been practically applied.
  • Patent Documents 1 to 6 wherein Patent Document 1 is Japanese Laid-Open Patent Publication No. 2003-34519, Patent Document 2 JP-A-2003-95633, Patent Document 3 is JP-A-2004- 18370, and Patent Document 4 is JP-A-2004-210594, and Patent Document 5 is JP-A-2004-284935.
  • the embodiment of the present invention provides a method for producing high-purity silicon, which solves the problem that the separation of each substance in the reaction furnace and the agglomerator in the BCL method is incomplete and cannot be industrialized, and can realize B with good productivity.
  • the complete separation and complete recovery and reuse of the reaction product in the CL method is aimed at providing a production method capable of mass-produced solar grade polycrystalline silicon at a low cost.
  • the method for manufacturing high-purity silicon specifically comprises: forming a container 1 having a heating, heat preservation and cooling function, and a container 2, having a cooling function and having an exhaust gas treatment device and an external gas on the outlet side; a system in which the connected containers 3 are combined in series in the order of the containers 1, 2, 3;
  • hPa (happa) flows to the vessel 1 under pressure and maintains a stoichiometric ratio of silicon tetrachloride higher than that of zinc, wherein N in 6N represents the number of 9 in the purity percentage.
  • a disproportionation reaction of generating silicon dichloride gas occurs at 1 atm.
  • the temperature of the container 2 is set to a range of 300 to 40 ° C.
  • the temperature is 283 ° C or higher at a melting point of zinc chloride, a boiling point of 732 ° C or lower, and a boiling point of 58 ° C or higher at the boiling point of silicon tetrachloride.
  • Zinc chloride is liquid phase agglomerated and separated from the gas phase silicon tetrachloride A part of the silicon fine particles generated in the container 1 and transported together with the reaction product gas can be recovered from the container 2 in the form of zinc chloride suspended in a molten state. Since the silicon tetrachloride and the inert gas system passing through the vessel 2 are maintained at 0 ° C or lower in the vessel 3, the remaining silicon tetrachloride is liquid-phase coagulated and recovered, and only the inert gas is released to the exhaust gas treatment device. external.
  • each separation (recovery) step can be easily carried out and the separated product can be completely recovered in a high purity state. Therefore, this method can achieve complete separation and complete recovery and reuse of the reaction product from the BCL method with good productivity, and enables low-cost mass production of high-purity silicon for solar cells.
  • FIG. 1 is a flow chart of steps of an embodiment of the present invention.
  • Embodiments of the present invention provide a method of manufacturing high purity silicon for a solar cell raw material. Is a raw material silicon tetrachloride and zinc, respectively, introduced into the reaction furnace in a vapor state, solid phase precipitation of granular or even powdery silicon, the by-product zinc chloride is electrolyzed, reduced to zinc and reused, so-called vapor phase zinc reduction A method for producing high-purity silicon is obtained by the method.
  • an inert gas (argon gas) having a purity of 6 N is taken from the inlet of the vessel 1,
  • the silicon tetrachloride gas and the zinc vapor flow to the vessel 1 under the condition of a pressure of 1000 to 1200 hPa and maintaining a stoichiometric ratio of silicon tetrachloride of more than 3 to 100% of zinc, wherein N (nine) in 6N refers to the number of 9 in the purity percentage, for example, the purity of 6N means 99.9999%, the following synonymous).
  • the pressure in the above system must be maintained at approximately 1000 to 1200 hPa, which is close to normal pressure and is positive pressure, in terms of preventing outside air from entering the system and operating safety.
  • This pressure can be controlled by adjusting the supply rate of silicon tetrachloride gas, zinc vapor, and inert gas supplied to the vessel 1, and the gas flow rate at the outlet side of the vessel 3 or the inlet portion of the vessel 2 to the vessel 3. .
  • the internal temperature is maintained at 910 to 1300 ° C by the heating and holding device 1a and the cooling device 1b.
  • the range is 907 ° C of the boiling point of zinc, 732 ° C of the boiling point of zinc chloride, and 58 ° C or more of the boiling point of silicon tetrachloride, and the melting point of silicon is 1414 ° C or less.
  • the reduction reaction at this time is as follows.
  • the excess ratio of the stoichiometric ratio of silicon tetrachloride to zinc is at least 3%.
  • the excess ratio is preferably larger, but the disproportionation reaction and the reverse reaction due to excess silicon tetrachloride and the generated silicon.
  • the amount of silicon microparticles generated may increase, and the utilization efficiency of the production equipment may decrease due to an increase in the amount of silicon tetrachloride circulating in the production equipment system. Therefore, the excess ratio is preferably about 100%. From a variety of viewpoints, it is preferable to maintain the chemical equivalent ratio of silicon tetrachloride to a state of more than about 3 to 100% of zinc.
  • the above disproportionation reaction proceeds rapidly at 1,352 ° C at 1 atm, and silicon dioxide undergoes a reverse reaction when moving to the low temperature vessel 2 to be reduced to silicon and silicon tetrachloride.
  • the silicon generated at this time is a microparticle of about 1 micrometer, and it is difficult to use even if it is recovered, so it is necessary to suppress the disproportionation reaction as much as possible. Therefore, under conditions of positive pressure and excess silicon tetrachloride, it is necessary to keep the temperature of the vessel 1 below 130 CTC.
  • the separation of zinc is first performed according to the vapor pressure difference of zinc chloride, and the boiling points of the two are 907 ° C and 732 °, respectively.
  • C unlike zinc chloride and silicon tetrachloride ( The boiling point of 58 ° C) has a large difference in vapor pressure, so complete separation is difficult.
  • fine silicon is mixed in a mixture of zinc and zinc chloride
  • in order to remove the particulate silicon it is filtered at a high temperature molten state of a melting point of 420 ° C or higher, or zinc is not directly recovered in the state of zinc but in the form of hydrochloric acid. After dissolving once and then filtering, etc., an extra step is required.
  • zinc chloride is preferably used as an aqueous solution for electrolysis.
  • the silicon tetrachloride gas and the zinc vapor are controlled by the respective steam generators 5, 6 in the supply rate control to the vessel 1.
  • the supply of silicon tetrachloride is to introduce liquid silicon tetrachloride into the evaporator 6 of stainless steel, and to monitor the flow rate of the silicon tetrachloride vapor while controlling the output power of the electric heater provided in the evaporator. Control its supply speed.
  • the solid or molten zinc is introduced into an evaporator 5 made of quartz glass, heated to a boiling point of 907 ° C, and the output of the electrothermal heater equipped with the evaporator is controlled while monitoring the liquid level of the zinc to control the supply speed.
  • the internal temperature of the container 1 is controlled by the following steps. First, in order to move the by-product zinc chloride in the vapor state to the downstream container 2, the internal temperature of the vessel 1 is maintained at a boiling point (910 ° C) or higher of zinc chloride and zinc. On the other hand, in the present invention, the above-mentioned disproportionation reaction occurs between the silicon formed after the pressure exceeds 1352 °C and the remaining silicon tetrachloride, and is discharged to the direction of the container 2. In order to prevent this, the temperature near the outlet of the container 1 must be controlled to be at least 130 CTC or less.
  • the disproportionation reaction is again reduced to silicon and silicon tetrachloride by a reverse reaction in a low temperature region below 1352 °C.
  • the reduced silicon is precipitated in the form of fine particles.
  • the reduced oxygen can be completely captured in the container 2 by the method described later and recovered in a high purity state. .
  • the gas phase reduction reaction carried out in the vessel 1 is an exothermic reaction. If the reaction heat is not removed, the reaction is started at a temperature of about 900 ° C, and the internal temperature of the vessel 1 rises to 130 CTC or more while the reaction proceeds. Therefore, in order to keep the temperature of the vessel 1 at 910 to 1300 ° C, the front section (upstream side) of the vessel 1 is charged into the electric furnace la having the heating and heat insulating function, and the rear section (downstream side) is loaded into the structure having the cooling function. In body 1 b.
  • the silicon recovered in the container 1 is usually in the form of high-purity granules or even sponges. When taken out, a small amount of silicon micropowder may be generated, or impurities of less than 0.1 ⁇ m ⁇ may be mixed, in order to remove the impurities. Take from container 1 After washing out, it is washed with weak hydrochloric acid, ultrapure water and dried.
  • the container 2 (aggregator 1), the purpose of which is to agglomerate zinc chloride to make it into a liquid phase state, while obtaining suspended silicon fine particles in a suspended state in the zinc chloride melt, and then separating the remaining four Silicon chloride gas and inert gas.
  • the temperature of the zinc chloride liquid receiving portion disposed in the lower portion of the vessel 2 must be between 732 and 283 °C.
  • the partial pressure of the silicon tetrachloride gas discharged from the vessel 2 and the zinc chloride vapor in the inert gas it is necessary to lower the temperature as much as possible.
  • the temperature in order to lower the partial pressure of zinc chloride vapor to below lhPa, the temperature must be controlled below 400 ° C, preferably 300 ° C, so that zinc chloride does not solidify.
  • the lower part of the vessel 2 is filled with an electric furnace with heating and insulation function of 300 to 400 ° C.
  • the upper portion (upstream side) of the container 2 is placed in the structure 2b having a cooling function, and the reaction product of 910 to 130 CTC discharged from the container 1 can be cooled to 300 to 400 °C. Further, while the solid phase is precipitated and a small amount of zinc chloride vapor is obtained, in order to more effectively exert the cooling function of the container 3, a trap 2c is provided in the outlet portion of the container 2 to the container 3.
