WO2010021391A1 - イオン性化合物及びその製造方法、並びに、これを用いたイオン伝導性材料 - Google Patents

イオン性化合物及びその製造方法、並びに、これを用いたイオン伝導性材料 Download PDF

Info

Publication number
WO2010021391A1
WO2010021391A1 PCT/JP2009/064678 JP2009064678W WO2010021391A1 WO 2010021391 A1 WO2010021391 A1 WO 2010021391A1 JP 2009064678 W JP2009064678 W JP 2009064678W WO 2010021391 A1 WO2010021391 A1 WO 2010021391A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic compound
cyanide
compound
ionic
tetracyanoborate
Prior art date
Application number
PCT/JP2009/064678
Other languages
English (en)
French (fr)
Inventor
萩原 祐二
剛敬 越智
和信 大畠
泰祐 笠原
健人 鳥羽
水田 圭一郎
裕大 勝山
知史 石田
俊文 西田
Original Assignee
日宝化学株式会社
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日宝化学株式会社, 株式会社日本触媒 filed Critical 日宝化学株式会社
Priority to US13/060,161 priority Critical patent/US9243013B2/en
Priority to EP09808327A priority patent/EP2327707A4/en
Priority to CN2009801322809A priority patent/CN102124014A/zh
Priority to JP2010525722A priority patent/JP5913804B2/ja
Publication of WO2010021391A1 publication Critical patent/WO2010021391A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65688Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphonium compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors

