WO2010021204A1 - 太陽電池モジュール、太陽電池及び太陽電池モジュールの製造方法 - Google Patents
太陽電池モジュール、太陽電池及び太陽電池モジュールの製造方法 Download PDFInfo
- Publication number
- WO2010021204A1 WO2010021204A1 PCT/JP2009/061848 JP2009061848W WO2010021204A1 WO 2010021204 A1 WO2010021204 A1 WO 2010021204A1 JP 2009061848 W JP2009061848 W JP 2009061848W WO 2010021204 A1 WO2010021204 A1 WO 2010021204A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- receiving surface
- light
- light reflecting
- connection electrode
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000004065 semiconductor Substances 0.000 claims abstract description 109
- 239000000758 substrate Substances 0.000 claims abstract description 78
- 239000000463 material Substances 0.000 claims description 111
- 230000001681 protective effect Effects 0.000 claims description 37
- 239000003566 sealing material Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000000969 carrier Substances 0.000 description 17
- 238000002161 passivation Methods 0.000 description 11
- 230000007704 transition Effects 0.000 description 5
- 239000007769 metal material Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 241001272720 Medialuna californiensis Species 0.000 description 1
- -1 Polyethylene Terephthalate Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910007637 SnAg Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0516—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- the present invention relates to a solar cell module including a back junction solar cell, a solar cell, and a method for manufacturing the solar cell module.
- Solar cells are expected as a new energy source because they can directly convert clean and infinitely supplied sunlight into electricity.
- the output per solar cell is about several watts. Therefore, when a solar cell is used as a power source (energy source) for a house, a building, or the like, a solar cell module whose output is increased by electrically connecting a plurality of solar cells is used.
- a so-called back junction type solar cell in which a plurality of n-side thin wire electrodes and a plurality of p-side thin wire electrodes are alternately formed on the back surface of the semiconductor substrate has been proposed.
- the plurality of n-side thin wire electrodes are connected to an n-side connection electrode formed at one end of the semiconductor substrate.
- the plurality of p-side thin wire electrodes are connected to a p-side connection electrode formed at the other end of the semiconductor substrate.
- One solar cell and another solar cell adjacent to one solar cell are formed by connecting the n-side connection electrode of one solar cell and the p-side connection electrode of another solar cell with a wiring material. , Electrically connected in series.
- n-side connection electrode in a solar cell including an n-type semiconductor substrate, many of the holes (minority carriers) generated in the vicinity of the n-side connection electrode are electrons (majority) before being diffused into the p-side thin wire electrode. Recombined with the carrier). As a result, the number of electrons collected by the n-side connection electrode is reduced.
- This invention is made
- a solar cell module is a solar cell module including one solar cell sealed between a light-receiving surface side protective material and a back surface side protective material side, and the one solar cell receives light
- a one-conductivity-type semiconductor substrate having a surface and a back surface provided on the opposite side of the light-receiving surface; a one-conductive-side connection electrode formed on the back surface and connected to a plurality of one-conductive-side thin wire electrodes; An other conductive side connecting electrode formed on the other conductive side thin wire electrode, and a light reflecting material disposed on the light receiving surface and having a light reflecting surface facing the light receiving surface side protective material.
- the light reflecting material is located on the opposite side of the one conductive side connection electrode across the semiconductor substrate.
- reflection means diffuse reflection by regular reflection or irregular reflection by a mirror surface or the like.
- the solar cell module According to the solar cell module according to the feature of the present invention, light incident on the light receiving surface toward the region on the opposite side of the one conductive side connection electrode is guided to a region other than the region on the opposite side. Therefore, generation of photogenerated carriers in the vicinity of the one conductive side connection electrode can be suppressed, and generation of photogenerated carriers in the vicinity of the one conductive side thin line electrode and the other conductive side thin line electrode can be promoted. In the vicinity of the thin wire electrode, even minority carriers having a short diffusion distance are close to the other conductive side thin wire electrode, so that recombination of photogenerated carriers can be suppressed and the collection efficiency of minority carriers can be improved. Therefore, it is possible to effectively use the light incident toward the region on the opposite side of the one conductive side connection electrode.
- the one conductive side connection electrode is formed on one end of the semiconductor substrate, and the light reflecting material transmits light incident on the light reflecting material to the other of the semiconductor substrate. You may reflect toward an edge part side.
- the solar cell module according to the feature of the present invention includes another solar cell sealed between the light-receiving surface side protective material and the back surface-side protective material side, and the other solar cell includes a light-receiving surface and a light-receiving surface.
- a one-conductivity-type semiconductor substrate having a back surface provided on the opposite side; a one-conductive-side connection electrode formed on the back surface and connected to a plurality of one-conductive-side thin wire electrodes; The other conductive side connecting electrode connected to the other conductive side fine wire electrode, and a light reflecting material disposed on the light receiving surface and having a light reflecting surface facing the light receiving surface side protective material,
- the light reflecting material is located on the opposite side of the one conductive side connection electrode across the semiconductor substrate, and the light reflecting material that one solar cell has and the light reflecting material that the other solar cell has , May be integrally molded.
- the light reflecting surface may be formed of a metal layer or a white resin.
- the light reflecting plate may include a base body attached to the light receiving surface.
- a solar cell is a one-conductivity-type semiconductor substrate having a light-receiving surface and a back surface provided on the opposite side of the light-receiving surface, and is connected to a plurality of one-conductive-side thin wire electrodes formed on the back surface.