  • the silicon tetrachloride gas is cooled to an inert gas temperature below 150 ° C (preferably 70 ° C).
  • the vessel 3 liquefies the unreacted silicon tetrachloride and separates it from the inert gas.
  • the vapor pressure of silicon tetrachloride should be at least 100 hPa, and the temperature of the vessel 3 must be below 0 ° C, preferably below 10 ° C.
  • Another feature of the present invention is that after dissolving or suspending the zinc chloride and silicon microparticles obtained in the container 2 in a high-purity aqueous solution of dilute zinc chloride, the silicon microparticles are filtered, washed, and dried to recover a cake. Silicon, zinc is electrolyzed by a concentrated zinc chloride aqueous solution of the filtrate, and zinc is reused as a reducing agent for silicon tetrachloride.
  • the electrolytic solution which is thinned after the zinc recovery is sent to the zinc chloride dissolution tank 8, and is adjusted to the specified zinc chloride concentration, and is again supplied to the electrolytic tank 7.
  • the diluted zinc chloride aqueous solution is zinc chloride which is used to dissolve the vessel 2.
  • the zinc chloride in the container 2 is sent to the dissolution tank 8 after being cooled and solidified, and the dissolved liquid is separated by filtration, and then adjusted for zinc chloride concentration, ra value, temperature, etc., and then used as an electrolytic solution of the electrolytic cell 7. .
  • the electrolytic cell 7 uses an aluminum plate as a cathode, DSE (insoluble electrode) as an anode, and an ion exchange membrane as a separator for electrolysis to recover zinc.
  • DSE insoluble electrode
  • ion exchange membrane as a separator for electrolysis to recover zinc.
  • the purity of 5N node, which means the number of 9 in the purity percentage
  • the purity of 5N means 99. 999%, hereinafter synonymous
  • the above-mentioned high-purity zinc is distilled and can be reused as zinc vapor of 6N (nine) purity required for reduction of silicon tetrachloride.
  • the chlorine gas generated at the same time of the electrolysis can be liquefied and recovered after dehydration, and used as a raw material of silicon tetrachloride, hydrochloric acid, or other industrial products.
  • the method of the patent application proposed later almost adopts an electrolytic method using molten salt electrolysis as zinc chloride.
  • the electric power unit of the electrolytic cell may theoretically be reduced by about 20%, it must be treated at a high temperature of 400 to 600 ° C, and the molten salt electrolysis method has a deputy.
  • the difficulty of sealing the product chlorine gas and the material of the device may be mixed with impurities.
  • the temperature of the electrolyte is circulated to the electrolytic cell, and the temperature of the electrolytic cell to recover and store the attached equipment such as molten zinc requires an additional heat source.
  • an aqueous solution electrolysis method is preferred.
  • the greatest advantage is that no unreacted zinc remains in the reduction reaction product, so zinc chloride can be easily recovered by a method of dissolving in high purity water.
  • the silicon fine particles obtained in the container 2 are usually a resin of 10 to 0.1 ⁇ m, and a resin filter having a pore diameter of 0. ⁇ ⁇ ⁇ or less is required for filtration.
  • the surface of the silicon fine particles filtered from the zinc chloride aqueous solution is adhered with the impurity zinc chloride, washed with a high-purity weak hydrochloric acid aqueous solution, and then washed with ultra-high purity water and dried to obtain a cake-like height. Pure silicon.
  • the silicon in the raw material silicon tetrachloride can recover high-purity silicon in a yield of 95% or more.
  • the silicon is formed into a block shape of about 10 to 200 mm, and heat-treated at 1300 to 1400 ° C in a vacuum or a reduced pressure argon atmosphere to obtain a desired product.
  • a mold for press forming must use a material such as silicon nitride which has high mechanical strength and does not contaminate silicon.
  • the container for heat treatment must use a heat-resistant material such as high-purity silicon carbide which does not contaminate silicon at a high temperature.
  • the heat treatment temperature is preferably 1300 to 140 CTC which is slightly lower than the melting point of silicon.
  • high purity silicon for solar cells must have a purity of at least 6N (nin) or more.
  • the method of the embodiment of the present invention even in the complete separation and recovery of the reaction product, even if there is a pollution prevention function, It cannot be expected to have a refined function. Therefore, when high-purity silicon having a purity of 6 N (s) or more is produced by the method of the embodiment of the present invention, the raw material silicon tetrachloride gas, the reducing agent zinc vapor, and the inert gas flowing at the same time all require a purity of 6 N (nine) or more.
  • silicon tetrachloride contains silicon hydride such as trichlorosilane or dichlorosilane
  • the silicon hydride in the mixed gas is reduced by zinc vapor in the set temperature range of the container 1 of the present invention. Since silicon is precipitated and becomes zinc chloride vapor and hydrogen, it is suitable for the method of the embodiment of the present invention as long as the purity of the mixed gas used is 6N or more. However, in calculating the excess ratio of the chemical equivalent of the raw material gas to zinc, it is necessary to use the chemical equivalent of the corresponding raw material gas.
  • the safety of the hydrogen gas discharged to the outside together with the inert gas of the opening portion of the third portion needs to be diluted with air of not less than 10 times the volume of the hydrogen gas in the vicinity of the discharge port.
  • a mixed gas of silicon tetrachloride and silicon hydride as a raw material means that polycrystalline silicon can be produced by combining the method of the embodiment of the present invention with a Siemens method of mixing a large amount of by-products in the same manner.
  • the container 1 may be in the form of a vertical circular tower to trap the silicon deposited in the lower portion or a horizontal circular tube to precipitate the entire internal silicon.
  • the configuration of the container 2 can be made into two parts, including a portion that mainly cools the reaction product at a high temperature and a portion that retains the condensed zinc chloride in a liquid or solid state.
  • the container to be used, the material of the appliance, and the material of the piping to be connected to the container are required to have heat resistance and corrosion resistance to the temperature to be contacted and the atmosphere gas, and it is preferable to use a reliable material which has been put into practical use in other fields.
  • quartz glass and silicon carbide which have been generally used as heat treatment for semiconductor materials
  • silicon nitride or Inconel used as a general heat-resistant and corrosion-resistant material
  • nickel used as a general heat-resistant and corrosion-resistant material
  • Teflon which is generally used for acid and corrosion-resistant resins.
  • Materials such as (registered trademark), polypropylene, and vinyl chloride can be used in the practice of the present invention.
  • the container 1 is a silicon carbide tube having an inner diameter of 300 m and a length of 2500 m, and the upper part of the container 2 connected thereto is a silicon carbide tube having an inner diameter of 100 m and a height of 1500 m, and a lower portion having an inner diameter of 700 m and a depth of 1000 mm.
  • the nickel container, the container 3 connected to the lower portion of the container 2 is a stainless steel agglomerator 2, in the container 3 An opening connected to the outside via the exhaust gas treatment device 4 is provided.
  • the containers 1 and 2 are equipped with an electric heating heater 1a for heating and heat preservation, and an air cooling mechanism 1b for conveying a part of the air.
  • the cooler 3a which can be cooled down to below 10 ° C is provided in the container 3.
  • the argon gas flows from the vessel 1 to the vessel 3 at a rate of 5 L / min at the time of the injection.
  • the temperatures of the vessels 1, 2, and 3 are set to 910 ° C, 300 ° C, and minus 20 ° C, respectively, and then pre-heated to about 400 ° C and the purity is 6 N (nine) or more.
  • the container 1 was flowed in the direction of the container 3 for 20 hours at an average of 166.5 g I and an average of 116. 4 g / min.
  • the internal pressure of the containers 1, 2, 3 is maintained at 1000 to l lOOhPa
  • the temperature inside the control container 1 is 910 ° C to 1300 ° C
  • the internal temperature of the lower portion of the container 2 is 300 ° C to 400 ° C
  • the container 3 The temperature is below minus 10 °C.
  • the container 1 obtained from the portion of the sponge-like granular silicon 24kg, 290k g of zinc chloride to give a silicon-containing particles 10 ⁇ ⁇ less from the container 2.
  • the acid was washed, it was washed with ultra-high purity water, filtered through a Teflon (registered trademark) filter, and then dried under reduced pressure at 90 ° C or less to obtain 4. 8 Kg of cake-like silicon.
  • the purity of the silicon obtained by the above steps was confirmed to be 6 N (nine) or more.
  • a part of the zinc chloride aqueous solution after separating the particulate silicon is adjusted to a zinc chloride concentration of 200 g / L, ra of 3, a temperature of 30 V, and then aluminum is used as a cathode, and DSE is used. It is confirmed that it is an anode (insoluble anode) and an aqueous solution is electrolyzed by using an ion exchange membrane as a separator. It is confirmed that 95% or more of the zinc contained in the zinc chloride to be electrolyzed can be recovered in a purity of 5 N or more, and it is 907 ° C. The above distillation, the purity is above 6N (nine).
  • the granular, sponge-like and cake-like silicon obtained in the first embodiment is pressed into a hemispherical shape having a diameter of 100 mm by a mold of silicon nitride, and a high-purity argon gas of 0.1 lkPa or less in a silicon carbide container.
  • a straight powder containing no free fine powder and having a purity of almost 7 N (nine) was obtained.
  • the present invention fundamentally improves the silicon and zinc which have not been put into practical use in a vapor state, and precipitates granular or even powdery silicon in a solid phase, and then the by-product Zinc chloride is reduced to zinc by electrolysis and reused, that is, a zinc reduction method (BCL method) according to a vapor phase method, which can be industrially applied. Therefore, high-purity silicon for solar cells of 6N (nin) grade can be produced at low cost.