Definitions

  • the present invention relates to an ionic compound, and more specifically, an ionic compound having a tetracyanoborate anion and a method for producing the ionic compound, an ion conductive material using the same, an electrolytic solution containing the same, and an electricity provided with the material It relates to chemical elements.
  • Ionic compounds are used in ion conductors such as various types of batteries by ion conduction.
  • batteries having charging and discharging mechanisms such as primary batteries, lithium (ion) secondary batteries, and fuel cells, electrolytic capacitors, It is used in electrochemical devices such as double layer capacitors, lithium ion capacitors, solar cells, and electrochromic display elements.
  • electrochemical devices are generally composed of a pair of electrodes and an ionic conductor formed therebetween.
  • Examples of the ion conductor include an electrolytic solution and a solid electrolyte, and an electrolyte dissolved in an organic solvent, a polymer compound, or a mixture thereof is used.
  • the electrolyte dissolves, dissociates into a cation and an anion, and exhibits ionic conductivity.
  • Batteries using such ionic conductors are used in portable electronic products such as laptop and palmtop computers, mobile phones, and video cameras. With the spread of these, the need for light and powerful batteries is necessary. Sex is increasing. Also, from the viewpoint of environmental problems, the development of secondary batteries having a longer life is becoming increasingly important.
  • lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ), which are electrolyte salts, and cyanoborate having an alkali metal or an organic cation have been proposed.
  • the ionic compound containing cyanoborate as an anionic component has various properties as an ionic liquid, that is, it is liquid even at room temperature, and exhibits thermal, physical and electrochemical stability. Application to is being studied.
  • a compound containing tetracyanoborate (TCB: [B (CN) 4 ] ⁇ ) is synthesized by reacting a boron-containing compound with an alkali metal cyanide (Z. Anorg. Allg. Chem. 2000, vol. 626, p. 560-568), a method in which the above reaction is performed in the presence of a lithium halide such as LiCl (Japanese Patent Publication No. 2006-517546), KBF 4 , LiBF 4 and BF 3 A method of reacting a boron compound such as OEt 2 with trimethylsilylcyanide (Z. Anorg. Allg. Chem. 2003, vol.
  • the alkali metal cyanide has low reactivity with the boron compound, it is necessary to react under a high temperature condition near 300 ° C. or excessive use of the alkali metal cyanide. There are problems such as high equipment cost for introducing durable equipment and easy generation of impurities. On the other hand, trimethylsilylcyanide is expensive, and the yield of the product is low, and the salt of tetracyanoborate and trimethylsilane is unstable and easily decomposes by heating.
  • reducing impure ionic components contained in the ionic compound when using an ionic compound in an electrochemical device as described above, from the viewpoint of ensuring good ionic conductivity and preventing corrosion of peripheral members, etc., reducing impure ionic components contained in the ionic compound. Is required.
  • a compound containing a cyanoborate anion described in the above document when used as an electrolyte of an electrolyte solution of the electrochemical device, it is essential to reduce cyanide ions (CN ⁇ ), halide ions and metal ions. It becomes.
  • the present invention has been made by paying attention to the above-mentioned circumstances, and its purpose is to include tetracyanoborate under mild conditions, in a higher yield than conventional methods, and at a lower cost. It is to provide a method for producing an ionic compound and an ionic compound containing tetracyanoborate with a reduced content of impure components.
  • the ionic compound of the present invention that has solved the above problems is that the content of impurities containing fluorine atoms is 3 mol% or less with respect to 100 mol% of the ionic compound represented by the following general formula (I). Has characteristics.
  • Kt m + represents an organic cation [Kt b ] m + or an inorganic cation [Kt a ] m +
  • m represents an integer of 1 to 3
  • the content of impurities containing fluorine atoms (F atoms) has been reduced to an extremely low level, so that the ionicity caused by impurities having F atoms or F atoms derived from the raw material Deterioration of various properties of the compound is difficult to occur.
  • the ionic compound preferably has a silicon (Si) content in the ionic compound of 2500 ppm or less.
  • the CN - content is preferably 3000 ppm or less
  • the halide ion content is 500 ppm or less
  • the water content is preferably 3000 ppm or less.
  • An ion conductive material comprising the above ionic compound is a preferred embodiment of the present invention.
  • the production method of the present invention is a method for producing an ionic compound represented by the above general formula (I), and is characterized by reacting a starting material containing a cyanide and a boron compound.
  • the starting material contains trimethylsilyl cyanide as a cyanide and further contains an amine and / or an ammonium salt, and as the cyanide, M a (CN) n (M a is , Zn 2+ , Ga 3+ , Pd + , Sn 2+ , Hg 2+ , Rh 2+ , Cu 2+ and Pb + , and n is an integer of 1 to 3)
  • M a is , Zn 2+ , Ga 3+ , Pd + , Sn 2+ , Hg 2+ , Rh 2+ , Cu 2+ and Pb +
  • n is an integer of 1 to 3
  • R 4 NCN R is H or an organic group
  • the ionic compound represented by the general formula (I) can be produced under mild reaction conditions, or the ionic compound can be obtained with high yield.
  • the production method of the present invention preferably further includes a step of bringing the crude product obtained by reacting the starting material with an oxidizing agent, and the oxidizing agent is preferably hydrogen peroxide. .
  • the ionicity having tetracyanoborate ions ([B (CN) 4 ] ⁇ ) is obtained in a lower yield or at a lower cost under milder conditions than in the prior art.
  • Compounds can be produced. Therefore, industrial production of the ionic compound of the present invention is also possible.
  • the peripheral member can be used even when it is used for various applications such as an electrolytic solution and an electrochemical device. Stable characteristics (thermal, physical, electrochemical characteristics, etc.) can be exhibited without causing problems such as corrosion.
  • the ionic compound of the present invention is an ionic compound represented by the following general formula (I), and the content of impurities containing fluorine atoms is 3 mol% or less with respect to 100 mol% of the ionic compound. However, it has characteristics.
  • [Kt] m + represents an inorganic cation [Kt a ] m + or an organic cation [Kt b ] m + , and m represents an integer of 1 to 3).
  • the present inventors have repeatedly studied the characteristics of the ionic compound such as heat resistance and electrochemical characteristics, and found that the amount of impurities derived from F atoms is greatly involved in the deterioration of the characteristics of the ionic compound. As a result of further investigations on ionic compounds that are less likely to cause such characteristic deterioration, if the content of impurities containing F atoms is 3 mol% or less with respect to 100 mol% of the ionic compound, tetracyanoborate ions are added. The inventors have found that the excellent characteristics of an ionic compound as an anion can be fully enjoyed, thereby completing the present invention.
  • impurities containing F atoms include free F atoms derived from the starting material of the ionic compound and BF x (CN) 4-x (x is a by - product during the synthesis of the ionic compound). Represents an integer of 1 to 3), and includes compounds containing F atoms such as compounds containing BF 3 and BF 4 anions.
  • These impurities are preferably not contained in the ionic compound as the target compound, but it is more preferred not to include a compound group having a free F atom and a BF bond. In particular, it is desirable that a compound having a BF bond is not included in the ionic compound of the present invention.
  • the ionic compound contains more than 3 mol% of F atoms or impurities containing F atoms, hydrogen fluoride gas is generated and corrosion occurs on the peripheral members of various electrochemical devices.
  • the ionic compound of the present invention is most preferably free of impurities containing F atoms (0 mol%), but if the amount of impurities containing F atoms is 0.0001 mol% or more, the characteristics of the ionic compound In addition, even if the amount is 0.001 mol% or more, a remarkable deterioration in characteristics is hardly observed.
  • the content of impurities contained in the ionic compound of the present invention can be calculated from, for example, an NMR spectrum. Specifically, first, an 11 B-NMR spectrum of the ionic compound of the present invention is measured. Next, the integrated value of the peak of the target B (CN) 4 is 100 mol%, and this is compared with the integrated value of the impurity peak containing the BF bond, whereby the impurity content can be calculated. In addition, if a 19 F-NMR spectrum is measured by the same method, the amount of free F atoms and F-containing compounds can also be measured. In addition, the calculation method of impurity content is not limited to the said method, Other methods are employable.
  • ionic species including F atoms and free F atoms can be quantified. Therefore, the number of moles of B (CN) 4 compound is determined from the total mass of the ionic compound, and ion chromatography is performed. Examples of the method include calculating the content mass of F anion by a graph and converting it to the number of moles.
  • the ionic compound of the present invention represented by the above general formula (I) is a compound represented by the above general formula (I), which is obtained by a reaction between trimethylsilyl cyanide (TMSCN) and a boron compound.
  • TMSCN trimethylsilyl cyanide
  • a high-purity ionic compound having a silicon (Si) content of 2500 ppm or less in the ionic compound is preferable.
  • Si contained in the ionic compound is derived from a starting material when the ionic compound is synthesized (see the production method of the present invention described later).
  • the ion conductivity may be lowered when it is used in an electrolyte solution. Therefore, it is desirable to reduce and remove impure components as much as possible. Therefore, the Si content in the ionic compound is more preferably 1000 ppm or less, and even more preferably 500 ppm or less.
  • the high-purity ionic compound of the present invention preferably has a low cyanide ion (CN ⁇ ) content in addition to the Si.
  • the preferred cyanide ion content is 3000 ppm or less.
  • Cyanide ions may react with the electrode and reduce ionic conductivity. More preferably, it is 1000 ppm or less, More preferably, it is 500 ppm or less.
  • the high-purity ionic compound of the present invention preferably has a low content of halide ions.
  • content of halide ions refers to the total concentration of halide ions of F ⁇ , Cl ⁇ , Br ⁇ and I ⁇ .
  • halide ions react with the electrode material to corrode the electrode material, and when hydrogen ions are present in the system, the pH of the electrolyte is lowered to dissolve the electrode material. In either case, the performance of the electrochemical device is degraded.
  • the amount of halide ions in the ionic compound is preferably as small as possible.
  • the halide ion content in the ionic compound is 500 ppm or less, more preferably 100 ppm or less, and even more preferably 30 ppm or less.
  • the content of F ⁇ and Cl ⁇ is preferably within the above range, and the content of Cl ⁇ is particularly preferably within the above range. preferable.
  • the amount of water (water concentration) contained in the ionic compound of the present invention is preferably 3000 ppm or less. Water remaining in the ionic compound is electrolyzed, and the generated hydrogen ions are combined with the halide ions to form hydrogen halide. In the electrolytic solution, since hydrogen ions and halide ions are dissociated and exist, the pH of the electrolytic solution is lowered (acidic). As a result, the electrode material is dissolved by the acidic component generated in the electrolytic solution, and the performance of the electrochemical device is degraded. Therefore, the smaller the amount of water contained in the ionic compound, the better, more preferably 1000 ppm or less, and even more preferably 500 ppm or less.
  • the ionic compound of the present invention represented by the above general formula (I) has a low content of impure ions caused by starting materials and impurities inevitably mixed in the synthesis process. Therefore, when the ionic compound of the present invention is used as an ionic conductor for various electrochemical devices, a highly reliable electrochemical device in which the ionic conductivity is not lowered and the peripheral members are hardly corroded can be obtained.
  • any of the conventionally known measurement methods can be used to measure the content of impurities such as Si, halide ions and moisture.
  • impurities such as Si, halide ions and moisture.
  • atomic absorption spectrometry, ICP emission spectroscopy (high frequency induction) examples thereof include coupled plasma emission spectroscopy and ion chromatography.
  • the ionic compound of the present invention is a compound comprising an organic or inorganic cation [Kt] m + and a tetracyanoborate anion [B (CN) 4 ] ⁇ as represented by the general formula (I).
  • the cation [Kt] m + include an organic cation [Kt b ] m + such as an onium cation, Li + , Na + , Mg 2+ , K + , Ca 2+ , Zn 2+ , Ga 3+ , Pd 2+ and Sn.
  • Inorganic cations [Kt a ] m + such as 2+ , Hg 2+ , Rh 2+ , Cu 2+ and Pb + can be mentioned.
  • [Kt] m + is an onium cation or a Li cation are preferable because they can be easily dissolved in an organic solvent and used as a non-aqueous electrolyte.
  • onium cation those represented by the following general formula (II) are preferable.
  • L represents C, Si, N, P, S or O
  • R represents the same or different organic group, which may be bonded to each other
  • s is the number of R bonded to L.
  • S (valence of L) + 1 ⁇ (number of double bonds directly bonded to L), which is an integer of 2 to 4.
  • the valence of L is 2 when L is S or O, 3 when L is N or P, and 4 when L is C or Si.
  • the “organic group” represented by R means a group having at least one hydrogen atom, fluorine atom, or carbon atom.
  • the “group having at least one carbon atom” only needs to have at least one carbon atom, and may have another atom such as a halogen atom or a hetero atom, a substituent, or the like. Good.
  • the substituent include amino group, imino group, amide group, ether bond group, thioether bond group, ester group, hydroxyl group, alkoxy group, carboxyl group, carbamoyl group, cyano group, disulfide group, nitro group. Group, nitroso group, sulfonyl group and the like.
  • L is N, P, S or O.
  • an onium cation wherein L is N.
  • the said onium cation may be used independently and may use 2 or more types together.
  • onium cations represented by the following general formulas (III) to (VI) are preferable.
  • At least one of 14 types of heterocyclic onium cations represented by:
  • R 1 to R 8 are the same as those exemplified for the general formula (II). More specifically, R 1 to R 8 are a hydrogen atom, a fluorine atom, or an organic group. Examples of the organic group include linear, branched, or cyclic (provided that R 1 to R 8 are bonded to each other to form a ring). Are preferably a hydrocarbon group having 1 to 18 carbon atoms or a fluorine group, more preferably a hydrocarbon group having 1 to 8 carbon atoms or a fluorine group, More preferred are hydrocarbon groups and fluorocarbon groups having 1 to 9 carbon atoms. Moreover, the organic group may contain the substituent illustrated about the said general formula (II), hetero atoms, such as nitrogen, oxygen, and a sulfur atom, and a halogen atom.
  • hetero atoms such as nitrogen, oxygen, and a sulfur atom, and a halogen atom.
  • At least one of nine types of saturated ring onium cations represented by the formula:
  • R 1 to R 12 are the same or different and are an organic group and may be bonded to each other.
  • R 1 to R 4 represented by the above are the same or different organic groups.
  • the chain onium cation (V) includes tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetraheptylammonium, tetrahexylammonium, tetraoctylammonium, triethylmethylammonium, methoxyethyldiethylmethylammonium, Quaternary ammoniums such as trimethylphenylammonium, benzyltrimethylammonium, benzyltributylammonium, benzyltriethylammonium, dimethyldistearylammonium, diallyldimethylammonium, 2-methoxyethoxymethyltrimethylammonium and tetrakis (pentafluoroethyl) ammonium, trimethylammonium , Triethyl ammo Tertiary ammoniums such
  • an onium cation containing a nitrogen atom is more preferred, and more preferred are quaternary ammonium and imidazolium, and particularly preferred are the following general formulas:
  • chain quaternary ammonium such as tetraethylammonium, tetrabutylammonium and triethylmethylammonium
  • chain tertiary quaternary ammonium such as triethylammonium, dibutylmethylammonium and dimethylethylammonium
  • 1-ethyl-3 -Imidazolium such as methyl imidazolium and 1,2,3-trimethylimidazolium
  • pyrrolidinium such as N, N-dimethylpyrrolidinium and N-ethyl-N-methylpyrrolidinium are particularly preferred because they are readily available.
  • the ionic compound of the present invention has excellent physical properties such as heat resistance, electrical conductivity, and voltage resistance. Although these physical property values are slightly different depending on the type of cation Kt m + constituting the ionic compound, the ionic compound of the present invention has a withstand voltage of +2.0 V or more by measuring the potential window described later. Indicates.
  • the method for producing an ionic compound of the present invention is characterized in that an ionic compound represented by the above general formula (I) is produced by reacting a starting material containing a cyanide and a boron compound.
  • the first cyanide M a (CN) n and a boron compound are reacted to obtain an ionic compound represented by the above general formula (I).
  • a second production method in which an ammonium cyanide compound and a boron compound are reacted a third production method in which trimethylsilyl cyanide (TMSCN) is reacted with an amine and / or an ammonium salt and a boron compound, And the 4th manufacturing method of making hydrogen cyanide (HCN), an amine, and a boron compound react is included.
  • the method for producing an ionic compound of the present invention is a method for producing an ionic compound having a tetracyanoborate ion represented by the following general formula (I), wherein M a (CN) n (M a is Zn 2 + , Ga 3+ , Pd 2+ , Sn 2+ , Hg 2+ , Rh 2+ , Cu 2+ and Pb + , and n is an integer of 1 to 3) and a boron compound It is characterized by the reaction of the starting raw materials.
  • [Kt] m + represents an organic cation [Kt b ] m + or an inorganic cation [Kt a ] m +
  • m represents an integer of 1 to 3
  • the present inventors have replaced the alkali metal cyanide such as potassium cyanide (KCN) conventionally used as a starting material with a specific metal ion (Zn 2+ ,
  • KCN potassium cyanide
  • Zn 2+ a specific metal ion
  • cyanide M a (CN) n containing any one of Ga 3+ , Pd 2+ , Sn 2+ , Hg 2+ , Rh 2+ , Cu 2+ and Pb + .
  • a cyanide of a metal cation having a low energy level between HOMO and 2nd HOMO that is, a metal cation classified as a soft metal cation based on the HSAB rule may be used. This is because by using the cyanide of the specific metal cation, the reaction proceeds more rapidly than in the case of using an alkali metal cyanide.
  • the reason why the metal cation is preferable is not clear, but the present inventors consider as follows.
  • alkali metal ions are classified as hard cations, and specific metals contained in the cyanide according to the present invention are classified as soft cations.
  • the product tetracyanoborate anion (TCB) is classified as a soft anion. Since the combination of a soft acid and a base easily forms a stable ionic compound, the present invention is more effective than the alkali metal cyanides conventionally used such as hard cations such as Li + , Na + and K +. It is considered that the reaction of cyanide related to the above easily proceeded.
  • a B (CN) 4 compound having a low impurity content can be obtained with high yield.
  • cyanides M a (CN) n , Zn (CN) 2 , Ga (CN) 3 , Pd (CN) 2 , Sn (CN) 2 , Hg (CN) 2 and Cu (CN) 2 are preferable. It is at least one selected from the group consisting of:
  • the boron compound is not particularly limited as long as it contains boron.
  • M c BX c 4 M c represents a hydrogen atom or an alkali metal atom
  • X c represents a hydrogen atom, a hydroxyl group or a halogen atom, the same shall apply hereinafter
  • BX c 3 , BX c 3 -complex B (OR 13 ) 3 (R 13 represents a hydrogen atom or an alkyl group; the same shall apply hereinafter)
  • B (OR 13 ) 3 -complex Na 2 B 4 O 7 , ZnO.B 2 O 3 and NaBO 3 It is preferably at least one selected from the group consisting of:
  • BX c 4 HBF 4 , KBF 4, KBBr 4, NaB (OH) 4, KB (OH) 4, LiB (OH) 4, LiBF 4, NaBH 4 and the like
  • BX c 3 is , BH 3 , B (OH) 3 , BF 3 , BCl 3 , BBr 3 , BI 3 and the like.
  • Examples of the BX c 3 -complex include ethers such as diethyl ether, tripropyl ether, tributyl ether, tetrahydrofuran, Ammonia, methylamine, ethylamine, butylamine, hexylamine, octylamine, dimethylamine, diethylamine, dibutylamine, dihexylamine, dicyclohexylamine, trimethylamine, triethylamine, tributylamine, triphenylamine, guanidine, aniline, morpholine, pyrrolidine, methylpyrrolidine Amines such as When a complex of the BX c 3, as the B (OR 13) 3, boric acid, boron compounds having an alkoxy group having 1 to 10 carbon atoms.
  • NaBH 4 , BH 3 , BF 3 , BCl 3 , BBr 3 , B (OMe) 3 , B (OEt) 3 , Na 2 B 4 O 7 , and B (OH) 3 are relatively highly reactive.
  • BF 3 , BCl 3 , BBr 3, etc. such as BX c 3 where X c is a halogen atom, B (ORe) 3 , B (OEt) 3, etc., B (OR 13 ) 3 is more preferred, and most preferred are BCl 3 , B (OMe) 3 and B (OEt) 3 .
  • the said boron compound may be used independently and may be used in combination of 2 or more type. Note that, from the viewpoint of reducing the amount of impurities derived from F, it is recommended to employ a boron compound that does not contain F atoms among the boron compounds.
  • Examples of the cation [Kt] m + constituting the ionic substance KtX b include organic cations [Kt b ] m + such as an onium cation, Li + , Na + , Ca 2+ , K + , Zn 2+ , Ga 3+ , Examples thereof include inorganic cations [Kt a ] m + such as Pd 2+ , Sn 2+ , Hg 2+ , Rh 2+ , Cu 2+ and Pb + .
  • the above-described onium cations of the general formulas (III) to (V) are particularly preferable as [Kt b ] m + constituting the ionic substance according to the present invention.
  • the blending ratio of the starting materials is preferably 1: 1 to 100: 1 (cyanide M a (CN) n : boron compound, molar ratio).
  • the ratio is more preferably 1: 1 to 50: 1, further preferably 1: 1 to 20: 1, and still more preferably 1: 1 to 10: 1.
  • the amount of cyanide M a (CN) n is too small, the production amount of the target ionic compound may be reduced or by-products (eg, tricyanoborate, dicyanoborate, etc.) may be produced.
  • the amount is too large, the amount of impurities derived from CN tends to increase, making it difficult to purify the target product.
  • the mixing ratio of the ionic substance, relative to the boron compound from 100: 1 to 1: 100: for (ionic substance boron compound, mol ratio) Is preferred. More preferably, it is 50: 1 to 1:50, and further preferably 20: 1 to 1:20. If the amount of the ionic substance is too small, the amount of the desired ionic compound produced will be small, while if too large, the amount of impurities derived from the ionic substance will increase, making it difficult to purify the target product. Sometimes.
  • reaction solvent in order to allow the reaction to proceed uniformly.
  • the reaction solvent is not particularly limited as long as the above starting materials are soluble, and water or an organic solvent is used.
  • organic solvent include hydrocarbon solvents such as toluene, xylene, benzene and hexane, chlorine solvents such as chloroform and dichloromethane, ether solvents such as diethyl ether, cyclohexyl methyl ether, dibutyl ether, dimethoxyethane, dioxane, and acetic acid.
  • Ester solvents such as ethyl and butyl acetate, ketone solvents such as 2-butanone and methyl isobutyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol and butanol, acetonitrile, tetrahydrofuran, ⁇ -butyrolactone, dimethyl sulfoxide, dimethyl And formamide.
  • the said reaction solvent may be used independently and may mix and use 2 or more types.
  • the conditions for reacting the above starting materials are not particularly limited and may be appropriately adjusted according to the progress of the reaction.
  • the reaction temperature is preferably 0 ° C. to 200 ° C. More preferably, it is 20 ° C to 150 ° C, and further preferably 50 ° C to 130 ° C.
  • the reaction time is preferably 0.2 hours to 200 hours, more preferably 0.5 hours to 150 hours, and even more preferably 1 hour to 100 hours.
  • the starting material contains an ionic substance KtX b ([Kt] m + represents an onium cation [Kt b ] m + or the inorganic cation [Kt a ] m + )
  • the ionic compound Kt a [B (CN) 4 ] m ([K t a ] m + is a cation exchange by reacting the metal cation [M a ] n + ) of cyanide with the ionic substance KtX b
  • the ionic compound Kt [B (CN) 4 ] m having the desired onium cation or inorganic cation is obtained.
  • the cation exchange reaction with the ionic substance will be described later.
  • the cyanide M a (CN) n and a boron compound are reacted to form the ionic compound Kt a [B (CN) 4 ] m ([Kt a ] m + is an embodiment for producing the metal cation [M a ] n + ) of the cyanide; Kt a [B (CN) 4 ] m is obtained by reacting the metal cyanide M a (CN) n with a boron compound.
  • Kt [B (CN) 4] m ([Kt m + is onium cation [Kt b] m +, or aspects for manufacturing the inorganic cation [Kt a] m +): includes three aspects. Therefore, the ionic compound Kt m + [ ⁇ B (CN) 4 ⁇ ⁇ ] m of the present invention obtained by the first production method includes a case where [Kt] m + is an onium cation [Kt b ] m + and an inorganic cation. [Kt a ] Both of m + cases are included.
  • the production method of the second ionic compound of the present invention is an ion represented by the following general formula (I) by reacting an ammonium cyanide compound represented by the following general formula (VI) with a boron compound. It has the characteristic in the place which obtains a sex compound.
  • N—R is a saturated bond and / or an unsaturated bond
  • t represents the number of R bonded to N
  • t 4- (the number of double bonds bonded to N)
  • R independently represents a hydrogen atom or an organic group, and two or more of these may be bonded.
  • the present inventors use an ammonium cyanide compound instead of a conventionally used alkali metal cyanide such as potassium cyanide as a cyan (CN) source.
  • a conventionally used alkali metal cyanide such as potassium cyanide
  • the ionic compound represented by the general formula (I) can be obtained at a lower reaction temperature and in a high yield.
  • ammonium cyanide compound As a cyan source, the present inventors consider the reason why the reaction proceeds under mild conditions as compared with the conventional method and the product can be obtained in high yield. Yes.
  • the bond between the alkali metal ion and the cyano group (CN) is strong.
  • ammonium-based cyanide has a steric hindrance in the positively charged N atom, so that the cyanide ion hardly approaches the N atom, and the bond between CN and N atom is relatively weak.
  • the organic cation [Kt] m + constituting the ionic compound Kt [B (CN) 4 ] m obtained by the present invention and the second production method is derived from the cation constituting the ammonium cyanide compound.
  • an ammonium cyanide compound [N— (R) t ] CN is used as a starting material.
  • an ammonium cyanide compound as a CN source for the TCB synthesis reaction, tetracyanoborate [B (CN) 4 , even under reaction conditions in which the target product was not obtained when an alkali metal cyanide was used as a starting material.
  • An ionic compound having — can be obtained.
  • N + -(R) t N
  • the bond between N—R is a saturated bond and / or an unsaturated bond
  • t N
  • Represents the number of Rs bonded, represented by t 4- (number of double bonds directly bonded to N), and represents an integer of 3 to 4
  • R represents a hydrogen atom or an organic group independently of each other. Furthermore, two or more R may be bonded.
  • the “organic group” includes the same ones as exemplified with respect to the general formula (II).
  • R may be bonded to N which is a central element of ammonium via a carbon atom constituting the main skeleton of the organic group R, and may be bonded to another atom other than carbon or the above substituent. May be combined with N. Further, when two or more organic groups R are bonded, the bond may be a bond between a carbon atom constituting the main skeleton of the organic group R or other atoms, and the carbon atom and the organic group R may be organic. It may be a substituent that the group R has, or a bond between substituents that each of two or more Rs have.
  • Preferred examples of the ammonium [N + -(R) t ] having an organic group R include those having structures represented by the following general formulas (VII) to (IX).
  • R 1 to R 12 each independently represent a hydrogen atom or an organic group, and two or more R may be bonded to each other. .
  • R 1 to R 4 constituting the alkylammonium derivative are each independently a hydrogen atom or an organic group.
  • examples of the alkylammonium derivative (IV) include ammoniums and ammonium compounds exemplified as the chain onium cation (V).
  • ammoniums (VII) to (IX) are those having structures represented by the following six general formulas because of their availability.
  • R 1 to R 12 are a hydrogen atom, a fluorine atom, or an organic group, and examples of the organic group include the same as those exemplified with respect to the general formula (III).
  • salts of chain quaternary ammonium such as tetrabutylammonium cyanide, tetraethylammonium cyanide and triethylmethylammonium cyanide and cyanide ions
  • triethylammonium cyanide Salts of chain tertiary ammonium such as dibutylmethylammonium cyanide and dimethylethylammonium cyanide and cyanide ions
  • salts of pyrrolidinium and cyanide ions such as N, N-dimethylpyrrolidinium cyanide and N-ethyl-N-methylpyrrolidinium cyanide are readily available Is Because especially preferred.
  • the ammonium cyanide-based compound may contain a single ammonium, or a mixture of two or more different ammonium cyanide-based compounds may be used.
  • the ammonium cyanide-based compound includes a compound represented by the following general formula (X), a metal cyanide L p + [(CN) ⁇ ] n (L p + represents a metal cation, and p is 1 to 4, preferably 1 or 2).
  • [N + -(R) t ] corresponds to the ammonium cation of the ammonium cyanide compound.
  • the compound (X) include tetrabutylammonium sulfoxide, tetraethylammonium chloride, triethylammonium chloride and 1-ethyl-3-methylimidazolium bromide.
  • L p + represents an alkali metal ion, an alkaline earth metal ion, Zn 2+ , Cu + , Cu 2+ , Pd 2+ , Au + , Ag + , Al 3+ , Ti 4+ , Fe 3+ and Ga 3+ are represented, and alkali metal ions, alkaline earth metal ions, Zn 2+ , Cu + , Cu 2+ and Ag + are more preferable.
  • Specific examples of the metal cyanide include KCN, LiCN, NaCN, Mg (CN) 2 , Ca (CN) 2 , Zn (CN) 2 , CuCN, and Cu (CN) 2 .
  • the compounding ratio of the compound (X) to the metal cyanide is preferably 40: 1 to 1:40 (compound (X): metal cyanide, molar ratio), more preferably 20: 1 to 1:20. And more preferably 10: 1 to 1:10.
  • the reaction conditions are not particularly limited.
  • the reaction temperature is preferably 0 ° C. to 150 ° C., more preferably 20 ° C. to 100 ° C., and the reaction time is 0.01 hours to 20 hours. And more preferably 0.05 hours to 5 hours.
  • the reaction solvent may or may not be used.
  • reaction solvents For example, diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, dichloromethane, chloroform, carbon tetrachloride, ethyl acetate, butyl acetate, acetone, 2-butanone, methyl isobutyl ketone , Acetonitrile, benzonitrile, dimethoxyethane and water can be exemplified as preferred reaction solvents. These reaction solvents may be used alone or in combination of two or more. In addition, it is one of the preferable conditions of the said reaction to use 2 or more types of reaction solvent.
  • the ionic compound represented by the general formula (I) is synthesized by reacting the starting material containing the ammonium cyanide compound and the boron compound.
  • the boron compound is not particularly limited as long as it is a compound containing boron, and the same one as in the first production method can be used.
  • the blending ratio of the above starting materials is preferably 50: 1 to 4: 1 (ammonium cyanide compound: boron compound, molar ratio). More preferably, it is 20: 1 to 4: 1, and more preferably 10: 1 to 4: 1. If the compounding amount of the ammonium cyanide compound is too small, the production amount of the target ionic compound may be reduced, and by-products (for example, tricyanoborate, dicyanoborate, etc.) may be produced. The amount of impurities derived from CN tends to increase, making it difficult to purify the target product.
  • reaction solvent in order to allow the reaction to proceed uniformly.
  • the reaction solvent is not particularly limited as long as the above starting materials are soluble, and water or an organic solvent is used.
  • organic solvent the same thing as the said 1st manufacturing method can be used. Of these, hydrocarbon solvents, ether solvents and ester solvents are preferred.
  • the said reaction solvent may be used independently and may mix and use 2 or more types.
  • the conditions for reacting the above starting materials are not particularly limited and may be appropriately adjusted according to the progress of the reaction.
  • the reaction temperature is preferably 30 ° C. to 200 ° C. More preferably, it is 50 ° C to 170 ° C, and further preferably 80 ° C to 150 ° C.
  • the reaction time is preferably 0.2 hours to 200 hours, more preferably 0.5 hours to 150 hours, and even more preferably 1 hour to 100 hours.
  • tetracyanoborate ions [B ( An ionic compound having CN) 4 ] ⁇ ) can be obtained.
  • the third production method of the ionic compound of the present invention is an ionic property represented by the following general formula (I) by reacting trimethylsilylcyanide (TMSCN), an amine and / or ammonium salt, and a boron compound. It is characterized by obtaining a compound.
  • [Kt] m + represents an organic cation [Kt b ] m + or an inorganic cation [Kt a ] m +
  • m represents an integer of 1 to 3
  • the present inventors used trimethylsilyl cyanide instead of a conventionally used alkali metal cyanide such as potassium cyanide as a cyan (CN) source, It was found that by reacting with a boron compound in the presence of an amine and / or an ammonium salt, the ionic compound represented by the general formula (I) can be obtained in good yield.
  • a conventionally used alkali metal cyanide such as potassium cyanide
  • an ionic compound composed of a trimethylsilyl cation and TCB is very unstable and easily decomposed.
  • the trimethylsilyl cation is rapidly exchanged with the ammonium cation, it is considered that an ionic compound containing TCB can be obtained stably.
  • the detailed reason is unknown, it is considered that when an amine is used, the amine captures protons generated from the starting materials and intermediate products and generates an ammonium compound in the system. As a result, it is presumed that an ionic compound containing a stable TCB can be obtained as in the case of using an ammonium salt.
  • the TCB production reaction proceeds rapidly and an ionic compound is produced.
  • the method of the present invention performs the above reaction in the presence of an amine and / or an ammonium salt, so that an ionic compound having ammonium as a cation can be obtained in one step.
  • trimethylsilylcyanide is used as a starting material.
  • trimethylsilylcyanide as the CN source for the TCB synthesis reaction, tetracyanoborate [B (CN) 4 ] ⁇ even under reaction conditions in which it was difficult to obtain the target product when an alkali metal cyanide was used as a starting material.
  • the ionic compound which has can be obtained.
  • TMSCN trimethylsilylcyanide
  • a commercially available product may be used, or a product synthesized by a known method may be used.
  • the method for synthesizing TMSCN is not particularly limited, but for example, a method using a starting material containing a compound having a trimethylsilyl group (TMS group) and hydrogen cyanide (HCN) is preferable because TMSCN can be synthesized at a lower cost.
  • Examples of the compound having a TMS group include TMSX 1 (X 1 is OR, a halogen atom or a hydroxyl group), hexamethyldisilazane (TMS-NH-TMS), and the like.
  • TMSX 1 X 1 is OR, a halogen atom or a hydroxyl group
  • TMS-NH-TMS hexamethyldisilazane
  • a method of reacting TMSX 1 (X 1 is a halogen atom) and hydrogen cyanide in the presence of an amine such as triethylamine see the following formula (XI-1), Stec, WJ et al., Synthesis. 1978: 154.
  • a method of reacting hexamethyldisilazane with hydrogen cyanide see the formula (XI-2) below).
  • TMSX 1 + HCN + Et 3 N ⁇ TMSCN + Et 3 NHX 1 (XI-1) TMS-NH-TMS + 2HCN
  • hexamethyldisilazane can also act as an amine
  • hexamethyldisilazane and a compound having a trimethylsilyl group may be used simultaneously (see the following formula (XI-3)). This is preferable because ammonia by-produced is trapped in the system and the problem of odor is suppressed.
  • the mixing ratio of the raw materials is preferably such that the trimethylsilyl group and hydrogen cyanide (HCN) are 20: 1 to 1:20 (molar ratio), more preferably 10: 1 to 1:10, Preferably it is 5: 1 to 1: 5. That is, when hexamethyldisilazane is used, or when hexamethyldisilazane and a compound having a trimethylsilyl group are used in combination, the total amount of trimethylsilyl groups contained in the raw material and the amount of hydrogen cyanide are within the above ranges. What should I do.
  • the reaction temperature is preferably ⁇ 20 ° C. to 100 ° C., more preferably 0 ° C. to 50 ° C., and the reaction time is 0.5 hour to 100 hours, more preferably 1 hour to 50 hours.
  • a compound having a trimethylsilyl group is formed as a by-product (eg, TMSX 1 , TMS-O-TMS, etc., see formula (XI-4) below).
  • TMSX 1 e.g., TMS-O-TMS, etc., see formula (XI-4) below.
  • X 2 and X 3 represent OR, a halogen atom or a hydroxyl group
  • TMSCN regenerated by reacting the compound TMSX 1 having a trimethylsilyl group by-produced with HCN may be used as a starting material. This is because TMSCN is expensive, and the production cost of the ionic compound can be reduced by recycling TMSX 1 which is a reaction byproduct.
  • an ionic compound represented by the above general formula (I) is synthesized by reacting the above TMSCN, an amine and / or ammonium salt, and a starting material containing a boron compound.
  • the boron compound is not particularly limited as long as it is a compound containing boron, and the same one as in the first production method can be used.
  • the blending ratio of the starting material is preferably 3: 1 to 80: 1 (TMSCN: boron compound, molar ratio). More preferably, it is 4: 1 to 40: 1, and still more preferably 4: 1 to 20: 1. If the amount of TMSCN blended is too small, the amount of target ionic compound produced may be reduced or by-products (eg, tricyanoborate, dicyanoborate, etc.) may be produced. The amount of impurities tends to increase, making it difficult to purify the target product.
  • the reaction between the TMSCN and the boron compound is performed in the presence of an amine and / or an ammonium salt.
  • the amine becomes an ammonium salt in the reaction system, and the produced ammonium salt is exchanged with a trimethylsilyl cation of a TCB compound that uses trimethylsilyl separately generated in the reaction system as a cation, so that a stable ionic compound containing TCB is obtained.
  • a good yield can be obtained.
  • an amine and / or an ammonium salt are used, an ionic compound having ammonium as a cation component can be obtained in one step without performing a cation exchange reaction.
  • the amine that can be used in the present invention is preferably an amine represented by the following general formula (XII).
  • the bond between N—R is a saturated bond and / or an unsaturated bond
  • u represents the number of R bonded to N
  • u 3- (two bonded to N The number of heavy bonds)
  • R independently represents a hydrogen atom, a fluorine atom, or an organic group
  • R may be a bond of 2 or more to form a ring.
  • Examples of the “organic group” include those exemplified with respect to the general formula (II).
  • Examples of the amine represented by the general formula (XII) include amine compounds (XIII) and (XIV) having a saturated or unsaturated cyclic structure in which two or more R are bonded, and an amine compound (XV) in which R is a chain. Is mentioned.
  • R 1 to R 3 are a hydrogen atom, a fluorine atom, or an organic group, and the organic group is exemplified with respect to the general formula (III). The thing similar to a thing is mentioned.
  • Specific compounds represented by the above general formulas (XIII-1) to (XIII-3) include compounds represented by the general formula (XIII-1) such as pyrrole, pyrrolidine, piperidine and morpholine, -Compounds represented by general formula (XIII-2) such as diazabicyclo [2.2.2] octane (DABCO), compounds represented by general formula (XIII-3) such as hexamethylenetetramine, and derivatives thereof Etc.
  • u is 2 and an amine compound having an unsaturated cyclic structure in which two Rs are bonded;
  • Specific compounds represented by the general formula (XIV) include compounds having an amidine skeleton such as imidazole, imidazoline, pyrazole, triazole, pyrroline, diazabicyclononene (DBN), diazabicycloundecene (DBU), and the like. And derivatives thereof, pyridine, pyridazine, pyrimidine, pyrazine, and derivatives thereof.
  • Examples of the amine compound represented by the general formula (XV-1) in which u is 3 include trimethylamine, triethylamine, tributylamine, tripropylamine, diethylmethylamine, dibutylmethylamine, dihexylmethylamine, dipropylamine and the like. Examples thereof include dialkylamines such as trialkylamine, dimethylamine, diethylamine, dibutylamine and dihexylamine, and monoalkylamines such as methylamine, ethylamine, butylamine, pentylamine, hexylamine and octylamine. Examples of the compound in which n is 2 and represented by the general formula (XV-2) include guanidine.
  • chain amines such as triethylamine, tributylamine, butyldimethylamine, diethylamine, dibutylamine, butylamine, hexylamine, octylamine and guanidine
  • Cyclic amines such as piperidine, 1,4-diazabicyclo [2.2.2] octane (DABCO), imidazoline, diazabicyclononene (DBN) and diazabicycloundecene (DBU), pyridine, imidazole, methylimidazole and pyrazine
  • aromatic amines such as Among these, chain amines such as triethylamine and dibutylamine are preferable because they are highly basic and inexpensive.
  • ammonium salts having an ammonium cation represented by the above general formulas (VII) to (IX) can be used.
  • those having a quaternary ammonium as a cation are preferable.
  • Those having at least one selected from the group consisting of compounds represented by the following general formulas (XVII-1) to (XVII-5) are preferred as the cation.
  • R independently represents a hydrogen atom, a fluorine atom, or an organic group.
  • Examples of the organic group represented by R in the above general formula include those similar to those exemplified with respect to the general formula (II).
  • ammonium cations include ammonium, triethylmethylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, proton adduct of diazabicyclooctane, imidazolium, methylimidazolium, ethylmethylimidazolium, pyridinium, methylpyridinium.
  • triethylmethylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, proton adduct of diazabicyclooctane, and ethylmethylimidazolium are preferable, triethylmethylammonium, tetramethylammonium, tetraethylammonium, Ethylmethylimidazolium is more preferred.
  • Examples of the anion constituting the salt with the ammonium cation include halide ion, cyanide ion (CN ⁇ ), hydroxide ion (OH ⁇ ), cyanate ion (OCN ⁇ ), thiocyanate ion (SCN ⁇ ), alkoxy
  • Examples thereof include ions (RO ⁇ ), sulfate ions, nitrate ions, acetate ions, carbonate ions, perchlorate ions, alkyl sulfate ions, and alkyl carbonate ions.
  • halide ions are preferable, and Cl ⁇ or Br ⁇ is particularly preferable among the halide ions.
  • Preferred ammonium salts include those composed of a combination of the above ammonium cation and the above anion. Particularly preferred are tetrabutylammonium bromide, triethylmethylammonium chloride, tetraethylammonium chloride, ethylmethylimidazolium chloride, Examples include ammonium methoxide, pyridinium hydroxide, and tetraethylammonium cyanate.
  • the amount of the amine and / or ammonium salt used is preferably 0.1: 1 to 10: 1 (boron compound: amine and / or ammonium salt, molar ratio) with respect to the boron compound. More preferably, it is 0.2: 1 to 5: 1, and still more preferably 0.5: 1 to 2: 1. If the amount of amine and / or ammonium salt is too small, removal of by-products may be insufficient, or the amount of cation may be insufficient to efficiently produce the target product. Or ammonium salts tend to remain as impurities.
  • reaction solvent in order to allow the reaction to proceed uniformly.
  • the reaction solvent is not particularly limited as long as the above starting materials are soluble, and water or an organic solvent is used.
  • organic solvent the same thing as the said 1st manufacturing method can be used.
  • these reaction solvents may be used alone or in combination of two or more.
  • the conditions for reacting the above starting materials are not particularly limited, and may be appropriately adjusted according to the progress of the reaction.
  • the reaction temperature is preferably 0 ° C. to 200 ° C. More preferably, it is 30 ° C to 170 ° C, and further preferably 50 ° C to 150 ° C.
  • the reaction time is preferably 0.2 hours to 200 hours, more preferably 0.5 hours to 150 hours, and even more preferably 1 hour to 100 hours.
  • the ionic compound obtained by the third production method of the present invention has the structure of the above general formula (I), and is an organic cation or an inorganic cation as the cation [Kt] m + , and [B (CN) 4 as the anion. ] -
  • the cation [Kt] m + may be derived from a boron compound (for example, an alkali metal ion or the like) or an ammonium salt (for example, the above general formulas (VII) to (IX)).
  • any other organic cation or inorganic cation may be used.
  • the fourth production method of the ionic compound of the present invention is characterized in that an ionic compound represented by the following general formula (I) is obtained by reacting hydrogen cyanide, an amine and a boron compound. is there.
  • HCN hydrogen cyanide
  • alkali metal cyanide such as potassium cyanide and trimethylsilyl cyanide conventionally used. It was found that the ionic compound represented by the above general formula (I) can be obtained at a low cost by using).
  • the present inventors have as follows. thinking. In the reaction system, first, the hydrogen atom of hydrogen cyanide as a starting material is coordinated to the lone pair of nitrogen of the amine to form an ammonium complex. Next, it is considered that this ammonium complex reacts with the boron compound, and as a result, an ionic compound containing TCB is generated. That is, in the complex formed from hydrogen cyanide and an amine, the bond between N—CN is weaker than the alkali metal cyanide conventionally used as a cyanide source. Therefore, if hydrogen cyanide and amine are used as starting materials, it is considered that free cyanide ions are easily generated in the reaction system, and as a result, an ionic compound containing TCB is promptly generated.
  • the organic cation [Kt] m + constituting the ionic compound Kt [B (CN) 4 ] m obtained by the method of the present invention is derived from hydrogen cyanide and amine when it is derived from a cation contained in the boron compound.
  • the case of being derived from ammonium to be produced the case of being derived from a cation constituting an ionic substance used in a cation exchange reaction described later is included.
  • Hydrogen cyanide is used as the cyan source.
  • Hydrogen cyanide may be a gas or a liquid, and can also be used as a solution in which hydrogen cyanide is dissolved in water or an organic solvent. In view of ease of handling, it is preferable to use liquid or solution hydrogen cyanide.
  • amine is used as a starting material.
  • the amine that can be used in the present invention is preferably an amine represented by the above general formula (XII), and specific amines include those similar to those used in the third production method.
  • the ionic compound represented by the general formula (I) is synthesized by reacting the hydrogen cyanide, the amine, and the starting material containing the boron compound.
  • the boron compound is not particularly limited as long as it is a compound containing boron, and the same one as in the first production method can be used.
  • the ionic compound of the general formula (I) is produced by reacting the hydrogen cyanide, the amine, and the boron compound.
  • the mixing mode of the above starting materials is not particularly limited. A mode in which hydrogen cyanide, an amine, and a boron compound are charged into a reaction vessel; a hydrogen compound and an amine are previously charged in a reaction vessel, and then a boron compound is added to the reaction system. Any of the embodiments can be adopted.
  • the mixing ratio of amine to hydrogen cyanide is preferably 0.02: 1 to 50: 1 (hydrogen cyanide: amine, molar ratio). More preferably, it is 0.05: 1 to 20: 1, and still more preferably 0.1: 1 to 10: 1. If the amount of hydrogen cyanide is too small, the amount of target ionic compound produced may be reduced or by-products (eg, tricyanoborate, dicyanoborate, etc.) may be produced. There is a tendency that the amount of impurities increases and the purification of the target product becomes difficult.
  • the amount of the boron compound used is preferably 1: 4 to 1: 100 (boron compound: hydrogen cyanide, molar ratio) with respect to hydrogen cyanide. More preferably, it is 1: 4 to 1:50, and still more preferably 1: 4 to 1:20. If the compounding amount of the boron compound is too small, the amount of the target ionic compound may be reduced. On the other hand, if the amount is too large, the amount of impurities derived from the boron compound will increase, making it difficult to purify the target product. Tend.
  • reaction solvent in order to allow the reaction to proceed uniformly.
  • the reaction solvent is not particularly limited as long as the above starting materials are soluble, and water or an organic solvent is used.
  • organic solvent the same thing as the said 1st manufacturing method can be used.
  • a reaction solvent may be used independently and may mix and use 2 or more types.
  • the conditions for reacting the above starting materials are not particularly limited, and may be appropriately adjusted according to the progress of the reaction.
  • the reaction temperature is preferably 30 ° C. to 250 ° C. More preferably, it is 50 ° C to 170 ° C, and further preferably 80 ° C to 150 ° C.
  • the reaction time is preferably 0.2 hours to 200 hours, more preferably 0.5 hours to 150 hours, and even more preferably 1 hour to 100 hours.
  • tetracyanoborate ions [B (CN) 4 ] ⁇ ) are cheaper than conventional methods using an alkali metal cyanide or trimethylsilylcyanide. Can be obtained.
  • the ionic compound obtained by the method of the present invention may further undergo a cation exchange reaction.
  • a cation exchange reaction since the characteristics of the ionic compound according to the present invention depend on the cation species, ionic compounds having different characteristics can be easily obtained by performing cation exchange.
  • the ionic substance KtX b ([Kt] m + represents an organic cation or an inorganic cation, [X b ] m ⁇ represents an anion, and m is 1 to 3) If an integer is used as a starting material, an ionic compound having a desired cation can be obtained without separately performing a cation exchange reaction.
  • the cation [Kt] m + is a cation derived from a boron compound or a cyanide M a when the cation exchange reaction is not performed.
  • ammonium represented by the general formula [N + -(R) t ] described above is preferable as an organic cation, and an alkali such as Li + , Na + , K +, etc.
  • Metal ions and alkaline earth metal ions such as Mg 2+ and Ca 2+ are suitable as inorganic metal cations. More preferred are onium cations represented by the above general formulas (III) to (V) or ammonium compound derivatives represented by the above general formulas (VII) to (IX).
  • preferable anions [X b ] m ⁇ include halide ions, cyanide ions (CN ⁇ ), hydroxide ions (OH ⁇ ), cyanate ions (OCN ⁇ ), thiocyanate ions (SCN ⁇ ), Examples thereof include alkoxy ions (RO ⁇ ), sulfate ions, nitrate ions, acetate ions, carbonate ions, perchlorate ions, alkyl sulfate ions, and alkyl carbonate ions.
  • halide ions are preferable, and Cl ⁇ or Br ⁇ is particularly preferable among the halide ions.
  • KtX b those comprising a combination of the above [Kt] m + and [X b ] m ⁇ are preferably used, and particularly preferable ones include tetrabutylammonium fluoride and tetrabutylammonium chloride.
  • Salts of chain quaternary ammonium such as tetrabutylammonium bromide, tetraethylammonium fluoride, tetraethylammonium chloride, tetraethylammonium bromide, triethylmethylammonium fluoride, triethylmethylammonium chloride and triethylmethylammonium bromide, Triethylammonium fluoride, triethylammonium chloride, triethylammonium bromide, dibutylmethylammonium fluoride, dibutylmedium Salts of chain tertiary ammonium and halide ions such as ruammonium chloride, dibutylmethylammonium bromide, dimethylethylammonium fluoride, dimethylethylammonium chloride and dimethylethylammonium bromide, 1-ethyl-3-methylimidazolium
  • a salt Kt a Xb of an alkali metal ion such as Li + , Na + , K + and a halide ion may be used as the ionic substance. Note that, from the viewpoint of reducing the amount of impurities derived from F, it is recommended to employ an ionic substance that does not contain F atoms.
  • the ionic substance KtX b may be used alone or in combination of two or more thereof.
  • Cation exchange reaction may be reacted to the present invention an ionic compound obtained by the first to fourth manufacturing method of an ionic substance KtX b having a desired cation.
  • the mixing ratio of the ionic compound Kt [B (CN) 4 ] m and the ionic substance KtX b in the cation exchange reaction is 50: 1 to 1:50 (ionic compound Kt [B ( CN) 4 ] m : ionic substance KtX b , molar ratio). More preferably, it is 20: 1 to 1:20, and further preferably 10: 1 to 1:10. If there are too few ionic substances, the exchange reaction of the organic cation may not proceed quickly, whereas if used excessively, unreacted ionic substances will be mixed into the product, making purification difficult. Tend.
  • the organic cation exchange reaction may be performed by mixing the ionic compound Kt [B (CN) 4 ] m and the ionic substance KtX b in the presence of a solvent.
  • the temperature at this time is 0 ° C. to 200 ° C. (
  • the reaction temperature is more preferably 10 ° C. to 100 ° C., and the reaction may be performed for 0.1 hour to 48 hours (more preferably 0.1 hour to 24 hours).
  • Solvents include ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate, ketone solvents such as 2-butanone and methyl isobutyl ketone, ether solvents such as diethyl ether, dibutyl ether and cyclohexyl methyl ether, dichloromethane and chloroform.
  • organic solvents such as chlorinated solvents such as aromatic solvents such as toluene, benzene and xylene, and aliphatic hydrocarbons such as hexane. These solvents may be used alone or in combination of two or more. In addition, it is one of the preferable conditions of the said reaction to use 2 or more types of reaction solvent.
  • the production method of the present invention preferably further includes a step of bringing the product (ionic compound) obtained by the first to fourth production methods into contact with an oxidizing agent.
  • the contact between the ionic compound as the product and the oxidizing agent may be carried out before or after the cation exchange reaction. It may be performed both before and after the reaction.
  • the impure ionic component contained in the ionic compound may degrade the electrochemical device in which the ionic compound is used and its peripheral members, and consequently reduce the performance of the electrochemical device.
  • cyanide M a (CN) n first production method
  • ammonium cyanide second production method
  • TMSCN third production method
  • hydrogen cyanide fourth production method
  • components derived from starting materials such as free cyanide ions (CN ⁇ ) may remain in the product, or impurities inevitably mixed during the production process may exist.
  • Ionic compounds according to the present invention may be used for the constituent material of the electrochemical device, CN present in ionic compounds - impurities, such as, cause corrosion degradation or electrodes of the ion conduction performance, electrochemical It causes the performance to deteriorate.