- a light reflecting material having a light reflecting surface, and the light reflecting material is located on the opposite side of the one conductive side connection electrode across the semiconductor substrate.
- the light reflecting surface may be composed of a metal layer or a white resin.
- the light reflecting plate may include a base body attached to the light receiving surface.
- a method for manufacturing a solar cell module is a method for manufacturing a solar cell module including one solar cell and another solar cell sealed between a light-receiving surface side protective material and a back surface side protective material side. And one conductive side connection electrode connected to a plurality of one conductive side thin wire electrodes and another conductive side connection connected to a plurality of other conductive side thin wire electrodes on the back surface provided on the opposite side of the light receiving surface.
- Step B for forming a solar cell string by electrically connecting one conductive side connection electrode for one solar cell and another conductive side connection electrode for another solar cell with a wiring material, and a light receiving surface On the side protective material, the first sealing material, thick And a step C of sequentially arranging the battery string, the second sealing material, and the back surface side protective material.
- a light reflecting material is disposed on the opposite side of the one conductive side connection electrode across the semiconductor substrate.
- the gist of B and step C is to arrange the light receiving surfaces of one solar cell and the other solar cell downward.
- FIG. 5 is an enlarged cross-sectional view taken along line AA in FIG. It is a top view by the side of the light-receiving surface of the solar cell 10 which concerns on 1st Embodiment of this invention.
- FIG. 5 is an enlarged sectional view taken along line BB in FIG. 4. It is the top view which looked at the solar cell string 1 which concerns on 2nd Embodiment of this invention from the light-receiving surface side. It is the top view which looked at the solar cell string 1 which concerns on 3rd Embodiment of this invention from the light-receiving surface side. It is the top view which looked at the solar cell string 1 which concerns on embodiment of this invention from the back surface side. It is the top view which looked at the solar cell string 1 which concerns on embodiment of this invention from the receiving surface side. It is the top view which looked at the solar cell string 1 which concerns on embodiment of this invention from the receiving surface side.
- FIG. 1 is a side view of the solar cell module 100.
- FIG. 2 is a plan view of the solar cell string 1 viewed from the back side.
- FIG. 3 is a plan view of the solar cell string 1 viewed from the light receiving surface side.
- the solar cell module 100 includes two solar cell strings 1, a light receiving surface side protective material 2, a back surface side protective material 3, a sealing material 4, a crossover wiring material 5, and a pair of extractions.
- a wiring member 6 is provided.
- Each solar cell string 1 is sealed with a sealing material 4 between the light receiving surface side protective material 2 and the back surface side protective material 3.
- Each solar cell string 1 includes a plurality of solar cells 10 and a plurality of wiring members 20.
- the plurality of solar cells 10 includes a plurality of n-side thin wire electrodes 13 n and a plurality of p-side thin wire electrodes 13 p formed on the back surface of the n-type semiconductor substrate 11.
- Type solar cell The solar cells 10 are arranged along the arrangement direction H.
- the plurality of solar cells 10 are electrically connected to each other by a plurality of wiring members 20.
- each solar cell 10 includes a light reflecting material 12 disposed on the light receiving surface of an n-type semiconductor substrate 11. The detailed configuration of the solar cell 10 will be described later.
- the wiring member 20 electrically connects one solar cell 10 and another solar cell 10 adjacent to the one solar cell 10. Specifically, one end of the wiring member 20 is disposed on the n-side connection electrode 14n (see FIG. 4) of one solar cell 10. The other end of the wiring member 20 is disposed on the p-side connection electrode 14 p (see FIG. 4) of another solar cell adjacent to the one solar cell 10.
- a conductive material such as thin plate copper can be used. The surface of such a conductive material may be plated with a soft conductor such as lead-free solder (for example, SnAg 3.0 Cu 0.5 ).
- the light receiving surface side protective material 2 protects the surface of the solar cell module 100.
- glass having translucency and water shielding properties, translucent plastic, or the like can be used as the light-receiving surface side protective material 2.
- the back surface side protective material 3 protects the back surface of the solar cell module 100.
- a resin film such as PET (Polyethylene Terephthalate), a laminated film having a structure in which a metal foil such as an Al foil is sandwiched between resin films, or the like can be used.
- the sealing material 4 seals the two solar cell strings 1 between the light receiving surface side protective material 2 and the back surface side protective material 3.
- a translucent resin such as EVA, EEA, PVB, silicon, urethane, acrylic, or epoxy can be used.
- the crossover wiring material 5 electrically connects the solar cell strings 1 to each other. Specifically, one end of the crossover wiring member 5 is disposed on the n-side connection electrode 14 n of the solar cell 10 positioned at one end of one solar cell string 1. Further, the other end of the crossover wiring member 5 is disposed on the p-side connection electrode 14 p of the solar cell 10 located at one end of the other solar cell string 1.
- the transition wiring member 5 is made of the same material as the wiring member 20.
- the pair of lead-out wiring members 6 take out current from the two solar cell strings 1 to the outside.
- the pair of lead-out wiring members 6 are connected to a pair of solar cells 10 located at both ends of the two solar cell strings 1 connected by the transition wiring member 5.
- Each extraction wiring member 6 is made of the same material as the wiring member 20.