Abstract

本发明提供一种高纯硅的制造方法。该方法通过反应生成物的完全分离、回收及再利用,实现高纯硅的低成本、大批量生产。具体为:采用温度维持在910~1300℃的容器1、维持在300~400℃的容器2以及维持在0℃以下的容器3,在容器3的出口侧通过废气处理装置与外界气体相连,将容器1、2、3串联结合,从容器1的入口供给纯度为6N的四氯化硅气体、锌蒸气和惰性气体,在1000至1200hPa的压力下维持四氯化硅的化学当量比超过锌的状态进行供给。以此实现系统内没有锌存在的状态,用容器1获得粒状硅,容器2获得熔融状态的副产物氯化锌和微粒硅,容器3以液体状态回收剩余的四氯化硅。容器2的副产物氯化锌在微粒硅回收后,送至水溶液电解,回收锌并再利用。

Description

说明书 高纯度硅的制造方法
[ 1] 技术领域
[2] 本发明涉及硅的制造领域, 尤其涉及一种用于太阳能电池原料的高纯度硅的制 造方法。
[3] 发明背景
[4] 高纯度硅作为半导体装置用硅单晶原料, 一般采用西门子法 (Siemens
process ) 来制造。 但是, 高纯度硅作为今后具有巨大需求的太阳能电池用硅单 晶或多晶铸锭的原料, 由于西门子法成本高, 为了制造低成本的高纯度硅, 现 在关于西门子法以外的各种制造方法正在提案乃至开发中。
[5] 其中之一的锌还原法, 在西门子法未实施 50多年前曾一度使用, 之后 1978至 19
80年在美国的 Battel le Columbus研究所 (Battel le Columbus
Laboratory) , 以低成本化为目的, 从副产物氯化锌中由熔融盐电解而回收锌 和氯, 组合再回收利用的步骤, 实施了此方法。 该方法 (以下称为 BCL法) 的特 征为: 使作为原料的四氯化硅与锌, 各自以蒸气状态导入至反应炉, 固相析出 粒状乃至粉末状的硅, 将副产物氯化锌和未反应的四氯化硅以及锌通过凝聚器 ( condenser) 各自进行分离回收, 将由四氯化硅和锌以及氯化锌的电解所得到 的锌在还原步骤中进行再利用。 但是, 由于反应炉及凝聚器中对各物质分离不 完全而产生各种问题, 之后该方法没有被实际应用。
[6] 之后, 对上述的 BCL法, 通过设定还原反应温度的范围、 或使锌蒸气相对于导 入的四氯化硅的摩尔比大于化学反应方程式的当量比等, 从而控制生成的硅的 粒径和形状, 以提高硅的收率为目的, 已提出数个方案并申请专利 (如: 参照 专利文献 1〜6, 其中, 专利文献 1为日本特开 2003— 34519号公报、 专利文献 2为 日本特开 2003— 95633号公报、 专利文献 3为日本特开 2004— 18370号公报、 专利 文献 4为日本特开 2004— 210594号公报、 专利文献 5为日本特开 2004— 284935号 公报、 专利文献 6为日本特开 2006— 290645号公报) 。 然而, 这些方案均包括在 上述 BCL法的范围内, 对于 BCL法中的问题点, 即反应生成物的完全分离与完全 回收以及再利用的根本解决方案则各方案中均没有被提及。
[7] 发明内容
[8] 本发明实施例提供一种高纯度硅的制造方法, 是解决 BCL法中反应炉及凝聚器 中各物质分离不完全而无法进行工业化实用性的问题, 能以良好的生产性实现 B CL法中反应生成物的完全分离与完全回收以及再利用, 目的是提供可以低成本 大量生产太阳能级多晶硅的制造方法。
[9] 本发明的目的是通过以下技术方案实现的:
[ 10] 本发明实施例提供的高纯度硅的制造方法, 具体为: 形成具有加热、 保温、 冷 却功能的容器 1以及容器 2、 与具有冷却功能且在出口侧具有经废气处理装置与 外界气体相连的容器 3按照容器 1、 2、 3的顺序串联结合的系统;
[ 11] 其中, 使容器 1、 2、 3各自的温度维持在 910至 1300°C、 300至 400°C、 0°C以下 , 同时从容器 1的入口处, 使纯度为 6N的惰性气体、 四氯化硅气体、 以及锌蒸气 在 1000至 1200
hPa (百帕) 压力下流向容器 1, 并维持四氯化硅的化学当量比高于锌的状态, 其中, 6N中的 N表示纯度百分率中 9的个数。
[ 12] 在容器 1使硅固相析出, 在容器 2使氯化锌液相凝聚的同时获得硅的微粒子, 在 容器 3使剩余的四氯化硅液相凝聚并回收, 而在系统内不包含从反应生成物中分 离锌的步骤。
[ 13] 上述方法中, 由于容器 1中的温度范围为 910至 1300°C, 故沸点为 907°C的锌和 沸点为 58°C的四氯化硅以气相状态瞬间 100 %反应, 熔点为 1414°C的硅则固相析 出, 堆积在容器 1的内面。 之后, 以四氯化硅的化学当量比大于锌的状态下游入 , 锌在还原反应中全部消耗, 不再存在于容器 1以后的系统中。 因此, 在系统内 完全没有必要进行从反应生成物中分离锌的步骤。 而且, 还原反应时如果四氯 化硅的当量比多, 未反应而残留的四氯化硅和还原生成的硅发生反应, 会发生 生成二氯化硅气体的歧化反应, 此反应在 1大气压下超过 1352°C时会急剧进行, 容器 1的温度若控制在 130CTC以下, 可抑制该反应。 容器 2的温度设定为 300至 40 0°C的范围, 该温度在氯化锌的熔点 283°C以上、 沸点 732°C以下, 且在四氯化硅 的沸点 58°C以上, 故使氯化锌进行液相凝聚且从气相的四氯化硅中分离的同时 , 可将在容器 1中生成并与反应生成气体一起被输送过来的一部分硅微粒子, 以 悬浊于熔融状态的氯化锌的形式由容器 2进行回收。 由于通过容器 2的四氯化硅 和惰性气体系在容器 3中维持在 0°C以下, 故将剩余的四氯化硅予以液相凝聚并 回收, 只将惰性气体经由废气处理装置而释放到外部。
[ 14] 将在容器 2回收的氯化锌与硅微粒子溶解或悬浊于高纯度的稀释氯化锌水溶液 后, 将硅微粒子过滤、 酸洗、 并用超高纯度水洗净后进行干燥, 回收饼 (cake ) 状的硅。 作为滤液的高浓度氯化锌水溶液在经调整浓度、 PH、 温度后, 使用 铝板作为阴极、 使用 DSE (不溶性电极) 作为阳极、 使用离子交换膜作为隔膜而 进行电解, 从而回收高纯度锌, 将其作为四氯化硅的还原剂再利用。