  • an ionic compound having TCB as an anion is surprisingly high in stability to an oxidant compared to a general organic compound. Therefore, by contacting the synthesized ionic compound with an oxidant, a product is obtained.
  • the present inventors have found that excess cyanide ions (CN ⁇ ) contained therein can be decomposed, and further, the content of impurities inevitably mixed in the starting material and the synthesis process can be reduced.
  • oxidizing agent used in the oxidizing agent treatment examples include peroxides such as hydrogen peroxide, sodium perchlorate, peracetic acid, and metachloroperbenzoic acid (mCPBA), manganese compounds such as potassium permanganate and manganese oxide, and dichrome. Chromium compounds such as potassium acid, halogen-containing compounds such as potassium chlorate, sodium bromate, potassium bromate, sodium hypochlorite and chlorine dioxide, inorganic nitrogen compounds such as nitric acid and chloramine, acetic acid, osmium tetroxide, etc. It is done. Among these, peroxide is preferable, and hydrogen peroxide and sodium perchlorate are more preferable.
  • the oxidant may be solid or liquid, and in the case of a solid, it may be dissolved in a solvent. Further, an oxidant solution obtained by dissolving a liquid oxidant or a solid oxidant in a solvent may be further diluted.
  • the amount of the oxidizing agent used is preferably 1 to 1000 parts by mass per 100 parts by mass of the crude ionic compound, although it depends on the amount of impurities contained in the crude ionic compound (particularly CN- and the like) More preferred is 10 to 500 parts by mass, still more preferred is 20 to 300 parts by mass, and particularly preferred is 50 to 100 parts by mass. If the amount of the oxidizing agent is too large, the ionic compound may be decomposed. On the other hand, if the amount is too small, it may be difficult to sufficiently reduce excess ionic components and impurities.
  • the “crude ionic compound” means a component obtained by distilling off the solvent from the reaction solution after synthesis. However, the oxidizing agent treatment may be performed as it is without distilling off the reaction solvent after the synthesis or after other purification treatment described later.
  • the oxidizing agent treatment is not particularly limited as long as the crude ionic compound and the oxidizing agent come into contact with each other.
  • the synthesized crude ionic compound may be brought into contact with the oxidizing agent as it is, or a crude ionic compound solution is prepared.
  • the crude ionic compound solution and the oxidizing agent may be mixed and brought into contact with each other.
  • a mode of contact a mode in which a solid oxidant is added to a crude ionic compound solution and the two are brought into contact with each other; a mode in which the crude ionic compound solution and the oxidant solution are mixed and the two are brought into contact with each other
  • a solvent which dissolves a crude ionic compound the solvent used for the activated carbon process mentioned later is suitable.
  • the ionic compound of the present invention has a higher resistance to an oxidizing agent than a general organic substance, but excessive contact with the oxidizing agent causes decomposition of the ionic compound. Therefore, from the viewpoint of suppressing the decomposition of the ionic compound, it is recommended that the oxidant treatment be performed at a low temperature and in a short time.
  • the oxidizing agent treatment is preferably set to the reaction temperature or lower when synthesizing the ionic compound, and further preferably set to the boiling point or lower of the solvent. Specifically, it is preferably 0 ° C. to 150 ° C., more preferably 0 ° C. to 130 ° C., further preferably 10 ° C. to 100 ° C., and particularly preferably 10 ° C. to 80 ° C.
  • ⁇ Other purification methods In the production method of the present invention, in order to further reduce the amount of impurities in the ionic compound, a conventionally known purification method other than the oxidant treatment may be employed.
  • conventionally known purification methods include washing with water, organic solvents, and mixed solvents thereof; adsorption purification method; reprecipitation method; liquid separation extraction method; recrystallization method; crystallization method; Etc. These purification methods may be performed in combination.
  • the timing of implementation is not particularly limited, and before contact between the crude ionic compound and the oxidizing agent; after contact between the crude ionic compound and the oxidizing agent; Both before and after contact can be adopted.
  • examples of the adsorbent include activated carbon, silica gel, alumina, and zeolite.
  • an adsorption treatment using activated carbon as an adsorbent is preferable because impurities are less mixed into the ionic compound.
  • the activated carbon that can be used for the adsorption treatment is not particularly limited.
  • the shape of the activated carbon is not particularly limited as long as it has a large surface area, and examples thereof include powder, pulverized, granulated, granulated, and spherical. Among these, the activated carbon in powder form due to the wide surface area. Is preferably used.
  • the activated carbon preferably has a surface area of 100 m 2 / g or more, more preferably 400 m 2 / g or more, and particularly preferably 800 m 2 / g or more.
  • activated carbon with a low impurity content.
  • a carbohydrate manufactured by Nippon Environmental Chemicals Co., Ltd. Raffin (registered trademark) -6 may be mentioned.
  • the amount of the activated carbon used is preferably 1 part by mass or more and 500 parts by mass or less, more preferably 10 parts by mass or more and 300 parts by mass or less, and further preferably 20 parts by mass with respect to 100 parts by mass of the crude ionic compound. As mentioned above, it is 200 mass parts or less.
  • the activated carbon treatment is preferably performed on the crude ionic compound immediately after synthesis and before the oxidant treatment. From the viewpoint of effectively obtaining the effect of the activated carbon treatment, it is recommended that the crude ionic compound be dissolved or dispersed in a solvent and used for the activated carbon treatment.
  • the solvent that can be used during the activated carbon treatment is not particularly limited, but is preferably a solvent that can dissolve the crude ionic compound.
  • a solvent that can dissolve the crude ionic compound For example, water; methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 1-butanol, sec-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-1-butanol 3-methyl-2-butanol, 2-methyl-1-butanol, tert-amyl alcohol, neopentyl alcohol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1-pentanol, 3-methyl -3-pentanol, 4-methyl-2-pentanol, 3,3-dimethyl-2-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-methyl-3-hex
  • the water used for the activated carbon treatment is ultrapure water (ion resistance of 1.0 ⁇ ⁇ cm or more) treated with an ultrapure water device equipped with various filter media such as a filter, an ion exchange membrane, and a reverse osmosis membrane. preferable.
  • the amount of the solvent used for the activated carbon treatment is preferably 10 parts by mass or more and 2000 parts by mass or less, more preferably 100 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the crude ionic compound. More preferably, it is 200 parts by mass or more and 1000 parts by mass or less.
  • the amount of the solvent is too large, the reaction apparatus becomes large, the cost increases, and the yield tends to decrease, resulting in low economic advantages.
  • the amount used is too small, the purity of the ionic compound may decrease.
  • the ionic compound solution after the activated carbon treatment can be directly subjected to the oxidizing agent treatment.
  • the solvent used at this time is preferably a solvent capable of forming a two-layer state with the solvent exemplified in the activated carbon treatment.
  • a solvent capable of forming a two-layer state with the solvent exemplified in the activated carbon treatment For example, when an organic solvent is used in the activated carbon treatment, it is preferable to use water in washing and liquid separation extraction. By using water, alkali metal ions and halide ions can be efficiently extracted into the aqueous layer, and these ionic components can be removed from the ionic compound.
  • water / hexane, water / methyl ethyl ketone, water / methyl isobutyl ketone, water / dimethyl ether, water / diethyl are used from the viewpoint of layer separation from water and the recovery rate of ionic compounds.
  • examples include ether, water / ethyl acetate, water / butyl acetate, and water / dichloromethane, among which water / ethyl acetate, water / butyl acetate, water / methyl isobutyl ketone, and water / diethyl ether. More preferred are water / ethyl acetate, water / butyl acetate, water / diethyl ether combinations.
  • an ionic compound having a low impure ionic component content and high purity can be obtained.
  • the ionic compound according to the present invention is a primary battery, a battery having a charge / discharge mechanism such as a lithium (ion) secondary battery or a fuel cell, an electrolytic capacitor, an electric double layer capacitor, a solar cell, It is suitably used as a material constituting an electrochemical device such as an electrochromic display element or an electrochemical gas sensor.
  • an ionic liquid is a liquid having an ionic bond, and thus has high electrochemical and thermal stability, and further has a property of selectively absorbing a specific gas such as carbon dioxide. It is also known that the ionic compound obtained by the production method of the present invention has the same characteristics as these.
  • a reusable organic synthesis reaction solvent or a machine utilizing the high thermal stability Use as a sealant or lubricant for moving parts; Use as a conductivity-imparting agent for polymers utilizing the combination of electrochemical properties and thermal stability; Gas such as carbon dioxide because of its ability to absorb gas It is suitably used for various applications such as use as an absorbent.
  • the ionic compound of the present invention contains tetracyanoborate represented by [B— (CN) 4 ] — as an anion.
  • the ionic compound is represented by the following general formula (XVI).
  • An ion conductive material containing an ionic compound having an anion is also included in the present invention.
  • Xd represents at least one element selected from Al, Si, P, Ga and Ge.
  • V is an integer of 4 to 6).
  • the ion conductive material of the present invention includes, as an anion component, tetracyanoborate or an ionic compound having tetracyanoborate and an anion represented by the above general formula (XVI), and the anion
  • the component preferably has a maximum occupied orbital energy level of ⁇ 5.5 eV or less using a molecular orbital calculation method.
  • the ionic compound of the present invention has a reduced content of impurities such as fluorine atoms as described above, and As is not included in the structure or the synthesis process. Not likely to occur.
  • the anion component according to the present invention has the highest occupied orbital energy level equivalent to that of PF 6 ⁇ and AsF 6 ⁇ and has a wide potential window, so that it is suitably used as an ion conductor.
  • v is an integer of 4 to 6, and is determined by the valence of element X.
  • X is an Al or Ga element
  • X is a Si or Ge element
  • v 5.
  • X is a P element
  • v 6.
  • the preferred form of the ion conductive material of the present invention essentially comprises tetracyanoborate and / or an ionic compound having an anion component represented by the above general formula (XVI).
  • the highest occupied orbital energy level using the molecular orbital calculation method of the anion component (tetracyanoborate and the anion component of the general formula (XVI)) contained in the ion conductive material of the present invention is ⁇ 5.5 eV or less. Is more preferably ⁇ 5.6 eV or less, and particularly preferably ⁇ 5.7 eV or less.
  • the ion conductive material preferably does not contain F atoms and As elements in the composition from the viewpoint of corrosiveness and harmfulness. Furthermore, the thing which does not contain Sb element for the same reason is preferable. In addition, only 1 type may be sufficient as the anion component contained in the said ion conductive material, and 2 or more types of anion components may be contained.
  • the cation contained in the ion conductive material of the present invention may be either an organic cation or an inorganic cation as long as it can form a salt with tetracyanoborate and the anion represented by the general formula (XVI).
  • an onium cation is preferred.
  • Examples of the onium cation include onium cations represented by the above (III) to (V). In this case, an electric double layer capacitor, an electrolytic capacitor, etc. are mentioned as a preferable use of an ion conductive material.
  • the amount of the ion conductive material in 100% by mass of the electrolyte material is preferably 1% by mass or more. It is preferably 5% by mass or less. More preferably, it is 5 mass% or more and 95 mass% or less. More preferably, it is 10 mass% or more and 90 mass% or less.
  • the ionic compound and the ion conductive material of the present invention can function as an electrolyte or a solid electrolyte constituting an electrolytic solution in an ion conductor provided in various electrochemical devices.
  • These electrolyte solutions and solid electrolytes may contain other electrolyte salts in addition to the ion conductive material of the present invention.
  • an electrolyte containing ions to be used as a carrier may be used, and one kind or two or more kinds can be used.
  • the dissociation constant in the electrolytic solution or the polymer solid electrolyte is large.
  • alkali metal salt or alkaline earth metal salt of trifluoromethanesulfonic acid such as LiCF 3 SO 3 , NaCF 3 SO 3 , KCF 3 SO 3 ; LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 or the like perfluoroalkanesulfonic acid alkali metal salt or alkaline earth metal salt; hexafluorophosphoric acid alkali metal salt such as LiPF 6 , NaPF 6 or KPF 6 Alkaline earth metal salts; alkali metal salts of perchloric acid such as LiClO 4 and NaClO 4 and alkaline earth metal salts; tetrafluoroborate such as LiBF 4 and NaBF 4 Alkali metal salts such as LiAsF 6 , LiI, NaI, NaAsF 6 and KI; quaternary ammonium salts of perchloric acid such as t
  • alkali metal salts and / or alkaline earth metal salts are preferable.
  • LiPF 6 , LiBF 4 , LiAsF 6 , alkali metal salts, alkaline earth metal salts, and quaternary ammonium salts of perfluoroalkanesulfonic acid imide are preferable.
  • the alkali metal salt a lithium salt, a sodium salt, and a potassium salt are preferable, and as the alkaline earth metal salt, a calcium salt and a magnesium salt are preferable. More preferably, it is a lithium salt.
  • the lower limit is 0.1% by mass and the upper limit is 50% by mass with respect to a total of 100% by mass of the ion conductive material of the present invention and the other electrolyte salt. Is preferred. If the amount is less than 0.1% by mass, the absolute amount of ions may not be sufficient, and the ionic conductivity may be reduced. If the amount exceeds 50% by mass, the migration of ions may be greatly inhibited. is there. A more preferable upper limit is 30% by mass.
  • ion conductive material of the present invention include, for example, primary batteries, lithium (ion) secondary batteries, batteries having charging and discharging mechanisms such as fuel cells, electrolytic capacitors, electric double layer capacitors, lithium ion capacitors. And electrochemical devices such as solar cells and electrochromic display elements. These generally have an ion conductor, a negative electrode, a positive electrode, a current collector, a separator, and a container as basic components.
  • the ionic conductor a mixture of an electrolyte and an organic solvent is suitable. If an organic solvent is used, this ionic conductor is generally called an electrolytic solution.
  • the organic solvent may be an aprotic solvent that can dissolve the ion conductive material and the like.
  • the aprotic solvent the compatibility with the ion conductive material of the present invention is good, the dielectric constant is large, the solubility of other electrolyte salts is high, and the boiling point is 60 ° C. or higher.
  • a compound having a wide electrochemical stability range is preferable. More preferably, it is an organic solvent (non-aqueous solvent) having a low water content.
  • organic solvents examples include ethers such as 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, crown ether, triethylene glycol methyl ether, tetraethylene glycol dimethyl ether, dioxane; ethylene carbonate, propylene carbonate Carbonates such as diethyl carbonate and methyl ethyl carbonate; chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, diphenyl carbonate and methyl phenyl carbonate; ethylene carbonate, propylene carbonate, 2,3-dimethyl ethylene carbonate, Cyclic carbonates such as butylene carbonate, vinylene carbonate, 2-vinylethylene carbonate; methyl formate, methyl acetate, propionic acid, methyl propionate, ethyl acetate, propyl acetate, acetic acid Aliphatic carboxylic acid esters such as chill and amyl a
  • carbonates, aliphatic esters, and ethers are more preferable, and carbonates such as ethylene carbonate and propylene carbonate, ⁇ -butyrolactone, and ⁇ -valerolactone are more preferable.
  • the electrolyte concentration in the ionic conductor is preferably 0.01 mol / dm 3 or more, and more preferably a saturation concentration or less. If it is less than 0.01 mol / dm 3 , the ionic conductivity is low, which is not preferable. More preferably, 0.1 mol / dm 3 or more, it is 2.5 mol / dm 3 or less.
  • the ion conductive material of the present invention When used as an electrolyte of a lithium ion battery, it is preferably dissolved in two or more types of aprotic solvents. In this case, it is preferable to prepare the electrolytic solution by dissolving in a mixed solvent composed of an aprotic solvent having a dielectric constant of 20 or more and an aprotic solvent having a dielectric constant of 10 or less among these organic solvents.
  • the ion conductivity is 0.5 mS / cm or more at 25 ° C. at a concentration of 1 mol / L. It is preferable.
  • the ionic conductivity at 25 ° C. is less than 0.5 mS / cm, the ionic conductor using the ionic conductive material of the present invention maintains an excellent ionic conductivity for a long time and is stable. May not function properly. More preferably, it is 1.0 mS / cm or more.
  • the ion conductive material of the present invention preferably has a withstand voltage of 4 V to 500 V based on Ag / Ag + . More preferably, it is 5V-500V. As described above, by including an anion having the highest occupied orbital energy level of ⁇ 5.5 eV or less by calculation of molecular orbital calculation, it is possible to show a high withstand voltage.
  • lithium secondary battery (2) electrolytic capacitor, (3) electric double layer capacitor, and (4) lithium ion capacitor This will be described in more detail.
  • Lithium secondary battery is composed of a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an ionic conductor using the ion conductive material of the present invention as basic components.
  • the electrolyte solution material according to the present invention contains a lithium salt as an electrolyte.
  • Such a lithium secondary battery is preferably a non-aqueous electrolyte lithium secondary battery that is a lithium secondary battery other than the water electrolyte.
  • This lithium secondary battery uses coke as a negative electrode active material, which will be described later, and uses a compound containing Co as the positive electrode active material.
  • a material used for a conventionally known negative electrode can be used, and it is not particularly limited.
  • graphite such as natural graphite and artificial graphite
  • carbon materials such as coke and fired organic matter
  • lithium-aluminum Alloy lithium-magnesium alloy, lithium-indium alloy, lithium-thallium alloy, lithium-lead alloy, lithium-bismuth alloy and other lithium alloys, or one or more of titanium, tin, iron, molybdenum, niobium, vanadium and zinc
  • a metal oxide containing 2 or more types and a metal sulfide are mentioned.
  • metallic lithium and carbon materials that can occlude / release alkali metal ions are more preferable.
  • the positive electrode it is possible to use a material used for conventional positive electrode are not particularly limited, for example, LiCoO 2, LiNiO 2, LiMnO 2, LiFeO 2, LiFePO lithium-containing transition metal oxides such as 4 Can be mentioned.
  • the average particle diameter of the positive electrode active material particles is preferably 0.1 to 30 ⁇ m.
  • the electrolytic capacitor is an anode foil, a cathode foil, an electrolytic paper that is a separator sandwiched between the anode foil and the cathode foil, a lead wire, and an ion conductor using the ion conductive material of the present invention.
  • an electrolytic capacitor an aluminum electrolytic capacitor is suitable.
  • a thin oxide film (aluminum oxide) formed by electrolytic anodic oxidation on the surface of an aluminum foil roughened by producing fine irregularities by electrolytic etching is suitable. .
  • the electric double layer capacitor is composed of a negative electrode, a positive electrode, and an ion conductor using the ion conductive material of the present invention as a basic constituent element.
  • An electrode element composed of a positive electrode and a negative electrode disposed is made to contain an electrolytic solution that is an ionic conductor.
  • activated carbon porous metal oxide, porous metal, and conductive polymer are suitable.
  • activated carbon porous metal oxide, porous metal, and conductive polymer are suitable.
  • Lithium Ion Capacitor uses a carbon-based material that can store lithium ions as a negative electrode material while using the principle of a general electric double layer capacitor. This is an improved capacitor, and the principle of charging and discharging is different between the positive electrode and the negative electrode, and has a structure in which the negative electrode of the lithium ion secondary battery and the positive electrode of the electric double layer are combined.
  • a material capable of inserting and extracting lithium ions is suitable.
  • the materials capable of occluding and releasing lithium ions include pyrolytic carbon; coke such as pitch coke, needle coke, and petroleum coke; graphite; glassy carbon; phenol resin, furan resin, etc., fired at an appropriate temperature.
  • Li 3-f G f N (G: a transition metal, f: 0 real number and less than 0.8) lithium nitrogen compounds such as Etc.
  • These can use 1 type (s) or 2 or more types. Among these, a carbon material is more preferable.
  • activated carbon, porous metal oxide, porous metal, and conductive polymer are suitable as the positive electrode.
  • the ion conductor using the ion conductive material of the present invention constitutes an electrolytic solution provided between the negative electrode and the positive electrode.
  • the content of impurities containing F atoms was determined by the following method. 11 B-NMR measurement was performed using d6-DMSO as a solvent. In the obtained 11 B-NMR spectrum, the area of the peak derived from B (CN) 4 at ⁇ 38 ppm is defined as 100 mol%, and this peak area is compared with the other peak (derived from impurities) area. Then, the number of moles of impurities (mol percentage (mol%)) was calculated.
  • the ionic conductivity of the ionic compound solution was measured by a complex impedance method using an SUS electrode and an impedance analyzer (Solartron “SI1260”) at a temperature of 25 ° C.
  • the potential window was measured with a cyclic voltammetry tool (“HSV-100” manufactured by Hokuto Denko) using a three-pole cell as an electrode.
  • a glassy carbon electrode was used for the working electrode in the triode cell
  • a Pt electrode was used for the target electrode
  • an Ag electrode was used for the reference electrode.
  • Example 1 an ionic compound containing tetracyanoborate was synthesized using cyanide M a (CN) n as a starting material.
  • Synthesis Example 1-1 Synthesis of tetrabutylammonium tetracyanoborate (Bu 4 NTCB) The inside of a 50-ml flask equipped with a stirrer, a dropping funnel, and a reflux tube was purged with nitrogen, and at room temperature under a nitrogen atmosphere, After adding 5.1 mg (15.8 mmol) of tetrabutylammonium bromide, 9.26 g (78.9 mmol) of zinc (II) cyanide, 10 ml of toluene, and 2.8 g (11.2 mmol) of boron tribromide, 130 ° C. The contents were stirred for 2 days while heating in an oil bath.
  • tetrabutylammonium tetracyanoborate Bu 4 NTCB
  • toluene in the flask was distilled off under reduced pressure to obtain a black solid.
  • the obtained solid was pulverized in a mortar and then placed in a beaker equipped with a stirrer, and 200 ml of chloroform was added thereto twice to extract the product into a chloroform layer. Subsequently, the obtained chloroform solution was transferred to a separatory funnel and washed with 200 ml of water, and then the organic layer was separated and concentrated by an evaporator to obtain an oily crude product.
  • Synthesis Example 1-2 Synthesis of 1-ethyl-3-methylimidazolium tetracyanoborate (EtMeImTCB) Instead of tetrabutylammonium bromide, 3.0 g (15.8 mmol) of 1-ethyl-3-methylimidazolium bromide was used. Except for the above, the same operation as in Synthesis Example 1-1 was performed to obtain 1-ethyl-3-methylimidazolium tetracyanoborate (yellow oily substance, yield: 1.0 g (4.4 mmol), yield: 38 %, Melting point: 15 ° C.).
  • Synthesis Example 1-3 Synthesis of triethylammonium tetracyanoborate (Et 3 HNTCB) The same operation as in Synthesis Example 1-1 except that 2.9 g (15.8 mmol) of triethylammonium bromide was used instead of tetrabutylammonium bromide To obtain triethylammonium tetracyanoborate (yellow solid, yield: 1.0 g (4.5 mmol), yield: 40%, melting point: 150 ° C.).
  • Synthesis Example 1-4 Synthesis of triethylmethylammonium tetracyanoborate (Et 3 MeNTCB) Same as Synthesis Example 1-1 except that 3.1 g (15.8 mmol) of triethylmethylammonium bromide was used instead of tetrabutylammonium bromide Thus, triethylmethylammonium tetracyanoborate was obtained (yellow solid, yield: 1.2 g (5.0 mmol), yield: 45%, melting point: 115 ° C.).
  • Synthesis Example 1-5 Synthesis of tetraethylammonium tetracyanoborate (Et 4 NTCB) The same operation as in Synthesis Example 1-1 except that 3.3 g (15.8 mmol) of tetraethylammonium bromide was used instead of tetrabutylammonium bromide To obtain tetraethylammonium tetracyanoborate (yellow solid, yield: 1.1 g (4.5 mmol), yield: 40%).
  • Synthesis Example 1-6 Synthesis of tetrabutylammonium tetracyanoborate (Bu 4 NTCB) 2 Tetrabutylammonium tetracyanoborate was obtained in the same manner as in Synthesis Example 1-1 except that 4.4 g (15.8 mmol) of tetrabutylammonium chloride was used instead of tetrabutylammonium bromide (yellow solid, Yield: 1.6 g (4.5 mmol), yield: 40%, melting point: 90 ° C.).
  • Synthesis Example 1-7 Synthesis of tetrabutylammonium tetracyanoborate (Bu 4 NTCB) 3
  • the inside of a flask having a capacity of 50 ml equipped with a stirrer, a dropping funnel and a reflux tube was purged with nitrogen, and under a nitrogen atmosphere at room temperature, 5.1 g (15.8 mmol) of tetrabutylammonium bromide, zinc cyanide (II ) 9.26 g (78.9 mmol) and 11.2 ml (11.2 mmol) of 1.0 M boron trichloride p-xylene solution were added, and then the contents were stirred for 2 days while heating in an oil bath at 150 ° C. .
  • the organic solvent in the flask was distilled off under reduced pressure to obtain a black solid.
  • the obtained solid was pulverized in a mortar and then placed in a beaker equipped with a stirrer, and 200 ml of chloroform was added thereto twice to extract the product into a chloroform layer. Subsequently, the obtained chloroform solution was transferred to a separatory funnel and washed with 200 ml of water, and then the organic layer was separated and concentrated by an evaporator to obtain an oily crude product.
  • reaction vessel was changed to a sealed pressure vessel (capacity: 100 ml, Teflon (registered trademark) inner cylinder, stainless steel), but no product was obtained.
  • Table 1 shows various physical properties of the ionic compounds obtained in the respective synthesis examples, measured by the above measuring methods.
  • the reaction proceeds at a lower temperature (130 ° C. to 150 ° C.) than when alkali metal cyanide is used as the starting material (reaction temperature: 250 ° C.). Can be made.
  • an ionic compound having tetracyanoborate can be stably obtained without using expensive trimethylsilylcyanide.
  • the thermal decomposition starting temperature of Comparative Experimental Example 1 is 20 ° C. or more lower than the thermal decomposition starting temperature of Experimental Example 1, and when the content of impurities containing F atoms is 5 mol% or higher, It can be seen that the material durability is greatly impaired. This is presumably because the impurities having a BF bond contained in the ionic compound reacted with O atoms such as moisture and oxygen present in the air and decomposed.
  • the surface resistance of the obtained sheet was measured using a surface resistance measuring instrument (manufactured by Mitsubishi Chemical Corporation, “HT-210”) and found to be 9 ⁇ 10 7 ⁇ . In addition, no bleeding of ionic compounds was observed.
  • the pour point was evaluated according to JIS K2269-1987.
  • the observed pour point of EtMeImTCB was ⁇ 20 ° C.
  • the kinematic viscosity was measured according to JIS K2283-2000.
  • the kinematic viscosity of EtMeImTCB at 40 ° C. was 30 cSt (3.0 ⁇ 10 ⁇ 5 m 2 / s).
  • the coefficient of friction was measured using a pendulum type friction tester (manufactured by Shinko Engineering Co., Ltd., “Iwata-type pendulum type oil friction tester”).
  • the friction coefficient of EtMeImTCB was 0.16.
  • the ionic compound of the present invention since the content of F atoms and impurities containing F atoms is reduced to an extremely low level, there is a problem of corrosion of peripheral members even when this is used for various applications. And stable characteristics (thermal, physical, electrochemical characteristics, etc.) can be exhibited.
  • Example 2 In Synthesis Example 2, an ionic compound having tetracyanoborate as an anion was synthesized using an ammonium cyanide compound as a starting material.
  • Synthesis Example 2-1 Synthesis 1 of tetrabutylammonium tetracyanoborate (Bu 4 NTCB) The inside of a 50 ml flask equipped with a stirrer, a dropping funnel and a reflux tube was purged with nitrogen, and 0.64 g (2.0 mmol) of tetrabutylammonium bromide and 2.65 g of tetrabutylammonium cyanide at room temperature under a nitrogen atmosphere ( (9.9 mmol), 0.35 g (1.4 mmol) of boron tribromide, and 1.4 ml of toluene were added, and the contents were stirred for 2 days while being heated in an oil bath at 130 ° C. Two days later, toluene in the flask was distilled off under reduced pressure to obtain a black solid.
  • tetrabutylammonium tetracyanoborate Bu 4 NTCB
  • Synthesis Example 2-2 Synthesis 2 of tetrabutylammonium tetracyanoborate The same procedure as in Synthesis Example 2-1 was performed, except that 1.4 ml of boron trichloride (1.4 mmol, 1M p-xylene solution, manufactured by Aldrich) was used instead of boron tribromide, and toluene was not used.
  • the product tetrabutylammonium tetracyanoborate was obtained (yellow solid, yield: 0.21 g (0.6 mmol), yield: 42%, melting point: 90 ° C.).
  • Synthesis Example 2-3 Synthesis of tetrabutylammonium tetracyanoborate 3 The same operation as in Synthesis Example 2-2 was performed except that tetrabutylammonium bromide was not used, and the product tetrabutylammonium tetracyanoborate was obtained (yellow solid, yield: 0.18 g (0.5 mmol)). Yield: 35%, melting point: 90 ° C.).
  • Synthesis Example 2-4 Synthesis 4 of tetrabutylammonium tetracyanoborate
  • This black solid was put into a beaker equipped with a stirrer, and 100 ml of chloroform and 100 ml of water were added thereto, the chloroform layer was extracted with a separatory funnel, and the chloroform layer was separated and washed twice with 100 ml of water. The layer was concentrated under reduced pressure to give an oily crude product. This was purified by column chromatography using neutral alumina as a filler (developing solvent: mixed solvent of diethyl ether and chloroform), the fraction containing the product was separated, the solvent was distilled off, and the residue was dried. To give the product tetrabutylammonium tetracyanoborate (yellow solid, yield: 0.1 g (0.3 mmol), yield: 20%, melting point: 90 ° C.).
  • Synthesis Example 2-5 Synthesis of tetrabutylammonium tetracyanoborate 5
  • a 2 liter flask equipped with a stirrer, a dropping funnel, and a reflux tube 58.7 g of unpurified tetrabutylammonium cyanide obtained by raw material synthesis and 11.6 g (36.3 mmol) of tetrabutylammonium bromide were obtained.
  • the flask was purged with nitrogen, and 26 ml (26 mmol) of 1M boron trichloride p-xylene solution was dropped into the system from the dropping funnel at room temperature.
  • the reaction solution was stirred at 150 ° C. for 2 days and then the solvent was distilled off.
  • Synthesis Example 2-6 Synthesis 6 of tetrabutylammonium tetracyanoborate The inside of a 50 ml flask equipped with a stirrer, a dropping funnel, and a reflux tube was purged with nitrogen, and 0.65 g (2.0 mmol) of tetrabutylammonium bromide and tetrabutylammonium cyanide at room temperature under a nitrogen atmosphere. After adding 98 g (11.0 mmol) and 2.0 ml (2.0 mmol) of 1M boron trichloride p-xylene solution, the contents were stirred for 2 days while heating in an oil bath at 150 ° C. Thereafter, the solvent was distilled off to obtain a black solid.
  • the obtained crude product was made into a 10% by mass ethyl acetate solution, and 2.1 g of activated carbon (Calboraphin (registered trademark) -6, manufactured by Nippon Enviro Chemicals Co., Ltd.) was added thereto, followed by stirring at room temperature for 30 minutes. . Thereafter, the obtained activated carbon suspension is filtered through a membrane filter (0.2 ⁇ m, PTFE, hydrophilic), and the activated carbon on the filter is dispersed in 6.5 g of ethyl acetate and stirred at 50 ° C. for 10 minutes. The operation of filtering again was repeated 5 times. The obtained filtrate and the washing solution were combined, and the solvent was distilled away from the filtrate, followed by drying to obtain a brown solid.
  • activated carbon Calboraphin (registered trademark) -6, manufactured by Nippon Enviro Chemicals Co., Ltd.
  • This powder was spread on a vat and further dried at 80 ° C. under reduced pressure for 3 days to obtain tetrabutylammonium tetracyanoborate as a target product (yield 0.36 g (1.0 mmol), yield 50%). .
  • Synthesis Example 2-7 Synthesis of triethylmethylammonium tetracyanoborate Synthesis example except that tetrabutylammonium bromide was not used and 1.56 g (11 mmol) of triethylmethylammonium cyanide was used instead of tetrabutylammonium cyanide 14 and triethylmethylammonium tetracyanoborate (Et 3 MeNTCB) was obtained as a product (pale yellow solid, yield: 0.23 g (1 mmol), yield: 50%, melting point: 115 ° C.) . The product showed the same NMR data as in Synthesis Example 1-4.
  • an ionic compound having tetracyanoborate can be produced even under a reaction temperature condition of 200 ° C. or lower. Further, an ionic compound having tetracyanoborate can be obtained without using expensive trimethylsilane cyanide.
  • Example 3 In Example 3, an ionic compound containing tetracyanoborate was synthesized using trimethylsilyl cyanide as a starting material.
  • Synthesis Example 3-1 Synthesis 1 of triethylmethylammonium tetracyanoborate (Et 3 MeNTCB) 30.3 g (200 mmol) of triethylmethylammonium chloride (Et 3 MeNCl), which had been heated and dried in advance, was added to a flask having a volume of 1 L equipped with a stirrer, a reflux tube and a withdrawal device, and a dropping funnel. After replacing the inside of the container with nitrogen, 109.0 g (1100 mmol) of trimethylsilylcyanide (TMSCN) was added at room temperature, and the mixture was stirred and mixed.
  • TMSCN trimethylsilylcyanide
  • the obtained activated carbon suspension was filtered through a membrane filter (0.2 ⁇ m, made of PTFE), the solvent was distilled off, and the residue was dried to obtain the target product, triethylmethylammonium tetracyanoborate (pale yellow solid). (Yield: 37.9 g (164 mmol), yield: 82%, melting point: 115 ° C.).
  • Synthesis Example 3-2 Synthesis 2 of triethylmethylammonium tetracyanoborate Triethylmethylammonium tetracyanoborate (pale yellow solid) was obtained in the same manner as in Synthesis Example 3-1 except that purification by column chromatography was performed instead of activated carbon filtration (yield: 37.9 g (164 mmol)). Yield: 82%, melting point: 115 ° C.).
  • the purification method is as follows. In a 500 mL beaker, 45 g of the crude product and 20 mL (4: 1 (volume ratio)) of a mixed solution of methylene chloride and acetonitrile were added and dissolved by stirring for 5 minutes. Next, purification was performed by column chromatography using aluminum oxide (450 cc) as a stationary phase and a mixed solvent of methylene chloride and acetonitrile (4: 1 (volume ratio), 2.5 L) as a mobile phase, and the target product, triethyl, was obtained. Methyl ammonium tetracyanoborate was obtained. The product showed the same NMR spectrum and various physical properties as in Synthesis Example 3-1.
  • Synthesis Example 3-3 Synthesis of tetrabutylammonium tetracyanoborate (Bu 4 NTCB) Synthesis was performed except that 64.5 g (200 mmol) of tetrabutylammonium bromide was used instead of Et 3 MeNCl used in Synthesis Example 3-1. The same operation as in Example 3-1 was performed to obtain white solid tetrabutylammonium tetracyanoborate as a product (yield: 60.0 g (196 mmol), yield: 98%, melting point: 90 ° C.). The product showed the same NMR spectrum and various physical properties as in Synthesis Example 1-1. Ionic conductivity (25 ° C.): 0.009 S / cm Thermal decomposition start temperature: 210 ° C Potential window: -3.2V to 2.0V
  • Synthesis Example 3-5 Synthesis 1 of triethylammonium tetracyanoborate (Et 3 NHTCB) The same operation as in Synthesis Example 3-1 was performed except that 20.2 g (200 mmol) of triethylamine was used instead of Et 3 MeNCl to obtain a light yellow solid triethylammonium tetracyanoborate as a product (yield: 23 0.8 g (110 mmol), yield: 60%, melting point: 150 ° C.). The product showed the same NMR spectrum and various physical properties as in Synthesis Example 1-3. Ionic conductivity (25 ° C.): 0.018 S / cm Thermal decomposition start temperature: 285 ° C Potential window: -1.7V to 2.0V
  • Synthesis Example 3-6 Synthesis 2 of triethylammonium tetracyanoborate
  • the same operation as in Synthesis Example 3-1 was performed except that 27.5 g (200 mmol) of triethylammonium chloride was used instead of Et 3 MeNCl to obtain a light yellow solid triethylammonium tetracyanoborate as a product (yield) : 23.8 g (110 mmol), yield: 60%, melting point: 150 ° C.
  • the product showed the same NMR spectrum and various physical properties as those in Synthesis Example 3-5.
  • Synthesis Example 3-7 Synthesis 1 of tetraethylammonium tetracyanoborate (Et 4 NTCB) A white solid tetraethylammonium tetracyanoborate was obtained as a product in the same manner as in Synthesis Example 3-1, except that 33.1 g (200 mmol) of tetraethylammonium chloride was used instead of Et 3 MeNCl (yield: 46.6 g (190 mmol), yield: 95%, melting point: 150 ° C.). The product showed an NMR spectrum similar to that of Synthesis Example 1-5. Ionic conductivity (25 ° C.): 0.015 S / cm Thermal decomposition start temperature: 220 ° C Potential window: -3.0V to 2.0V
  • Synthesis Example 3-8 Synthesis of triethylmethylammonium tetracyanoborate 3 Similar to Synthesis Example 3-1, except that a 1 L pressure vessel (made of stainless steel, usable under pressurized conditions of 5 kPa) was used instead of the eggplant flask, and TMSCl produced as a by-product during the reaction was not extracted. As a product, a pale yellow solid tetraethylammonium tetracyanoborate was obtained as a product (yield: 33.3 g (144 mmol), yield: 72%, melting point: 115 ° C.). The obtained product exhibited the same NMR spectrum and various physical properties as those in Synthesis Example 3-1.
  • Synthesis Example 3-9 Synthesis 2 of tetrabutylammonium tetracyanoborate Instead of boron trichloride, 20.8 g (200 mmol) of trimethyl borate was used, and the same procedure as in Synthesis Example 3-3 was performed except that the reaction vessel was heated to 170 ° C. Ammonium tetracyanoborate was obtained (yield: 50.0 g (140 mmol), yield: 70%, melting point: 90 ° C.). The obtained product exhibited the same NMR spectrum and various physical properties as those in Synthesis Example 3-3.
  • Synthesis Example 3-10 Synthesis of tetrabutylammonium tetracyanoborate 3 The same operation as in Synthesis Example 3-3 was performed except that 29.2 g (200 mmol) of triethyl borate was used instead of boron trichloride and the reaction vessel was heated to 170 ° C. Ammonium tetracyanoborate was obtained (yield: 50.0 g (140 mmol), yield: 70%, melting point: 90 ° C.). The obtained product exhibited the same NMR spectrum and various physical properties as those in Synthesis Example 3-3.
  • Synthesis Example 3-11 Synthesis of tetrabutylammonium tetracyanoborate 4 Instead of boron trichloride, 28.4 g (200 mmol) of boron trifluoride diethyl ether complex was used, and the same operation as in Synthesis Example 3-3 was performed except that the reaction vessel was heated to 170 ° C. Solid tetrabutylammonium tetracyanoborate was obtained (yield: 53.6 g (150 mmol), yield: 75%, melting point: 90 ° C.). The obtained product exhibited the same NMR spectrum and various physical properties as those in Synthesis Example 3-3.
  • Synthesis Example 3-12 Synthesis of triethylmethylammonium tetracyanoborate 4 The same operation as in Synthesis Example 3-1 was carried out except that butyl acetate was used instead of p-xylene to obtain a pale yellow solid triethylmethylammonium tetracyanoborate as a product (yield: 27.7 g (120 mmol)). ), Yield: 55%, melting point: 115 ° C.). The obtained product exhibited the same NMR spectrum and various physical properties as those in Synthesis Example 3-1.
  • Synthesis Example 3-13 Synthesis of triethylmethylammonium tetracyanoborate 5 The same reaction as in Synthesis Example 3-1 was performed, and 69.5 g (640 mmol) of TMSCl extracted from the reflux extraction part was added to a flask (capacity 500 mL) equipped with a stirrer, and then triethylamine 64 was added at room temperature (25 ° C.). 0.7 g (640 mmol) and 17.3 g (640 mmol) of hydrogen cyanide were added and stirred overnight. The obtained product was distilled to obtain TMSCN (colorless liquid, yield: 57.1 g (576 mmol), yield: 90%).
  • Synthesis Example 3-14 Synthesis of tetramethylammonium tetracyanoborate The same operation as in Synthesis Example 3-1 was performed except that 21.9 g (200 mmol) of tetramethylammonium chloride was used instead of Et 3 MeNACl. Tetramethylammonium tetracyanoborate was obtained as a white solid (yield: 26.5 g (140 mmol), yield: 70%).
  • Synthesis Example 3-15 Synthesis of Ammonium Tetracyanoborate The same operation as in Synthesis Example 3-1 was performed except that 10.7 g (200 mmol) of ammonium chloride was used instead of Et 3 MeNCl. Tetracyanoborate was obtained (yield: 8.0 g (60 mmol), yield: 30%).
  • Synthesis Example 3-16 Synthesis of tributylammonium tetracyanoborate The same operation as in Synthesis Example 3-1 was performed except that 44.4 g (200 mmol) of tributylammonium chloride was used instead of Et 3 MeNCl, and a yellow solid was obtained as a product. Of tributylammonium tetracyanoborate was obtained (yield: 48.2 g (160 mmol), yield: 80%).
  • Synthesis Example 3-17 Synthesis of Lithium Tetracyanoborate 48.2 g (160 mmol) of tributylammonium tetracyanoborate obtained in Synthesis Example 3-16, 200 g of butyl acetate, lithium hydroxide was placed in a 500 ml beaker equipped with a stirrer. 4.6 g (192 mmol) of monohydrate and 200 g of ultrapure water were added and stirred for 1 hour. Thereafter, the mixed solution was transferred to a separatory funnel and allowed to stand to separate into two layers. Among these, the pale yellow solid obtained by separating and concentrating the lower layer (aqueous layer) was mixed with 200 g of acetonitrile and stirred.
  • Synthesis Example 3-18 Synthesis of triethylmethylammonium tetracyanoborate 6 The reaction was carried out in the same manner as in Synthesis Example 3-1, and 69.5 g (640 mmol) of TMSCl extracted from the reflux extraction part was added to a flask equipped with a stirrer (capacity 500 mL), and then at room temperature (25 ° C.), hexamethyl 103.2 g (640 mmol) of disilazane and 51.9 g (1919 mmol) of hydrogen cyanide were added and stirred overnight. The obtained product was distilled to obtain TMSCN (colorless liquid, yield: 171.4 g (1727 mmol), yield: 90%).
  • Synthesis Example 3-1 except that 52.1 g (525 mmol) of TMSCN obtained using TMSCl as a reaction byproduct, 12.3 g (105 mmol) of boron trichloride and 15.9 g (105 mmol) of Et 3 MeNCl were used. Similarly, triethylmethylammonium tetracyanoborate was obtained (pale yellow solid, yield: 19.8 g (86 mmol), yield: 82%, melting point: 115 ° C.). The obtained product exhibited the same NMR spectrum and various physical properties as those in Synthesis Example 3-1.
  • Synthesis Example 3-19 Synthesis 1 of trimethylsilyltetracyanoborate (Me 3 STCB) The same operation as in Synthesis Example 3-1 was performed except that Et 3 MeNCl was not used, and trimethylsilyltetracyanoborate was obtained as a product. Yield: 1.9 g (10 mmol), yield: 5%.
  • Synthesis Example 3-20 Synthesis of triethylmethylammonium tetracyanoborate 7 The same operation as in Synthesis Example 3-1 was performed except that 71.6 g (1100 mmol) of potassium cyanide was used in place of trimethylsilylcyanide, but the target product, triethylmethylammonium tetracyanoborate, was not obtained at all.
  • the reaction activity due to reaction by-products is unlikely to decrease, so that an ionic compound having tetracyanoborate ions can be produced in a higher yield than the conventional method.
  • an ammonium salt is used, an ionic compound having an organic cation can be produced in one step.
  • Synthesis Example 3-21 Synthesis of tributylammonium tetracyanoborate 2
  • the same operation as in Synthesis Example 3-16 was conducted except that 42.5 g (200 mmol) of tributylammonium cyanide and 84.8 g (855 mmol) of trimethylsilylcyanide were used instead of tributylammonium chloride.
  • Tributylammonium tetracyanoborate was obtained (yield: 42.5 g (141 mmol), yield: 75%).
  • the obtained product exhibited the same NMR spectrum and various physical properties as those in Synthesis Example 3-16.
  • Example 4 an ionic compound having tetracyanoborate as an anion was synthesized using hydrogen cyanide (HCN) as a starting material.
  • HCN hydrogen cyanide
  • Synthesis Example 4-2 Synthesis of triethylammonium tetracyanoborate Triethylammonium tetracyanoborate (brown solid) in the same manner as in Synthesis Example 4-1, except that 5.58 g (55 mmol) of triethylamine was used instead of tributylamine. Et 3 NHTCB) (yield 0.65 g (3 mmol), yield 30%).
  • the NMR data of the obtained triethylammonium tetracyanoborate are shown below.
  • Various physical properties measured by the above measuring methods are as follows.
  • an ionic compound having tetracyanoborate can be obtained using inexpensive hydrogen cyanide as a starting material.
  • Example 5 In Example 5, the amount of impurities contained in the ionic compounds obtained in Synthesis Examples 5 to 11 below was measured.
  • the measuring method of various impurities is as follows.
  • Ionic chromatography system ICS-3000 (Nihon Dionex Co., Ltd.) was prepared by diluting 0.3 g of ionic compound obtained in the following synthesis example 100 to 1000 times with ultrapure water (over 18.2 ⁇ ⁇ cm). The amount of halide ions contained in the ionic compound was measured.
  • Separation mode Ion exchange Detector: Electrical conductivity detector CD-20
  • Column Column for anion analysis AS17-C (manufactured by Nippon Dionex)
  • Ionic chromatography system ICS-1500 (manufactured by Nippon Dionex Co., Ltd.) was prepared by diluting 0.1 g of the ionic compound obtained in the following synthesis example 10,000 times with ultrapure water (over 18.2 ⁇ ⁇ cm). was used to measure the amount of cyanide ion (CN ⁇ ) contained in the ionic compound.
  • Separation mode Ion exchange Eluent: 10 mmol H 2 SO 4 aqueous solution
  • Regenerating solution 0.5 mmol NaOH aqueous solution
  • Detector Electrochemical detector ED-50A Column: Column for anion analysis ICE-AS1
  • the water content in the sample was measured using a moisture measuring device “AQ-2000” manufactured by Hiranuma Sangyo Co., Ltd.
  • the sample injection volume is 0.1 ml
  • “Hydranal Aqualite RS-A” (sold by Hiranuma Sangyo Co., Ltd.) is used as the generation solution
  • “Aqualite CN” (manufactured by Kanto Chemical Co., Ltd.) is used as the counter electrode solution. )It was used.
  • the sample was injected from the sample inlet using a syringe so as not to touch the outside air.
  • Synthesis example 5 Synthesis of triethylmethylammonium tetracyanoborate ⁇ Synthesis of crude product> 30.3 g (200 mmol) of triethylmethylammonium chloride (Et 3 MeCl), which had been heated and dried in advance, was added to a flask having a volume of 1 L equipped with a stirrer, a reflux tube and a withdrawal device, and a dropping funnel. After replacing the inside of the container with nitrogen, 109.0 g (1100 mmol) of trimethylsilylcyanide (TMSCN) was added at room temperature, and the mixture was stirred and mixed.
  • TMSCN trimethylsilylcyanide
  • Synthesis Example 5-2 Et 3 MeNTCB was synthesized in the same manner as in Synthesis Example 5-1, except that 83 mL of a 30% by mass aqueous solution of sodium perchlorate was used in place of the hydrogen peroxide solution in the oxidizing agent treatment.
  • Synthesis Example 5-3 Et 3 MeNTCB was synthesized in the same manner as in Synthesis Example 5-1, except that the activated carbon treatment was not performed after the synthesis of the crude product.
  • Synthesis Example 5-4 Et 3 MeNTCB treated with activated carbon synthesized in Synthesis Example 5-1 was directly used as a measurement sample.
  • Synthesis Example 5-5 46 ml of Et 3 MeNTCB before the activated carbon treatment produced in Synthesis Example 5-1 was added to 104 ml of 0.01 mol / L NaOH aqueous solution and stirred at 50 ° C. for 60 minutes. Then, Et 3 to NaOH solution MeNTCB, Et 3 nine times the mass of butyl acetate added to MeNTCB, performs extraction processing in the same manner as in Synthesis Example 5-1, synthesized (activated carbon treatment of Et 3 MeNTCB, No oxidant treatment).
  • Synthesis Example 6 Synthesis Example 6-1 Synthesis of tetrabutylammonium tetracyanoborate Similar to Synthesis Example 5-1, except that 64.5 g (200 mmol) of tetrabutylammonium bromide was used instead of Et 3 MeNCl used in Synthesis Example 5. The crude product was then synthesized and treated with activated carbon to obtain white solid tetrabutylammonium tetracyanoborate (Bu 4 NTCB) as a product (yield: 60.0 g (164 mmol), yield: 82%, melting point: 90 ° C). The product showed the same NMR spectrum as in Synthesis Example 1-1.
  • Synthesis Example 6-2 The Bu 4 NTCB obtained in Synthesis Example 6-1 was mixed with 2.25 times the mass of hydrogen peroxide water (30 mass% H 2 O 2 aqueous solution) with respect to Bu 4 NTCB, and the mixture was mixed at 50 ° C. for 60 minutes. Stir. Thereafter, extraction and drying were performed in the same manner as in Experimental Example 1-1 to obtain a white solid Bu 4 NTCB (yield: 45 g (120 mmol), yield: 62%).
  • Synthesis example 7 Synthesis of 1-ethyl-3-methylimidazolium tetracyanoborate Synthesis Example 5 except that 38.2 g (200 mmol) of 1-ethyl-3-methylimidazolium bromide was used instead of Et 3 MeNCl
  • the crude product was synthesized and treated with activated carbon in the same manner as in -1, and 1-ethyl-3-methylimidazolium tetracyanoborate (EtMeImTCB) was obtained as a light yellow oil (yield: 24.9 g (110 mmol)). ), Yield: 55%, melting point: 15 ° C.).
  • the product showed an NMR spectrum similar to that of Synthesis Example 1-2.
  • Synthesis example 8 Synthesis of triethylammonium tetracyanoborate A crude product was synthesized and treated with activated carbon in the same manner as in Synthesis Example 5-1, except that 20.2 g (200 mmol) of triethylamine was used instead of Et 3 MeNCl. As a product, triethylammonium tetracyanoborate (Et 3 NHTCB) was obtained as a pale yellow solid (yield: 23.8 g (110 mmol), yield: 60%, melting point: 150 ° C.). The product showed the same NMR spectrum as in Synthesis Example 1-3.
  • Synthesis Example 8-2 Et 3 NHTCB obtained in Synthesis Example 8-1 was mixed with 2.25 times the mass of hydrogen peroxide water (30 mass% H 2 O 2 aqueous solution) with respect to Et 3 NHTCB, and the mixture was mixed at 50 ° C. for 60 minutes. Stir. Thereafter, extraction and drying were performed in the same manner as in Synthesis Example 5-1. Thus, a light yellow solid Et 3 NHTCB was obtained (yield: 17 g (80 mmol), yield: 40%).
  • Synthesis Example 9 Synthesis of tetraethylammonium tetracyanoborate Synthesis of crude product and treatment with activated carbon in the same manner as in Synthesis Example 5-1, except that 33.1 g (200 mmol) of tetraethylammonium chloride was used instead of Et 3 MeNCl. And tetraethylammonium tetracyanoborate (Et 4 NTCB) as a white solid was obtained as a product (yield: 46.6 g (190 mmol), yield: 95%, melting point: 150 ° C.). The product showed an NMR spectrum similar to that of Synthesis Example 1-5.
  • Synthesis Example 9-2 Et 4 NTCB obtained in Synthesis Example 9-1 was mixed with hydrogen peroxide water (30 mass% H 2 O 2 aqueous solution) having a mass 2.25 times that of Et 4 NTCB and mixed at 50 ° C. for 60 minutes. Stir. Thereafter, extraction and drying were performed in the same manner as in Synthesis Example 5-1. Thus, a light yellow solid Et 4 NTCB was obtained (yield: 35 g (144 mmol), yield: 72%).
  • Synthesis Example 10 Synthesis of tetramethylammonium tetracyanoborate Synthesis of the crude product in the same manner as in Synthesis Example 5-1, except that 21.9 g (200 mmol) of tetramethylammonium chloride was used instead of Et 3 MeNCl. Activated carbon treatment was performed to obtain tetramethylammonium tetracyanoborate (Me 4 NTCB) as a white solid product (yield: 26.5 g (140 mmol), yield: 70%).
  • Me 4 NTCB tetramethylammonium tetracyanoborate
  • Synthesis Example 11 Synthesis of tributylammonium tetracyanoborate Synthesis of crude product and treatment with activated carbon in the same manner as in Synthesis Example 5-1, except that 44.4 g (200 mmol) of tributylammonium chloride was used instead of Et 3 MeNCl. And yellow solid tributylammonium tetracyanoborate (Bu 3 NHTCB) was obtained as a product (yield: 48.2 g (160 mmol), yield: 80%). The product showed an NMR spectrum similar to that of Synthesis Example 3-16.
  • Synthesis Example 11-2 Bu 3 NHTCB obtained in Synthesis Example 11-1 was mixed with hydrogen peroxide water (30 mass% H 2 O 2 aqueous solution) having a mass 2.25 times that of Bu 3 NHTCB, and the mixture was mixed at 50 ° C. for 60 minutes. Stir. Thereafter, extraction and drying were performed in the same manner as in Synthesis Example 5-1. Thus, a yellow solid Bu 3 NHTCB was obtained (yield: 39 g (0.13 mmol), yield: 65%).
  • Example 6 In Example 6, calculation of the highest occupied orbital energy level of various anions having a structure represented by the general formula [(NC) v -X d- ] (Experimental Example 5), and the actually synthesized anion The withstand voltage range LSV was measured (Experimental Example 6).
  • Experimental Example 6 Linear sweep voltammetry (LSV measurement) In Experimental Example 6, the withstand voltage range LSV of the actually synthesized anion was measured. The LSV measurement was performed as follows.
  • the withstand voltage range was measured using a standard voltammetric tool HSV-100 (trade name, manufactured by Hokuto Denko Co., Ltd.) using a triode cell in an atmosphere of 30 ° C. in a glove box.
  • the measurement conditions are as follows.
  • Experimental Example 6-2 A commercially available triethylmethylammonium tetrafluoroborate (TEMABF4) (manufactured by Kishida Chemical Co., Ltd.) 2.0 mol / LPC solution was diluted to 1.0 mol / L, and LSV measurement was performed. The results are shown in FIG.
  • TEMABF4 triethylmethylammonium tetrafluoroborate
  • the ion conductive material of the present invention has a wide potential window and does not contain harmful elements such as F and As, it can be suitably used for applications such as lithium ion batteries, lithium ion capacitors, electric double layer capacitors and electrolytic capacitors.
  • the ionic compounds having tetracyanoborate obtained by the production method of the present invention are various electrochemical devices such as lithium secondary batteries, electrolytic capacitors, electric double layer capacitors and ion conductors (electrolyte materials etc.) such as lithium ion capacitors. It is suitably used for various applications such as a constituent material, a reaction solvent for organic synthesis, a conductivity imparting agent to a polymer, a lubricant, and a gas absorbent.
  • the ionic compound of the present invention when used, it is possible to provide a highly reliable electrolytic solution material, and additives and lubricants such as a conductivity imparting agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 従来法に比べて穏やかな条件で、または、収率よく、または、より安価にテトラシアノボレートを含むイオン性化合物を製造する方法、および、不純物の含有量が低減されたテトラシアノボレートを含むイオン性化合物を提供する。本発明のイオン性化合物は、下記一般式(I)で表されるイオン性化合物100mol%に対して、フッ素原子を含有する不純物の含有量が3mol%以下であり、本発明の製造方法とは、シアン化物と、ホウ素化合物とを含む出発原料を反応させることにより、下記一般式(I)で表されるイオン性化合物を製造する方法である。 (式中、Ktm+は、有機又は無機カチオンを表し、mは1~3の整数を表す)