- an A1 frame can be attached to the outer periphery of the solar cell module 100 having the above configuration.
- FIG. 4 is a plan view of the back side of the solar cell 10.
- FIG. 5 is an enlarged cross-sectional view taken along line AA in FIG.
- the solar cell 10 includes an n-type semiconductor substrate 11, a plurality of n-side thin wire electrodes 13n, a plurality of p-side thin wire electrodes 13p, an n-side connection electrode 14n, a p-side connection electrode 14p, An n-type amorphous semiconductor layer 15n, a p-type amorphous semiconductor layer 15p, and a passivation layer 16 are provided.
- the n-type semiconductor substrate 11 has a light receiving surface that receives light and a back surface provided on the opposite side of the light receiving surface.
- the n-type semiconductor substrate 11 according to the present embodiment is composed of a semiconductor material doped with an n-type dopant.
- a semiconductor material a general semiconductor material such as a crystalline semiconductor material such as single crystal Si or polycrystalline Si, or a compound semiconductor material such as GaAs or InP can be used.
- the n-type semiconductor substrate 11 generates photogenerated carriers (holes and electrons) by receiving light. Note that since the conductivity type of the n-type semiconductor substrate 11 is n-type, electrons are majority carriers and holes are minority carriers among photogenerated carriers.
- the plurality of n-side thin wire electrodes 13 n are collection electrodes that collect electrons from the n-type semiconductor substrate 11.
- Each n-side thin wire electrode 13n is formed along the arrangement direction H on the back surface of the n-type semiconductor substrate 11, as shown in FIG.
- the plurality of p-side thin wire electrodes 13 p are collecting electrodes that collect holes from the n-type semiconductor substrate 11. As shown in FIG. 4, the p-side thin wire electrode 13 p is formed along the n-side thin wire electrode 13 n on the back surface of the n-type semiconductor substrate 11. The n-side thin wire electrodes 13n and the p-side thin wire electrodes 13p are alternately formed in a stripe shape.
- the n-side fine-line electrodes 13n is formed of a n a transparent conductive layer side 13n 1 and n-side conductive layer 13n 2.
- n side conductive layer 13n 2 is formed on the n-side transparent conductive layer 13n 1.
- n-side transparent conductive layer 13n 1 is formed on the n-type amorphous semiconductor layer 15n.
- n-side transparent conductive layer 13n 1 is, In, Zn, Sn, Ti , is formed by an oxide of W or the like.
- n side conductive layer 13n 2 is formed by silver, or a resin-type conductive paste or sintered type conductive paste.
- the p-side fine-line electrodes 13p is constituted by a p-side transparent conductive layer 13p 1 and p-side conductive layer 13p 2.
- p-side conductive layer 13p 2 is formed on the p-side transparent conductive layer 13p 1.
- p-side transparent conductive layer 13p 1 is formed on the p-type amorphous semiconductor layer 15p.
- p-side transparent conductive layer 13p 1 is, In, Zn, Sn, Ti , is formed by an oxide of W or the like.
- p-side conductive layer 13p 2 is formed by silver, or a resin-type conductive paste or sintered type conductive paste.
- the n-side connection electrode 14 n is formed on one end portion of the n-type semiconductor substrate 11 along the orthogonal direction T substantially orthogonal to the arrangement direction H.
- the n-side connection electrode 14n is connected to a plurality of n-side thin wire electrodes 13n.
- the n-side connection electrode 14 n is an electrode for connecting the wiring member 20, the transition wiring member 5, or the take-out wiring member 6.
- the n-side connection electrode 14n is a collection electrode that collects electrons from the n-type semiconductor substrate 11.
- the p-side connection electrode 14p is formed along the orthogonal direction T on the other end of the n-type semiconductor substrate 11 as shown in FIG.
- the p-side connection electrode 14p is connected to a plurality of p-side thin wire electrodes 13p.
- the p-side connection electrode 14 p is an electrode for connecting the wiring member 20, the transition wiring member 5, or the take-out wiring member 6.
- the p-side connection electrode 14 p is a collection electrode that collects holes from the n-type semiconductor substrate 11.
- the n-side connection electrode 14n has the same configuration as the n-side thin wire electrode 13n (see FIG. 7). Although not shown, the p-side connection electrode 14p has the same configuration as the p-side thin wire electrode 13p.
- the n-type amorphous semiconductor layer 15n is formed in a comb shape on the back surface of the n-type semiconductor substrate 11 as shown in FIG.
- a plurality of n-side thin wire electrodes 13n provided along the arrangement direction H and an n-side connection electrode 14n provided along the orthogonal direction T are provided.
- the p-type amorphous semiconductor layer 15p is formed in a comb shape on the back surface of the n-type semiconductor substrate 11, as shown in FIG.
- a plurality of p-side thin wire electrodes 13p provided along the arrangement direction H and a p-side connection electrode 14p provided along the orthogonal direction T are provided.
- the n-type amorphous semiconductor layer 15n and the p-type amorphous semiconductor layer 15p are formed on the passivation layer 16.
- the passivation layer 16 is formed so as to cover substantially the entire back surface of the n-type semiconductor substrate 11.
- the passivation layer 16 is a substantially intrinsic amorphous semiconductor layer (i-type amorphous semiconductor layer) formed by adding no dopant or adding a small amount of dopant.
- the passivation layer 16 has a passivation property that suppresses recombination of carriers.