[ 15] 由上述本发明实施方式提供的技术方案可以看出, 本发明实施方式在容器 1 ( 还原反应器) 回收锌完全消耗后所生成的粒状乃至海绵状的硅, 在容器 2 (凝聚 器一) 回收氯化锌和硅微粒子, 在容器 3 (凝聚器二) 回收四氯化硅, 系统内不 需要进行从反应生成物中分离锌的步骤。 将容器 2所回收的氯化锌和硅微粒子溶 解或悬浊于高纯度稀释氯化锌水溶液, 过滤该氯化锌水溶液而回收硅微粒子, 而作为滤液的浓氯化锌水溶液通过电解而回收锌, 故各分离 (回收) 步骤可容 易实行且分离生成物可以高纯度状态完全回收。 因此, 该方法能以良好的生产 性实现从 BCL法中将反应生成物完全分离与完全回收以及再利用, 使太阳能电池 用高纯度硅的低成本量产成为可能。
[ 16] 附图简要说明
[ 17] 图 1为本发明实施例提供的一种实施方式的步骤流程图。
[ 18] 图中符号简要说明:
[ 19] 1-还原反应器 (容器 1 )
[20] la-加热、 保温装置
[21] lb-冷却装置
[22] 2-凝聚器一 (容器 2 )
[23] 2a-加热、 保温装置 (电炉)
[24] 2b_具备冷却机能的构造体
[25] 2c-凝汽阀 [26] 3-凝聚器二 (容器 3 )
[27] 3a_冷冻机
[28] 4-废气处理装置
[29] 5-锌蒸发器
[30] 6-四氯化硅蒸发器
[31] 7-水溶液电解槽
[32] 8-溶解槽。
[33] 实施本发明的方式
[34] 本发明实施例提供一种用于太阳能电池原料的高纯度硅的制造方法。 是一种将 原料四氯化硅与锌, 分别以蒸气状态导入反应炉, 固相析出粒状乃至粉末状的 硅, 将副产物氯化锌电解后还原成锌并再利用, 即所谓气相锌还原法而得到高 纯度硅的制造方法。
[35] 为方便理解, 下面参照附图 1对本发明实施例的高纯度硅的制造方法的流程作 进一步说明。
[36] 该制造流程: 采用具有加热、 保温、 冷却功能的容器 1 (还原反应器) 以及容 器 2 (凝聚器一) 和拥有冷却功能且在出口侧具有经废气处理装置与外界气体相 连的容器 3 (凝聚器二) 按照容器 1、 2、 3的顺序串联而结合的系统。 并且, 使 容器 1、 2、 3各自的温度维持在 910至 1300°C、 300至 400°C、 0°C以下的同时, 从 容器 1入口处将纯度为 6N的惰性气体 (氩气) 、 四氯化硅气体以及锌蒸气在 1000 至 1200hPa的压力下并保持四氯化硅的化学当量比超过锌 3至 100 %左右的条件下 , 流向容器 1, 其中, 6N中的 N ( nine ) 意指纯度百分率中 9的个数, 例如 6N的纯 度即表示 99. 9999%, 以下同义) 。
[37] 首先, 上述系统内的压力, 从防止外界气体侵入系统内部以及运转安全性方面 而言, 必须使其维持在接近常压且属于正压的 1000至 1200hPa。 此压力的控制, 可通过调整供给至容器 1的四氯化硅气体、 锌蒸气以及惰性气体的供给速度, 以 及容器 3出口侧开口部、 或容器 2往容器 3的入口部分的气体流量来实现。
[38] 其次, 对四氯化硅气体相对于锌蒸气的化学当量比过剩的理由进行说明。 容器
1内部的温度通过加热保温装置 la以及冷却装置 lb维持在 910至 1300°C, 该温度 范围是在锌的沸点 907°C、 氯化锌的沸点 732°C以及四氯化硅的沸点 58°C以上, 而在硅的熔点 1414°C以下, 此时的还原反应如下所示。
[39] SiCl4 ( gas ) +2Zn ( gas ) →Si ( sol id) +2ZnCl2 ( gas )
[40] 由热力学数据可知, 在容器 1的设定温度范围 910至 1300°C内, 伴随着放热的还 原反应几乎瞬间 100 %进行。 此时如果四氯化硅过剩, 在 1大气压下接近 130CTC 高温时, 会发生以下之歧化反应 (disproportionation) , 生成的硅会有一部 分变成二氯化硅, 但在低温区发生逆反应, 最后会 100 %转换为硅。
[41] 歧化反应 Si+SiCl4→2SiCl2
[42] 因此, 在四氯化硅过剩的气体流中进行反应时, 所有锌都有效地使四氯化硅还 原成硅, 气流下游的反应生成物中完全不含锌。 所以, 系统内不需要锌的分离 步骤。
[43] 在此情况下, 为了使锌 100 %发生反应, 四氯化硅相对于锌的化学当量比的过 剩率最低也要 3 %。 并且为了将容器 1、 2、 3的温度以及整体压力维持在稳定的 要求范围内, 此过剩率以较大为佳, 但是因过剩的四氯化硅和生成的硅发生的 歧化反应及其逆反应所生成的硅微粒子有可能变多, 同时会因生产设备系统内 的四氯化硅循环量的增加而导致生产设备的利用效率降低, 故过剩率最大以 100 %左右为适。 从多种角度出发, 以维持四氯化硅的化学当量比超过锌 3〜100 % 左右的状态流向容器 1为宜。
[44] 另外, 上述歧化反应在 1大气压下超过 1352°C就会急剧进行, 二氯化硅在向低 温的容器 2移动时发生逆反应, 还原为硅和四氯化硅。 此时生成的硅为 1微米左 右的微粒, 即使回收也难以使用, 所以有必要尽可能抑制该歧化反应。 因此, 在正压且四氯化硅过剩的条件下, 有必要保持容器 1的温度在 130CTC以下。
[45] 另一方面, 就当量比而言若使锌过剩, 该歧化反应就会被抑制 (参照专利文献 2 ) , 但因过剩的锌蒸气会和副产物氯化锌蒸气以及一部分浮游的 ΙΟ μ πι以下的 硅微粒共同向反应器下游移动, 即使在 BCL法中也会发生反应装置内堵塞等问题 , 因此有必要进行锌、 氯化锌以及微粒硅的分离。 特别是如果在从氯化锌回收 高纯度锌的方法中采用易于运转的水溶液电解时, 首先要根据氯化锌的蒸气压 差进行锌的分离, 两者的沸点分别为 907°C和 732°C, 不像氯化锌和四氯化硅 ( 沸点 58°C ) 那样在蒸气压上有较大的的差异, 所以完全分离很困难。 并且在锌 和氯化锌的混合物中混入微粒硅的情况下, 为了除去微粒硅, 要在锌的熔点 420 °C以上高温熔融状态过滤, 或者将锌不直接以锌的状态回收而是在盐酸中溶解 一次之后再进行过滤等, 则要经过多余的步骤。 结果反应生成物中含有锌时, 无法像本发明那样把微粒硅作为制品、 把氯化锌作为电解用的水溶液来进行简 易的回收。
[46] 四氯化硅气体与锌蒸气在向容器 1的供给速度控制上, 通过各自的蒸气发生器 5 、 6进行。 四氯化硅的供给, 是在不锈钢制的蒸发器 6中投入液态四氯化硅, 一 边监控四氯化硅蒸气的产生流速, 一边控制蒸发器所配备的电热加热器的输出 功率, 由此控制其供给速度。 将固体或熔融态的锌投入石英玻璃制的蒸发器 5, 加热至接近沸点 907°C, 一面监控锌的液面高度一面控制蒸发器所配备的电热加 热器的输出功率, 来控制供给速度。