Description

イオン性化合物及びその製造方法、並びに、これを用いたイオン伝導性材料
 本発明はイオン性化合物に関し、詳しくは、テトラシアノボレートアニオンを有するイオン性化合物およびその製造方法、並びに、これを用いたイオン導電性材料、およびこれを含む電解液、並びに該材料を備えた電気化学素子に関する。
 イオン性化合物は、イオン伝導による各種電池などのイオン伝導体に使用されており、一次電池、リチウム(イオン)二次電池や燃料電池などの充電及び放電機構を有する電池の他、電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタ、太陽電池、エレクトロクロミック表示素子などの電気化学デバイスに用いられている。これらの電気化学デバイスは、一般に、一対の電極とその間に形成されたイオン伝導体から構成されている。
 イオン伝導体としては、電解液や固体電解質が挙げられ、有機溶媒や高分子化合物またはこれらの混合物に電解質を溶解したものが使用されている。イオン伝導体では、電解質が溶解し、カチオンとアニオンとに解離してイオン伝導性を発揮する。このようなイオン伝導体を用いた電池は、ラップトップ型やパームトップ型コンピューター、移動電話、ビデオカメラなどの携帯電子用品に用いられており、これらの普及に伴って、軽く強力な電池の必要性が増加している。また、環境問題に係わる観点からは、より長い寿命を有する二次電池の開発が重要性を増している。
 上記二次電池などに用いられるイオン性化合物として、電解質塩であるリチウムヘキサフルオロホスフェート(LiPF6)やリチウムテトラフルオロボレート(LiBF4)や、アルカリ金属や有機カチオンを有するシアノボレートが提案されている。上記シアノボレートをアニオン成分とするイオン性化合物は、イオン性液体としての性質、すなわち、室温でも液体であり、熱的、物理的、電気化学的にも安定といった性質を示すことから、様々な用途への応用が検討されている。
 上記シアノボレートの中でも、テトラシアノボレート(TCB:[B(CN)4)を含む化合物の合成には、ホウ素を含有する化合物とアルカリ金属シアン化物とを反応させる方法(Z.Anorg.Allg.Chem.2000,vol.626,p.560-568)や、上記反応をLiCl等のリチウムハロゲン化物の存在下で行う方法(特表2006-517546号公報)、KBF4やLiBF4やBF3・OEt2等のホウ素化合物とトリメチルシリルシアニドを反応させる方法(Z.Anorg.Allg.Chem.2003,vol.629,p677-685、H.Willnerら(他2名)、Z.Anorg,Allg.Chem. ,2003,629,p1229-1234、J.Alloys Compd.2007.427.p61-66、R.A.Andersenら(他4名)、JACS.2000.122.p7735-7741)などが提案されてきた。
 しかしながら、アルカリ金属シアン化物は、ホウ素化合物との反応性が低いため、300℃近い高温条件下で反応させたり、アルカリ金属シアン化物を過剰に使用する必要があり、当該反応条件に対応可能な高耐久の設備を導入する設備コストがかかる、不純物が生成し易いなどの問題があった。一方、トリメチルシリルシアニドは高価である、また、生成物の収率が低い、テトラシアノボレートとトリメチルシランとの塩は不安定で、加熱により分解し易い、といった問題があった。
 なお、Z.Anorg.Allg.Chem.2000,vol.626,p.560-568では、[NBu4]X,BX3(X=Br,Cl)およびKCNを用いて、テトラブチルアンモニウムテトラシアノボレート(Bu4NB(CN)4)を合成する方法が報告されているが、当該文献に記載の条件で追試しても上記化合物を合成することは難しく、より安定にテトラシアノボレートを含む化合物を得る方法が求められていた。
 また、イオン性化合物を上述のような電気化学デバイスに用いる場合、良好なイオン伝導性を確保し、周辺部材の腐食等を防ぐ観点から、イオン性化合物に含まれる不純なイオン成分を低減することが求められる。例えば、上記文献に記載されるシアノボレートアニオンを含む化合物を上記電気化学デバイスの電解液の電解質として用いる場合には、特に、シアン化物イオン(CN)、ハロゲン化物イオン及び金属イオンの低減が必須となる。
 しかしながら、従来採用されている方法では、フッ素を含むホウ素化合物を原料とする場合がほとんどであり、特に、シアノボレートをアニオンとする化合物の合成では、出発原料が残留したり、遊離のCNや水分が化合物中に残存することがあり、かかる場合、イオン性化合物の耐熱性が低くなる場合がある。また、電解質中に残留するこれらの不純物は、イオン伝導性能の低下や電極など周辺材料の腐食を起こし、電気化学性能を劣化させる原因となる。
 本発明は上述のような事情に着目してなされたものであって、その目的は、穏やかな条件で、また、従来法に比べて収率よく、さらには、より安価にテトラシアノボレートを含むイオン性化合物を製造する方法および不純な成分の含有量が低減されたテトラシアノボレートを含むイオン性化合物を提供することである。
 上記課題を解決した本発明のイオン性化合物とは、下記一般式(I)で表されるイオン性化合物100mol%に対して、フッ素原子を含有する不純物の含有量が3mol%以下であるところに特徴を有する。
Figure JPOXMLDOC01-appb-C000002
(式中、Ktm+は、有機カチオン[Ktbm+又は無機カチオン[Ktam+を表し、mは1~3の整数を表す。)
 本発明のイオン性化合物は、フッ素原子(F原子)を含有する不純物の含有量が極低レベルにまで低減されているので、原料に由来するF原子やF原子を有する不純物に起因するイオン性化合物の諸特性の低下が生じ難い。
 また、上記イオン性化合物は、当該イオン性化合物中のケイ素(Si)含有量が2500ppm以下であるのが好ましい。さらに、CN含有量が3000ppm以下であるのが好ましく、また、ハロゲン化物イオン含有量が500ppm以下であり、加えて、水の含有量が3000ppm以下あるのが望ましい。
 上記イオン性化合物を含んでなるイオン導電性材料は、本発明の好ましい実施態様である。
 本発明の製造方法とは、上記一般式(I)で表されるイオン性化合物の製造方法であって、シアン化物と、ホウ素化合物とを含む出発原料を反応させることを特徴とする。
 本発明の製造方法には、上記出発原料が、シアン化物としてトリメチルシリルシアニドを含み、さらに、アミン及び/又はアンモニウム塩を含む製造方法、上記シアン化物として、Ma(CN)n(Maは、Zn2+,Ga3+,Pd+,Sn2+,Hg2+,Rh2+,Cu2+およびPb+のいずれかを示し、nは1~3の整数である)を用いる製造方法、上記シアン化物として、R4NCN(Rは、Hまたは有機基)で表されるシアン化アンモニウム系化合物を用いる製造方法、および、上記シアン化物としてシアン化水素を含み、さらに、アミンを含む製造方法が含まれる。
 これらの方法によれば、上記一般式(I)で表されるイオン性化合物を穏やかな反応条件で製造することができ、または、上記イオン性化合物を収率よく得ることができる。
 本発明の製造方法は、さらに、上記出発原料を反応させて得られた粗生成物を、酸化剤と接触させる工程を含むのが好ましく、また、上記酸化剤は過酸化水素であるのが望ましい。
 本発明の製造方法によれば、従来技術と比較して、より穏やかな条件下で、収率よく、または、安価に、テトラシアノボレートイオン([B(CN)4)を有するイオン性化合物を製造することができる。したがって、本発明のイオン性化合物の工業的な製造も可能となる。
 本発明のイオン性化合物は、電位窓が広く、不純物の含有量が極低レベルにまで低減されているため、これを電解液や電気化学素子などの各種用途に使用した場合にも、周辺部材の腐食といった問題を生じることなく、安定した特性(熱的、物理的、電気化学的特性など)を発揮することができる。
実験例6-1のLSV測定結果を示す図である。 実験例6-2のLSV測定結果を示す図である。
 ≪イオン性化合物≫
 本発明のイオン性化合物は、下記一般式(I)で表されるイオン性化合物であって、当該イオン性化合物100mol%に対して、フッ素原子を含有する不純物の含有量が3mol%以下であるところに特徴を有する。
Figure JPOXMLDOC01-appb-C000003
(式(I)中[Kt]m+は、無機カチオン[Ktam+又は有機カチオン[Ktbm+を表し、mは1~3の整数を表す。)
 本発明者らは、イオン性化合物の耐熱性、電気化学特性といった特性について検討を重ねていたところ、F原子に由来する不純物の量が、イオン性化合物の特性低下に大きく関与していることを突き止め、かかる特性低下を生じ難いイオン性化合物についてさらに検討を重ねた結果、イオン性化合物100mol%に対して、F原子を含有する不純物の含有量が3mol%以下であれば、テトラシアノボレートイオンをアニオンとして有するイオン性化合物の優れた特性を十分に享受できることを見出し、本発明を完成した。
 本発明においては、F原子を含む不純物には、上記イオン性化合物の出発原料に由来する遊離のF原子や、上記イオン性化合物の合成時に副生するBFx(CN)4-x(xは1~3の整数を表す。)、また、BF3およびBF4アニオンを含む化合物等、F原子を含むものは全て包含される。これらの不純物は、目的化合物であるイオン性化合物中に含まれていないのが好ましいが、中でも、遊離のF原子およびB-F結合を有する化合物群が含まれていないのがより好ましい。特に、B-F結合を有する化合物は、本発明のイオン性化合物に含まれていないことが望ましい。B-F結合を有する化合物は、空気中の水分と反応して分解してしまうため、かかる化合物が本発明のイオン性化合物に含まれている場合には、耐熱性の低下や、さらには、B-F結合の分解時に発生したフッ化水素により周辺部材の腐食を招くといった問題が生じる虞がある。
 イオン性化合物中に、F原子や、上記F原子を含有する不純物が3mol%を超えて含まれる場合は、フッ化水素ガスが生じて各種電気化学デバイスの周辺部材に腐食が生じたり、これらの不純物に起因してイオン性化合物自体の特性(耐熱性、電気的特性)が低下することがある。したがって、本発明のイオン性化合物に含まれるF原子を含む不純物の含有量は少ないほど好ましく、イオン性化合物100mol%に対して1mol%以下であるのが好ましく、より好ましくは0.1mol%以下である。本発明のイオン性化合物中には、F原子を含む不純物が含まれない(0mol%)のが最も好ましいが、F原子を含む不純物量が0.0001mol%以上であれば、イオン性化合物の特性に対する影響は少なく、また、0.001mol%以上であっても顕著な特性の低下は見られ難い。
 本発明のイオン性化合物に含まれる不純物の含有量は、例えば、NMRのスペクトルから算出することができる。具体的には、まず、本発明のイオン性化合物の11B-NMRスペクトルを測定する。次いで、目的物であるB(CN)4のピークの積分値を100mol%とし、これをB-F結合を含む不純物ピークの積分値と比較すれば、不純物含有量を算出できる。また、同様の手法で19F-NMRスペクトルを測定すれば、遊離のF原子及びF含有化合物量を測定することもできる。尚、不純物含有量の算出方法は上記方法に限定されるものではなく、他の方法も採用可能である。例えば、イオンクロマトグラフィーによれば、F原子を含むイオン種及び遊離のF原子の定量も可能であるので、イオン性化合物の全質量からB(CN)4化合物のモル数を決定し、イオンクロマトグラフィーによりFアニオンの含有質量を求め、これをモル数に換算して算出する方法などが挙げられる。
 また、上記一般式(I)で表される本発明のイオン性化合物は、上記一般式(I)で表される化合物であって、トリメチルシリルシアニド(TMSCN)とホウ素化合物との反応により得られ、当該イオン性化合物中のケイ素(Si)含有量が2500ppm以下である高純度イオン性化合物であるのが好ましい。
 イオン性化合物中に含まれるSiは、イオン性化合物を合成する際の出発原料に由来する(後述する本発明の製造方法参照)。このような不純な成分が含まれている場合には、これを電解液などに用いた場合に、イオン伝導性を低下させる場合がある。したがって、不純な成分は可能な限り低減し、除去しておくことが望ましい。したがって、イオン性化合物中のSi含有量は1000ppm以下であるのがより好ましく、さらに好ましくは500ppm以下である。
 さらに、本発明の高純度イオン性化合物は、上記Siに加えて、シアン化物イオン(CN)含有量が低いものであるのが好ましい。好ましいシアン化物イオン含有量は3000ppm以下である。シアン化物イオンは、電極と反応し、イオン伝導性を低下させる虞がある。より好ましくは1000ppm以下であり、更に好ましくは500ppm以下である。
 また、ケイ素、シアン化物イオンに加えて、本発明の高純度イオン性化合物はハロゲン化物イオンの含有量が少ないものであるのが好ましい。なお、ここで「ハロゲン化物イオンの含有量」とは、F,Cl,BrおよびIの各ハロゲン化物イオンの濃度の総量を指す。上述のように、ハロゲン化物イオンは、電極材料と反応して、電極材料を腐食させ、また、系中に水素イオンが存在する場合には、電解液のpHを低下させて電極材料を溶解させる虞があり、いずれの場合も、電気化学デバイスの性能低下を引き起こす。
 したがって、イオン性化合物中におけるハロゲン化物イオン量は少ない程好ましく、好ましくは、イオン性化合物中のハロゲン化物イオン含有量は500ppm以下であり、より好ましくは100ppm以下であり、さらに好ましくは30ppm以下である。F,Cl,Br,Iのハロゲン化物イオンの中でも、F,Clの含有量を上述の範囲とすることが望ましく、特にClの含有量を上述の範囲とすることが好ましい。
 上記イオン成分に加えて、本発明のイオン性化合物中に含まれる水の量(水濃度)は3000ppm以下であるのが好ましい。イオン性化合物中に残留する水分は電気分解され、生成した水素イオンが上記ハロゲン化物イオンと結合し、ハロゲン化水素を形成する。なお、電解液中では、水素イオンとハロゲン化物イオンとは解離して存在するため、電解液のpHが低下する(酸性)。その結果、電解液中に生成した酸性成分により、電極材料が溶解し、電気化学デバイスの性能が低下する。したがって、イオン性化合物中に含まれる水の量は少ないほどよく、より好ましくは1000ppm以下であり、さらに好ましくは500ppm以下である。
 上記一般式(I)で表される本発明のイオン性化合物は、出発原料に起因する不純なイオンや、合成工程で不可避的に混入する不純物の含有量が少ない。したがって、本発明のイオン性化合物を各種電気化学デバイスのイオン伝導体として用いれば、イオン伝導性の低下や周辺部材の腐食が生じ難い信頼度の高い電気化学デバイスが得られる。
 なお、Si、ハロゲン化物イオン及び水分などの上記不純物含有量の測定には、従来公知の測定方法はいずれも使用可能であるが、例えば、原子吸光分析法や、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)、イオンクロマトグラフィーなど実施例に記載の方法が挙げられる。
 本発明のイオン性化合物は、上記一般式(I)に表されるように、有機又は無機カチオン[Kt]m+と、テトラシアノボレートアニオン[B(CN)4からなる化合物である。カチオン[Kt]m+としては、オニウムカチオン等の有機カチオン[Ktbm+、Li+,Na+,Mg2+,K+,Ca2+,Zn2+,Ga3+,Pd2+,Sn2+,Hg2+,Rh2+,Cu2+およびPb+等の無機カチオン[Ktam+が挙げられる。これらの中でも、[Kt]m+がオニウムカチオン、若しくはLiカチオンであるものは、有機溶媒へ容易に溶解し、非水電解液として利用できるため好ましい。
 上記オニウムカチオンとしては、下記一般式(II)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000004
 式中、Lは、C,Si,N,P,S又はOを表し、Rは、同一又は異なる有機基を示し、これらは互いに結合していてもよく、sはLに結合するRの数を表し、s=(Lの価数)+1-(Lに直接結合する二重結合の数)であり、2~4の整数である。なお、Lの価数とは、LがS,Oの場合は2であり、LがN,Pの場合は3であり、LがC,Siの場合は4となる。
 上記Rで示す「有機基」とは、水素原子、フッ素原子、又は、炭素原子を少なくとも1個有する基を意味する。上記「炭素原子を少なくとも1個有する基」は、炭素原子を少なくとも1個有してさえいればよく、また、ハロゲン原子やヘテロ原子などの他の原子や、置換基などを有していてもよい。置換基としては、例えば、アミノ基、イミノ基、アミド基、エーテル結合を有する基、チオエーテル結合を有する基、エステル基、ヒドロキシル基、アルコキシ基、カルボキシル基、カルバモイル基、シアノ基、ジスルフィド基、ニトロ基、ニトロソ基、スルホニル基などが挙げられる。
 上記一般式(II)で表されるオニウムカチオンとしては、下記一般式;
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、同一又は異なる有機基を示し、これらは2以上が互いに結合していてもよい。)で表されるものが挙げられ、好ましくはLがN,P,SまたはOであり、さらに好ましいのはLがNのオニウムカチオンである。上記オニウムカチオンは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、下記一般式(III)~(VI)で表されるオニウムカチオンが好ましいものとして挙げられる。
 (III)一般式;
Figure JPOXMLDOC01-appb-C000006
で表される14種類の複素環オニウムカチオンの内の少なくとも一種。
 上記有機基R1~R8は、一般式(II)に関して例示したものと同様のものが挙げられる。より詳しくは、R1~R8は、水素原子、フッ素原子、又は、有機基であり、有機基としては、直鎖、分岐鎖又は環状(但し、R1~R8が互いに結合して環を形成しているものを除く)の炭素数1~18の炭化水素基、あるいは炭化フッ素基であるのが好ましく、より好ましいものは炭素数1~8の炭化水素基、炭化フッ素基であり、さらに好ましいものは炭素数1~9の炭化水素基、炭化フッ素基である。また、有機基は、上記一般式(II)に関して例示した置換基や、窒素、酸素、硫黄原子などのヘテロ原子及びハロゲン原子を含んでいてもよい。
 (IV)一般式;
Figure JPOXMLDOC01-appb-C000007
で表される9種類の飽和環オニウムカチオンの内の少なくとも一種。
 上記一般式中、R1~R12は、同一若しくは異なって、有機基であり、互いに結合していてもよい。
 (V)一般式;
Figure JPOXMLDOC01-appb-C000008
で表されるR1~R4が、同一又は異なる有機基である鎖状オニウムカチオン。
 例えば、上記鎖状オニウムカチオン(V)としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラヘプチルアンモニウム、テトラヘキシルアンモニウム、テトラオクチルアンモニウム、トリエチルメチルアンモニウム、メトキシエチルジエチルメチルアンモニウム、トリメチルフェニルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリブチルアンモニウム、ベンジルトリエチルアンモニウム、ジメチルジステアリルアンモニウム、ジアリルジメチルアンモニウム、2-メトキシエトキシメチルトリメチルアンモニウムおよびテトラキス(ペンタフルオロエチル)アンモニウム等の第4級アンモニウム類、トリメチルアンモニウム、トリエチルアンモニウム、ジエチルメチルアンモニウム、ジメチルエチルアンモニウム、ジブチルメチルアンモニウム等の第3級アンモニウム類、ジメチルアンモニウム、ジエチルアンモニウム、ジブチルアンモニウム等の第2級アンモニウム類、メチルアンモニウム、エチルアンモニウム、ブチルアンモニウム、ヘキシルアンモニウム、オクチルアンモニウム第1級アンモニウム類、N-メトキシトリメチルアンモニウム、N-エトキシトリメチルアンモニウム、N-プロポキシトリメチルアンモニウムおよびNH4で表されるアンモニウム化合物等が挙げられる。
 上記(III)~(V)のオニウムカチオンの中でも、窒素原子を含むオニウムカチオンがより好ましく、さらに好ましいものとしては、4級アンモニウム、イミダゾリウムであり、特に好ましいものとしては、下記一般式;
Figure JPOXMLDOC01-appb-C000009
(式中、R1~R12は、上記と同様である。)で表される5種類のオニウムカチオンの少なくとも1種が挙げられる。
 上記例示のアンモニウムの中でも、テトラエチルアンモニウム、テトラブチルアンモニウム及びトリエチルメチルアンモニウム等の鎖状第4級アンモニウム、トリエチルアンモニウム、ジブチルメチルアンモニウム及びジメチルエチルアンモニウム等の鎖状第3級アンモニウム、1-エチル-3-メチルイミダゾリウム及び1,2,3-トリメチルイミダゾリウム等のイミダゾリウム、N,N-ジメチルピロリジニウム及びN-エチル-N-メチルピロリジニウム等のピロリジニウムは入手容易であるため特に好ましい。
 本発明のイオン性化合物は、耐熱性、電気伝導度、耐電圧性等優れた物性を有する。尚、これらの物性値は、イオン性化合物を構成するカチオンKtm+の種類によって多少の差はあるが、本発明のイオン性化合物は、後述する電位窓の測定によって、+2.0V以上の耐電圧を示す。
≪イオン性化合物の製造方法≫
 次に、本発明のイオン性化合物の製造方法について説明する。
 本発明のイオン性化合物の製造方法とは、シアン化物と、ホウ素化合物とを含む出発原料を反応させて、上記一般式(I)で表されるイオン性化合物を製造するところに特徴を有する。
 すなわち、本発明のイオン性化合物の製造方法には、特定のシアン化物Ma(CN)nとホウ素化合物とを反応させて、上記一般式(I)で表されるイオン性化合物を得る第1の製造方法、シアン化アンモニウム系化合物とホウ素化合物とを反応させる第2の製造方法、トリメチルシリルシアニド(TMSCN)と、アミン及び/又はアンモニウム塩と、ホウ素化合物とを反応させる第3の製造方法、および、シアン化水素(HCN)と、アミンと、ホウ素化合物とを反応させる第4の製造方法が含まれる。これら本発明の製造方法によれば、従来法に比べて、より穏やかな条件で、または、より効率よく、あるいは、より安価に、テトラシアノボレートを有するイオン性化合物を得ることができる。以下、これらの製造方法について順に説明する。
 [第1の製造方法]
 本発明のイオン性化合物の製造方法は、下記一般式(I)で表されるテトラシアノボレートイオンを有するイオン性化合物の製造方法であって、Ma(CN)n(Maは、Zn2+,Ga3+,Pd2+,Sn2+,Hg2+,Rh2+,Cu2+およびPb+のいずれかを示し、nは1~3の整数である)と、ホウ素化合物、を含む出発原料を反応させるところに特徴を有する。
Figure JPOXMLDOC01-appb-C000010
(式中、[Kt]m+は、有機カチオン[Ktbm+又は無機カチオン[Ktam+を表し、mは1~3の整数を表す。)
 本発明者らは、テトラシアノボレートイオン有するイオン性化合物を得るにあたって、従来、出発原料として使用されてきたシアン化カリウム(KCN)などのアルカリ金属シアン化物に替えて、特定の金属イオン(Zn2+,Ga3+,Pd2+,Sn2+,Hg2+,Rh2+,Cu2+およびPb+のいずれか)を含むシアン化物Ma(CN)nを使用することで、穏やかな反応条件で、且つ、安定に上記一般式(I)の化合物が得られることを見出した。
 本発明に係るシアン化物Ma(CN)nとしては、HOMO-2ndHOMO間のエネルギー準位が小さい、すなわち、HSAB則に基づけば軟らかい金属カチオンに分類される金属カチオンのシアン化物を用いればよい。上記特定の金属カチオンのシアン化物を使用することで、アルカリ金属シアン化物を用いる場合に比べて反応が速やかに進行するからである。上記金属カチオンが好ましい理由は明らかではないが、本発明者らは次のように考えている。
 一般に、HSAB則に基づけば、アルカリ金属イオンは、硬いカチオンに分類され、上記本発明に係るシアン化物に含まれる特定の金属は軟らかいカチオンに分類される。一方、生成物であるテトラシアノボレートアニオン(TCB)は、軟らかいアニオンに分類される。そして、軟らかい酸と塩基との組み合わせは、安定なイオン性化合物を形成し易いため、硬いカチオンであるLi+,Na+およびK+など従来用いられていたアルカリ金属シアン化物よりも、上記本発明に係るシアン化物の反応が進行し易かったものと考えられる。また、これらの金属シアン化物を出発原料として使用することで、不純物の含有量が少ないB(CN)4化合物を収率良く得ることができる。
 <シアン化物>
 上記シアン化物Ma(CN)nの中でも好ましいものは、Zn(CN)2,Ga(CN)3,Pd(CN)2,Sn(CN)2,Hg(CN)2およびCu(CN)2よりなる群から選ばれる少なくとも1種である。
 <ホウ素化合物>
 上記ホウ素化合物としては、ホウ素を含むものであれば特に限定はされない。例えば、McBXc 4(Mcは、水素原子又はアルカリ金属原子、Xcは、水素原子、水酸基若しくはハロゲン原子を表す。以下、同様。)、BXc 3、BXc 3-錯体、B(OR133(R13は、水素原子、若しくはアルキル基を示す。以下、同様。)、B(OR133-錯体、Na247、ZnO・B23およびNaBO3よりなる群から選ばれる少なくとも1種であるのが好ましい。
 McBXc 4としては、HBF4、KBF4、KBBr4、NaB(OH)4、KB(OH)4、LiB(OH)4、LiBF4、NaBH4等が挙げられ、BXc 3としては、BH3、B(OH)3、BF3、BCl3、BBr3、BI3等が挙げられ、BXc 3-錯体としては、ジエチルエーテル、トリプロピルエーテル、トリブチルエーテル、テトラヒドロフラン等のエーテル類、アンモニア、メチルアミン、エチルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリフェニルアミン、グアニジン、アニリン、モルホリン、ピロリジン、メチルピロリジン等のアミン類と、前記BXc 3との錯体、B(OR133としては、ホウ酸、炭素数1~10のアルコキシ基を有するホウ素化合物等が挙げられる。これらの中でも、反応性が比較的高いNaBH4、BH3、BF3、BCl3、BBr3、B(OMe)3、B(OEt)3、Na247、B(OH)3が好ましく、BF3、BCl3、BBr3等、Xcがハロゲン原子であるBXc 3や、B(OMe)3、B(OEt)3等、炭素数1~4のアルコキシ基を有するB(OR133がより好ましく、最も好ましいものとしては、BCl3、B(OMe)3およびB(OEt)3が挙げられる。上記ホウ素化合物は、単独で使用してもよく、また、2種以上を組み合わせて用いてもよい。なお、Fに由来する不純物量を低減する観点からは、上記ホウ素化合物の内、F原子を含有しないものを採用することが推奨される。
 第1の製造方法では、上記シアン化物Ma(CN)nとホウ素化合物とを反応させる際、さらに、一般式:KtXb([Kt]m+は、m価のカチオン、[Xbm-は、m価のアニオンを示し、mは1~3の整数である。以下、同様。)で表されるイオン性物質を出発原料として用いるのが好ましい。
 上記イオン性物質KtXbを構成するカチオン[Kt]m+としては、オニウムカチオン等の有機カチオン[Ktbm+、Li+,Na+,Ca2+,K+,Zn2+,Ga3+,Pd2+,Sn2+,Hg2+,Rh2+,Cu2+およびPb+等の無機カチオン[Ktm+が挙げられる。中でも、上述した一般式(III)~(V)のオニウムカチオンは、本発明に係るイオン性物質を構成する[Ktbm+として特に好ましい。[Kt]m+がオニウムカチオンであるイオン性物質Ktbbを出発原料として用いる場合には、1段階の反応で目的生成物である[B(CN)4のオニウムカチオン塩が得られるといった利点や、Ma(CN)nとイオン性物質Ktbb間の相互作用により、シアノ化反応が生じ易くなるといった利点がある。
 上記出発原料の配合割合は、1:1~100:1(シアン化物Ma(CN)n:ホウ素化合物、モル比)とするのが好ましい。より好ましくは1:1~50:1であり、さらに好ましくは1:1~20:1であり、さらに一層好ましくは1:1~10:1である。シアン化物Ma(CN)nの配合量が少なすぎると、目的のイオン性化合物の生成量が少なくなったり、副生物(例えば、トリシアノボレート、ジシアノボレート等)が生成する場合があり、一方多すぎると、CN由来の不純物量が増加し、目的生成物の精製が困難になる傾向がある。
 上記出発原料にイオン性物質KtXbが含まれる場合、当該イオン性物質の配合割合は、ホウ素化合物に対して、100:1~1:100(イオン性物質:ホウ素化合物、モル比)とするのが好ましい。より好ましくは50:1~1:50であり、さらに好ましくは20:1~1:20である。イオン性物質の配合量が少なすぎる場合は、所望のイオン性化合物の生成量が少なくなり、一方多すぎる場合は、イオン性物質に由来する不純物量が増え、目的生成物の精製が困難になることがある。
 本発明のイオン性化合物の製造方法では、反応を均一に進行させるため、反応溶媒を用いるのが好ましい。反応溶媒としては、上記出発原料が溶解するものであれば特に限定されず、水又は有機溶媒が用いられる。有機溶媒としては、トルエン、キシレン、ベンゼン、へキサン等の炭化水素系溶媒、クロロホルム、ジクロロメタン等の塩素系溶媒、ジエチルエーテル、シクロヘキシルメチルエーテル、ジブチルエーテル、ジメトキシエタン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、2-ブタノン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、2-プロパノール、ブタノール等のアルコール系溶媒、アセトニトリル、テトラヒドロフラン、γ-ブチロラクトン、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。上記反応溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 上記出発原料を反応させる際の条件は特に限定されず、反応の進行状態に応じて適宜調節すればよいが、例えば、反応温度は、0℃~200℃とするのが好ましい。より好ましくは20℃~150℃であり、さらに好ましくは50℃~130℃である。反応時間は0.2時間~200時間とするのが好ましく、より好ましくは0.5時間~150時間であり、さらに好ましくは1時間~100時間である。
 第1の製造方法において、上記金属シアン化物とホウ素化合物とを出発原料として用いた場合には、一般式:Kta[B(CN)4m([Ktam+は、上記シアン化物の金属カチオン[Man+)で表されるイオン性化合物が生成する。また、上述のように、出発原料がイオン性物質KtXb([Kt]m+は、オニウムカチオン[Ktbm+、または、上記無機カチオン[Ktam+を表す)を含む場合、あるいは、生成したイオン性化合物Kta[B(CN)4m([Ktam+は、シアン化物の金属カチオン[Man+)を、イオン性物質KtXbと反応させてカチオン交換した場合には、所望のオニウムカチオン、または、無機カチオンを有するイオン性化合物Kt[B(CN)4mが得られる。上記イオン性物質とのカチオン交換反応については、後述する。
 したがって、本発明第1の製造方法には、上記シアン化物Ma(CN)nとホウ素化合物とを反応させて、本発明に係るイオン性化合物Kta[B(CN)4m([Ktam+は、上記シアン化物の金属カチオン[Man+)を製造する態様;上記金属シアン化物Ma(CN)nとホウ素化合物との反応によりKta[B(CN)4mを得た後、これをイオン性物質KtXbと反応させてカチオン交換反応を行い本発明に係るイオン性化合物Kt[B(CN)4m([Kt]m+は、オニウムカチオン[Ktbm+、または、無機カチオン[Ktam+)を製造する態様;上記金属シアン化物Ma(CN)n、ホウ素化合物およびイオン性物質KtXbを反応させて、1段階で本発明に係るイオン性化合物Kt[B(CN)4m([Kt]m+は、オニウムカチオン[Ktbm+、または、上記無機カチオン[Ktam+)を製造する態様:の3態様が含まれる。よって、第1の製造方法により得られる本発明のイオン性化合物Ktm+[{B(CN)4mには、[Kt]m+がオニウムカチオン[Ktbm+の場合と、無機カチオン[Ktam+の場合の双方が含まれる。
 上記シアン化物Ma(CN)nをCN試薬として用いる第1の本発明の製造方法によれば、アルカリ金属シアン化物(KCN)では安定して目的物が得られなかった反応条件でも、テトラシアノボレートイオン([B(CN)4)を有するイオン性化合物を得ることができる。
 [第2の製造方法]
 次に、第2の製造方法について説明する。本発明の第2のイオン性化合物の製造方法とは、下記一般式(VI)で表されるシアン化アンモニウム系化合物と、ホウ素化合物とを反応させて下記一般式(I)で表されるイオン性化合物を得るところに特徴を有するものである。
Figure JPOXMLDOC01-appb-C000011
(式中、N-R間の結合は、飽和結合および/または不飽和結合であって、tはNに結合するRの個数を表し、t=4-(Nに結合する二重結合の数)で表され、3~4の整数であり、Rは、互いに独立して、水素原子、若しくは有機基を表し、また、これらの2以上が結合していてもよい)
Figure JPOXMLDOC01-appb-C000012
(式中、[Kt]m+は、有機カチオン[Ktbm+又は無機カチオン[Ktam+を表し、mは1~3の整数を表す)
 本発明者らは、テトラシアノボレートイオンを有するイオン性化合物を合成するにあたって、シアン(CN)源として、従来用いられていたシアン化カリウムなどのアルカリ金属シアン化物に替えて、シアン化アンモニウム系化合物を用いることで、より低い反応温度で、収率よく、上記一般式(I)で表されるイオン性化合物が得られることを見出した。
 シアン源としてシアン化アンモニウム系化合物を使用することで、従来法に比べて穏やかな条件で反応が進行し、収率よく生成物が得られる理由について、本発明者らは次のように考えている。アルカリ金属シアン化物においては、アルカリ金属イオンとシアノ基(CN)との間の結合が強い。一方、アンモニウム系シアン化物は、正電荷を帯びたN原子に立体障害があるため、シアン化物イオンがN原子に近寄り難く、CNとN原子間の結合が比較的弱い。なお、テトラシアノボレートを生成する反応においては、反応系内で遊離のシアン化物イオンを発生するとホウ素化合物との結合が形成され易く、その結果、目的のTCBが効率よく生成するものと推定される。したがって、N-CN間の結合が弱いアンモニウム系シアン化物を用いる本発明法においては、穏やかな反応条件下であっても速やかにシアン化物イオンが放出されて、反応が進行し、TCBが生成するものと考えられる。
 したがって、本発明、第2の製造方法により得られるイオン性化合物Kt[B(CN)4mを構成する有機カチオン[Kt]m+には、シアン化アンモニウム系化合物を構成するカチオンに由来するものである場合;ホウ素化合物に含まれるカチオンに由来するものである場合;さらに、後述するカチオン交換反応で用いるイオン性物質を構成するカチオンに由来するものである場合;が含まれる。
 <シアン化アンモニウム系化合物>
 まず、上記一般式(VI)で表されるシアン化アンモニウム系化合物について説明する。
 第2の製造方法では、シアン化アンモニウム系化合物[N-(R)t]CNを出発原料として用いる。シアン化アンモニウム系化合物をTCB合成反応のCN源として用いることで、アルカリ金属シアン化物を出発原料とする場合には目的物を得られなかった反応条件下でも、テトラシアノボレート[B(CN)4を有するイオン性化合物を得ることができる。
 上記一般式(VI)のシアン化アンモニウム系化合物を構成するアンモニウム[N+-(R)t]において、N-R間の結合は、飽和結合および/または不飽和結合であり、tはNに結合するRの個数を表し、t=4-(Nに直接結合する二重結合の数)で表され、3~4の整数を示し、Rは、互いに独立して水素原子若しくは有機基を示し、さらに、2以上のRは結合していてもよい。
 尚、上記「有機基」とは、上記一般式(II)に関して例示したものと同様のものが挙げられる。
 また、上記Rは、有機基Rの主骨格を構成する炭素原子を介してアンモニウムの中心元素であるNと結合していてもよく、また、炭素以外の他の原子や上述の置換基を介してNと結合していても良い。さらに、2以上の有機基Rが結合している場合、当該結合は、有機基Rの主骨格を構成する炭素原子やその他の原子間における結合であってもよく、また、当該炭素原子と有機基Rが有する置換基、あるいは2以上のRのそれぞれが有する置換基間における結合であってもよい。
 上記有機基Rを有するアンモニウム[N+-(R)t]としては、下記一般式(VII)~(IX)で表される構造を有するものが好ましいものとして挙げられる。
 (VII)t=3であり、3つのRのうちいずれか2つのRが結合して環を形成している、下記一般式で表される9種類のアンモニウム系化合物誘導体;
Figure JPOXMLDOC01-appb-C000013
 (VIII)t=4であり、4つのRのうちいずれか2つのRが結合して環を形成している、下記一般式で表される4種類のアンモニウム系化合物誘導体;
Figure JPOXMLDOC01-appb-C000014
 上記(VII)~(VIII)に示す一般式で表される誘導体において、R1~R12は、互いに独立して、水素原子または有機基を示し、2以上のRが結合していてもよい。
 (IX)t=4であり、4つのRが互いに結合していない、下記一般式で表されるアルキルアンモニウム誘導体。
Figure JPOXMLDOC01-appb-C000015
 上記アルキルアンモニウム誘導体を構成するR1~R4は、互いに独立して、水素原子若しくは有機基である。
 例えば、上記(IV)のアルキルアンモニウム誘導体としては、上記鎖状オニウムカチオン(V)として例示したアンモニウム類およびアンモニウム化合物が挙げられる。
 上記(VII)~(IX)のアンモニウムの中でも、入手のし易さからより好ましいアンモニウムとして、下記6種類の一般式で表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、R1~R12は、上記と同様である)
 上記R1~R12は、水素原子、フッ素原子、又は、有機基であり、有機基としては、上記一般式(III)に関して例示したものと同様のものが挙げられる。
 上記例示のアンモニウムを有するシアン化アンモニウム系化合物の中でも、テトラブチルアンモニウムシアニド、テトラエチルアンモニウムシアニド及びトリエチルメチルアンモニウムシアニド等の鎖状第4級アンモニウムとシアン化物イオンとの塩、トリエチルアンモニウムシアニド、ジブチルメチルアンモニウムシアニド及びジメチルエチルアンモニウムシアニド等の鎖状第3級アンモニウムとシアン化物イオンとの塩、1-エチル-3-エチルイミダゾリウムシアニド及び1,2,3-トリメチルイミダゾリウムシアニド等のイミダゾリウムとシアン化物イオンとの塩、N,N-ジメチルピロリジニウムシアニド及びN-エチル-N-メチルピロリジニウムシアニド等のピロリジニウムとシアン化物イオンとの塩等は入手容易であるため特に好ましい。
 シアン化アンモニウム系化合物は、単独のアンモニウムを含むものであってもよく、また、2種以上の異なるアンモニウムを有するシアン化アンモニウム系化合物を混合して用いてもよい。
 上記シアン化アンモニウム系化合物は、下記一般式(X)で表される化合物と、金属シアン化物Lp+[(CN)n(Lp+は金属カチオンを表し、pは1~4、好ましくは1または2である)との反応により合成することができる。
Figure JPOXMLDOC01-appb-C000017
(式中、[N-(R)]は、一般式(VI)と同様であり、Yは、ハロゲン化物イオン、BF4 、PF6 、SO4 2-、HSO4 、ClO4 、NO3 またはR13(R13は水素原子又は有機基)を表し、lは、1または2を表す。なお、有機基R13はR1~R12と同様である。)
 上記一般式(X)において、[N-(R)]は、上記シアン化アンモニウム系化合物のアンモニウムカチオンに相当するものであり、具体的には、例えば、テトラブチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリエチルアンモニウム、ジブチルアンモニウム、ジメチルアンモニウム、1-エチル-3-メチルイミダゾリウム、N,N-ジメチルピロリジニウム、N,N-メチルブチルピロリジニウム、アンモニウム(NH4 +)、モルホリウム等が挙げられる。具体的な化合物(X)としては、テトラブチルアンモニウムスルホキシド、テトラエチルアンモニウムクロリド、トリエチルアンモニウムクロリドおよび1-エチル-3-メチルイミダゾリウムブロミド等が好ましいものとして挙げられる。