- FIG. 6 is a plan view of the solar cell 10 on the light receiving surface side.
- FIG. 7 is an enlarged cross-sectional view taken along line BB in FIG.
- the solar cell 10 includes a light reflecting material 12 arranged along the orthogonal direction T on one end of the light receiving surface of the n-type semiconductor substrate 11. As shown in FIG. 7, the light reflecting material 12 is disposed on the opposite side of the n-side connection electrode 14 n with the n-type semiconductor substrate 11 interposed therebetween. The light reflecting material 12 is opposed to the light receiving surface side protective material 2 and has a light reflecting surface 12A having light reflectivity.
- the light reflecting material 12 is composed of a base portion that is attached to the light receiving surface, a light reflecting layer that is formed on the base portion, and an oxidation / sulfurization preventing layer that is formed on the light reflecting layer. Has been.
- the base part is made of a general resin, glass, ceramic or metal material.
- the linear expansion coefficient of the base portion is preferably close to the linear expansion coefficient of the n-type semiconductor substrate 11. Thereby, it is possible to suppress the base portion from peeling off from the light receiving surface of the n-type semiconductor substrate 11 due to the expansion / contraction of the base portion accompanying the thermal cycle.
- the light reflecting layer reflects light incident on the light reflecting material 12.
- the light reflection layer is made of, for example, a metal material such as Ag, Al, stainless steel, Au, Pt, or Ni, an alloy material in which a lanthanoid such as Nd is contained in these metal materials, or a white resin material. .
- the light reflecting surface 12A is given light reflectivity.
- the thickness of the light reflecting layer may be about 100 nm, for example.
- the uneven structure 12B is formed on the light reflecting surface 12A.
- the reflection direction on the light reflecting surface 12A can be appropriately changed according to the inclination of the concavo-convex structure 12B.
- the light incident toward the light reflecting surface 12A is reflected by the concavo-convex structure 12B to the other end side of the n-type semiconductor substrate 11, and then again at the interface between the light receiving surface side protective material 2 and the outside air. Reflected.
- the light reflecting material 12 only needs to include at least the light reflecting layer that forms the light reflecting surface 12A, and may not include the base portion and the oxidation / sulfurization preventing layer.
- the light reflecting layer may be formed directly on the light receiving surface of the n-type semiconductor substrate 11 or may be stuck on the light receiving surface of the n-type semiconductor substrate 11.
- a substantially authentic amorphous semiconductor layer is formed on substantially the entire back surface of the n-type semiconductor substrate 11 using the CVD method. Thereby, the passivation layer 16 is formed.
- a predetermined area on the passivation layer 16 is covered with a shadow mask, and an n-type amorphous semiconductor layer 15n is formed using a CVD method.
- a predetermined region on the passivation layer 16 is covered with a shadow mask, and a p-type amorphous semiconductor layer 15p is formed using a CVD method.
- n-side transparent conductive layer 13n 1 and the p-side transparent conductive layer 13p 1 are formed.
- n-side thin wire electrodes 13n As described above, on the back surface of the n-type semiconductor substrate 11, a plurality of n-side thin wire electrodes 13n, an n-side connection electrode 14n, a plurality of p-side thin wire electrodes 13p and a p-side connection electrode 14p are formed.
- the light reflecting material 12 is disposed on the light receiving surface with the light receiving surface of the n-type semiconductor substrate 11 facing upward.
- the light reflecting material 12 is arranged on the opposite side of the n-side connection electrode 14n with the n-type semiconductor substrate 11 in between.
- a plurality of solar cells 10 are formed by repeating the above steps.
- the wiring member 20 is connected to the back surface of the n-type semiconductor substrate 11 with the light receiving surface of the n-type semiconductor substrate 11 facing downward.
- the solar cell string 1 is formed by electrically connecting the solar cells 10 to each other.
- the two solar cell strings 1 are electrically connected to each other by the crossover wiring material 5. Subsequently, a pair of extraction wiring members 6 are connected to a pair of solar cells 10 located at both ends of the two solar cell strings 1.
- the sealing material 4, the two solar cell strings 1, the sealing material 4, and the back surface side protective material 3 are sequentially arranged on the light receiving surface side protective material 2.
- the light receiving surface of the n-type semiconductor substrate 11 is directed downward so as to face the sealing material 4.
- the sealing material 4 is cured by heating the sealing material 4.
- the light reflecting material 12 is located on the opposite side of the n-side connection electrode 14n with the n-type semiconductor substrate 11 in between.
- the light incident on the light receiving surface toward the region opposite to the n-side connection electrode 14n is input to the region on the light receiving surface opposite to the plurality of n-side thin wire electrodes 13n and the plurality of p-side thin wire electrodes 13p.
- the incident light can be used effectively. As a result, the conversion efficiency of the solar cell 10 can be improved.
- the light reflecting material 12 disposed on one end of the n-type semiconductor substrate 11 reflects light toward the other end of the n-type semiconductor substrate 11. Therefore, the light incident toward the light reflecting material 12 can be efficiently incident on the light receiving surface of the n-type semiconductor substrate 11. As a result, it is possible to more effectively use the light incident toward the region opposite to the n-side connection electrode 14n.
- the light receiving surface of the n-type semiconductor substrate 11 faces downward. Therefore, it is not necessary to turn over the solar cell string 1 between both processes. Therefore, the productivity of the solar cell module 100 can be improved.