[47] 有关容器 1的内部温度, 通过以下步骤来控制。 首先, 为了使副产物氯化锌全 部在蒸气状态下向下游的容器 2的方向移动, 容器 1的内部温度要维持在氯化锌 和锌的沸点 (910°C ) 以上。 另一方面, 本发明采用在常压附近运行, 超过 1352 °C后所生成的硅与剩余的四氯化硅之间, 会产生上述的歧化反应, 向容器 2的方 向排出。 为了防止此情况, 容器 1的出口附近的温度必须被控制在至少 130CTC以 下。 但是该歧化反应在 1352°C以下的低温区会因逆反应而再次还原为硅和四氯 化硅。 该还原的硅会以微粒子状态析出, 但在本发明中, 即使一时容器 1内的温 度超过 1352°C, 通过后述方法, 在容器 2中也可完全捕获并以高纯度状态回收该 还原娃。
[48] 容器 1内进行的气相还原反应为放热反应, 若不除去反应热, 即使以 900°C左右 的温度开始反应, 在反应进行的同时, 容器 1内部温度也会上升到 130CTC以上。 因此, 为了保持容器 1的温度在 910至 1300°C, 将容器 1的前段 (上游侧) 装入具 有加热、 保温功能的电炉 la中, 将后段 (下游侧) 装入具有冷却功能的构造体 1 b中。
[49] 容器 1所回收的硅通常为高纯度的粒状乃至海绵状, 取出时可能会产生微量的 硅微粉、 或混入 0. 1 μ πι以下的不纯物微粒子, 为去除不纯物微粒子, 从容器 1取 出后用弱盐酸, 超纯水洗净并进行干燥。
[50] 关于容器 2 (凝聚器一) , 其目的为凝聚氯化锌而使其成为液相状态, 同时在 氯化锌熔融液中获得悬浊状态的浮游的硅微粒子, 然后分离剩余的四氯化硅气 体和惰性气体。 为此, 配置在容器 2下部的氯化锌液体接受部分的温度, 必须要 在 732至 283°C之间。 同时, 为了降低从容器 2排出的四氯化硅气体以及惰性气体 中的氯化锌蒸气的分压, 必须尽可能地降低温度。 因此, 为了将氯化锌蒸气的 分压降到在 lhPa以下, 温度必须控制在 400°C以下, 最好是 300°C, 可以使氯化 锌不凝固。 为此, 容器 2的下部装入 300至 400°C的具有加热保温功能的电炉 2£1中
[51] 另一方面, 容器 2的上部 (上游侧) 装入具备冷却功能的构造体 2b中, 可将从 容器 1排出的 910至 130CTC的反应生成物降温至 300至 400°C。 另夕卜, 在固相析出 并获得微量的氯化锌蒸气的同时, 为了使容器 3的冷却功能更有效地发挥, 在容 器 2通向容器 3的出口部分设置凝汽阀 (trap) 2c使四氯化硅气体与惰性气体温 度冷却至 150°C以下 (最好为 70°C ) 。
[52] 之后, 容器 3 (凝聚器二) 将未反应的四氯化硅液化, 从惰性气体中分离回收 。 为此, 四氯化硅的蒸气压至少要在 lOOhPa以下, 容器 3的温度必须在 0°C以下 , 最好为零下 10°C以下。
[53] 本发明另一特征为: 将容器 2所获得的氯化锌和硅微粒子溶解或悬浊于高纯度 的稀氯化锌水溶液后, 将硅微粒子过滤、 洗净、 干燥后回收饼状硅, 用该滤液 的浓氯化锌水溶液电解回收锌, 以锌作为四氯化硅的还原剂进行再利用。
[54] 从氯化锌的水溶液电解槽 7, 将锌回收后变稀的电解液送至氯化锌溶解槽 8, 调 整至指定的氯化锌浓度, 再度供给至电解槽 7。 该稀释氯化锌水溶液是被用来溶 解容器 2的氯化锌。 容器 2的氯化锌经过冷却、 固化步骤后送至溶解槽 8, 此溶解 液经由过滤分离硅微粒子后, 进行氯化锌浓度、 ra值、 温度等调整后, 作为电 解槽 7的电解液使用。
[55] 电解槽 7用铝板作阴极、 用 DSE (不溶性电极) 作阳极、 用离子交换膜作隔膜进 行电解, 回收锌。 此时, 氯化锌水溶液的用水如果使用半导体用的超高纯度水 , 就能得到纯度 5N ( nine, 意指纯度百分率中 9的个数, 例如 5N的纯度即表示 99 . 999%, 以下同义) 以上的高纯度锌, 将其蒸馏后可作为四氯化硅还原时所需的 纯度 6N ( nine ) 的锌蒸气而进行再利用。 并且, 该电解同时发生的氯气, 可在 脱水后液化并回收, 作为四氯化硅、 盐酸、 其他工业制品的原料利用。
[56] 包括上述 BCL法, 之后提出的专利申请的方法几乎都采用以熔融盐电解法作为 氯化锌的电解方法。 然而, 熔融盐电解法和水溶液电解法相比, 虽然理论上电 解槽的电力原单位可能会降低 20%左右, 但必须在 400至 600°C的高温下进行处理 , 而且熔融盐电解法还有副产物氯气密封上的难度以及装置材质有混入不纯物 的危险, 而且向电解槽循环供给电解液以及保持电解槽回收、 保管熔融锌等附 带设备的温度都需要有额外的热源, 还存在电解的稳定运转较难、 装置工作效 率低下的问题, 所以与使用 10CTC以下的水溶液电解相比逊色得多。 因此, 作为 以高纯度状态稳定回收锌的方法, 以水溶液电解方法为宜。 本发明中, 最大的 优点是还原反应生成物中没有残留未反应的锌, 所以可用高纯水溶解的方法很 容易地回收氯化锌。
[57] 其次, 容器 2所获得的硅微粒子, 因通常为 10至 0. 1 μ πι的粒子, 过滤时需要使 用孔径在 0. Ι μ πι以下的树脂系过滤器。 从氯化锌水溶液过滤出的硅微粒子表面 附着有不纯物氯化锌, 使用高纯度的弱盐酸水溶液洗净后, 再由超高纯度水洗 净并干燥后, 即可得到饼状的高纯度硅。 由此, 加上容器 1获得的粒状乃至海绵 状的硅, 原料四氯化硅中的硅可以 95%以上的收率回收高纯度硅。
[58] 根据上述本发明实施例提供的方法, 能得到几乎不含游离微粉的高纯度硅, 而 如果需要游离微粉很少且更大更细密的块状硅时, 可用本发明方法中所获得的 硅冲压成型为 10至 200mm左右的块状, 在真空或减压氩气环境下, 在 1300至 1400 °C进行热处理, 即可得到目的产品。 该情况下的冲压成型用的模具, 必须选用 氮化硅等机械强度强且不污染硅的材料。 再者, 热处理用的容器必须选用高纯 度碳化硅等高温下也不会污染硅的耐热材料。 如果热处理温度上升到硅的熔融 温度以上, 则熔融、 固化后, 需要粉碎, 也会带来污染。 因此, 热处理温度为 比硅的熔点稍低的 1300至 140CTC为宜。
[59] 最后, 作为太阳能电池用高纯度硅至少要有 6N ( nine ) 以上的纯度, 按照本发 明实施例的方法, 在反应生成物的完全分离回收中, 即使有污染防止功能, 也 不能期待其具备精制功能。 所以, 依据本发明实施例的方法制造纯度 6N ( nine ) 以上的高纯度硅时, 原料四氯化硅气体、 还原剂锌蒸气以及同时流通的惰性 气体, 都要求 6N ( nine ) 以上的纯度。