 上記金属シアン化物Lp+[(CN)nにおいて、Lp+は、アルカリ金属イオン、アルカリ土類金属イオン、Zn2+、Cu+、Cu2+、Pd2+、Au+、Ag+、Al3+、Ti4+、Fe3+およびGa3+等を表し、より好ましくはアルカリ金属イオン、アルカリ土類金属イオン、Zn2+、Cu+、Cu2+およびAg+である。具体的な金属シアン化物としては、例えば、KCN,LiCN,NaCN,Mg(CN)2,Ca(CN)2,Zn(CN)2,CuCN,Cu(CN)2等が挙げられる。
 上記化合物(X)と金属シアン化物の配合割合は、40:1~1:40(化合物(X):金属シアン化物、モル比)とするのが好ましく、より好ましくは20:1~1:20であり、さらに好ましくは10:1~1:10である。
 上記反応時の条件は特に限定されず、例えば反応温度は0℃~150℃とするのが好ましく、より好ましくは20℃~100℃であり、反応時間は0.01時間~20時間とするのが好ましく、より好ましくは0.05時間~5時間である。また、反応溶媒は使用してもしなくても良いが、例えば、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジクロロメタン、クロロホルム、四塩化炭素、酢酸エチル、酢酸ブチル、アセトン、2-ブタノン、メチルイソブチルケトン、アセトニトリル、ベンゾニトリル、ジメトキシエタン及び水が好ましい反応溶媒として例示できる。これらの反応溶媒は、単独で用いても、また、2種以上を組み合わせて用いてもよい。なお、2種以上の反応溶媒を使用することは上記反応の好ましい条件の一つである。
 <ホウ素化合物>
 本発明の第2の製造方法では、上記シアン化アンモニウム系化合物とホウ素化合物とを含む出発原料を反応させることで、上記一般式(I)で表されるイオン性化合物を合成する。上記ホウ素化合物としては、ホウ素を含む化合物であれば特に限定はされず、上記第1の製造方法と同様のものが使用できる。
 上記出発原料の配合割合は、50:1~4:1(シアン化アンモニウム系化合物:ホウ素化合物、モル比)とするのが好ましい。より好ましくは20:1~4:1であり、さらに好ましくは10:1~4:1である。シアン化アンモニウム系化合物の配合量が少なすぎると、目的のイオン性化合物の生成量が少なくなったり、副生物(例えば、トリシアノボレート、ジシアノボレート等)が生成する場合があり、一方多すぎると、CN由来の不純物量が増加し、目的生成物の精製が困難になる傾向がある。
 本発明のイオン性化合物の製造方法では、反応を均一に進行させるため、反応溶媒を用いるのが好ましい。反応溶媒としては、上記出発原料が溶解するものであれば特に限定されず、水又は有機溶媒が用いられる。有機溶媒としては、上記第1の製造方法と同じものが使用できる。中でも、炭化水素系溶媒、エーテル系溶媒およびエステル系溶媒が好ましい。上記反応溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 上記出発原料を反応させる際の条件は特に限定されず、反応の進行状態に応じて適宜調節すればよいが、例えば、反応温度は、30℃~200℃とするのが好ましい。より好ましくは50℃~170℃であり、さらに好ましくは80℃~150℃である。反応時間は0.2時間~200時間とするのが好ましく、より好ましくは0.5時間~150時間であり、さらに好ましくは1時間~100時間である。
 上記シアン化アンモニウム系化合物をCN試薬として用いる本発明第2の製造方法によれば、アルカリ金属シアン化物では目的物が得られなかった200℃以下の反応条件でも、テトラシアノボレートイオン([B(CN)4)を有するイオン性化合物を得ることができる。
 [第3の製造方法]
 本発明のイオン性化合物の第3の製造方法とは、トリメチルシリルシアニド(TMSCN)と、アミン及び/又はアンモニウム塩と、ホウ素化合物とを反応させて下記一般式(I)で表されるイオン性化合物を得るところに特徴を有するものである。
Figure JPOXMLDOC01-appb-C000018
(式中、[Kt]m+は、有機カチオン[Ktbm+又は無機カチオン[Ktam+を表し、mは1~3の整数を表す。)
 本発明者らは、テトラシアノボレートイオンを有するイオン性化合物を合成するにあたって、シアン(CN)源として、従来用いられていたシアン化カリウムなどのアルカリ金属シアン化物に代えて、トリメチルシリルシアニドを用い、さらに、アミン及び/又はアンモニウム塩の存在下でホウ素化合物と反応させることで、上記一般式(I)で表されるイオン性化合物が収率よく得られることを見出した。
 このように、アミン及び/又はアンモニウム塩の存在下で、トリメチルシリルシアニドとホウ素化合物とを反応させることで、従来法に比べて高収率で生成物が得られる理由について、本発明者らは次のように考えている。
 テトラシアノボレートを生成する反応においては、反応系内で遊離のシアン化物イオンを発生する方がホウ素化合物との結合を形成し易く、目的のTCBを生成し易いと推定される。そこで、アルカリ金属イオン又はトリメチルシランと、シアン化物イオンとの結合状態について検討すると、アルカリ金属シアン化物においては、アルカリ金属イオンとシアノ基(CN)との間に、これらの結合を邪魔するような嵩高い置換基は存在しておらず、強い結合が形成されていると考えられる。一方、トリメチルシリルシアニドでは、正電荷を帯びたSi原子にメチル基が結合しており、立体障害があるため、シアン化物イオンがSi原子に近寄り難く、CNとSi原子間の結合が比較的弱いと考えられる。したがって、Si-CN間の結合が弱いトリメチルシリルシアニドを用いる本発明法においては、速やかにシアン化物イオンが放出されて反応が進行し、TCBが生成したものと考えられる。
 なお、トリメチルシリルカチオンとTCBからなるイオン性化合物は、非常に不安定で分解し易い。しかしながら、本発明では、トリメチルシリルカチオンが速やかにアンモニウムカチオンと交換されるため、TCBを含むイオン性化合物が安定に得られるものと考えられる。また、詳細な理由は不明だが、アミンを用いた場合、アミンが、出発原料や中間生成物から生じたプロトンを捕捉し、系内にアンモニウム化合物を生成していると考えられる。その結果、アンモニウム塩を用いた場合と同様、安定なTCBを含むイオン性化合物が得られると推測している。このような理由から、アミン及び/又はアンモニウム塩の存在下で、上記反応を行うことで、TCBの生成反応が速やかに進行し、イオン性化合物が生成するものと考えている。加えて、本発明法では、アミン及び/又はアンモニウム塩の存在下で上記反応を行うため、一段階で、アンモニウムをカチオンとするイオン性化合物を得ることができるといった効果も有する。
 <トリメチルシリルシアニド>
 まず、出発原料であるトリメチルシリルシアニドから説明する。
 第3の製造方法では、出発原料としてトリメチルシリルシアニドを用いる。トリメチルシリルシアニドをTCB合成反応のCN源として用いることで、アルカリ金属シアン化物を出発原料とする場合には目的物が得られ難かった反応条件下でも、テトラシアノボレート[B(CN)4を有するイオン性化合物を得ることができる。
 トリメチルシリルシアニドは、市販のものを用いてもよく、また、公知の方法で合成したものを用いてもよい。TMSCNを合成する方法は特に限定されないが、例えば、トリメチルシリル基(TMS基)を有する化合物とシアン化水素(HCN)とを含む出発原料とする方法は、より安価にTMSCNを合成できるため好ましい。
 上記TMS基を有する化合物としては、TMSX1(X1は、OR、ハロゲン原子または水酸基)やヘキサメチルジシラザン(TMS-NH-TMS)などが挙げられる。具体的には、トリエチルアミン等のアミンの存在下で、TMSX1(X1はハロゲン原子)とシアン化水素とを反応させる方法(下記(XI-1)式参照、Stec, W. J.等、Synthesis. 1978:154.参照)や、ヘキサメチルジシラザンとシアン化水素とを反応させる方法等が採用できる(下記(XI-2)式参照)。
TMSX1+HCN+Et3N→TMSCN+Et3NHX1   (XI-1)
TMS-NH-TMS+2HCN→2TMSCN+NH3   (XI-2)
 また、上記ヘキサメチルジシラザンはアミンとしても働き得るため、ヘキサメチルジシラザンとトリメチルシリル基を有する化合物とを同時に用いてもよい(下記(XI-3)式参照)。これにより、副生するアンモニアが系内で捕捉され、臭気の問題が抑制されるので好ましい。
TMSX1+[TMS-NH-TMS]+3HCN→3TMSCN+NH41  (XI-3)
 原料の配合割合は、トリメチルシリル基とシアン化水素(HCN)とが、20:1~1:20(モル比)となるようにするのが好ましく、より好ましくは10:1~1:10であり、さらに好ましくは5:1~1:5である。すなわち、ヘキサメチルジシラザンを用いる場合、あるいは、ヘキサメチルジシラザンとトリメチルシリル基を有する化合物とを併用する場合は、原料に含まれるトリメチルシリル基の合計量と、シアン化水素の配合量とが、上記範囲となるようにすればよい。反応温度は-20℃~100℃であるのが好ましく、より好ましくは0℃~50℃であり、反応時間は0.5時間~100時間、より好ましくは1時間~50時間である。
 なお、第3の製造方法においては、副生成物としてトリメチルシリル基を有する化合物が生成する(例えば、TMSX1、TMS-O-TMS等。下記式(XI-4)参照)。
4TMSCN+BX2 3+R4NX3→R4N[TCB]+3TMSX2+TMSX3 (XI-4)
(X2、X3は、OR、ハロゲン原子または水酸基を表す)
 そこで、第3の製造方法では、この副生するトリメチルシリル基を有する化合物TMSX1をHCNと反応させて再生したTMSCNを出発原料として利用してもよい。TMSCNは高価であるため、反応副生物であるTMSX1をリサイクル利用することで、イオン性化合物の製造コストが抑えられるからである。
 <ホウ素化合物>
 本発明の第3の製造方法では、上記TMSCNと、アミン及び/又はアンモニウム塩と、ホウ素化合物とを含む出発原料を反応させることにより、上記一般式(I)で表されるイオン性化合物を合成する。上記ホウ素化合物としては、ホウ素を含む化合物であれば特に限定はされず、上記第1の製造方法と同様のものが使用できる。
 上記出発原料の配合割合は、3:1~80:1(TMSCN:ホウ素化合物、モル比)とするのが好ましい。より好ましくは4:1~40:1であり、さらに好ましくは4:1~20:1である。TMSCNの配合量が少なすぎると、目的のイオン性化合物の生成量が少なくなったり、副生物(例えば、トリシアノボレート、ジシアノボレート等)が生成する場合があり、一方多すぎると、CN由来の不純物量が増加し、目的生成物の精製が困難になる傾向がある。
 <アミン及び/又はアンモニウム塩>
 本発明において上記TMSCNとホウ素化合物との反応は、アミン及び/又はアンモニウム塩の存在下で行う。アミンは反応系内でアンモニウム塩となり、生成したアンモニウム塩が、反応系内で別途生成しているトリメチルシリルをカチオンとするTCB化合物のトリメチルシリルカチオンと交換することで、TCBを含む安定なイオン性化合物を収率よく得ることができる。また、アミン及び/又はアンモニウム塩を用いるため、カチオン交換反応を行うことなく、一段階でアンモニウムをカチオン成分とするイオン性化合物を得ることができる。
 本発明で使用可能なアミンとしては、下記一般式(XII)で表されるアミンが好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記一般式(XII)において、N-R間の結合は、飽和結合および/または不飽和結合であって、uはNに結合するRの個数を表し、u=3-(Nに結合する二重結合の数)で表され、2または3であり、Rは、互いに独立して、水素原子、フッ素原子、若しくは有機基を表し、Rは2以上が結合して環を形成していてもよい。なお、上記「有機基」とは、上記一般式(II)に関して例示したものと同様のものが挙げられる。
 上記一般式(XII)で表されるアミンとしては、2以上のRが結合した飽和又は不飽和環状構造を有するアミン化合物(XIII)、(XIV)と、Rが鎖状のアミン化合物(XV)が挙げられる。
 (XIII)上記一般式(XII)において、uが3であり、2以上のRが結合した飽和又は不飽和環状構造を有するアミン化合物;
Figure JPOXMLDOC01-appb-C000020
 上記一般式(XIII-1)~(XIII-3)中、R1~R3は、水素原子、フッ素原子、または、有機基であり、有機基としては、上記一般式(III)に関して例示したものと同様のものが挙げられる。
 上記一般式(XIII-1)~(XIII-3)で表される具体的な化合物としては、ピロール、ピロリジン、ピペリジン、モルホリン等の一般式(XIII-1)で表される化合物、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等の一般式(XIII-2)で表される化合物、ヘキサメチレンテトラミン等の一般式(XIII-3)で表される化合物、およびこれらの誘導体等が挙げられる。
 (XIV)上記一般式(XII)において、uが2であり、2つのRが結合した不飽和環状構造を有するアミン化合物;
Figure JPOXMLDOC01-appb-C000021
 (上記一般式(XIV)中、R1~R2は、化合物(XIII)と同様。)
 上記一般式(XIV)で表される具体的な化合物としては、イミダゾール、イミダゾリン、ピラゾール、トリアゾール、ピロリン、ジアザビシクロノネン(DBN)、ジアザビシクロウンデセン(DBU)等のアミジン骨格を有する化合物とその誘導体、ピリジン、ピリダジン、ピリミジン、ピラジンおよびこれらの誘導体等が挙げられる。
 (XV)上記一般式(XII)において、uが2または3であり、R同士が結合していない、下記一般式で表されるアミン化合物;
Figure JPOXMLDOC01-appb-C000022
 (上記一般式(XV)中、R1~R3は、化合物(VIII)と同様)
 uが3である上記一般式(XV-1)で表されるアミン化合物としては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、ジエチルメチルアミン、ジブチルメチルアミン、ジヘキシルメチルアミン、ジプロピルアミン等のトリアルキルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジヘキシルアミン等のジアルキルアミン、メチルアミン、エチルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、オクチルアミン等のモノアルキルアミンが挙げられる。nが2であり、上記一般式(XV-2)で表される化合物としては、グアニジン等が挙げられる。
 上記一般式(VIII)~(XV)で表されるアミンの中でも好ましいものとして、トリエチルアミン、トリブチルアミン、ブチルジメチルアミン、ジエチルアミン、ジブチルアミン、ブチルアミン、ヘキシルアミン、オクチルアミンおよびグアニジン等の鎖状アミン、ピペリジン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、イミダゾリン、ジアザビシクロノネン(DBN)およびジアザビシクロウンデセン(DBU)等の環状アミン、ピリジン、イミダゾール、メチルイミダゾールおよびピラジン等の芳香族アミンが挙げられる。これらの中でも、トリエチルアミン、ジブチルアミン等の鎖状アミンは、塩基性が高く、安価であるため好ましい。
 一方、アンモニウム塩としては、上記一般式(VII)~(IX)で表されるアンモニウムカチオンを有するアンモニウム塩を利用できるが、中でも、4級アンモニウムをカチオンとするものが好ましく、具体的には、カチオンとして下記一般式(XVII-1)~(XVII-5)で表される化合物よりなる群から選ばれる1種以上を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式中Rは、互いに独立して、水素原子、フッ素原子、又は、有機基を示す。なお、上記一般式中Rで示される有機基とは、前記一般式(II)に関して例示したものと同様のものが挙げられる。
 具体的なアンモニウムカチオンとしては、アンモニウム、トリエチルメチルアンモニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、ジアザビシクロオクタンのプロトン付加体、イミダゾリウム、メチルイミダゾリウム、エチルメチルイミダゾリウム、ピリジニウム、メチルピリジニウム等が挙げられ、これらの中でもトリエチルメチルアンモニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、ジアザビシクロオクタンのプロトン付加体、エチルメチルイミダゾリウムが好ましく、トリエチルメチルアンモニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、エチルメチルイミダゾリウムがより好ましい。
 上記アンモニウムカチオンと塩を構成するアニオンとしては、ハロゲン化物イオン、シアン化物イオン(CN)、水酸化物イオン(OH)、シアン酸イオン(OCN)、チオシアン酸イオン(SCN)、アルコキシイオン(RO)、硫酸イオン、硝酸イオン、酢酸イオン、炭酸イオン、過塩素酸イオン、アルキル硫酸イオン、アルキル炭酸イオン等が挙げられる。これらの中でも、ハロゲン化物イオンが好適であり、ハロゲン化物イオンの中でも、ClまたはBrが特に好ましい。
 好ましいアンモニウム塩としては、上記アンモニウムカチオンと上述のアニオンとの組み合わせからなるものが挙げられるが、特に好ましいものとしては、テトラブチルアンモニウムブロミド、トリエチルメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、エチルメチルイミダゾリウムクロリド、アンモニウムメトキシド、ピリジニウムヒドロキシド、テトラエチルアンモニウムシアナートが挙げられる。
 上記アミン及び/又はアンモニウム塩の使用量は、ホウ素化合物に対して、0.1:1~10:1(ホウ素化合物:アミン及び/又はアンモニウム塩、モル比)とするのが好ましい。より好ましくは0.2:1~5:1であり、さらに好ましくは0.5:1~2:1である。アミン及び/又はアンモニウム塩の配合量が少なすぎると、副生成物の除去が不十分となったり、カチオン量が不足して効率よく目的物を生成できない場合があり、一方、多すぎると、アミンまたはアンモニウム塩が不純物として残存する傾向がある。
 本発明のイオン性化合物の製造方法では、反応を均一に進行させるため、反応溶媒を用いるのが好ましい。反応溶媒としては、上記出発原料が溶解するものであれば特に限定されず、水又は有機溶媒が用いられる。有機溶媒としては、上記第1の製造方法と同じものが使用できる。もちろん、これらの反応溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 上記出発原料を反応させる際の条件は特に限定されず、反応の進行状態に応じて適宜調節すればよいが、例えば、反応温度は0℃~200℃とするのが好ましい。より好ましくは30℃~170℃であり、さらに好ましくは50℃~150℃である。反応時間は0.2時間~200時間とするのが好ましく、より好ましくは0.5時間~150時間であり、さらに好ましくは1時間~100時間である。
 上記TMSCN、アミン及び/又はアンモニウム塩及びホウ素化合物を出発原料とする本発明第3の製造方法によれば、CN源としてアルカリ金属シアン化物を用いる場合や、TMSCNとアルカリ金属を含むホウ素化合物とを出発原料とする場合に比べて、一層高い収率でテトラシアノボレートイオン([B(CN)4)を有するイオン性化合物を得ることができる。
 本発明第3の製造方法により得られるイオン性化合物は、上記一般式(I)の構造を有するものであって、カチオン[Kt]m+として有機カチオン又は無機カチオン、アニオンとして[B(CN)4を有する。上記カチオン[Kt]m+は、ホウ素化合物に由来するものであっても(例えば、アルカリ金属イオン等)、アンモニウム塩に由来するものであってもよく(例えば、上記一般式(VII)~(IX)のいずれかのアンモニウムカチオン)、また、これらとは異なる有機カチオンあるいは無機カチオンを有するものであってもよい。
 [第4の製造方法]
 次に、第4の製造方法について説明する。本発明のイオン性化合物の第4の製造方法とは、シアン化水素と、アミンと、ホウ素化合物とを反応させて下記一般式(I)で表されるイオン性化合物を得るところに特徴を有するものである。
Figure JPOXMLDOC01-appb-C000024
(式中、[Kt]m+は、有機カチオン[Ktbm+又は無機カチオン[Ktam+を表し、mは1~3の整数を表す)
 本発明者らは、テトラシアノボレートイオンを有するイオン性化合物を合成するにあたって、シアン(CN)源として、従来用いられていたシアン化カリウムなどのアルカリ金属シアン化物やトリメチルシリルシアニドに代えて、シアン化水素(HCN)を用いることで、安価に、上記一般式(I)で表されるイオン性化合物が得られることを見出した。
 なお、シアン化水素、アミンおよびホウ素化合物を使用することで、速やかにテトラシアノボレートを含むイオン性化合物が得られる理由について、明確に把握しているわけではないが、本発明者らは次のように考えている。反応系内において、まず、出発原料であるシアン化水素の水素原子がアミンの窒素の非共有電子対に配位してアンモニウム錯体が形成される。次いで、このアンモニウム錯体とホウ素化合物とが反応し、その結果、TCBを含むイオン性化合物が生成するものと考えている。すなわち、シアン化水素とアミンとから形成される錯体では、従来シアン源として用いられていたアルカリ金属シアン化物に比べて、N-CN間の結合が弱い。したがって、シアン化水素とアミンとを出発原料として用いれば、反応系内に遊離のシアン化物イオンが生成し易く、その結果、速やかにTCBを含むイオン性化合物が生成するものと考えられる。
 なお、本発明法により得られるイオン性化合物Kt[B(CN)4mを構成する有機カチオン[Kt]m+には、ホウ素化合物に含まれるカチオンに由来するものである場合、シアン化水素とアミンから生成するアンモニウムに由来するものである場合、さらに、後述するカチオン交換反応で用いるイオン性物質を構成するカチオンに由来するものである場合が含まれる。
 <シアン化水素>
 上述のように、本発明第4の製造方法では、シアン源としてシアン化水素を使用する。シアン化水素は、気体であっても、また、液体であってもよく、さらに、シアン化水素を水または有機溶媒に溶解した溶液として用いることもできる。なお、取り扱い性のよさからは液体又は溶液状のシアン化水素を用いるのが好ましい。
 <アミン>
 次に、アミンについて説明する。第4の製造方法では、アミンを出発原料として用いる。本発明で使用可能なアミンとしては、上記一般式(XII)で表されるアミンが好ましく、具体的なアミンとしては、上記第3の製造方法で用いるものと同様のものが挙げられる。
 <ホウ素化合物>
 第4の製造方法では、上記シアン化水素と、アミンと、ホウ素化合物とを含む出発原料を反応させることで、上記一般式(I)で表されるイオン性化合物を合成する。上記ホウ素化合物としては、ホウ素を含む化合物であれば特に限定はされず、上記第1の製造方法と同様のものが使用できる。
 第4の製造方法においては、上記シアン化水素と、アミンと、ホウ素化合物とを反応させることにより、上記一般式(I)のイオン性化合物を製造する。上記出発原料の混合態様は特に限定されず、シアン化水素と、アミンと、ホウ素化合物とを反応容器に仕込む態様;予め、シアン化水素とアミンとを反応容器に仕込んだ後、ホウ素化合物を反応系内に添加する態様のいずれも採用可能である。
 上記出発原料の内、シアン化水素に対するアミンの配合割合は、0.02:1~50:1(シアン化水素:アミン、モル比)とするのが好ましい。より好ましくは0.05:1~20:1であり、さらに好ましくは0.1:1~10:1である。シアン化水素の配合量が少なすぎると、目的のイオン性化合物の生成量が少なくなったり、副生物(例えば、トリシアノボレート、ジシアノボレート等)が生成する場合があり、一方、多すぎると、CN由来の不純物量が増加し、目的生成物の精製が困難になる傾向がある。
 上記ホウ素化合物の使用量は、シアン化水素に対して1:4~1:100(ホウ素化合物:シアン化水素、モル比)とするのが好ましい。より好ましくは1:4~1:50であり、さらに好ましくは1:4~1:20である。ホウ素化合物の配合量が少なすぎると、目的のイオン性化合物の生成量が少なくなる場合があり、一方、多すぎると、ホウ素化合物由来の不純物量が増加し、目的生成物の精製が困難になる傾向がある。
 本発明のイオン性化合物の第4の製造方法では、反応を均一に進行させるため、反応溶媒を用いるのが好ましい。反応溶媒としては、上記出発原料が溶解するものであれば特に限定されず、水又は有機溶媒が用いられる。有機溶媒としては、上記第1の製造方法と同じものが使用できる。もちろん、反応溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。
 上記出発原料を反応させる際の条件は特に限定されず、反応の進行状態に応じて適宜調節すればよいが、例えば、反応温度は、30℃~250℃とするのが好ましい。より好ましくは50℃~170℃であり、さらに好ましくは80℃~150℃である。反応時間は0.2時間~200時間とするのが好ましく、より好ましくは0.5時間~150時間であり、さらに好ましくは1時間~100時間である。
 シアン化水素をCN試薬として用いる本発明第4の製造方法によれば、アルカリ金属シアン化物やトリメチルシリルシアニドを用いる従来の方法に比べて、安価に、テトラシアノボレートイオン([B(CN)4)を有するイオン性化合物を得ることができる。
 <カチオン交換反応>
 本発明法により得られたイオン性化合物は、さらに、カチオン交換反応を行ってもよい。後述するように、本発明に係るイオン性化合物の特性はカチオン種に依存するので、カチオン交換を行うことで、特性の異なるイオン性化合物を容易に得ることができる。
 なお、上記第1の製造方法において記載したように、イオン性物質KtXb([Kt]m+は有機カチオン又は無機カチオンを表し、[Xbm-はアニオンを示し、mは1~3の整数を表す)を出発原料として用いれば、別途、カチオン交換反応を行わなくても、所望のカチオンを有するイオン性化合物を得ることができる。これらの態様も、推奨される本発明の実施態様の一つである。
 したがって、上記一般式(I)で表される本発明に係るイオン性化合物において、カチオン[Kt]m+は、カチオン交換反応を行わない場合は、ホウ素化合物に由来するカチオン、あるいは、シアン化物Ma(CN)nに由来するカチオン(第1の製法)、上記シアン化アンモニウム化合物に由来するカチオン、すなわち、上記一般式(VII)~(IX)で表される構造を有する各種誘導体のカチオン(第2の製法)、アンモニウム塩に由来するカチオンである場合(第3の製法)、シアン化水素とアミンとから生成したアンモニウムカチオン(第4の製法)等となる。
 一方、上記各反応をイオン性物質の存在下で行う場合、及び、上述の反応後、得られたイオン性化合物のカチオン交換反応を行う場合には、イオン性物質KtXbを構成するカチオン[Kt]m+、すなわち、公知の有機カチオン、若しくは、アルカリ金属イオン、アルカリ土類金属イオンなどの公知の無機カチオンが[Kt]m+となる。
 イオン性物質を構成する[Kt]m+としては、前述した一般式[N+-(R)t]で表されるアンモニウムが有機カチオンとして好ましく、又、Li+,Na+,K+等のアルカリ金属イオン及びMg2+,Ca2+等のアルカリ土類金属イオンが無機金属カチオンとして好適である。より好ましいのは、上記一般式(III)~(V)で表されるオニウムカチオン、あるいは、上記一般式(VII)~(IX)で表されるアンモニウム系化合物誘導体である。
 一方、好ましいアニオン[Xbm-としては、ハロゲン化物イオン、シアン化物イオン(CN)、水酸化物イオン(OH)、シアン酸イオン(OCN)、チオシアン酸イオン(SCN)、アルコキシイオン(RO)、硫酸イオン、硝酸イオン、酢酸イオン、炭酸イオン、過塩素酸イオン、アルキル硫酸イオン、アルキル炭酸イオン等が挙げられる。これらの中でも、ハロゲン化物イオンが好適であり、ハロゲン化物イオンの中でも、ClまたはBrが特に好ましい。
 すなわち、イオン性物質KtXbとしては、上記[Kt]m+および[Xbm-の組合わせからなるものが好ましく用いられるが、特に好ましいものとしては、テトラブチルアンモニウムフルオリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラエチルアンモニウムフルオリド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、トリエチルメチルアンモニウムフルオリド、トリエチルメチルアンモニウムクロリド及びトリエチルメチルアンモニウムブロミド等の鎖状第4級アンモニウムとハロゲン化物イオンとの塩、トリエチルアンモニウムフルオリド、トリエチルアンモニウムクロリド、トリエチルアンモニウムブロミド、ジブチルメチルアンモニウムフルオリド、ジブチルメチルアンモニウムクロリド、ジブチルメチルアンモニウムブロミド、ジメチルエチルアンモニウムフルオリド、ジメチルエチルアンモニウムクロリド及びジメチルエチルアンモニウムブロミド等の鎖状第3級アンモニウムとハロゲン化物イオンとの塩、1-エチル-3-メチルイミダゾリウムフルオリド、1-エチル-3-メチルイミダゾリウムクロリド、1-エチル-3-エチルイミダゾリウムブロミド、1,2,3-トリメチルイミダゾリウムフルオリド、1,2,3-トリメチルイミダゾリウムクロリド及び1,2,3-トリメチルイミダゾリウムブロミド等のイミダゾリウムとハロゲン化物イオンとの塩、N,N-ジメチルピロリジニウムフルオリド、N,N-ジメチルピロリジニウムクロリド、N,N-ジメチルピロリジニウムブロミド、N-エチル-N-メチルピロリジニウムフルオリド、N-エチル-N-メチルピロリジニウムクロリド、N-エチル-N-メチルピロリジニウムブロミド等のピロリジニウムとハロゲン化物イオンとの塩が挙げられる。また、イオン性物質として、Li+、Na+、K+等のアルカリ金属イオンとハロゲン化物イオンとの塩Ktabを用いてもよい。なお、Fに由来する不純物量を低減する観点からは、上記イオン性物質の内、F原子を含有しないものを採用することが推奨される。
 上記イオン性物質KtXbは単独で用いてもよく、2種以上を併用してもよい。
 カチオン交換反応は、上記本発明第1~第4の製造方法により得られたイオン性化合物と所望のカチオンを有するイオン性物質KtXbと反応させればよい。
 この場合、カチオン交換反応を行う際の上記イオン性化合物Kt[B(CN)4mとイオン性物質KtXbとの配合割合は、50:1~1:50(イオン性化合物Kt[B(CN)4m:イオン性物質KtXb、モル比)とするのが好ましい。より好ましくは20:1~1:20であり、さらに好ましくは10:1~1:10である。イオン性物質が少なすぎる場合には、有機カチオンの交換反応が速やかに進行し難い場合があり、一方、過剰に用いると、未反応のイオン性物質が生成物に混入し、精製が困難になる傾向がある。
 有機カチオンの交換反応は、溶媒の存在下、イオン性化合物Kt[B(CN)4mとイオン性物質KtXbとを混合すればよく、この際の温度としては、0℃~200℃(より好ましくは10℃~100℃)であり、0.1時間~48時間(より好ましくは0.1時間~24時間)反応させればよい。溶媒としては、酢酸エチル、酢酸イソプロピル、酢酸ブチルなどのエステル系溶媒、2-ブタノン、メチルイソブチルケトンなどのケトン系溶媒、ジエチルエーテル、ジブチルエーテル、シクロヘキシルメチルエーテル、などのエーテル系溶媒、ジクロロメタン、クロロホルムなどの塩素系溶媒、トルエン、ベンゼン、キシレンなどの芳香族系溶媒、へキサンなどの脂肪族炭化水素系等の有機溶媒が好ましく用いられる。これらの溶媒は、単独で用いても、また、2種以上を組み合わせて用いてもよい。なお、2種以上の反応溶媒を使用することは上記反応の好ましい条件の一つである。
 ≪イオン性化合物の製造方法-酸化剤処理≫
 本発明の製造方法は、さらに、上記第1から第4の製造方法により得られた生成物(イオン性化合物)と、酸化剤とを接触させる工程を含むものであるのが好ましい。上記第1から第4の製造方法に続けてカチオン交換反応を行う場合、生成物であるイオン性化合物と酸化剤との接触は、カチオン交換反応前後のいずれで行ってもよく、また、カチオン交換反応前後の両方で行ってもよい。
 上述のように、イオン性化合物中に含まれる不純なイオン成分は、イオン性化合物が用いられる電気化学デバイスやその周辺部材を劣化させ、ひいては、電気化学デバイスの性能を低下させる虞がある。また、本発明の製造方法では、シアン化物Ma(CN)n(第1の製造方法)、シアン化アンモニウム(第2の製造方法)、TMSCN(第3の製造方法)やシアン化水素(第4の製造方法)を出発原料としている。したがって、生成物中に遊離のシアン化物イオン(CN)などの出発原料に由来する成分が残留したり、製造過程で不可避的に混入する不純物が存在することがある。本発明に係るイオン性化合物は、電気化学デバイスの構成材料に用いられる場合があり、イオン性化合物中に存在するCNなどの不純物は、イオン伝導性能の低下や電極の腐食を起こし、電気化学性能を劣化させる原因となる。
 そこで、イオン性化合物中におけるこれら不純なイオン成分の含有量を低減することについて検討を重ねた。一般に有機化合物は酸化剤の存在下において酸化分解し易く、テトラシアノボレート(TCB:[B(CN)4)をアニオンとするイオン性化合物も、同様に酸化分解するものと考えられていた。したがって、イオン性化合物中の不純なイオン成分は、NaOH水溶液などを使用した抽出処理によりアルカリ金属塩(NaCN、NaCl)として、水層に移して除去していたが、シアン化物イオン(CN)は弱酸であり、アルカリ金属との塩の水への溶解度はそれほど高くないため抽出効率が低かった。また、不純物量を充分に低減するためには、抽出操作を複数回繰返す必要があり、イオン性化合物の収率を低減させるという問題があった。
 ところが、TCBをアニオンとするイオン性化合物は、意外にも一般的な有機化合物に比べて酸化剤に対する安定性が高く、したがって、合成後のイオン性化合物を酸化剤と接触させることで、生成物中に含まれる過剰なシアン化物イオン(CN)を分解でき、さらには、出発原料や合成工程で不可避的に混入する不純物の含有量も低減できることを本発明者らは見出した。
 特に、トリメチルシリルシアニドとホウ素化合物とを反応させて得られた生成物と、酸化剤とを接触させる場合には、ケイ素、ハロゲン化物イオンなどの不純物や水分量が低減された高純度イオン性化合物が得られる。
 <酸化剤処理>
 上記酸化剤処理に用いる酸化剤としては、過酸化水素、過塩素酸ナトリウム、過酢酸、メタクロロ過安息香酸(mCPBA)などの過酸化物、過マンガン酸カリウム、酸化マンガンなどのマンガン化合物、二クロム酸カリウムなどのクロム化合物、塩素酸カリウム、臭素酸ナトリウム、臭素酸カリウム、次亜塩素酸ナトリウム、二酸化塩素などの含ハロゲン化合物、硝酸、クロラミンなどの無機窒素化合物、酢酸、四酸化オスミウムなどが挙げられる。これらの中でも過酸化物が好ましく、過酸化水素、過塩素酸ナトリウムがより好ましい。特に、酸化剤に過酸化水素を用いた場合には、塩化物イオン(Cl)、シアン酸イオン(NCO)などの不純物が過酸化水素水層に効率よく分配され、イオン性化合物の抽出効率が向上するので特に好ましい。また、過酸化水素を用いた場合には、不純物のうち吸湿性のものや、水和しやすい成分が過酸化水素水層に効率よく分配されるため、イオン性化合物の純度が上がると同時に、イオン性化合物中の水分量も容易に低減できる。
 上記酸化剤は、固体状であっても液体状であってもよく、固体状の場合は溶媒に溶解させて用いてもよい。また、液体状の酸化剤、固体状の酸化剤を溶媒に溶解させた酸化剤溶液は、さらにこれを希釈して用いてもよい。
 酸化剤の使用量は、粗イオン性化合物中に含まれる不純物量(特にCNなど)にもよるが、粗イオン性化合物100質量部当たり、1質量部~1000質量部であるのが好ましく、より好ましくは10質量部~500質量部であり、さらに好ましくは20質量部~300質量部であり、特に50質量部~100質量部であるのが好ましい。尚、酸化剤量が多すぎる場合にはイオン性化合物が分解してしまう虞があり、一方、少なすぎる場合には、過剰なイオン成分や不純物を充分に低減させ難い場合がある。なお、上記「粗イオン性化合物」とは、合成後の反応溶液から溶媒を留去して得られる成分を意味する。但し、酸化剤処理は、合成後、あるいは、後述する他の精製処理後、反応溶媒などを留去することなく、そのまま行ってもよい。
 酸化剤処理は、粗イオン性化合物と酸化剤とが接触する限り特に限定されず、合成後の粗イオン性化合物をそのまま酸化剤と接触させてもよいし、また、粗イオン性化合物溶液を調製し、この粗イオン性化合物溶液と酸化剤とを混合して接触させてもよい。すなわち、接触の態様としては、粗イオン性化合物溶液に固体状の酸化剤を添加して、両者を接触させる態様;粗イオン性化合物溶液と酸化剤溶液とを混合して、両者を接触させる態様;固体状の粗イオン性化合物を酸化剤溶液に添加して、両者を接触させる態様;が挙げられる。なお、粗イオン性化合物を溶解させる溶媒としては、後述する活性炭処理に用いられる溶媒が好適である。
 上述のように、本発明のイオン性化合物は、一般的な有機物に比べて酸化剤に対する耐性は高いが、酸化剤との過剰な接触はイオン性化合物の分解の原因となる。したがって、イオン性化合物の分解を抑制する観点からは、酸化剤処理は、低温且つ短時間で行うことが推奨される。例えば、酸化剤処理は、イオン性化合物を合成する際の反応温度以下とするのが好適であり、さらに、溶剤の沸点以下とするのが好ましい。具体的には、0℃~150℃であるのが好ましく、より好ましくは0℃~130℃であり、さらに好ましくは10℃~100℃であり、特に10℃~80℃であるのが望ましい。
 <その他の精製方法>
 本発明の製造方法では、イオン性化合物中の不純物量を一層低減させるため、上記酸化剤処理以外の従来公知の精製方法を採用してもよい。従来公知の精製方法としては、例えば、水、有機溶媒、およびこれらの混合溶媒での洗浄;吸着精製法;再沈殿法;分液抽出法;再結晶法;晶析法;クロマトグラフィーによる精製法などが挙げられる。これらの精製法は組み合わせて行ってもよい。
 他の精製方法を併用する場合、その実施時期は特に限定されず、粗イオン性化合物と酸化剤との接触前;粗イオン性化合物と酸化剤との接触後;粗イオン性化合物と酸化剤との接触前と後の両方;のいずれの態様も採用できる。
 例えば、吸着精製法を採用する場合、吸着剤としては、活性炭、シリカゲル、アルミナ、ゼオライトなどが挙げられる。これらの中でも活性炭を吸着剤とする吸着処理(活性炭処理)は、イオン性化合物への不純物の混入が少ないため好ましい。
 吸着処理に使用可能な活性炭は特に限定されない。活性炭の形状としては、表面積の広いものであれば特に限定されず、粉末状、粉砕状、顆粒状、造粒状および球状等が挙げられるが、これらの中でも表面積の広さから粉末状の活性炭を用いるのが好ましい。また、活性炭は、表面積が100m2/g以上のものが好ましく、より好ましくは400m2/g以上のものであり、特に800m2/g以上のものが好ましい。なお、活性炭中に含まれる不純物がイオン性化合物中に混入するのを避けるためには、不純物含有量の少ない活性炭を用いるのが好ましく、かかる活性炭の一例としては、日本エンバイロケミカルズ株式会社製のカルボラフィン(登録商標)-6が挙げられる。
 活性炭の使用量は、粗イオン性化合物100質量部に対して1質量部以上、500質量部以下とするのが好ましく、より好ましくは10質量部以上、300質量部以下、さらに好ましくは20質量部以上、200質量部以下である。
 なお、活性炭処理は、合成直後、酸化剤処理前の粗イオン性化合物に対して行うのが好ましい。また、活性炭処理による効果を効果的に得る観点からは、粗イオン性化合物は、溶媒に溶解あるいは分散させて活性炭処理に供することが推奨される。