- FIG. 8 is a plan view of the solar cell string 1 according to the second embodiment as viewed from the light receiving surface side. As shown in FIG. 8, the light reflecting material 12 of one solar cell 10 and the light reflecting material 12 of another solar cell 10 are integrally formed.
- the process of disposing the light reflecting material 12 on the light receiving surface of the n-type semiconductor substrate 11 can be simplified. As a result, the productivity of the solar cell module 100 can be further improved.
- the configuration of the solar cell 10 is the same as that of the first embodiment.
- FIG. 9 is a plan view of the solar cell string 1 according to the third embodiment as viewed from the light receiving surface side.
- the light reflecting material 12 of one solar cell 10 and the light reflecting material 12 of another solar cell 10 are integrally formed.
- the integrally formed light reflecting material 12 is formed in a rectangular shape, and is disposed along the orthogonal direction T.
- Such a light reflecting material 12 can be formed by cutting a long light reflecting material at a predetermined interval, the light reflecting material 12 can be easily produced. Further, since the light reflecting material 12 is formed in a straight line, the handleability of the light reflecting material 12 can be improved.
- the n-type semiconductor substrate 11 having n-type conductivity is used, but a p-type semiconductor substrate may be used.
- a p-type semiconductor substrate may be used.
- the light reflecting material 12 is disposed on the opposite side of the p-side connection electrode 14p with the p-type semiconductor substrate interposed therebetween.
- each thin wire electrode is formed along the arrangement direction H and each connection electrode is formed along the orthogonal direction T.
- each thin wire electrode may be formed along the orthogonal direction T
- each connection electrode may be formed along the arrangement direction H.
- each of the wiring member 20, the transition wiring member 5, and the take-out wiring member 6 is arranged along the arrangement direction H on the back surface of the n-type semiconductor substrate 11.
- the light reflecting material 12 is arranged along the arrangement direction H.
- the light reflecting material 12 included in the plurality of solar cells 10 may be integrally formed.
- each solar cell string 1 is formed after the light reflecting material 12 is disposed on the light receiving surface of the n-type semiconductor substrate 11.
- the present invention is not limited to this.
- the light reflecting material 12 may be disposed on the sealing material 4 and the solar cell string 1 may be disposed thereon.
- a recess having a size capable of fitting the solar cell string 1 may be formed in the sealing material 4 and the light reflecting material 12 may be disposed in the recess in advance.
- the light reflecting material 12 may be temporarily bonded to the sealing material 4 in advance by heating a part of the light reflecting material 12.
- a passivation layer may be formed on the light receiving surface of the n-type semiconductor substrate 11.
- a passivation layer an i-type amorphous semiconductor layer, a thermal oxide film, or the like can be used.
- a texture structure may be provided on the light receiving surface and the back surface of the n-type semiconductor substrate 11.
- the film-forming type solar cell by which the n-type amorphous semiconductor layer 15n and the p-type amorphous semiconductor layer 15p were formed on the n-type semiconductor substrate 11 using the mask was mentioned as an example.
- a diffusion type solar cell in which a p-type region and an n-type region are formed in the n-type semiconductor substrate 11 may be used.
- the n-type amorphous semiconductor layer 15n and the p-type amorphous semiconductor layer 15p are patterned by using a mask. However, by using an etching paste or a resist film, the n-type amorphous semiconductor layer 15n and the p-type amorphous semiconductor layer 15p are patterned. The amorphous semiconductor layer 15n and the p-type amorphous semiconductor layer 15p may be patterned.
- the light reflecting material 12 is used, but the same effect can be obtained even if a diffusing material is used.
- the concavo-convex structure 12B is formed on the light reflecting surface 12A.
- the present invention is not limited to this.
- the light reflecting surface 12A may be formed in a planar shape, and the other end side of the semiconductor substrate may be inclined downward. In this case, incident light can be uniformly reflected toward the other end side of the semiconductor substrate by the light reflecting surface 12A.
- the concavo-convex structure 12B has an acute-angle cross section, but is not limited thereto.
- the cross section of the concavo-convex structure 12B may be in any shape as long as light is favorably reflected at the interface between the light receiving surface side protective material 2 and air, and may be, for example, a half moon shape.