[60] 另外, 如果四氯化硅中含有三氯氢硅、 二氯硅烷等硅氢化物时, 混合气体中的 硅氢化物在本发明容器 1的设定温度范围内, 皆以锌蒸气还原析出硅, 变成氯化 锌蒸气和氢气, 所以只要使用的混合气体纯度在 6N以上, 都适用于本发明实施 例的方法。 但是, 在计算原料气体相对于锌的化学当量的过剩率时, 必须使用 相应的原料气体的化学当量。
[61] 四氯化硅气体中硅氢化物的浓度超过 10 %时, 为确保由锌还原而副生且从容器
3的开口部和惰性气体一起向外界排出的氢气的安全性, 需要在放出口附近以不 低于氢气气体体积 10倍及以上的空气稀释。 这样, 将四氯化硅与硅氢化物的混 合气体作为原料使用, 即指可以将本发明实施例的方法与大量副生同样混合气 体的西门子法组合来制造多晶硅。
[62] 本发明在实施上必须满足上述条件。 有关其他条件, 可以在满足上述条件的同 时, 适当进行选择。 例如, 可选择容器 1为立式圆塔状来捕获下部所析出的硅、 或是为横式的圆形管状而使内部全体硅析出。
[63] 例如容器 2的构造可制成分为 2个部分, 包括主要冷却高温的反应生成物的部分 以及将凝聚的氯化锌以液态或固态存留的部分。 使用的容器、 器具的材料以及 与容器相连的配管的材料, 需具备对所接触的温度以及氛围气体物质的耐热性 、 耐腐蚀性, 最好选用已经在其他领域实用化的可靠的材料。 例如, 已经作为 半导体材料的热处理一般性使用的石英玻璃和碳化硅, 作为一般耐热、 耐腐蚀 材料使用的氮化硅或 Inconel (注册商标) 以及镍, 甚至一般耐酸、 耐腐蚀树脂 使用的 Teflon (注册商标) 、 聚丙烯、 氯乙烯等材料, 在本发明实施时都可以 使用。
[64] 实施例一
[65] 容器 1是内径为 300m m、 长度为 2500m m的碳化硅管, 与之相连接的容器 2上 部为内径 100m m、 高度 1500m m的碳化硅管, 下部为内径 700m m、 深度 1000 m m的镍容器, 与容器 2下部相接的容器 3是使用不锈钢制的凝聚器二, 在容器 3 设置经由废气处理装置 4而与外界相连的开口。 容器 1和 2配备有加热、 保温用的 电热加热器 la和输送部分空气的空冷机构 lb。 在容器 3设置可冷却至零下 10°C以 下的冷却器 3a。
[66] 将串联容器 1、 2、 3的系统全部用纯度 6N (nine) 以上的氩气置换后, 将该氩 气以投入时流量 5 L /分的速度由容器 1向容器 3的方向流动的同时, 容器 1、 2、 3的温度分别设定为 910°C、 300°C、 零下 20°C, 之后将预热至约 400°C且纯度为 6 N (nine) 以上的四氯化硅气体和预热至约 910°C且纯度为 6N (nine) 以上的锌 蒸气, 维持四氯化硅对锌的当量比在多出 5至 15 %的状态, 分别将四氯化硅和锌 以平均 166. 5g I分和平均 116. 4g /分的速度由容器 1向容器 3的方向流动 20小时 。 期间, 容器 1、 2、 3的内部压力保持在 1000至 l lOOhPa, 控制容器 1内部的温度 在 910°C至 1300°C、 容器 2下部的内部温度在 300°C至 400°C、 容器 3的温度在零下 10°C以下。
[67] 然后, 从容器 1得到一部分为海绵状的粒状硅 24kg, 从容器 2得到含有 10 μ πι以 下的微粒硅的氯化锌 290kg。 将氯化锌和微粒硅, 各自溶解及悬浮 ra值为 2、 氯 化锌浓度为 10g / L的高纯度氯化锌水溶液后, 用聚丙烯过滤器分离微粒硅, 用 2当量浓度的高纯度酸洗净后, 再用超高纯度水洗净, 用 Teflon (注册商标) 过 滤器过滤, 然后直接在 90°C以下进行减压干燥, 得到 4. 8Kg的饼状硅。 由以上步 骤得到的硅的纯度, 已确认均在 6N (nine) 以上。
[68] 实施例二
[69] 在实施例一的处理方法中, 将分离微粒硅后的一部分氯化锌水溶液调整至氯化 锌浓度为 200g / L、 ra为 3、 温度为 30V , 然后用铝作阴极、 用 DSE作阳极 (不 溶性阳极) 、 用离子交换膜作隔膜进行水溶液电解, 已确认投入电解的氯化锌 中含有的锌的 95 %以上能以 5N (nine) 以上的纯度回收, 将其在 907°C以上蒸馏 , 纯度均在 6N (nine) 以上。
[70] 实施例三
[71] 将实施例一中得到的粒状、 海绵状及饼状的硅, 用氮化硅的模具压制成直径为 100mm的半球型, 在碳化硅容器中, 0. lkPa以下的高纯度氩气气氛下, 在 140CTC 进行 2小时热处理后, 得到完全不含有游离微粉且纯度几乎达到 7N (nine) 的直 径为 100mm的半球状硅块。
[72] 实施例四
[73] 用四氯化硅气体中含有约 5 %的三氯氢硅的纯度 6N ( nine ) 的混合气体为原料 , 相对于锌以当量比 5至 15 %, 按照混合气体平均 164. 2 g /分、 锌平均 114. 5 g /分的速度供给, 然后用与实施例 1同样方法进行反应 10小时后, 容器 1与容器 2各得到 12 kg和 2. 5 kg的高纯度硅。 纯度都在 6N ( nine ) 以上。
[74] 以上说明了本发明的一种实施方式, 当然, 本发明不仅限于上述实施方式, 也 可在其技术范围內以各中不同方式来实施。 使对高纯度硅的制造具体产业上应 用的可能性。
[75] 综上所述, 本发明从根本性地改善至今还未实用化的使四氯化硅和锌以蒸气状 态导入反应炉并以固相析出粒状乃至粉末状的硅, 然后将副生氯化锌通过电解 还原成锌并再次利用, 亦即所谓依据气相法的锌还原法 (BCL法) , 可在工业上 应用。 从而, 可以低成本生产 6N ( nine ) 级的太阳能电池用高纯度硅。
[76] 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此, 也不因各实施例的前后次序对本发明造成任何限制, 任何熟悉本技术领域 的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖 在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范 围为准。