 活性炭処理時に使用可能な溶媒としては、特に限定されないが、粗イオン性化合物を溶解させられる溶剤であるのが好ましい。例えば、水;メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、1-ブタノール、sec-ブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、2-メチル-1-ブタノール、tert-アミルアルコール、ネオペンチルアルコール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチル-1-ペンタノール、3-メチル-3-ペンタノール、4-メチル-2-ペンタノール、3,3-ジメチル-2-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-メチル-3-ヘキサノール、2,4-ジメチル-3-ペンタノール、1-オクタノール、2-オクタノール、3-オクタノール、2-エチル-ノナノール、2,4,4-トリメチル-1-ペンタノール、1-ノナノール、2-ノナノール、2,6-ジメチル-4-ヘプタノール、3,5,5-トリメチル-1-ヘキサノール、1-デカノール、2-デカノール、4-デカノール、および、3,7-ジメチル-1-オクタノールなどの脂肪族モノアルコール類、シクロペンタノール、シクロへキサノールなどの脂環式モノアルコール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,4-ジヒドロキシ-2-ブテン、1,2-ジヒドロキシ-3-ブテンおよびグリセリンなどの多価アルコール類;アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトンおよびメチルイソプロピルケトンなどのケトン類;ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチル-tert-ブチルエーテル、ブチルエチルエーテル、ジブチルエーテル、ジペンチルエーテル、テトラヒドロフランおよびテトラヒドロピランなどのエーテル類;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、アクリル酸メチル、メタクリル酸メチルなどのエステル類;n-ペンタン、n-へキサン、メチルペンタン、n-ヘプタン、メチルへキサン、ジメチルペンタン、n-オクタン、メチルヘプタン、ジメチルへキサン、トリメチルペンタン、ジメチルヘプタン、n-デカンなどの直鎖状、あるいは、分岐状の脂肪族飽和炭化水素類;1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテンなどの直鎖状、あるいは、分岐状の脂肪族不飽和炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼンなどの芳香族炭化水素類;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、プロピルシクロヘキサンなどの脂環式化合物類;クロロメタン、ジクロロメタン、トリクロロメタン、テトラクロロメタン、ジクロロエチレン、トリクロロエチレン、および、テトラクロロエチレンなどの含ハロゲン溶媒、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ヘキサンニトリル、ベンゾニトリルなどのニトリル類などが挙げられる。これらの中でも、水、ケトン類、エーテル類、エステル類、脂肪族飽和炭化水素および含ハロゲン溶媒が挙げられる。これらの中でも、水、メチルエチルケトン、ジメチルエーテル、ジエチルエーテル、酢酸ブチル、およびヘキサンが好ましい。上記溶媒は単独で用いてもよいが、2種以上を混合して用いるのが好ましい。尚、活性炭処理に用いる水は、フィルターやイオン交換膜、逆浸透膜など、各種ろ材を備えた超純水装置で処理した、超純水(イオン抵抗1.0Ω・cm以上)であるのが好ましい。
 活性炭処理に用いる溶媒の使用量は、粗イオン性化合物100質量部に対して、10質量部以上、2000質量部以下とするのが好ましく、より好ましくは100質量部以上、1000質量部以下であり、さらに好ましくは200質量部以上、1000質量部以下である。溶剤量が多すぎる場合は、反応装置が大きくなり、コストが嵩む上に、収率が下がる傾向にあり、経済的な利点が低い。一方、使用量が少なすぎる場合には、イオン性化合物の純度が低下する場合がある。なお、活性炭処理後のイオン性化合物溶液は、そのまま酸化剤処理に供することができる。
 上述のように、合成後の粗イオン性化合物を活性炭処理に供した後、酸化剤処理を行うのは本発明の推奨される実施態様の一つである。また、酸化剤処理の後に、さらに上述の他の精製法を採用してもよく、好ましくは水、有機溶媒、およびこれらの混合溶媒での洗浄、分液抽出を行うことが望ましい。
 このとき使用する溶媒としては、上記活性炭処理において例示した溶媒と2層状態を形成し得る溶媒であるのが好ましい。例えば、上記活性炭処理において有機溶媒を用いる場合には、洗浄、分液抽出において水を用いるのが好ましい。水を用いることにより、アルカリ金属イオンおよびハロゲン化物イオンを効率的に水層に抽出でき、イオン性化合物からこれらのイオン成分を除去することができる。なお、好ましい抽出溶媒の組み合わせとしては、水と層分離すること、および、イオン性化合物の回収率の観点から、水/ヘキサン、水/メチルエチルケトン、水/メチルイソブチルケトン、水/ジメチルエーテル、水/ジエチルエーテル、水/酢酸エチル、水/酢酸ブチル、および、水/ジクロロメタンの組み合わせが挙げられ、これらの中でも、水/酢酸エチル、水/酢酸ブチル、水/メチルイソブチルケトン、水/ジエチルエーテルの組み合わせが好ましく、より好ましいのは、水/酢酸エチル、水/酢酸ブチル、水/ジエチルエーテルの組み合わせである。
 上記酸化剤処理を採用する本発明によれば、不純なイオン成分含有量が低く純度の高いイオン性化合物を得ることができる。
 ≪用途≫
 本発明に係るイオン性化合物Kt[B(CN)4mは、カチオン[Kt]m+を選択することで、100℃以下で液体の状態をとるイオン性液体となる点が特徴の一つとして挙げられる。したがって、上記製造方法により得られる本発明に係るイオン性化合物は、一次電池、リチウム(イオン)二次電池や燃料電池などの充放電機構を有する電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子、電気化学式ガスセンサなどの電気化学デバイスを構成する材料として好適に用いられる。
 また、一般にイオン性液体は、イオン性の結合を持つ液体であるという特徴から、電気化学的、熱的安定性が高く、さらに、二酸化炭素などの特定のガスを選択的に吸収する性質を有することも知られており、上記本発明の製造方法により得られるイオン性化合物も、これらと同様の特徴を有する。
 したがって、本発明に係るイオン性化合物の用途としては、先に挙げた電気化学材料用途の他にも、熱的安定性が高いことを利用した、繰り返し利用可能な有機合成の反応溶媒や、機械可動部のシール剤や潤滑剤としての使用;電気化学特性と熱的安定性とを併せ持つことを利用したポリマーへの導電性付与剤としての使用;ガス吸収能を有することから二酸化炭素などのガス吸収剤としての使用:など様々な用途に好適に用いられる。
 次に、本発明のイオン性化合物を上記電気化学デバイスのイオン伝導性材料として用いる場合について説明する。
  〔イオン伝導性材料〕
 上述のように、本発明のイオン性化合物は、[B-(CN)4で表されるテトラシアノボレートをアニオンとして含むものであるが、上記アニオン以外に、下記一般式(XVI)で表されるアニオンを有するイオン性化合物を含むイオン伝導性材料も本発明に含まれる。
Figure JPOXMLDOC01-appb-C000025
(式(XVI)中、Xは、Al,Si,P,GaおよびGeから選ばれる少なくとも1種の元素を指す。vは、4から6の整数である)。
 本発明のイオン伝導性材料は、アニオン成分として、テトラシアノボレート、あるいは、テトラシアノボレートと上記一般式(XVI)で表されるアニオンとを有するイオン性化合物を含むものであり、且つ、上記アニオン成分が、分子軌道計算法を用いた最高被占位軌道エネルギー準位が-5.5eV以下であるのが好ましい。
 計算化学的手法を用いたイオン伝導性材料の検討はJournal of The Electrochemical Society,149(12)A1572-A1577(2002)でもなされており、ここでは、高耐電圧の化合物を得るための指標として分子軌道計算法を用いて各種アニオンの最高被占位軌道エネルギー準位を計算している。この文献では、最高被占位軌道エネルギー準位が低く、電位窓が広いアニオンとしてPF6 、AsF6 などが報告されている。しかしながら、これらのアニオンを含む化合物は、その構造中に含まれるフッ素原子が経時的に脱離して電極を腐食させたり、系中に含まれる微量な水分と反応して有害なフッ化水素ガスを発生したり、As自体が毒物であるといった問題がある。一方、本発明のイオン性化合物は、上述のようにフッ素原子などの不純物の含有量が低減されており、その構造にも、合成工程にもAsは含まれないため、電極腐食などの問題は生じ難い。また、本発明に係るアニオン成分は、PF6 、AsF6 と同等の最高被占位軌道エネルギー準位を有し、電位窓が広いため、イオン伝導体として好適に用いられる。
 上記式(XVI)中、vは、4から6の整数であり、元素Xの価数によって決まる。例えば、XがAlもしくはGa元素の場合、v=4であり、XがSiもしくはGe元素の場合はv=5である。また、XがP元素の場合、v=6となる。すなわち本発明のイオン伝導性材料の好ましい形態は、テトラシアノボレートおよび/又は上記一般式(XVI)で表されるアニオン成分を有するイオン性化合物を必須とするものである。アニオン成分としては、テトラシアノボレート、XがAlであり、v=4である一般式(XVI)のアニオンが好ましく、テトラシアノボレートがアニオン成分として最も好ましい。
 本発明のイオン伝導性材料に含まれるアニオン成分(テトラシアノボレート及び上記一般式(XVI)のアニオン成分)の分子軌道計算法を用いた最高被占位軌道エネルギー準位は、-5.5eV以下であるのが好ましく、より好ましくは-5.6eV以下であり、特に好ましくは-5.7eV以下である。
 また、上記イオン伝導性材料は、腐食性や有害性の観点から、組成中にF原子およびAs元素を含まないものが好ましい。さらに、同様の理由でSb元素も含まないものが好ましい。尚、上記イオン伝導性材料に含まれるアニオン成分は1種のみでもよいし、2種以上のアニオン成分が含まれていてもよい。
 本発明のイオン伝導性材料に含まれるカチオンとしては、テトラシアノボレートおよび一般式(XVI)で表されるアニオンと塩を形成できるものであれば、有機カチオン、無機カチオンのいずれであってもよく特に限定されないが、オニウムカチオンが好適である。オニウムカチオンとしては、上記(III)~(V)で表されるオニウムカチオンが挙げられる。この場合、イオン伝導性材料の好ましい用途として、電気二重層キャパシタや電解コンデンサなどが挙げられる。
 上記イオン伝導性材料を電気二重層キャパシタや電解コンデンサなどの電解液用材料として用いる場合、電解液用材料100質量%中のイオン伝導性材料の量は1質量%以上であるのが好ましく、99.5質量%以下であるのが好ましい。より好ましくは5質量%以上であり、95質量%以下である。更に好ましくは10質量%以上であり、90質量%以下である。
 上述のように、本発明のイオン性化合物およびイオン伝導性材料は、各種電気化学デバイスに備えられるイオン伝導体において、電解液を構成する電解質や固体電解質として機能することができる。なお、これらの電解液や固体電解質は、本発明のイオン伝導性材料に加えて、他の電解質塩を含んでいてもよい。
 他の電解質塩としては、キャリアーとしたいイオンを含んだ電解質を用いればよく、1種又は2種以上を用いることができるが、電解液中や高分子固体電解質中での解離定数が大きいことが好ましく、例えば、LiCF3SO3、NaCF3SO3、KCF3SO3等のトリフロロメタンスルホン酸のアルカリ金属塩やアルカリ土類金属塩;LiC(CF3SO23、LiN(CF3CF2SO22、LiN(FSO22等のパーフロロアルカンスルホン酸イミドのアルカリ金属塩やアルカリ土類金属塩;LiPF6、NaPF6、KPF6等のヘキサフロロリン酸のアルカリ金属塩やアルカリ土類金属塩;LiClO4、NaClO4等の過塩素酸アルカリ金属塩やアルカリ土類金属塩;LiBF4、NaBF4等のテトラフロロ硼酸塩;LiAsF6、LiI、NaI、NaAsF6、KI等のアルカリ金属塩;過塩素酸テトラエチルアンモニウム等の過塩素酸の四級アンモニウム塩;(C254NBF4等のテトラフロロ硼酸の四級アンモニウム塩、(C254NPF6等の四級アンモニウム塩;(CH34P・BF4、(C254P・BF4等の四級ホスホニウム塩などが好適である。これらの中でも、アルカリ金属塩及び/又はアルカリ土類金属塩が好適である。また、有機溶媒中での溶解性、イオン伝導度からは、LiPF6、LiBF4、LiAsF6、パーフロロアルカンスルホン酸イミドのアルカリ金属塩やアルカリ土類金属塩、四級アンモニウム塩が好ましい。アルカリ金属塩としては、リチウム塩、ナトリウム塩、カリウム塩が好適であり、アルカリ土類金属塩としては、カルシウム塩、マグネシウム塩が好適である。より好ましくは、リチウム塩である。
 上記他の電解質塩の存在量としては、本発明のイオン伝導性材料と他の電解質塩との合計100質量%に対して、下限値が0.1質量%、上限値が50質量%であることが好適である。0.1質量%未満であると、イオンの絶対量が充分なものとはならず、イオン伝導度が小さくなるおそれがあり、50質量%を超えると、イオンの移動が大きく阻害されるおそれがある。より好ましい上限値は30質量%である。
 本発明のイオン伝導性材料の用途としては、例えば、一次電池、リチウム(イオン)二次電池や燃料電池等の充電及び放電機構を有する電池の他、電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタ、太陽電池、エレクトロクロミック表示素子等の電気化学デバイス等が挙げられる。これらは、一般的に、基本構成要素として、イオン伝導体、負極、正極、集電体、セパレータ及び容器を有するものである。
 上記イオン伝導体としては、電解質と有機溶媒との混合物が好適である。有機溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれるものになる。
 有機溶媒としては、上記イオン伝導性材料などを溶解できる非プロトン性の溶媒であれば良い。上記非プロトン性の溶媒としては、本発明のイオン伝導性材料との相溶性が良好であって、誘電率が大きく、他の電解質塩の溶解性が高いうえに、沸点が60℃以上であり、電気化学的安定範囲が広い化合物が好適である。より好ましくは、含有水分量が低い有機溶媒(非水系溶媒)である。このような有機溶媒としては、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、クラウンエーテル、トリエチレングリコールメチルエーテル、テトラエチレングリコールジメチルエ-テル、ジオキサン等のエーテル類;エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル類;炭酸エチレン、炭酸プロピレン、2,3-ジメチル炭酸エチレン、炭酸ブチレン、炭酸ビニレン、2-ビニル炭酸エチレン等の環状炭酸エステル類;蟻酸メチル、酢酸メチル、プロピオン酸、プロピオン酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル等の脂肪族カルボン酸エステル類;安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル類;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のカルボン酸エステル類;リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル類;アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ヘキサンニトリル、ベンゾニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2-メチルグルタロニトリル等のニトリル類;N-メチルホルムアミド、N-エチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリジノン、N-メチルピロリドン、N-ビニルピロリドン等のアミド類;ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4ジメチルスルホラン等の硫黄化合物類:エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のアルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、2,6-ジメチルテトラヒドロフラン、テトラヒドロピラン等のエーテル類;ジメチルスルホキシド、メチルエチルスルホキシド、ジエチルスルホキシド等のスルホキシド類;ベンゾニトリル、トルニトリル等の芳香族ニトリル類;ニトロメタン、1,3-ジメチル-2イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、3-メチル-2-オキサゾリジノン等を挙げることができ、これらの1種又は2種以上を組み合わせて用いることが好適である。これらの中でも、炭酸エステル類、脂肪族エステル類、エーテル類がより好ましく、エチレンカーボネート、プロピレンカーボネート等のカーボネート類やγ-ブチロラクトン、γ-バレロラクトンなどが更に好ましい。
 上記イオン伝導体中における電解質濃度としては、0.01mol/dm3以上が好ましく、また、飽和濃度以下が好ましい。0.01mol/dm3未満であると、イオン伝導度が低いため好ましくない。より好ましくは、0.1mol/dm3以上、また、2.5mol/dm3以下である。
 本発明のイオン伝導性材料をリチウムイオン電池の電解質として用いる場合には、2種類以上の非プロトン溶媒に溶解することが好ましい。この場合は、これらの有機溶媒のうち誘電率が20以上の非プロトン性溶媒と誘電率が10以下の非プロトン性溶媒からなる混合溶媒に溶解することにより電解液を調製することが好ましい。
 本発明のイオン伝導性材料を上記非プロトン性溶媒、例えばプロピレンカーボネートに溶解させ、電解液とした際には、1mol/Lの濃度において25℃でイオン伝導度が0.5mS/cm以上であることが好ましい。25℃におけるイオン伝導度が0.5mS/cm未満の場合には、本発明のイオン伝導性材料を用いてなるイオン伝導体が、長期に亘って、優れたイオン伝導度を保ち、且つ、安定に機能できなくなる虞がある。より好ましくは、1.0mS/cm以上である。
 本発明のイオン伝導性材料は、Ag/Ag+を基準とした耐電圧が4V~500Vであることが好ましい。より好ましくは5V-500Vである。上述したように、分子軌道計算の計算により最高被占位軌道エネルギー準位が-5.5eV以下であるアニオンを含むことにより、高い耐電圧を示すことが可能である。
 以下に本発明に係るイオン伝導体を用いてなる電気化学素子の内、(1)リチウム二次電池、(2)電解コンデンサ、(3)電気二重層キャパシタ、及び、(4)リチウムイオンキャパシタについてより詳しく説明する。
 (1)リチウム二次電池
 リチウム二次電池は、正極、負極、正極と負極との間に介在するセパレータ及び本発明のイオン伝導性材料を用いてなるイオン伝導体を基本構成要素として構成されるものである。この場合、本発明に係る電解液用材料には電解質としてリチウム塩が含有されていることになる。このようなリチウム二次電池としては、水電解質以外のリチウム二次電池である非水電解質リチウム二次電池であることが好ましい。このリチウム二次電池は、後述する負極活物質としてコークスを用い、正極活物質としてCoを含有する化合物を用いたものであるが、このようなリチウム二次電池おいて、充電時には、負極においてC6Li→6C+Li+eの反応が起こり、負極表面で発生した電子(e)は、電解液中をイオン伝導して正極表面に移動し、正極表面では、CoO2+Li+e→LiCoO2の反応が起こり、負極から正極へ電流が流れることになる。放電時には、充電時の逆反応が起こり、正極から負極へ電流が流れることになる。このように、イオンによる化学反応により電気を蓄えたり、供給したりすることとなる。
 上記負極としては、従来公知の負極に用いられる材料を用いることができ、特には限定されないが、例えば、天然黒鉛及び人工黒鉛等の黒鉛、コークス、有機物焼成体等の炭素材料や、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、リチウム-タリウム合金、リチウム-鉛合金、リチウム-ビスマス合金等のリチウム合金や、チタン、錫、鉄、モリブデン、ニオブ、バナジウム及び亜鉛等の1種若しくは2種以上を含む金属酸化物並びに金属硫化物が挙げられる。これらの中でも、アルカリ金属イオンを吸蔵・放出できる金属リチウムや炭素材料がより好ましい。
 上記正極としては、従来公知の正極に用いられる材料を用いることができ、特には限定されないが、例えば、LiCoO2、LiNiO2、LiMnO2、LiFeO2、LiFePO4等のリチウム含有遷移金属酸化物が挙げられる。正極活物質粒子の平均粒径としては、0.1~30μmであることが好ましい。
 (2)電解コンデンサ
 電解コンデンサは、陽極箔、陰極箔、陽極箔と陰極箔との間に挟まれたセパレータである電解紙、リード線及び本発明のイオン伝導性材料を用いてなるイオン伝導体を基本構成要素として構成されているものである。このような電解コンデンサとしては、アルミ電解コンデンサが好適である。このようなアルミ電解コンデンサとしては、電解エッチングで細かな凹凸を作って粗面化したアルミ箔の表面に電解陽極酸化によって形成した薄い酸化被膜(酸化アルミニウム)を誘電体とするものが好適である。
 (3)電気二重層キャパシタ
 電気二重層キャパシタは、負極、正極及び本発明のイオン伝導性材料を用いてなるイオン伝導体を基本構成要素として構成されているものであり、好ましい形態としては、対向配置した正極及び負極からなる電極素子に、イオン伝導体である電解液を含ませたものである。
 上記負極としては、活性炭、多孔質金属酸化物、多孔質金属、導電性重合体が好適である。また上記正極としては活性炭、多孔質金属酸化物、多孔質金属、導電性重合体が好適である。
 (4)リチウムイオンキャパシタ
 リチウムイオンキャパシタとは、一般的な電気二重層キャパシタの原理を使いながら負極材料としてリチウムイオン吸蔵可能な炭素系材料を使い、そこにリチウムイオンを添加することでエネルギー密度を向上させたキャパシタであり、正極と負極とで充放電の原理が異なり、リチウムイオン二次電池の負極と電気二重層の正極を組み合わせた構造を持っている。
 上記負極としてはリチウムイオンを吸蔵・放出することが可能な材料等が好適である。上記リチウムイオンを吸蔵・放出することが可能な材料としては、熱分解炭素;ピッチコークス、ニードルコークス、石油コークス等のコークス;グラファイト;ガラス状炭素;フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したものである有機高分子化合物焼成体;炭素繊維;活性炭素等の炭素材料;ポリアセチレン、ポリピロール、ポリアセン等のポリマー;Li4/3Ti5/3O4、TiS2等のリチウム含有遷移金属酸化物又は遷移金属硫化物;アルカリ金属と合金化するAl、Pb、Sn、Bi、Si等の金属;アルカリ金属を格子間に挿入することのできる、AlSb、Mg2Si、NiSi2等の立方晶系の金属間化合物や、Li3-ffN(G:遷移金属、f:0超0.8未満の実数)等のリチウム窒素化合物等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、炭素材料がより好ましい。
 また上記正極としては活性炭、多孔質金属酸化物、多孔質金属、導電性重合体が好適である。本発明のイオン伝導性材料を用いたイオン伝導体は、上記負極及び正極の間に備えられる電解液を構成する。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 [NMR測定]
 Varian社製「Unity Plus」(400MHz)を用いて、1H-NMRおよび13C-NMRスペクトルを測定し、プロトンおよびカーボンのピーク強度に基づいて試料の構造を分析した。11B-NMRスペクトルの測定には、Bruker社製「Advance 400M」(400MHz)を使用した。
 F原子を含有する不純物の含有量は、以下の方法により求めた。溶媒としてd6-DMSOを用いて、11B-NMR測定を行った。得られた11B-NMRスペクトルにおいて、-38ppmにあるB(CN)4に由来するピークの面積を100mol%とし、このピーク面積と、それ以外のピーク(不純物由来)面積とを相対的に比較して、不純物のモル数(モル百分率(mol%)を算出した。
 [イオン伝導度の測定]
 下記実施例で得られたイオン性化合物をγ-ブチロラクトン(GBL)に溶解させ、濃度35質量%のイオン性化合物溶液を調製した。
 インピーダンスアナライザー(ソーラトロン社製「SI1260」)を用い、SUS電極を使用して、25℃の温度条件下、複素インピーダンス法により、イオン性化合物溶液のイオン電導度の測定を行った。
 [電位窓の測定]
 イオン伝導度の測定と同様にして35質量%のイオン性化合物溶液を調製した。
 25℃雰囲気下、3極セルを電極としてサイクリックボルタンメトリツール(北斗電工社製「HSV-100」)により、電位窓を測定した。なお、3極セルにおける作用極には、グラッシーカーボン電極、対象極にはPt電極を使用し、参照極にはAg電極を使用した。
 [熱分解開始温度の測定1]
 下記合成例で得られたイオン性化合物10mgをアルミパンに入れ、5℃/minで昇温し、初期質量から2%減少したときの温度を示差熱熱重量同時測定装置(セイコーインスツルメンツ社製「EXSTAR6000 TG/DTA」)を用いて測定した。
 実施例1
 実施例1では、出発原料にシアン化物Ma(CN)nを用いて、テトラシアノボレートを含むイオン性化合物を合成した。
 合成例1-1 テトラブチルアンモニウムテトラシアノボレート(Bu4NTCB)の合成
 攪拌装置、滴下漏斗、および、還流管を備えた容量50mlのフラスコ内を窒素置換し、窒素雰囲気下室温で、ここに、テトラブチルアンモニウムブロミド5.1mg(15.8mmol)、シアン化亜鉛(II)9.26g(78.9mmol)、トルエン10ml、三臭化ホウ素2.8g(11.2mmol)を加えた後、130℃のオイルバスで内容物を加熱しながら2日間攪拌した。2日後、フラスコ内のトルエンを減圧留去し、黒色固体を得た。得られた固体を乳鉢で粉砕した後、攪拌装置を備えたビーカーに入れ、ここにクロロホルム200mlを2回加えて、生成物をクロロホルム層に抽出した。次いで、得られたクロロホルム溶液を分液ロートに移し、200mlの水で洗浄した後、有機層を分離し、エバポレーターで濃縮し、油状の粗生成物を得た。これを、中性アルミナを充填剤とするカラムクロマトグラフィー(展開溶媒、ジエチルエーテルとクロロホルムの混合溶液)で精製し、生成物の含まれる留分を分取し、溶媒を留去し、乾固させて、生成物であるテトラブチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:1.4g(3.9mmol)収率:35%、融点:90℃)。
 1H-NMR(d6-DMSO):δ 3.16(m,8H),1.56(m,8H),1.30(ddq,J=11Hz,J=11Hz,J=7.2Hz,8H),0.92(t,J=7.2Hz、12H)
 13C-NMR(d6-DMSO):δ 121.9(m),57.7(s),39.1(s),19.4(s),13.7(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例1-2 1-エチル-3-メチルイミダゾリウムテトラシアノボレート(EtMeImTCB)の合成
 テトラブチルアンモニウムブロミドの代わりに1-エチル-3-メチルイミダゾリウムブロミド3.0g(15.8mmol)を用いたこと以外は合成例1-1と同様の操作を行い、1-エチル-3-メチルイミダゾリウムテトラシアノボレートを得た(黄色油状物、収量:1.0g(4.4mmol)、収率:38%、融点:15℃)。
 1H-NMR(d6-DMSO)δ 8.41(s,1H),7.34(d,J=21.6Hz,2H),3.81(s,3H),1.45(t,J=7.2Hz,3H)
 13C-NMR(d6-DMSO)δ 136.5(s),132.2(m),122.9(s),45.8(s),36.8(s),15.4(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例1-3 トリエチルアンモニウムテトラシアノボレート(Et3HNTCB)の合成
 テトラブチルアンモニウムブロミドの代わりにトリエチルアンモニウムブロミド2.9g(15.8mmol)を用いたこと以外は合成例1-1と同様の操作を行い、トリエチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:1.0g(4.5mmol)、収率:40%、融点:150℃)。
 1H-NMR(d6-DMSO)δ 8.83(s,1H),3.10(q,J=7.2Hz,6H),1.17(t,J=7.2Hz,9H)
 13C-NMR(d6-DMSO)δ 121.9(m),46.0(s),8.8(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例1-4 トリエチルメチルアンモニウムテトラシアノボレート(Et3MeNTCB)の合成
 テトラブチルアンモニウムブロミドの代わりにトリエチルメチルアンモニウムブロミド3.1g(15.8mmol)を用いたこと以外は合成例1-1と同様の操作を行い、トリエチルメチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:1.2g(5.0mmol)、収率:45%、融点:115℃)。
 1H-NMR(d6-DMSO)δ 3.23(q,J=6.8Hz,6H),2.86(s,3H),1.18(t,J=6.8Hz,9H)
 13C-NMR(d6-DMSO)δ 122.5(m),55.2(s),46.2(s),7.7(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例1-5 テトラエチルアンモニウムテトラシアノボレート(Et4NTCB)の合成
 テトラブチルアンモニウムブロミドの代わりにテトラエチルアンモニウムブロミド3.3g(15.8mmol)を用いたこと以外は合成例1-1と同様の操作を行い、テトラエチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:1.1g(4.5mmol)、収率:40%)。
 1H-NMR(d6-DMSO)δ 3.21(q,J=7.4Hz,8H),1.50(tt,J=7.4Hz,12H)
 13C-NMR(d6-DMSO)δ 121.9(m),51.5(s),7.4(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例1-6 テトラブチルアンモニウムテトラシアノボレート(Bu4NTCB)の合成2
 テトラブチルアンモニウムブロミドの代わりにテトラブチルアンモニウムクロリド4.4g(15.8mmol)を用いたこと以外は合成例1-1と同様の操作を行い、テトラブチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:1.6g(4.5mmol)、収率:40%、融点:90℃)。
 生成物は、合成例1-1と同様のNMRスペクトル、各種物性を示していた。
 合成例1-7 テトラブチルアンモニウムテトラシアノボレート(Bu4NTCB)の合成3
 攪拌装置、滴下漏斗、および、還流管を備えた容量50mlのフラスコ内を窒素置換し、窒素雰囲気下室温で、ここに、テトラブチルアンモニウムブロミド5.1g(15.8mmol)、シアン化亜鉛(II)9.26g(78.9mmol)、1.0Mの三塩化ホウ素p-キシレン溶液11.2ml(11.2mmol)を加えた後、150℃のオイルバスで2日間内容物を加熱しながら攪拌した。2日後、フラスコ内の有機溶媒を減圧留去し、黒色固体を得た。得られた固体を乳鉢で粉砕した後、攪拌装置を備えたビーカーに入れ、ここにクロロホルム200mlを2回加えて、生成物をクロロホルム層に抽出した。次いで、得られたクロロホルム溶液を分液ロートに移し、200mlの水で洗浄した後、有機層を分離し、エバポレーターで濃縮し、油状の粗生成物を得た。これを、中性アルミナを充填剤とするカラムクロマトグラフィー(展開溶媒、ジエチルエーテルとクロロホルムの混合溶液)で精製し、生成物の含まれる留分を分取し、溶媒を留去し、乾固させて、生成物であるテトラブチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:2.4g(6.8mmol)収率:61%、融点:90℃)。
 生成物は、合成例1-1と同様のNMRスペクトル、各種物性を示していた。
 合成例1-8
 攪拌装置、滴下漏斗、および、還流管を備えた容量100mlの三口フラスコに、室温で、シアン化カリウム10.4g(160mmol)、テトラブチルアンモニウムブロミド10.2g(32mmol)、三臭化ホウ素5.7g(22.7mmol)およびトルエン18.9g(205mmol)を加えた後、130℃のオイルバスで内容物を加熱し還流させながら7日間攪拌した。7日後、フラスコ内のトルエンを減圧留去し、ここに100mlのクロロホルムを加え、室温で30分間攪拌した。次いで、溶液をろ過して沈殿物を除去した後、ろ液を濃縮し、油状の粗生成物を得た。これを、中性アルミナを充填剤とするカラムクロマトグラフィー(展開溶媒、ジエチルエーテル:クロロホルム=1:1(体積比))で精製したが、テトラブチルアンモニウムテトラシアノボレートは全く生成しておらず、出発原料であるテトラブチルアンモニウムブロミドが残存していることが確認された。
 また、上記沈殿物および精製物について、11B-NMRによる分析を行ったが、テトラシアノボレートに由来するピークは確認できなかった。
 尚、反応容器を密閉型の耐圧容器(容量:100ml、テフロン(登録商標)内筒、ステンレス鋼製)に変更して同様の反応を試みたが、やはり、生成物は得られなかった。
 各合成例で得られたイオン性化合物について、上記測定方法によって測定した各種物性を表1に示す。
Figure JPOXMLDOC01-appb-T000026
 以上の結果より、本発明の第1の製造方法によれば、アルカリ金属シアン化物を出発原料とする場合(反応温度:250℃)に比べて低い温度(130℃~150℃)で反応を進行させることができる。また、高価なトリメチルシリルシアニドを使用することなく、テトラシアノボレートを有するイオン性化合物を安定して得ることができる。
 実験例1~2、比較実験例1~4
 合成例1-2で合成した1-エチル-3-メチルイミダゾリウムテトラシアノボレートと、不純物として1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EtMeImBF4)(有機合成用、和光純薬工業株式会社より入手)とを下記表2に示す組成で混合した混合物について、熱分解開始温度を測定した。なお、測定は、下記熱分解開始温度の測定2に従って行った。結果を表2に示す。
 [熱分解開始温度の測定2]
 下記表2に示す組成を有するイオン性化合物5mgをアルミパンに入れ、230℃までは10℃/min、230℃から350℃までは0.5℃/minで昇温し、初期質量から2%減少したときの温度を示差熱熱重量同時測定装置(セイコーインスツルメンツ社製「EXSTAR6000 TG/DTA」)を用いて測定した。
Figure JPOXMLDOC01-appb-T000027
 表2より、フッ素原子を含む不純物の含有量が増加するにつれて、熱分解開始温度が低下しており、イオン性化合物にF原子を含む不純物に含まれる場合には、イオン性化合物に備わる特性(耐熱性)が損なわれることが分かる。
 さらに、比較実験例1の熱分解開始温度は、実験例1の熱分解開始温度と比べると20℃以上も低く、F原子を含む不純物の含有量が5mol%以上になると、高温条件下での材料耐久性が大きく損なわれることが分かる。これは、イオン性化合物に含まれていたB-F結合を持つ不純物が、空気中に存在する水分や酸素などのO原子と反応し分解したためと推測される。
 なお、フッ素原子を含む不純物の含有量が3mol%以下である実験例1,2においては、熱分解開始温度の低下が少ない。また、表1の結果から、電解液材料として好適に用いられることが分かる。
 実験例3
 末端水素基を有するエチレンオキサイド/プロピレンオキサイド共重合体90部に、合成例1-2で合成した1-エチル-3-メチルイミダゾリウムテトラシアノボレートを導電性付与剤として10部加え、温度70℃で加熱混練し、樹脂組成物を得た。
 次いで、熱可塑性樹脂であるメタクリル酸メチル重合体(分子量:約20万)100部に、先に得られた樹脂組成物20部を添加し、これをテストロール機(日新科学社製、「HR-2型」)中、温度100℃で加熱混練して、厚さ2mmの均一なシートを得た。
 表面抵抗測定器(三菱化学社製、「HT-210」)を用いて得られたシートの表面抵抗を測定したところ、9×107Ωであった。また、イオン性化合物のブリードも観測されなかった。
 実験例3の結果より、本発明のイオン性化合物は、導電性付与剤としても好適に使用できることが分かる。
 実験例4
 合成例1-2で合成した1-エチル-3-メチルイミダゾリウムテトラシアノボレートの流動点、動粘度および摩擦係数を評価した。
 流動点の評価はJIS K2269-1987に準拠して行った。観測されたEtMeImTCBの流動点は、-20℃であった。動粘度の測定はJIS K2283-2000に準拠して行った。40℃におけるEtMeImTCBの動粘度は30cSt(3.0×10-52/s)であった。摩擦係数の測定は、振り子形摩擦試験機(神鋼造機社製、「曽田式振子形油性摩擦試験機」)を使用して行った。EtMeImTCBの摩擦係数は0.16であった。
 実験例4の結果より、本発明のイオン性化合物は、低温環境下でも流動性を保っており、また摩擦係数も低く潤滑剤としても好適であることが分かる。
 本発明のイオン性化合物は、F原子およびF原子を含有する不純物を含有量が極低レベルにまで低減されているため、これを各種用途に使用した場合にも周辺部材の腐食といった問題を生じることなく、安定した特性(熱的、物理的、電気化学的特性など)を発揮することができる。
 実施例2
 合成例2では、出発原料にシアン化アンモニウム化合物を用いて、テトラシアノボレートをアニオンとするイオン性化合物を合成した。
 原料合成:シアン化アンモニウムの合成1
 攪拌装置、及び、滴下漏斗を備えた容量2lのフラスコに、塩化メチレン200ml、テトラブチルアンモニウムスルホキシド67.6g(200mmol)を入れて攪拌した後、この溶液に4M NaOH水溶液50mlを加え、攪拌した。この塩化メチレン溶液に、予め、水20mlに溶解させたシアン化ナトリウム10g(204mmol)を滴下ロートより滴下して加えた後、室温(25℃)で、30分攪拌した。得られた懸濁液をろ過し、ろ液を濃縮し、油状の粗テトラブチルアンモニウムシアニド58.7gを得た。
 合成例2-1 テトラブチルアンモニウムテトラシアノボレート(Bu4NTCB)の合成1
 攪拌装置、滴下漏斗、及び、還流管を備えた容量50mlのフラスコ内を窒素置換し、窒素雰囲気下室温でテトラブチルアンモニウムブロミド0.64g(2.0mmol)、テトラブチルアンモニウムシアニド2.65g(9.9mmol)、三臭化ホウ素0.35g(1.4mmol)、トルエン1.4mlを加えた後、130℃のオイルバスで内容物を加熱しながら2日間攪拌した。2日後、フラスコ内のトルエンを減圧留去し、黒色固体を得た。
 この黒色固体を、攪拌装置を備えたビーカーに入れ、ここにクロロホルム100ml、水100mlを加え、分液ロートでクロロホルム層を抽出し、さらにクロロホルム層を100mlの水で2回分液洗浄した後、クロロホルム層を減圧下で濃縮し、油状の粗生成物を得た。これを中性アルミナを充填剤とするカラムクロマトグラフィー(展開溶媒:ジエチルエーテルとクロロホルムの混合溶媒)で精製し、生成物の含まれる留分を分取し、溶媒を留去し、乾固させて、生成物であるテトラブチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:0.39g(1.4mmol)、収率:77%、融点:90℃)。