- the solar cell module according to the present invention can effectively use incident light, it is useful in solar power generation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
(太陽電池モジュールの構成)
以下において、本発明の第1実施形態に係る太陽電池モジュールの構成について、図面を参照しながら説明する。図1は、太陽電池モジュール100の側面図である。図2は、太陽電池ストリング1を裏面側から見た平面図である。図3は、太陽電池ストリング1を受光面側から見た平面図である。
以下において、本発明の実施形態に係る太陽電池の構成について、図面を参照しながら説明する。図4は、太陽電池10の裏面側の平面図である。図5は、図4のA-A線における拡大断面図である。
次に、太陽電池モジュール100の製造方法について説明する。
本実施形態に係る太陽電池モジュール100において、光反射材12は、n型半導体基板11を挟んでn側接続用電極14nの反対側に位置する。
(太陽電池モジュールの構成)
以下において、本発明の第2実施形態に係る太陽電池モジュールの構成について、図面を参照しながら説明する。なお、以下においては、上記第1実施形態との相違点について主に説明する。具体的には、光反射材12は、複数の太陽電池10に跨って配置される。
(太陽電池モジュールの構成)
以下において、本発明の第3実施形態に係る太陽電池モジュールの構成について、図面を参照しながら説明する。なお、以下においては、上記第2実施形態との相違点について主に説明する。具体的には、光反射材12の平面形状は、長方形状である。
本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
Claims (9)
- 受光面側保護材と裏面側保護材側との間に封止された一の太陽電池を備える太陽電池モジュールであって、
前記一の太陽電池は、
受光面と、前記受光面の反対側に設けられる裏面とを有する一導電型の半導体基板と、
前記裏面上に形成され、複数本の一導電側細線電極と接続される一導電側接続用電極と、
前記裏面上に形成され、複数本の他導電側細線電極と接続される他導電側接続用電極と、
前記受光面上に配置され、前記受光面側保護材と対向する光反射面を有する光反射材と
を有し、
前記一の太陽電池において、前記光反射材は、前記半導体基板を挟んで前記一導電側接続用電極の反対側に位置する
ことを特徴とする太陽電池モジュール。 - 前記一導電側接続用電極は、前記半導体基板の一端部上に形成されており、
前記光反射材は、前記光反射材に向かって入射する光を前記半導体基板の他端部側に向かって反射する
ことを特徴とする請求項1に記載の太陽電池モジュール。 - 前記受光面側保護材と前記裏面側保護材側との間に封止された他の太陽電池を備え、
前記他の太陽電池は、
受光面と、前記受光面の反対側に設けられる裏面とを有する一導電型の半導体基板と、
前記裏面上に形成され、複数本の一導電側細線電極と接続される一導電側接続用電極と、
前記裏面上に形成され、複数本の他導電側細線電極と接続される他導電側接続用電極と、
前記受光面上に配置され、前記受光面側保護材と対向する光反射面を有する光反射材と
を有し、
前記他の太陽電池において、前記光反射材は、前記半導体基板を挟んで前記一導電側接続用電極の反対側に位置しており、
前記一の太陽電池が有する前記光反射材と、前記他の太陽電池が有する前記光反射材とは、一体成形されている
ことを特徴とする請求項1又は2に記載の太陽電池モジュール。 - 前記光反射面は、金属層又は白色樹脂によって構成される
ことを特徴とする請求項1乃至3のいずれかに記載の太陽電池モジュール。 - 前記光反射板は、前記受光面に貼り付けられる基体を含む
ことを特徴とする請求項1乃至4のいずれかに記載の太陽電池モジュール。 - 受光面と、前記受光面の反対側に設けられる裏面とを有する一導電型の半導体基板と、
前記裏面上に形成され、複数本の一導電側細線電極と接続される一導電側接続用電極と、
前記裏面上に形成され、複数本の他導電側細線電極と接続される他導電側接続用電極と、
前記受光面上に配置され、前記受光面側保護材と対向する光反射を有する光反射材と
を備え、
前記光反射材は、前記半導体基板を挟んで前記一導電側接続用電極の反対側に位置する
ことを特徴とする太陽電池。 - 前記光反射面は、金属層又は白色樹脂によって構成される
ことを特徴とする請求項6に記載の太陽電池。 - 前記光反射板は、前記受光面に貼り付けられる基体を含む
ことを特徴とする請求項6又は7に記載の太陽電池。 - 受光面側保護材と裏面側保護材側との間に封止された一の太陽電池及び他の太陽電池を備える太陽電池モジュールの製造方法であって、
受光面の反対側に設けられる裏面上に複数本の一導電側細線電極に接続される一導電側接続用電極及び複数本の他導電側細線電極に接続される他導電側接続用電極が形成された一導電型の半導体基板を準備し、前記半導体基板の前記受光面上に光反射材を配置することによって、前記一の太陽電池及び前記他の太陽電池それぞれを形成する工程Aと、
前記一の太陽電池の前記一導電側接続用電極と、前記他の太陽電池の前記他導電側接続用電極とを、配線材によって電気的に接続することによって、太陽電池ストリングを形成する工程Bと、
前記受光面側保護材上に、第1封止材、前記太陽電池ストリング、第2封止材及び前記裏面側保護材を順次配置する工程Cと
を備え、
前記工程Aでは、前記半導体基板を挟んで前記一導電側接続用電極の反対側に前記光反射材を配置し、
前記工程B及び前記工程Cでは、前記一の太陽電池及び前記他の太陽電池それぞれの前記受光面を下向きに配置する
ことを特徴とする太陽電池モジュールの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010525635A JP5306352B2 (ja) | 2008-08-22 | 2009-06-29 | 太陽電池モジュール、太陽電池及び太陽電池モジュールの製造方法 |
CN2009801327643A CN102132420A (zh) | 2008-08-22 | 2009-06-29 | 太阳能电池模块、太阳能电池和太阳能电池模块的制造方法 |
US13/060,233 US9252299B2 (en) | 2008-08-22 | 2009-06-29 | Solar cell module, solar cell and solar cell module manufacturing method |
EP09808140A EP2320477A4 (en) | 2008-08-22 | 2009-06-29 | SOLAR CELL MODULE, SOLAR CELL AND METHOD FOR PRODUCING A SOLAR CELL MODULE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008214525 | 2008-08-22 | ||
JP2008-214525 | 2008-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010021204A1 true WO2010021204A1 (ja) | 2010-02-25 |
Family
ID=41707083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061848 WO2010021204A1 (ja) | 2008-08-22 | 2009-06-29 | 太陽電池モジュール、太陽電池及び太陽電池モジュールの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9252299B2 (ja) |