Claims

权利要求书
[ 1] 一种高纯度硅的制造方法, 其特征在于, 包括:
采用具有加热、 保温、 冷却功能的容器 1和容器 2、 与具有冷却功能且在出 口侧具有经废气处理装置与外界气体相连的容器 3, 按照容器 1、 2、 3的顺 序串联结合的系统;
其中, 使容器 1、 2、 3各自的温度分别维持在 910〜1300°C、 300〜400°C、 0 °C以下, 同时从容器 1的入口处, 使纯度为 6N的惰性气体、 四氯化硅气体和 锌蒸气在 1000〜 1200hPa压力下, 并在保持四氯化硅的化学当量比高于锌的 状态下, 进入容器 1, 在容器 1中使硅固相析出, 在容器 2中使氯化锌液相凝 聚的同时并捕获硅微粒, 在容器 3中使剩余的四氯化硅液相凝聚并回收, 其 中, 6N中的 N表示纯度百分率中 9的个数。
[2] 根据权利要求 1所述的高纯度硅的制造方法, 其特征在于, 所述容器 2回收 的氯化锌与硅微粒溶于高纯度的氯化锌水溶液后, 将硅微粒过滤、 酸洗、 并用超高纯度水洗净后进行干燥, 回收饼 (cake ) 状的硅; 将氯化锌水溶 液在调整浓度、 ra值和温度后, 用铝板作为阴极、 不溶性电极 DSE作为阳极 , 用离子交换膜作为隔膜进行电解, 得到高纯度锌, 作为四氯化硅的还原 剂再利用。
[3] 根据权利要求 1或 2所述的高纯度硅的制造方法, 其特征在于, 所述容器 1中 所得到的粒状乃至海绵状硅、 或所述容器 2中所得到的饼状硅成型为 10至 20 0m m的块状后, 在真空或减压氩气氛围中进行 1300〜 1400 °C的热处理, 得 到无游离微粒的块状硅。
[4] 根据权利要求 1所述的高纯度硅的制造方法, 其特征在于, 所述进入至容器
1中的四氯化硅气体、 锌蒸气以及惰性气体的纯度均大于 6N ( nine ) 以上, 其中 6N中的 N表示纯度百分率中 9的个数。
[5] 根据权利要求 1所述的高纯度硅的制造方法, 其特征在于, 所述进入容器 1
的四氯化硅气体为含有三氯硅烷或二氯硅烷的硅氢化物且纯度为 6N以上的 混合气体, 并且始终维持进入容器 1时该混合气体的化学当量比超过锌的化 学当量比, 其中 6N中的 N表示纯度百分率中 9的个数。
PCT/CN2009/071476 2008-08-31 2009-04-27 高纯度硅的制造方法 WO2010022601A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-222965 2008-08-31
JP2008222965A JP4630993B2 (ja) 2008-08-31 2008-08-31 高純度シリコンの製造方法
CN200910127017.2 2009-03-10
CN2009101270172A CN101497441B (zh) 2008-08-31 2009-03-10 高纯度硅的制造方法