 得られたイオン性化合物であるテトラブチルアンモニウムテトラシアノボレートについて、上記測定方法によって各種物性を測定した。結果を以下に示す。尚、生成物は、合成例1-1と同様のNMRスペクトルを示していた。
 イオン伝導度(25℃):0.009S/cm
 熱分解開始温度:210℃
 電位窓:-3.2V~2.0V
 1H-NMR(d6-DMSO):δ3.16(m,8H),1.56(m,8H),1.30(ddq,J=11Hz,J=11Hz,J=7.2Hz,8H),0.92(t,J=7.2Hz、12H)
 13C-NMR(d6-DMSO):δ121.9(m),57.7(s),39.1(s),19.4(s),13.7(s)
 11B-NMR(d6-DMSO)δ-39.6(s)
 合成例2-2 テトラブチルアンモニウムテトラシアノボレートの合成2
 三臭化ホウ素の代わりに三塩化ホウ素1.4ml(1.4mmol、1M p-キシレン溶液、アルドリッチ社製)を用い、トルエンを用いなかったこと以外は、合成例2-1と同様の操作を行い、生成物であるテトラブチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:0.21g(0.6mmol)、収率:42%、融点:90℃)。
 生成物は、合成例2-1と同様のNMRスペクトル、各種物性を示していた。
 合成例2-3 テトラブチルアンモニウムテトラシアノボレートの合成3
 テトラブチルアンモニウムブロミドを用いなかったこと以外は合成例2-2と同様の操作を行い、生成物であるテトラブチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:0.18g(0.5mmol)、収率:35%、融点:90℃)。
 生成物は、合成例2-1と同様のNMRスペクトル、各種物性を示していた。
 合成例2-4 テトラブチルアンモニウムテトラシアノボレートの合成4
 攪拌装置、滴下漏斗、及び、還流管を備えた容量50mlのフラスコ内を窒素置換し、窒素雰囲気下室温でテトラブチルアンモニウムブロミド0.64g(2.0mmol)、テトラブチルアンモニウムシアニド1.65g(6.2mmol)、ホウ酸トリエチル0.20g(1.4mmol)、ジメチルスルホキシド1.4mlを加えた後、170℃のオイルバスで内容物を加熱しながら2日間攪拌した。2日後、フラスコ内の有機溶媒を減圧留去し、黒色固体を得た。
 この黒色固体を、攪拌装置を備えたビーカーに入れ、ここにクロロホルム100ml、水100mlを加え、分液ロートでクロロホルム層を抽出し、さらにクロロホルム層を100mlの水で2回分液洗浄した後、クロロホルム層を減圧下で濃縮し、油状の粗生成物を得た。これを、中性アルミナを充填剤とするカラムクロマトグラフィー(展開溶媒:ジエチルエーテルとクロロホルムの混合溶媒)で精製し、生成物の含まれる留分を分取し、溶媒を留去し、乾固させて、生成物であるテトラブチルアンモニウムテトラシアノボレートを得た(黄色固体、収量:0.1g(0.3mmol)、収率:20%、融点:90℃)。
 生成物は、合成例2-1と同様のNMRスペクトル、各種物性を示していた。
 合成例2-5 テトラブチルアンモニウムテトラシアノボレートの合成5
 攪拌装置、滴下漏斗、及び、還流管を備えた容量2lのフラスコに、原料合成で得られた未精製のテトラブチルアンモニウムシアニド58.7g、テトラブチルアンモニウムブロミド11.6g(36.3mmol)を加え、フラスコ内を窒素置換した後、滴下漏斗より1M三塩化ホウ素 p-キシレン溶液26ml(26mmol)を室温で系内に滴下した。反応液を150℃に加熱しながら2日間攪拌した後、溶媒を留去し、得られた残渣を、中性アルミナを充填剤とするカラムクロマトグラフィー(展開溶媒:ジクロロエタンとジエチルエーテルを1:1(体積比)で混合した混合溶媒)により精製し、テトラブチルアンモニウムシアノボレートを得た(収量:3.2g(9mmol)、収率:35%)。
 生成物は、合成例2-1と同様のNMRスペクトル、各種物性を示していた。
 合成例2-6 テトラブチルアンモニウムテトラシアノボレートの合成6
 攪拌装置、滴下漏斗、及び、還流管を備えた容量50mlのフラスコ内を窒素置換し、窒素雰囲気下、室温で、テトラブチルアンモニウムブロミド0.65g(2.0mmol)、テトラブチルアンモニウムシアニド2.98g(11.0mmol)および1M三塩化ホウ素 p-キシレン溶液2.0ml(2.0mmol)を加えた後、150℃のオイルバスで内容物を加熱しながら2日間攪拌した。その後、溶媒を留去して黒色の個体を得た。
 得られた粗生成物を、10質量%の酢酸エチル溶液とし、ここに、活性炭2.1g(カルボラフィン(登録商標)-6、日本エンバイロケミカルズ株式会社製)を加え、室温で30分間攪拌した。その後、得られた活性炭懸濁液を、メンブレンフィルター(0.2μm、PTFE製、親水性)でろ過し、フィルター上の活性炭を6.5gの酢酸エチルに分散させ、50℃で10分間攪拌し、再びろ過する操作を5回繰り返した。得られたろ液と、洗浄液とを合わせて、ここから溶媒を留去し、乾燥し、褐色個体を得た。
 次いで、得られた褐色固体に、過酸化水素水(30質量%水溶液)を0.7g加え50℃で60分間攪拌した。得られた溶液に酢酸ブチル3gを加え、室温で30分間攪拌し、分散状態とした後、遠心分離用の容器に移した後、容器を90秒間振とうし、これを遠心分離した(1700ppm、10分間)。その後、上層(酢酸ブチル層)を濃縮し、得られた淡黄色固体を減圧下、80℃で30分間粗乾燥させた後、この粗生成物を乳鉢で粉砕し粉末とした。この粉末をバット上に広げ、更に減圧下、80℃で3日間乾燥させて、目的物であるテトラブチルアンモニウムテトラシアノボレートを得た(収量0.36g(1.0mmol)、収率50%)。
 生成物は、合成例2-1と同様のNMRスペクトルおよび各種物性を示していた。
 合成例2-7 トリエチルメチルアンモニウムテトラシアノボレートの合成
 テトラブチルアンモニウムブロミドを用いなかったこと、テトラブチルアンモニウムシアニドの代わりにトリエチルメチルアンモニウムシアニド1.56g(11mmol)を用いたこと以外は合成例14と同様の操作を行い、生成物としてトリエチルメチルアンモニウムテトラシアノボレート(Et3MeNTCB)を得た(淡黄色固体、収量:0.23g(1mmol)、収率:50%、融点:115℃)。生成物は、合成例1-4と同様のNMRデータを示していた。
 本発明第2の製造方法によれば、200℃以下の反応温度条件下においてもテトラシアノボレートを有するイオン性化合物を製造することができる。また、高価なシアン化トリメチルシランを使用しなくても、テトラシアノボレートを有するイオン性化合物を得ることができる。
 実施例3
 実施例3では、出発原料としてトリメチルシリルシアニドを用い、テトラシアノボレートを含むイオン性化合物を合成した。
 合成例3-1 トリエチルメチルアンモニウムテトラシアノボレート(Et3MeNTCB)の合成1
 攪拌装置、還流管および抜き出し装置、滴下ロートを備えた容量1Lのなすフラスコに、予め加熱乾燥しておいたトリエチルメチルアンモニウムクロリド(Et3MeNCl)30.3g(200mmol)を加えた。容器内を窒素置換した後、トリメチルシリルシアニド(TMSCN)109.0g(1100mmol)を室温で加え、攪拌し、混合した。次いで、滴下ロートから三塩化ホウ素の1mol/L p-キシレン溶液200mL(200mmol)をゆっくり滴下した。滴下終了後、反応容器を150℃まで加熱し、副生するトリメチルシリルクロリド(TMSCl、沸点:約57℃)を還流抜き出し部から抜き出しながら反応を行った。
 30時間加熱攪拌した後、ダイアフラムポンプで反応容器内を減圧し、還流抜き出し部からTMSCNのp-キシレン溶液を留去した。その後、攪拌装置を備えた500mLのビーカーに、粗生成物45gと酢酸エチル225gを入れ、5分間攪拌して溶解させた後、ここに、活性炭135g(日本エンバイロケミカル社製のカルボラフィン(登録商標))を加え、10分間攪拌した。得られた活性炭懸濁液をメンブレンフィルター(0.2μm、PTFE製)でろ過し、溶媒を留去し、乾燥して、目的物であるトリエチルメチルアンモニウムテトラシアノボレート(淡黄色固体)を得た(収量:37.9g(164mmol)、収率:82%、融点:115℃)。
 上記測定方法によって、得られたトリエチルメチルアンモニウムテトラシアノボレートの各種物性を測定した。結果は以下の通りである。
 イオン伝導度(25℃):0.018S/cm
 熱分解開始温度:280℃
 電位窓:-3.2V~2.0V
 1H-NMR(d6-DMSO)δ 3.23(q,J=6.8Hz,6H),2.86(s,3H),1.18(t,J=6.8Hz,9H)
 13C-NMR(d6-DMSO)δ 112.5(m),55.2(s),46.2(s),7.7(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例3-2 トリエチルメチルアンモニウムテトラシアノボレートの合成2
 活性炭濾過の代わりにカラムクロマトグラフィーによる精製を行ったこと以外は、合成例3-1と同様にして、トリエチルメチルアンモニウムテトラシアノボレート(淡黄色固体)を得た(収量:37.9g(164mmol)、収率:82%、融点:115℃)。
 なお、精製方法は次の通りである。500mLのビーカーに、粗生成物45gと、塩化メチレンとアセトニトリルの混合溶液20mL(4:1(体積比))を入れ、5分間攪拌して溶解させた。次いで、酸化アルミニウム(450cc)を固定相とし、塩化メチレンとアセトニトリルの混合溶媒(4:1(体積比)、2.5L)を移動相とするカラムクロマトグラフィーにより精製を行い、目的物であるトリエチルメチルアンモニウムテトラシアノボレートを得た。生成物は、合成例3-1と同様のNMRスペクトル、各種物性を示していた。
 合成例3-3 テトラブチルアンモニウムテトラシアノボレート(Bu4NTCB)の合成
 合成例3-1において用いたEt3MeNClの代わりにテトラブチルアンモニウムブロミド64.5g(200mmol)を用いたこと以外は、合成例3-1と同様の操作を行い、生成物として白色固体のテトラブチルアンモニウムテトラシアノボレートを得た(収量:60.0g(196mmol)、収率:98%、融点:90℃)。生成物は、合成例1-1と同様のNMRスペクトル、各種物性を示していた。
 イオン伝導度(25℃):0.009S/cm
 熱分解開始温度:210℃
 電位窓:-3.2V~2.0V
 合成例3-4 1-エチル-3-メチルイミダゾリウムテトラシアノボレート(EtMeImTCB)の合成
 Et3MeNClの代わりに1-エチル-3-メチルイミダゾリウムブロミド38.2g(200mmol)を用いたこと以外は実施例1と同様の操作を行い、生成物として淡黄色液体の1-エチル-3-メチルイミダゾリウムテトラシアノボレートを得た(収量:24.9g(110mmol)、収率:55%、融点:15℃)。生成物は、合成例1-2と同様のNMRスペクトル、各種物性を示していた。
 イオン伝導度(25℃):0.021S/cm
 熱分解開始温度:330℃
 電位窓:-2.4V~2.0V
 合成例3-5 トリエチルアンモニウムテトラシアノボレート(Et3NHTCB)の合成1
 Et3MeNClの代わりにトリエチルアミン20.2g(200mmol)を用いたこと以外は合成例3-1と同様の操作を行い、生成物として淡黄色固体のトリエチルアンモニウムテトラシアノボレートを得た(収量:23.8g(110mmol)、収率:60%、融点:150℃)。生成物は、合成例1-3と同様のNMRスペクトル、各種物性を示していた。
 イオン伝導度(25℃):0.018S/cm
 熱分解開始温度:285℃
 電位窓:-1.7V~2.0V
 合成例3-6 トリエチルアンモニウムテトラシアノボレートの合成2
 Et3MeNClの代わりにトリエチルアンモニウムクロリド27.5g(200mmol)を用いたこと以外は合成例3-1と同様の操作を行い、生成物として淡黄色固体のトリエチルアンモニウムテトラシアノボレートを得た(収量:23.8g(110mmol)、収率:60%、融点:150℃)。生成物は、合成例3-5と同様のNMRスペクトル、各種物性を示していた。
 合成例3-7 テトラエチルアンモニウムテトラシアノボレート(Et4NTCB)の合成1
 Et3MeNClの代わりにテトラエチルアンモニウムクロリド33.1g(200mmol)を用いたこと以外は合成例3-1と同様の操作を行い、生成物として白色固体のテトラエチルアンモニウムテトラシアノボレートを得た(収量:46.6g(190mmol)、収率:95%、融点:150℃)。生成物は、合成例1-5と同様のNMRスペクトルを示していた。
 イオン伝導度(25℃):0.015S/cm
 熱分解開始温度:220℃
 電位窓:-3.0V~2.0V
 合成例3-8 トリエチルメチルアンモニウムテトラシアノボレートの合成3
 なすフラスコの代わりに1Lの耐圧容器(ステンレス鋼製、5kPaの加圧条件下で使用可能)を用い、反応中に副生するTMSClを抜き出さなかったこと以外は、合成例3-1と同様の操作を行い、生成物として淡黄固体のテトラエチルアンモニウムテトラシアノボレートを得た(収量:33.3g(144mmol)、収率:72%、融点:115℃)。なお、得られた生成物は、合成例3-1と同様のNMRスペクトル、各種物性を示していた。
 合成例3-9 テトラブチルアンモニウムテトラシアノボレートの合成2
 三塩化ホウ素の代わりに、ホウ酸トリメチル20.8g(200mmol)を用い、反応容器を170℃まで加熱したこと以外は合成例3-3と同様の操作を行い、生成物として白色固体のテトラブチルアンモニウムテトラシアノボレートを得た(収量:50.0g(140mmol)、収率:70%、融点:90℃)。なお、得られた生成物は、合成例3-3と同様のNMRスペクトル、各種物性を示していた。
 合成例3-10 テトラブチルアンモニウムテトラシアノボレートの合成3
 三塩化ホウ素の代わりに、ホウ酸トリエチル29.2g(200mmol)を用い、反応容器を170℃まで加熱したこと以外は合成例3-3と同様の操作を行い、生成物として白色固体のテトラブチルアンモニウムテトラシアノボレートを得た(収量:50.0g(140mmol)、収率:70%、融点:90℃)。なお、得られた生成物は、合成例3-3と同様のNMRスペクトル、各種物性を示していた。
 合成例3-11 テトラブチルアンモニウムテトラシアノボレートの合成4
 三塩化ホウ素の代わりに、三フッ化ホウ素ジエチルエーテル錯体28.4g(200mmol)を用い、反応容器を170℃まで加熱したこと以外は合成例3-3と同様の操作を行い、生成物として白色固体のテトラブチルアンモニウムテトラシアノボレートを得た(収量:53.6g(150mmol)、収率:75%、融点:90℃)。なお、得られた生成物は、合成例3-3と同様のNMRスペクトル、各種物性を示していた。
 合成例3-12 トリエチルメチルアンモニウムテトラシアノボレートの合成4
 p-キシレンの代わりに、酢酸ブチルを用いた以外は合成例3-1と同様の操作を行い、生成物として淡黄色固体のトリエチルメチルアンモニウムテトラシアノボレートを得た(収量:27.7g(120mmol)、収率:55%、融点:115℃)。なお、得られた生成物は、合成例3-1と同様のNMRスペクトル、各種物性を示していた。
 合成例3-13 トリエチルメチルアンモニウムテトラシアノボレートの合成5
 合成例3-1と同様の反応を行い、還流抜き出し部から抜き出したTMSCl69.5g(640mmol)を、攪拌装置を備えたフラスコ(容量500mL)に加え、次いで、室温(25℃)で、トリエチルアミン64.7g(640mmol)およびシアン化水素17.3g(640mmol)を加え、一晩攪拌した。得られた生成物を蒸留しTMSCNを得た(無色液体、収量:57.1g(576mmol)、収率:90%)。
 反応副生物であるTMSClを原料として得られたTMSCN52.1g(525mmol)と、BCl312.3g(105mmol)およびTEMACl15.9g(105mmol)を用いたこと以外は合成例3-1と同様にして、トリエチルメチルアンモニウムテトラシアノボレートを得た(収量:19.8g(86mmol)、収率:82%、融点:115℃)。なお、得られた生成物は、合成例3-1と同様のNMRスペクトル、各種物性を示していた。
 合成例3-14 テトラメチルアンモニウムテトラシアノボレートの合成
 Et3MeNAClの代わりにテトラメチルアンモニウムクロリド21.9g(200mmol)を用いたこと以外は合成例3-1と同様の操作を行い、生成物として白色固体のテトラメチルアンモニウムテトラシアノボレートを得た(収量:26.5g(140mmol)、収率:70%)。
 1H-NMR(d6-DMSO)δ 3.08(s,12H)
 13C-NMR(d6-DMSO)δ 121.9(m),55.3(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例3-15 アンモニウムテトラシアノボレートの合成
 Et3MeNClの代わりにアンモニウムクロリド10.7g(200mmol)を用いたこと以外は合成例3-1と同様の操作を行い、生成物として白色固体のアンモニウムテトラシアノボレートを得た(収量:8.0g(60mmol)、収率:30%)。
 1H-NMR(d6-DMSO)δ 6~7(broad,4H)
 13C-NMR(d6-DMSO)δ 121.9(m)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例3-16 トリブチルアンモニウムテトラシアノボレートの合成
 Et3MeNClの代わりにトリブチルアンモニウムクロリド44.4g(200mmol)を用いたこと以外は合成例3-1と同様の操作を行い、生成物として黄色固体のトリブチルアンモニウムテトラシアノボレートを得た(収量:48.2g(160mmol)、収率:80%)。
 1H-NMR(d6-DMSO)δ 2.98(m,6H),1.4~1.8(m,6H),1.2~1.3(m,6H),0.94(m,9H)
 13C-NMR(d6-DMSO)δ 121.9(m),52.7(s),26.2(s),20.3(s),14.4(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例3-17 リチウムテトラシアノボレートの合成
 攪拌装置を備えた容量500mlのビーカーに、合成例3-16で得られたトリブチルアンモニウムテトラシアノボレート48.2g(160mmol)、酢酸ブチル200g、水酸化リチウム1水和物4.6g(192mmol)および超純水200gを加え、1時間攪拌した。その後、混合液を分液ロートに移し、静置すると、混合液は2層に分離した。この内、下層(水層)を分離、濃縮して得られた淡黄色固体をアセトニトリル200gと混合し、攪拌した。その後、得られた溶液をメンブレンフィルター(0.2μm、PTFE製)でろ過し、溶媒を留去することで、目的物であるリチウムテトラシアノボレート(白色固体)を得た(収量:13.6g(112mmol)、収率:70%)。
 7Li-NMR(d6-DMSO)δ 0.02(s)
 13C-NMR(d6-DMSO)δ 121.9(m)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例3-18 トリエチルメチルアンモニウムテトラシアノボレートの合成6
 合成例3-1と同様に反応を行い、還流抜き出し部から抜き出したTMSCl69.5g(640mmol)を、攪拌装置を備えたフラスコ(容量500mL)に加え、次いで、室温(25℃)で、ヘキサメチルジシラザン103.2g(640mmol)およびシアン化水素51.9g(1919mmol)を加え、一晩攪拌した。得られた生成物を蒸留しTMSCNを得た(無色液体、収量:171.4g(1727mmol)、収率:90%)。
 反応副生物であるTMSClを原料として得られたTMSCN52.1g(525mmol)と、三塩化ホウ素12.3g(105mmol)およびEt3MeNCl15.9g(105mmol)を用いたこと以外は合成例3-1と同様にして、トリエチルメチルアンモニウムテトラシアノボレートを得た(淡黄色固体、収量:19.8g(86mmol)、収率:82%、融点:115℃)。なお、得られた生成物は、合成例3-1と同様のNMRスペクトル、各種物性を示していた。
 合成例3-19 トリメチルシリルテトラシアノボレート(Me3STCB)の合成1
 Et3MeNClを用いなかったこと以外は、合成例3-1と同様の操作を行い、生成物としてトリメチルシリルテトラシアノボレートを得た。収量:1.9g(10mmol)、収率:5%であった。
 合成例3-20 トリエチルメチルアンモニウムテトラシアノボレートの合成7
 トリメチルシリルシアニドの代わりに、シアン化カリウム71.6g(1100mmol)を用いた以外は合成例3-1と同様の操作を行ったが、目的物であるトリエチルメチルアンモニウムテトラシアノボレートは全く得られなかった。
 本発明第3の製造方法では、反応副生成物による反応の活性低下が生じ難いので、従来法に比べて高収率でテトラシアノボレートイオンを有するイオン化合物を製造することができる。また、アンモニウム塩を用いた場合には、1段階で有機カチオンを有するイオン性化合物を製造することができる。
 合成例3-21 トリブチルアンモニウムテトラシアノボレートの合成2
 トリブチルアンモニウムクロリドの代わりにトリブチルアンモニウムシアニド42.5g(200mmol)、トリメチルシリルシアニド84.8g(855mmol)を用いたこと以外は合成例3-16と同様の操作を行い、生成物として黄色固体のトリブチルアンモニウムテトラシアノボレートを得た(収量:42.5g(141mmol)、収率:75%)。なお、得られた生成物は、合成例3-16と同様のNMRスペクトル、各種物性を示していた。
 実施例4
 実施例4では、出発原料にシアン化水素(HCN)を用い、テトラシアノボレートをアニオンとするイオン性化合物を合成した。
 合成例4-1 トリブチルアンモニウムテトラシアノボレートの合成
 昇温装置、攪拌装置および還流管を備えた200mlの3つ口フラスコを窒素置換し、トリブチルアミン10.2g(55mmol)、シアン化水素1.49g(55mmol)を室温で加え、1時間攪拌した。ついで、ここに三塩化ホウ素1.17g(10mmol)、p-キシレン100mlを加え、150℃で2日間、加熱還流した。得られた黒色溶液に、室温で、酢酸ブチル30gを加え攪拌した後、ここに活性炭9g(カルボラフィン(登録商標)-6、日本エンバイロケミカルズ株式会社製)を加え、室温で20分間攪拌した。得られた活性炭懸濁液をメンブレンフィルター(0.5μm、PTFE製)でろ過し、フィルター上の活性炭を30gの酢酸ブチルで洗浄する操作を5回繰返した。得られたろ液と、洗浄液を合わせて、溶媒を留去し、乾燥し黒色固体を得た。
 次いで、得られた黒色固体に過酸化水素水を8gを加え、50℃で1時間攪拌した後、ここに40gの酢酸ブチルを加え、室温で20分間さらに攪拌し、溶液を10分間静置した後、酢酸ブチル層を分離し、溶媒を留去し、乾燥することで、褐色油状のトリブチルアンモニウムテトラシアノボレート(Bu3NHTCB)を得た(収量1.21g(4mmol)、収率40%)。
 1H-NMR(d6-DMSO)δ 8.8 (br,1H),2.99 (dd,J=8.0Hz,J=16.4Hz,6H),1.52 (m,6H),1.28 (m,6H),0.88 (m,9H)
 13C-NMR(d6-DMSO)δ 121.9 (m),46.0 (s),8.8 (s)
 11B-NMR(d6-DMSO)δ -39.6 (s)
 合成例4-2 トリエチルアンモニウムテトラシアノボレートの合成
 トリブチルアミンの代わりに、トリエチルアミン5.58g(55mmol)を用いたこと以外は、合成例4-1と同様にして、トリエチルアンモニウムテトラシアノボレート(褐色固体、Et3NHTCB)を得た(収量0.65g(3mmol)、収率30%)。以下に、得られたトリエチルアンモニウムテトラシアノボレートのNMRデータを示す。上記測定方法によって測定した各種物性は以下の通りである。
 イオン伝導度(25℃):0.018S/cm
 熱分解開始温度:285℃
 電位窓:-1.7V~2.0V
 1H-NMR(d6-DMSO)δ 8.83 (s,1H),3.10 (q,J=7.2Hz,6H),1.17 (t,J=7.2Hz,9H) 
 13C-NMR(d6-DMSO)δ 121.9 (m),46.0 (s),8.8 (s)
 11B-NMR(d6-DMSO)δ -39.6 (s)
 本発明によれば、安価なシアン化水素を出発原料としてテトラシアノボレートを有するイオン性化合物を得ることができる。
 本発明第4の製造方法によれば、シアン源としてシアン化水素を用いるため、従来に比べて安価にテトラシアノボレートを有するイオン性化合物を得ることができる。
 実施例5
 実施例5では、下記合成例5~11で得られたイオン性化合物中に含まれる不純物量を測定した。各種不純物の測定方法は次の通りである。
 [金属成分含有量の測定]
 (1)ICPによる測定(Na,Siの測定)
 下記合成例5~11で得られたイオン性化合物2gを超純水(18.2Ω・cm超)で10倍~100倍に希釈して測定溶液とし、ICP発光分析装置 ICPE-9000(島津製作所製)を用いて、イオン性化合物中に含まれるNa,Si量を測定した。
 (2)イオンクロマトグラフィーによる測定(ハロゲン化物イオン類の測定)
 下記合成例で得られたイオン性化合物0.3gを超純水(18.2Ω・cm超)で100倍~1000倍に希釈して測定溶液とし、イオンクロマトグラフィーシステム ICS-3000(日本ダイオネクス株式会社製)を用いて、イオン性化合物中に含まれるハロゲン化物イオンの量を測定した。
 分離モード:イオン交換
 検出器:電気伝導度検出器 CD-20
 カラム:アニオン分析用カラム AS17-C(日本ダイオネクス株式会社製)
 (3)イオンクロマトグラフィーによる測定(CNの測定)
 下記合成例で得られたイオン性化合物0.1gを超純水(18.2Ω・cm超)で10000倍に希釈して測定溶液とし、イオンクロマトグラフィーシステム ICS-1500(日本ダイオネクス株式社製)を用いて、イオン性化合物中に含まれるシアン化物イオン(CN)の量を測定した。
 分離モード:イオン交換
 溶離液:10mmol H2SO4水溶液
 再生液:0.5mmol NaOH水溶液
 検出器:電気化学検出器 ED-50A
 カラム:アニオン分析用カラム ICE-AS1
 [水分測定]
 平沼産業(株)製水分測定装置「AQ-2000」を用いて、試料中の水分量を測定した。なお、試料注入量は0.1mlとし、発生液には「ハイドラナール アクアライトRS-A」(平沼産業株式会社販売)を使用し、対極液には「アクアライトCN」(関東化学株式会社製)を使用した。試料は、外気に触れないよう注射器を用いて試料注入口より注入した。
 以下、合成例5では、トリメチルシリルシアニドを含む出発原料を用いてイオン性化合物の合成を行った。
 合成例5
 合成例5-1 トリエチルメチルアンモニウムテトラシアノボレートの合成
 <粗生成物の合成>
 攪拌装置、還流管および抜き出し装置、滴下ロートを備えた容量1Lのなすフラスコに、予め加熱乾燥しておいたトリエチルメチルアンモニウムクロリド(Et3MeCl)30.3g(200mmol)を加えた。容器内を窒素置換した後、トリメチルシリルシアニド(TMSCN)109.0g(1100mmol)を室温で加え、攪拌し、混合した。次いで、滴下ロートから三塩化ホウ素(BCl3)の1mol/L p-キシレン溶液200mL(200mmol)をゆっくり滴下した。滴下終了後、反応容器を150℃まで加熱し、副生するトリメチルシリルクロリド(TMSCl、沸点:約57℃)を還流抜き出し部から抜き出しながら反応を行った。
 30時間加熱攪拌した後、ダイアフラムポンプで反応容器内を減圧し、還流抜き出し部からTMSCNのp-キシレン溶液を留去した。容器内には、粗トリエチルメチルアンモニウムテトラシアノボレート(Et3MeNTCB)が生成していた。
 <活性炭処理>
 ついで、攪拌装置を備えた500mLのビーカー内で、得られた粗生成物46.0gを酢酸エチルに溶解させて、10質量%の酢酸エチル溶液とし、ここに活性炭65g(日本エンバイロケミカルズ株式会社製のカルボラフィン(登録商標))を加え、内温が50℃になるまでウォーターバスで加熱した。その後、50℃で10分間攪拌した後、活性炭懸濁液をメンブレンフィルター(0.2μm、PTFE製)でろ過した。フィルター上の活性炭については、粗生成物の3倍質量の酢酸エチルに懸濁させ、50℃で10分間攪拌して洗浄する操作を5回繰返した。得られたろ液と洗浄液とを混合し、酢酸エチルを減圧下で留去させた後、真空下50℃で加熱乾燥し、淡黄色固体のEt3MeNTCBを得た(収量:37g(160mmol)、収率:80%、融点:115℃)。
 <酸化剤処理>
 攪拌装置、還流管を備えたビーカーに、得られたEt3MeNTCBと、Et3MeNTCBに対して2.25倍の質量の過酸化水素水(30質量%H22水溶液)とを加え、50℃で、60分間攪拌した。
 <抽出処理>
 次いで、Et3MeNTCBのH22溶液に、活性炭処理後のEt3MeNTCBに対して9倍の質量の酢酸ブチルを加え、この混合溶液を攪拌した。その後、混合溶液を遠心分離用の容器(容量:1000mL)に移し、この容器を90秒間振とうした後、遠心分離し(1700rpm、10分間)、得られた酢酸ブチル層(上澄み、有機層)を濃縮した。
 <乾燥>
 抽出処理で得られたEt3MeNTCBを含む酢酸ブチル層を、さらに、減圧下で30分間加熱し(80℃)、粗乾燥させて得られたEt3MeNTCBを乳鉢で粉砕して粉末とした。得られた粉末を、テフロン(登録商標)シートをひいたバット上に広げ、これを減圧乾燥機内に設置し、減圧下、80℃で3日間乾燥させた。
 得られたEt3MeNTCBのNMR分析結果を以下に示す。また、上記方法にしたがって測定したEt3MeNTCB中のイオン成分量を表1に示す。生成物は、合成例1-4と同様のNMRスペクトルを示していた。
 合成例5-2
 酸化剤処理において、過酸化水素水の代わりに過塩素酸ナトリウムの30質量%水溶液83mLを用いたこと以外は、合成例5-1と同様にして、Et3MeNTCBを合成した。
 合成例5-3
 粗生成物の合成後、活性炭処理を行わなかったこと以外は、合成例5-1と同様にしてEt3MeNTCBを合成した。
 合成例5-4
 合成例5-1で合成した活性炭処理後のEt3MeNTCBをそのまま測定サンプルとして用いた。
 合成例5-5
 合成例5-1で製造した活性炭処理前のEt3MeNTCB46gを0.01mol/LNaOH水溶液104mlを加え、50℃で60分間攪拌した。ついで、Et3MeNTCBのNaOH溶液に、Et3MeNTCBに対して9倍の質量の酢酸ブチルを加え、合成例5-1と同様にして抽出処理を行い、Et3MeNTCBを合成した(活性炭処理、酸化剤処理なし)。
 合成例6
 合成例6-1 テトラブチルアンモニウムテトラシアノボレートの合成
 合成例5で用いたEt3MeNClの代わりにテトラブチルアンモニウムブロミド64.5g(200mmol)を用いたこと以外は、合成例5-1と同様にして粗生成物の合成、活性炭処理を行い、生成物として白色固体のテトラブチルアンモニウムテトラシアノボレート(Bu4NTCB)を得た(収量:60.0g(164mmol)、収率:82%、融点:90℃)。生成物は、合成例1-1と同様のNMRスペクトルを示していた。
 合成例6-2
 合成例6-1で得られたBu4NTCBを、Bu4NTCBに対して2.25倍の質量の過酸化水素水(30質量%H22水溶液)と混合し、50℃で60分間攪拌した。その後、実験例1-1と同様にして、抽出、乾燥処理を行い、白色固体のBu4NTCBを得た(収量:45g(120mmol)、収率:62%)。
 合成例7
 合成例7-1 1-エチル-3-メチルイミダゾリウムテトラシアノボレートの合成
 Et3MeNClの代わりに1-エチル-3-メチルイミダゾリウムブロミド38.2g(200mmol)を用いたこと以外は合成例5-1と同様にして粗生成物の合成、活性炭処理を行い、生成物として淡黄色油状の1-エチル-3-メチルイミダゾリウムテトラシアノボレート(EtMeImTCB)を得た(収量:24.9g(110mmol)、収率:55%、融点:15℃)。生成物は、合成例1-2と同様のNMRスペクトルを示していた。
 合成例7-2
 合成例7-1で得られたEtMeImTCBを、EtMeImTCBに対して2.25倍の質量の過酸化水素水(30質量%H22水溶液)と混合し、50℃で60分間攪拌した。その後、実験例1-1と同様にして、抽出、乾燥処理を行い、淡黄色油状のEtMeImTCBを得た(収量:18g(80mmol)、収率:40%)。
 合成例8
 合成例8-1 トリエチルアンモニウムテトラシアノボレートの合成
 Et3MeNClの代わりにトリエチルアミン20.2g(200mmol)を用いたこと以外は合成例5-1と同様にして粗生成物の合成、活性炭処理を行い、生成物として淡黄色固体のトリエチルアンモニウムテトラシアノボレート(Et3NHTCB)を得た(収量:23.8g(110mmol)、収率:60%、融点:150℃)。生成物は、合成例1-3と同様のNMRスペクトルを示していた。
 合成例8-2
 合成例8-1で得られたEt3NHTCBを、Et3NHTCBに対して2.25倍の質量の過酸化水素水(30質量%H22水溶液)と混合し、50℃で60分間攪拌した。その後、合成例5-1と同様にして、抽出、乾燥処理を行い、淡黄色固体のEt3NHTCBを得た(収量:17g(80mmol)、収率:40%)。
 合成例9
 合成例9-1 テトラエチルアンモニウムテトラシアノボレートの合成
 Et3MeNClの代わりにテトラエチルアンモニウムクロリド33.1g(200mmol)を用いたこと以外は合成例5-1と同様にして粗生成物の合成、活性炭処理を行い、生成物として白色固体のテトラエチルアンモニウムテトラシアノボレート(Et4NTCB)を得た(収量:46.6g(190mmol)、収率:95%、融点:150℃)。生成物は、合成例1-5と同様のNMRスペクトルを示していた。
 合成例9-2
 合成例9-1で得られたEt4NTCBを、Et4NTCBに対して2.25倍の質量の過酸化水素水(30質量%H22水溶液)と混合し、50℃で60分間攪拌した。その後、合成例5-1と同様にして、抽出、乾燥処理を行い、淡黄色固体のEt4NTCBを得た(収量:35g(144mmol)、収率:72%)。
 合成例10
 合成例10-1 テトラメチルアンモニウムテトラシアノボレートの合成
 Et3MeNClの代わりにテトラメチルアンモニウムクロリド21.9g(200mmol)を用いたこと以外は合成例5-1と同様にして粗生成物の合成、活性炭処理を行い、生成物として白色固体のテトラメチルアンモニウムテトラシアノボレート(Me4NTCB)を得た(収量:26.5g(140mmol)、収率:70%)。
 1H-NMR(d6-DMSO)δ 3.08(s,12H)
 13C-NMR(d6-DMSO)δ 121.9(m),55.3(s)
 11B-NMR(d6-DMSO)δ -39.6(s)
 合成例10-2
 合成例10-1で得られたMe4NTCBを、Me4NTCBに対して2.25倍の質量の過酸化水素水(30質量%H22水溶液)と混合し、50℃で60分間攪拌した。その後、合成例5-1と同様にして、抽出、乾燥処理を行い、淡黄色固体のMe4NTCBを得た(収量:11g(100mmol)、収率:50%)。
 合成例11
 合成例11-1 トリブチルアンモニウムテトラシアノボレートの合成
 Et3MeNClの代わりにトリブチルアンモニウムクロリド44.4g(200mmol)を用いたこと以外は合成例5-1と同様にして粗生成物の合成、活性炭処理を行い、生成物として黄色固体のトリブチルアンモニウムテトラシアノボレート(Bu3NHTCB)を得た(収量:48.2g(160mmol)、収率:80%)。生成物は、合成例3-16と同様のNMRスペクトルを示していた。
 合成例11-2
 合成例11-1で得られたBu3NHTCBを、Bu3NHTCBに対して2.25倍の質量の過酸化水素水(30質量%H22水溶液)と混合し、50℃で60分間攪拌した。その後、合成例5-1と同様にして、抽出、乾燥処理を行い、黄色固体のBu3NHTCBを得た(収量:39g(0.13mmol)、収率:65%)。
 上記方法にしたがって、合成例5~11で製造したイオン性化合物に含まれる各種イオン成分を測定した。結果を表3に示す。尚、表3中「N.D.」は、測定サンプル中に含まれる不純なイオン成分量が測定限界(1ppm)以下であったことを示す。
Figure JPOXMLDOC01-appb-T000028
 合成例5~11の結果より、酸化剤と接触させ酸化剤処理を行うことで、イオン性化合物中に残留するSi,シアン化物イオン(CN),ハロゲン化物イオン(ClまたはBr)を低減できることが分かる。
 また、合成例5の結果より、酸化剤処理による効果は、活性炭処理と抽出処理とを組み合わせることで一層効果的なものとなり(合成例5-1と合成例5-3の比較)、さらに、合成例5-1と合成例5-2の比較から、過酸化水素を酸化剤として用いる場合には、イオン性化合物中の水分量も一層低減できることが分かる。
 すなわち本発明によれば、出発原料や製造中に不可避的に混入する不純物イオン含有量が低減された高純度イオン性化合物を得ることができる。
 実施例6
 実施例6では、一般式[(NC)v-Xd-]で表される構造を有する各種アニオンの最高被占位軌道エネルギー準位の計算(実験例5)、および、実際に合成したアニオンの耐電圧範囲LSVの測定(実験例6)を行った。
 実験例5 最高被占位軌道エネルギー準位の計算
 下記表4に示す各種アニオンの最高被占位軌道エネルギー準位の計算は、GAUSSIAN03(GAUSSIAN,Inc.製)を使用し、基底関数にB3LYP/6-311+G(2d,p)を用いて行った。最高被占位軌道エネルギー準位計算結果を表4に示す。
Figure JPOXMLDOC01-appb-T000029
 実験例6 リニアースィープボルタンメトリー(LSV測定)
 実験例6では、実際に合成したアニオンの耐電圧範囲LSVを測定した。LSV測定は、以下のようにして測定した。
 [耐電圧範囲LSV測定]
 耐電圧範囲の測定は、グローブボックス中30℃雰囲気下、3極セルを用いてスタンダードボルタンメトリツールHSV-100(商品名、北斗電工社製)を使用してLSV測定を行った。なお、測定条件は下記の通りである。
 (測定条件)
 作用極:グラッシーカーボン電極、参照極:Ag電極、対極:白金電極
 溶液濃度:1mol/L
 溶媒:プロピレンカーボネート
 掃引速度:100mV/s
 掃引範囲:自然電位~±5V
 実験例6-1
 合成例1-3で得られたEt3MeNTCBを脱水プロピレンカーボネート(キシダ化学製)に溶解し、1mol/Lに調整したもののLSV測定を行った。結果を図1に示す。
 実験例6-2
 市販のトリエチルメチルアンモニウムテトラフルオロボレート(TEMABF4)(キシダ化学製)2.0mol/LPC溶液を希釈し、1.0mol/LとしたもののLSV測定を行った。結果を図2に示す。
 表4中、No.6~11に示されるアニオンは、最高被占位軌道エネルギー準位が-5.5eVよりも低く、広電位窓であることが示唆される。実際に実験例6-2(図1)に示すように、HOMO順位が-5.809eVであったEt3MeNTCBは、2V付近にわずかな電流値が観測されるものの、それ以上の電圧範囲では電流はほとんど観察されず、実験例6-2(図2)に示されるEt3MeNBF4よりも耐電圧範囲の広い化合物であることがわかる。
 本発明のイオン伝導性材料は電位窓が広くFやAsのような有害元素を含まないためリチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタや電解コンデンサ等の用途に好適に用いることができる。
 本発明の製造方法により得られるテトラシアノボレートを有するイオン性化合物は、リチウム二次電池、電解コンデンサ、電気二重層キャパシタ及びリチウムイオンキャパシタなどのイオン伝導体(電解液材料等)といった各種電気化学デバイスの構成材料、有機合成の反応溶媒、ポリマーへの導電性付与剤、潤滑剤、ガス吸収剤など様々な用途に好適に用いられる。
 特に、本発明のイオン性化合物を用いれば、信頼性の高い電解液材料、および、導電性付与剤などの添加剤や潤滑剤を提供することができる。