EP (1) | EP2320477A4 (ja) |
JP (1) | JP5306352B2 (ja) |
CN (1) | CN102132420A (ja) |
WO (1) | WO2010021204A1 (ja) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120025732A (ko) * | 2010-09-08 | 2012-03-16 | 엘지전자 주식회사 | 태양 전지의 제조 방법 |
WO2012090640A1 (ja) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | 太陽電池、太陽電池モジュール及び太陽電池モジュールの製造方法 |
EP2522039A2 (de) * | 2010-01-05 | 2012-11-14 | Steinbeis-Transferzentrum Angewandte Photovoltaik Und Dünnschichttechnik | Solarzellenmodul |
US20120291838A1 (en) * | 2011-05-18 | 2012-11-22 | Daehee Jang | Solar cell module |
WO2012176516A1 (ja) * | 2011-06-23 | 2012-12-27 | 三洋電機株式会社 | 太陽電池モジュール |
WO2013042683A1 (ja) * | 2011-09-20 | 2013-03-28 | 三洋電機株式会社 | 太陽電池モジュール |
JP2013080980A (ja) * | 2010-05-11 | 2013-05-02 | Tokyo Univ Of Agriculture & Technology | 半導体ソーラーセル及びその製造方法 |
WO2014162790A1 (ja) * | 2013-04-05 | 2014-10-09 | 三菱電機株式会社 | 光電変換装置 |
WO2015118869A1 (ja) * | 2014-02-06 | 2015-08-13 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールおよび太陽電池モジュールの製造方法 |
WO2016143250A1 (ja) * | 2015-03-10 | 2016-09-15 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールの製造方法 |
WO2016143249A1 (ja) * | 2015-03-11 | 2016-09-15 | パナソニックIpマネジメント株式会社 | 太陽電池モジュール |
US20160276500A1 (en) * | 2011-08-31 | 2016-09-22 | Panasonic Intellectual Property Management Co., Ltd. | Solar module manufacturing method |
JP2016171237A (ja) * | 2015-03-13 | 2016-09-23 | パナソニックIpマネジメント株式会社 | 太陽電池モジュール |
JPWO2015045243A1 (ja) * | 2013-09-30 | 2017-03-09 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールおよび太陽電池モジュールの製造方法 |
WO2017056371A1 (ja) * | 2015-09-30 | 2017-04-06 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールおよび太陽電池セルの製造方法 |
JP2017529704A (ja) * | 2014-09-28 | 2017-10-05 | 蘇州中来光伏新材股▲ふん▼有限公司Jolywood (Suzhou) Sunwatt Co.,Ltd. | メインゲートフリーで高効率なバックコンタクト太陽電池モジュール、アセンブリ及び製造プロセス |
KR101823601B1 (ko) * | 2017-01-17 | 2018-01-30 | 엘지전자 주식회사 | 태양전지 패널 |
JP2018163988A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | 太陽電池モジュール |
WO2019146365A1 (ja) * | 2018-01-24 | 2019-08-01 | 株式会社カネカ | 太陽電池セル用の接続部材セット、並びにそれを用いた太陽電池ストリング及び太陽電池モジュール |
US10930810B2 (en) | 2018-01-29 | 2021-02-23 | Panasonic Corporation | Solar cell and method of manufacturing solar cell |
WO2022030471A1 (ja) * | 2020-08-06 | 2022-02-10 | 株式会社カネカ | 太陽電池セル及び太陽電池セル製造方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY171640A (en) * | 2011-07-04 | 2019-10-22 | Panasonic Ip Man Co Ltd | Solar cell module and solar cell |
JP5950154B2 (ja) * | 2012-05-09 | 2016-07-13 | パナソニックIpマネジメント株式会社 | 太陽電池モジュール |
TWI643351B (zh) * | 2013-01-31 | 2018-12-01 | 澳洲商新南創新有限公司 | 太陽能電池金屬化及互連方法 |
KR102124520B1 (ko) * | 2013-10-29 | 2020-06-18 | 엘지전자 주식회사 | 태양 전지 모듈 및 그 제조 방법 |
JP6414550B2 (ja) * | 2014-02-06 | 2018-10-31 | パナソニックIpマネジメント株式会社 | 太陽電池セルおよび太陽電池セルの製造方法 |
KR102271055B1 (ko) * | 2014-06-26 | 2021-07-01 | 엘지전자 주식회사 | 태양 전지 모듈 |
US9559233B2 (en) * | 2014-09-25 | 2017-01-31 | Sunpower Corporation | Solar cell interconnection |
US10903379B2 (en) * | 2015-03-13 | 2021-01-26 | Sharp Kabushiki Kaisha | Photovoltaic devices and photovoltaic modules |
JP6664065B2 (ja) * | 2015-03-31 | 2020-03-13 | パナソニックIpマネジメント株式会社 | 太陽電池素子および太陽電池モジュール |
US11195966B2 (en) * | 2015-09-11 | 2021-12-07 | Sunpower Corporation | Bifacial solar cells with reflective back contacts |
JP6352894B2 (ja) * | 2015-12-24 | 2018-07-04 | トヨタ自動車株式会社 | 太陽電池モジュール |
JP6891914B2 (ja) * | 2019-03-26 | 2021-06-18 | カシオ計算機株式会社 | ソーラーパネル、表示装置及び時計 |