Publications (1)

Publication Number Publication Date
WO2010022601A1 true WO2010022601A1 (zh) 2010-03-04

Family

ID=40944747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071476 WO2010022601A1 (zh) 2008-08-31 2009-04-27 高纯度硅的制造方法

Country Status (4)

Country Link
JP (1) JP4630993B2 (zh)
CN (1) CN101497441B (zh)
TW (1) TW201008874A (zh)
WO (1) WO2010022601A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172070A (zh) * 2013-04-16 2013-06-26 中国科学院青海盐湖研究所 一种多晶硅的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533600B2 (ja) * 2010-11-11 2014-06-25 有限会社シーエス技術研究所 排ガス処理装置
JP5533601B2 (ja) * 2010-11-11 2014-06-25 有限会社シーエス技術研究所 高純度シリコン微粉末の製造装置
CN102557036A (zh) * 2010-12-10 2012-07-11 上海太阳能工程技术研究中心有限公司 锌还原法制备高纯多晶硅的装置
CN102774838A (zh) * 2011-05-12 2012-11-14 潘凯 用锌还原法制造高纯度晶体硅的方法
TWI483768B (zh) * 2011-10-12 2015-05-11 C S Lab In Technology Ltd Exhaust treatment device
TWI471267B (zh) * 2011-10-12 2015-02-01 C S Lab In Technology Ltd Manufacture of high purity silicon fine particles
CN102923747A (zh) * 2012-11-28 2013-02-13 东北大学 一种利用煤矸石生产氯化铝、氯化硅和氯化铁的方法
DE102012224182A1 (de) * 2012-12-21 2014-07-10 Evonik Degussa Gmbh Verfahren zur Aufbereitung feinteiliger Feststoffe bei der Herstellung von Chlorsilanen
KR101768279B1 (ko) 2014-09-29 2017-08-30 주식회사 엘지화학 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
CN113292075B (zh) * 2021-04-20 2023-03-17 中南大学 一种利用有色金属冶炼废渣制备高纯硅的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB833621A (en) * 1958-03-12 1960-04-27 Standard Telephones Cables Ltd Improvements in the manufacture of pure silicon
GB871831A (en) * 1958-01-14 1961-07-05 Du Pont Improvements in or relating to the production of elemental silicon
JP2003034519A (ja) * 2001-07-18 2003-02-07 Yutaka Kamaike シリコンの製造方法
JP2006290645A (ja) * 2005-04-07 2006-10-26 Nagoya Institute Of Technology シリコン及びその製造方法
CN1962434A (zh) * 2006-10-31 2007-05-16 锦州新世纪石英玻璃有限公司 一种锌还原法生产多晶硅的工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844856B2 (ja) * 1997-09-11 2006-11-15 住友チタニウム株式会社 高純度シリコンの製造方法
JP2004210594A (ja) * 2002-12-27 2004-07-29 Takayuki Shimamune 高純度シリコンの製造方法
JP5256588B2 (ja) * 2005-06-29 2013-08-07 住友化学株式会社 高純度シリコンの製造方法
JP2007055891A (ja) * 2005-07-28 2007-03-08 Sumitomo Chemical Co Ltd 多結晶シリコンの製造方法
JP4692247B2 (ja) * 2005-11-29 2011-06-01 チッソ株式会社 高純度多結晶シリコンの製造方法
JP5018156B2 (ja) * 2007-03-19 2012-09-05 Jnc株式会社 多結晶シリコンの製造方法
JP2008285342A (ja) * 2007-05-15 2008-11-27 Sumitomo Electric Ind Ltd 多結晶シリコンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB871831A (en) * 1958-01-14 1961-07-05 Du Pont Improvements in or relating to the production of elemental silicon
GB833621A (en) * 1958-03-12 1960-04-27 Standard Telephones Cables Ltd Improvements in the manufacture of pure silicon
JP2003034519A (ja) * 2001-07-18 2003-02-07 Yutaka Kamaike シリコンの製造方法
JP2006290645A (ja) * 2005-04-07 2006-10-26 Nagoya Institute Of Technology シリコン及びその製造方法
CN1962434A (zh) * 2006-10-31 2007-05-16 锦州新世纪石英玻璃有限公司 一种锌还原法生产多晶硅的工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172070A (zh) * 2013-04-16 2013-06-26 中国科学院青海盐湖研究所 一种多晶硅的制备方法

Also Published As

Publication number Publication date
CN101497441A (zh) 2009-08-05
TW201008874A (en) 2010-03-01
CN101497441B (zh) 2011-10-05
JP4630993B2 (ja) 2011-02-09
JP2010053011A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2010022601A1 (zh) 高纯度硅的制造方法
EP1866248B1 (en) Process for the production of si by reduction of sicl4 with liquid zn
US8974761B2 (en) Methods for producing silane
JP4462839B2 (ja) シリコンの製造装置及び製造方法
US9487406B2 (en) Systems for producing silane
JP2008037735A (ja) シリコン製造装置
JP5533601B2 (ja) 高純度シリコン微粉末の製造装置
WO2017183487A1 (ja) 金属粉末の製造方法
JP2004210594A (ja) 高純度シリコンの製造方法
JP5574295B2 (ja) 高純度シリコン微粉末の製造装置
TWI429588B (zh) 用於製造矽烷之方法及系統
CN101547859A (zh) 用液态Zn还原SiHCl3生产Si的方法
US20100024882A1 (en) Process for the Production of Si by Reduction of SiHCl3 with Liquid Zn
TWI471267B (zh) Manufacture of high purity silicon fine particles
KR20090064561A (ko) 액체 Zn으로 SiHCl₃을 환원시켜 Si를 제조하는 방법
CN101146743A (zh) 通过用液态Zn还原SiCl4制备Si的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809186

Country of ref document: EP

Kind code of ref document: A1