Claims (13)

  1.  下記一般式(I)で表されるイオン性化合物100mol%に対して、フッ素原子を含有する不純物の含有量が3mol%以下であることを特徴とするイオン性化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Ktm+は、有機カチオン[Ktbm+又は無機カチオン[Ktam+を表し、nは1~3の整数を表す)
  2.  上記一般式(I)で表されるイオン性化合物であって、当該イオン性化合物中のケイ素含有量が2500ppm以下である請求項1に記載のイオン性化合物。
  3.  CN含有量が3000ppm以下である請求項1または2に記載のイオン性化合物。
  4.  ハロゲン化物イオン含有量が500ppm以下である請求項1~3のいずれかに記載のイオン性化合物。
  5.  さらに、水の含有量が3000ppm以下である請求項1~4のいずれかに記載のイオン性化合物。
  6.  請求項1~5のいずれかに記載のイオン性化合物を含んでなるイオン導電性材料。
  7.  上記一般式(I)で表されるイオン性化合物の製造方法であって、シアン化物と、ホウ素化合物とを含む出発原料を反応させることを特徴とするイオン性化合物の製造方法。
  8.  上記出発原料が、シアン化物としてトリメチルシリルシアニドを含み、さらに、アミン及び/又はアンモニウム塩を含むものである請求項7に記載のイオン性化合物の製造方法。
  9.  上記シアン化物が、Ma(CN)n(Maは、Zn2+,Ga3+,Pd2+,Sn2+,Hg2+,Rh2+,Cu2+およびPb+のいずれかを示し、nは1~3の整数である)である請求項7に記載のイオン性化合物の製造方法。
  10.  上記シアン化物が、R4NCN(Rは、Hまたは有機基)で表されるシアン化アンモニウム系化合物である請求項7に記載のイオン性化合物の製造方法。
  11.  上記出発原料が、上記シアン化物としてシアン化水素を含み、さらに、アミンを含むものである請求項7に記載のイオン性化合物の製造方法。
  12.  上記出発原料を反応させて得られた粗生成物を、酸化剤と接触させる工程を含む請求項7~11のいずれかに記載のイオン性化合物の製造方法。
  13.  上記酸化剤が過酸化水素である請求項12に記載のイオン性化合物の製造方法。
PCT/JP2009/064678 2008-08-22 2009-08-21 イオン性化合物及びその製造方法、並びに、これを用いたイオン伝導性材料 WO2010021391A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/060,161 US9243013B2 (en) 2008-08-22 2009-08-21 Ionic compound, method for producing the same, and ion-conductive material comprising the same
EP09808327A EP2327707A4 (en) 2008-08-22 2009-08-21 IONIC CONNECTION, MANUFACTURING METHOD AND ION-LEADING MATERIAL THEREFOR
CN2009801322809A CN102124014A (zh) 2008-08-22 2009-08-21 离子性化合物及其制备方法以及使用了该离子性化合物的离子传导性材料
JP2010525722A JP5913804B2 (ja) 2008-08-22 2009-08-21 イオン性化合物及びその製造方法、並びに、これを用いたイオン伝導性材料

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2008-214504 2008-08-22
JP2008214504 2008-08-22
JP2008240014 2008-09-18
JP2008-240014 2008-09-18
JP2009055643 2009-03-09
JP2009-055643 2009-03-09
JP2009-121465 2009-05-19
JP2009121465 2009-05-19
JP2009-136719 2009-06-05
JP2009136719 2009-06-05
JP2009173577 2009-07-24
JP2009-173577 2009-07-24
JP2009178166 2009-07-30
JP2009-178167 2009-07-30
JP2009-178166 2009-07-30
JP2009178167 2009-07-30

Publications (1)

Publication Number Publication Date
WO2010021391A1 true WO2010021391A1 (ja) 2010-02-25

Family

ID=41707265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064678 WO2010021391A1 (ja) 2008-08-22 2009-08-21 イオン性化合物及びその製造方法、並びに、これを用いたイオン伝導性材料

Country Status (6)

Country Link
US (1) US9243013B2 (ja)
EP (1) EP2327707A4 (ja)
JP (2) JP5913804B2 (ja)
KR (1) KR20110055488A (ja)
CN (2) CN102124014A (ja)
WO (1) WO2010021391A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171293A (ja) * 2010-01-22 2011-09-01 Nippon Shokubai Co Ltd 蓄電デバイスの電解液用添加剤およびこれを含む電解液
JP2011246443A (ja) * 2010-04-28 2011-12-08 Nippon Shokubai Co Ltd テトラシアノボレート化合物の製造方法
WO2012099259A1 (ja) 2011-01-21 2012-07-26 株式会社日本触媒 イオン性化合物、その製造方法、並びに、これを用いた電解液、及び、蓄電デバイス
WO2012145796A1 (en) * 2011-04-27 2012-11-01 Commonwealth Scientific And Industrial Research Organisation Lithium energy storage device
JP2013067601A (ja) * 2011-09-06 2013-04-18 Nippon Shokubai Co Ltd テトラシアノボレート塩の製造方法
JP2013149585A (ja) * 2011-04-20 2013-08-01 Nippon Shokubai Co Ltd 電解質材料及びその製造方法
JP2013546118A (ja) * 2010-09-28 2013-12-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング シアノ−アルコキシ−ボレートアニオンを含む電解質配合物
JP2014518888A (ja) * 2011-05-31 2014-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ジヒドロジシアノボラート塩の製造方法
US20140217322A1 (en) * 2011-02-03 2014-08-07 Jsr Corporation Lithium ion capacitor
JP2014522397A (ja) * 2011-05-31 2014-09-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ヒドリド−トリシアノ−ボラートアニオンを含む化合物
US9935336B2 (en) 2013-11-21 2018-04-03 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, and electric power storage system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120245658A1 (en) * 2009-12-09 2012-09-27 Merck Patent Gmbh Therapeutic and Cosmetic Electroluminescent Compositions
US8574534B2 (en) * 2010-03-18 2013-11-05 Ut-Battelle, Llc Carbon films produced from ionic liquid carbon precursors
KR101101695B1 (ko) * 2010-06-10 2011-12-30 삼성전기주식회사 리튬 이온 커패시터용 전해액 및 이를 포함하는 리튬 이온 커패시터
US8760851B2 (en) 2010-12-21 2014-06-24 Fastcap Systems Corporation Electrochemical double-layer capacitor for high temperature applications
US9214709B2 (en) 2010-12-21 2015-12-15 CastCAP Systems Corporation Battery-capacitor hybrid energy storage system for high temperature applications
KR101356521B1 (ko) * 2011-01-19 2014-01-29 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
EP2723979B1 (en) 2011-05-24 2020-07-08 FastCAP SYSTEMS Corporation Power system for high temperature applications with rechargeable energy storage
AU2012267770A1 (en) 2011-06-07 2014-01-23 Fastcap Systems Corporation Energy storage media for ultracapacitors
WO2013009720A2 (en) * 2011-07-08 2013-01-17 Fastcap Systems Corporation High temperature energy storage device
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
WO2013016145A1 (en) * 2011-07-27 2013-01-31 Fastcap Systems Corporation Power supply for downhole instruments
BR112014010635B1 (pt) 2011-11-03 2020-12-29 Fastcap Systems Corporation sistema de registro em log
WO2014029834A1 (en) 2012-08-24 2014-02-27 Lonza Ltd Method for the preparation of tetraalkylammonium tetracyanidoborates
US9206672B2 (en) 2013-03-15 2015-12-08 Fastcap Systems Corporation Inertial energy generator for supplying power to a downhole tool
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
KR20160072265A (ko) * 2013-11-11 2016-06-22 론자 아게 (론자 엘티디.) 루이스 산을 갖는 13 족의 시아노 화합물의 제조 방법
EP4325025A3 (en) 2013-12-20 2024-04-24 Fastcap Systems Corporation Electromagnetic telemetry device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
DE102014008130A1 (de) 2014-06-06 2015-12-17 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Tetracyanoboratsalzen
KR20240055878A (ko) 2014-10-09 2024-04-29 패스트캡 시스템즈 코포레이션 에너지 저장 디바이스를 위한 나노구조 전극
KR101763562B1 (ko) * 2014-10-30 2017-08-01 상명대학교산학협력단 메틸 아이오다이드를 이용한 사차 암모늄염의 제조방법
KR102307905B1 (ko) * 2014-12-22 2021-10-05 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
KR102668693B1 (ko) 2015-01-27 2024-05-27 패스트캡 시스템즈 코포레이션 넓은 온도 범위 울트라커패시터
TW201636322A (zh) 2015-04-09 2016-10-16 隆薩有限公司 利用布朗斯台德酸製備硼氰基化合物的方法
DE102015016400A1 (de) 2015-12-18 2017-06-22 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Salzen mit Perfluoralkyltricyanoboratanionen oder Tetracyanoboratanionen
WO2017139265A1 (en) * 2016-02-09 2017-08-17 Virginia Commonwealth University Electrolytes containing superhalogens for metal ion batteries
EP3323779B1 (en) * 2016-11-18 2020-06-03 Diehl Aviation Gilching GmbH Method for generating oxygen using ionic liquids for decomposing peroxides
JP7554556B2 (ja) 2016-12-02 2024-09-20 ファーストキャップ・システムズ・コーポレイション 複合電極
KR102650658B1 (ko) * 2018-11-15 2024-03-25 삼성전자주식회사 헤테로고리 방향족 구조의 음이온을 포함하는 금속염 및 그 제조방법, 그리고 상기 금속염을 포함하는 전해질 및 전기화학소자
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
CN110611123A (zh) * 2019-10-23 2019-12-24 东莞维科电池有限公司 一种锂离子电池电解液和锂离子电池
CN114146582A (zh) * 2021-11-30 2022-03-08 南京工业大学 一种氟化zif-90改性pdms膜的制备方法
CN116470144B (zh) * 2023-03-29 2024-05-14 中国科学院青岛生物能源与过程研究所 一种碱金属电池使用的电解质及其制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308884A (ja) * 2000-11-10 2002-10-23 Merck Patent Gmbh テトラキスフルオロアルキルホウ酸塩およびそれらの導電性塩としての使用
JP2004175666A (ja) * 2002-11-22 2004-06-24 Tokuyama Corp オニウム塩
JP2006517546A (ja) 2003-02-14 2006-07-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング シアノボレートアニオンを有する塩

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
JP4283374B2 (ja) 1999-05-07 2009-06-24 株式会社レグルス 導電性シート
JP2003142100A (ja) 2001-08-20 2003-05-16 Showa Denko Kk 重合体、該重合体を含む電極材料用複合物、該複合体の製造方法、該複合体を用いた電極及び該電極を用いた二次電池
EP1365463A3 (en) * 2002-04-02 2007-12-19 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
JP4467247B2 (ja) 2002-04-02 2010-05-26 株式会社日本触媒 新規溶融塩を用いたイオン伝導体
JP4074263B2 (ja) 2004-04-09 2008-04-09 日本電子株式会社 電解液の精製方法
DE102004051278A1 (de) 2004-10-21 2006-04-27 Merck Patent Gmbh Neue borhaltige starke Säuren, deren Herstellung und Verwendung
JP5583899B2 (ja) * 2008-06-04 2014-09-03 株式会社日本触媒 イオン性化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308884A (ja) * 2000-11-10 2002-10-23 Merck Patent Gmbh テトラキスフルオロアルキルホウ酸塩およびそれらの導電性塩としての使用
JP2004175666A (ja) * 2002-11-22 2004-06-24 Tokuyama Corp オニウム塩
JP2006517546A (ja) 2003-02-14 2006-07-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング シアノボレートアニオンを有する塩

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
E. BESSLER: "Preparation and Properties of AgB (CN)4 and CuB(CN)4", Z. ANORG. ALLG. CHEM., vol. 430, 1977, pages 38 - 42, XP001169191 *
H. WILLNER ET AL., Z. ANORG, ALLG. CHEM., vol. 629, 2003, pages 1229 - 1234
J. ALLOYS COMPD, vol. 427, 2007, pages 61 - 66
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 149, no. 12, 2002, pages A1572 - A1577
R. A. ANDERSEN ET AL., JACS, vol. 122, 2000, pages 7735 - 7741
See also references of EP2327707A4 *
STEC, W. J. ET AL., SYNTHESIS, 1978, pages 154
Z. ANORG. ALLG. CHEM., vol. 626, 2000, pages 560 - 568
Z. ANORG. ALLG. CHEM., vol. 629, 2003, pages 677 - 685

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171293A (ja) * 2010-01-22 2011-09-01 Nippon Shokubai Co Ltd 蓄電デバイスの電解液用添加剤およびこれを含む電解液
JP2011246443A (ja) * 2010-04-28 2011-12-08 Nippon Shokubai Co Ltd テトラシアノボレート化合物の製造方法
JP2013546118A (ja) * 2010-09-28 2013-12-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング シアノ−アルコキシ−ボレートアニオンを含む電解質配合物
WO2012099259A1 (ja) 2011-01-21 2012-07-26 株式会社日本触媒 イオン性化合物、その製造方法、並びに、これを用いた電解液、及び、蓄電デバイス
KR101814041B1 (ko) 2011-01-21 2018-01-02 가부시기가이샤 닛뽕쇼꾸바이 이온성 화합물, 그 제조방법, 및, 이것을 사용한 전해액, 및, 축전 디바이스
US9466431B2 (en) 2011-01-21 2016-10-11 Nippon Shokubai Co., Ltd. Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound
CN103370827A (zh) * 2011-01-21 2013-10-23 株式会社日本触媒 离子性化合物及其制备方法以及使用了该离子性化合物的电解液和蓄电装置
CN103370827B (zh) * 2011-01-21 2016-02-17 株式会社日本触媒 离子性化合物及其制备方法以及使用了该离子性化合物的电解液和蓄电装置
US20140217322A1 (en) * 2011-02-03 2014-08-07 Jsr Corporation Lithium ion capacitor
JP2013149585A (ja) * 2011-04-20 2013-08-01 Nippon Shokubai Co Ltd 電解質材料及びその製造方法
CN103688400A (zh) * 2011-04-27 2014-03-26 联邦科学与工业研究组织 锂储能装置
WO2012145796A1 (en) * 2011-04-27 2012-11-01 Commonwealth Scientific And Industrial Research Organisation Lithium energy storage device
JP2014522397A (ja) * 2011-05-31 2014-09-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ヒドリド−トリシアノ−ボラートアニオンを含む化合物
JP2014518888A (ja) * 2011-05-31 2014-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ジヒドロジシアノボラート塩の製造方法
JP2013067601A (ja) * 2011-09-06 2013-04-18 Nippon Shokubai Co Ltd テトラシアノボレート塩の製造方法
US9935336B2 (en) 2013-11-21 2018-04-03 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, and electric power storage system

Also Published As

Publication number Publication date
US20110150736A1 (en) 2011-06-23
CN104387410A (zh) 2015-03-04
JP2014156473A (ja) 2014-08-28
CN102124014A (zh) 2011-07-13
JP5796756B2 (ja) 2015-10-21
JPWO2010021391A1 (ja) 2012-01-26
US9243013B2 (en) 2016-01-26
EP2327707A4 (en) 2012-05-30
JP5913804B2 (ja) 2016-04-27
KR20110055488A (ko) 2011-05-25
EP2327707A1 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5796756B2 (ja) イオン性化合物及びその製造方法
US9466431B2 (en) Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound
CN109311669B (zh) 双氟磺酰亚胺碱金属盐的制造方法和双氟磺酰亚胺碱金属盐组合物
JP6856836B2 (ja) リン酸ジエステル塩、その製造方法、蓄電素子の非水電解液及び蓄電素子
US11005127B2 (en) Stable fluorinated alkylated lithium malonatoborate salts for lithium-ion battery applications
JP5684138B2 (ja) 蓄電デバイスおよびこれに用いる電解液
JP6101575B2 (ja) 非水電解液用添加剤、非水電解液、およびリチウム二次電池
JP2010260867A (ja) 第4級アンモニウム塩およびその製造方法
JP2012216419A (ja) 蓄電デバイス
JP5595294B2 (ja) 蓄電デバイスの電解液用添加剤およびこれを含む電解液
JPWO2006077895A1 (ja) 第4級アンモニウム塩、電解質、電解液並びに電気化学デバイス
US20190036167A1 (en) Electrolyte composition, secondary battery, and method for using secondary battery
JP5798509B2 (ja) 電解質材料及びその製造方法
JP5875954B2 (ja) シアノボレート化合物、並びに、これを用いた電解質
JP5789397B2 (ja) テトラシアノボレート化合物の製造方法
EP3898572A1 (en) Modified ionic liquids containing boron

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132280.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107029558

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010525722

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13060161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009808327

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009808327

Country of ref document: EP