CN116404050A (zh) * | 2023-04-24 | 2023-07-07 | 晶科能源(海宁)有限公司 | 背接触光伏组件及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011869A (ja) * | 2003-06-17 | 2005-01-13 | Sekisui Jushi Co Ltd | 太陽電池モジュールおよびその製造方法 |
JP2007281156A (ja) * | 2006-04-06 | 2007-10-25 | Japan Advanced Institute Of Science & Technology Hokuriku | 裏面電極型半導体へテロ接合太陽電池ならびにその製造方法と製造装置 |
JP2007281044A (ja) * | 2006-04-04 | 2007-10-25 | Canon Inc | 太陽電池 |
JP2008091697A (ja) * | 2006-10-03 | 2008-04-17 | Toyota Motor Corp | 光起電力素子 |
WO2008090718A1 (ja) * | 2007-01-25 | 2008-07-31 | Sharp Kabushiki Kaisha | 太陽電池セル、太陽電池アレイおよび太陽電池モジュールならびに太陽電池アレイの製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5610976A (en) | 1979-07-09 | 1981-02-03 | Agency Of Ind Science & Technol | Photoelectric converter |
US4838952A (en) * | 1988-04-29 | 1989-06-13 | Spectrolab, Inc. | Controlled reflectance solar cell |
JP3070489B2 (ja) * | 1996-10-09 | 2000-07-31 | トヨタ自動車株式会社 | 集光型太陽電池素子 |
EP0881694A1 (en) * | 1997-05-30 | 1998-12-02 | Interuniversitair Micro-Elektronica Centrum Vzw | Solar cell and process of manufacturing the same |
JP4021441B2 (ja) * | 2002-06-21 | 2007-12-12 | 仗祐 中田 | 受光又は発光用デバイスおよびその製造方法 |
TW200642103A (en) * | 2005-03-31 | 2006-12-01 | Sanyo Electric Co | Solar battery module |
US20070095384A1 (en) * | 2005-10-28 | 2007-05-03 | Farquhar Donald S | Photovoltaic modules and interconnect methodology for fabricating the same |
US9093590B2 (en) | 2006-12-26 | 2015-07-28 | Kyocera Corporation | Solar cell and solar cell manufacturing method |
JP2008282926A (ja) * | 2007-05-09 | 2008-11-20 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2009088203A (ja) * | 2007-09-28 | 2009-04-23 | Sanyo Electric Co Ltd | 太陽電池、太陽電池モジュール及び太陽電池の製造方法 |
JP2009135338A (ja) * | 2007-11-30 | 2009-06-18 | Sanyo Electric Co Ltd | 太陽電池及び太陽電池の製造方法 |
-
2009
- 2009-06-29 JP JP2010525635A patent/JP5306352B2/ja not_active Expired - Fee Related
- 2009-06-29 WO PCT/JP2009/061848 patent/WO2010021204A1/ja active Application Filing
- 2009-06-29 EP EP09808140A patent/EP2320477A4/en not_active Withdrawn
- 2009-06-29 US US13/060,233 patent/US9252299B2/en not_active Expired - Fee Related
- 2009-06-29 CN CN2009801327643A patent/CN102132420A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011869A (ja) * | 2003-06-17 | 2005-01-13 | Sekisui Jushi Co Ltd | 太陽電池モジュールおよびその製造方法 |
JP2007281044A (ja) * | 2006-04-04 | 2007-10-25 | Canon Inc | 太陽電池 |
JP2007281156A (ja) * | 2006-04-06 | 2007-10-25 | Japan Advanced Institute Of Science & Technology Hokuriku | 裏面電極型半導体へテロ接合太陽電池ならびにその製造方法と製造装置 |
JP2008091697A (ja) * | 2006-10-03 | 2008-04-17 | Toyota Motor Corp | 光起電力素子 |
WO2008090718A1 (ja) * | 2007-01-25 | 2008-07-31 | Sharp Kabushiki Kaisha | 太陽電池セル、太陽電池アレイおよび太陽電池モジュールならびに太陽電池アレイの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2320477A4 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2522039A2 (de) * | 2010-01-05 | 2012-11-14 | Steinbeis-Transferzentrum Angewandte Photovoltaik Und Dünnschichttechnik | Solarzellenmodul |
JP2013080980A (ja) * | 2010-05-11 | 2013-05-02 | Tokyo Univ Of Agriculture & Technology | 半導体ソーラーセル及びその製造方法 |
KR20120025732A (ko) * | 2010-09-08 | 2012-03-16 | 엘지전자 주식회사 | 태양 전지의 제조 방법 |
KR101699297B1 (ko) * | 2010-09-08 | 2017-02-13 | 엘지전자 주식회사 | 태양 전지의 제조 방법 |
WO2012090640A1 (ja) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | 太陽電池、太陽電池モジュール及び太陽電池モジュールの製造方法 |
US20120291838A1 (en) * | 2011-05-18 | 2012-11-22 | Daehee Jang | Solar cell module |
US10236403B2 (en) | 2011-05-18 | 2019-03-19 | Lg Electronics Inc. | Solar cell module |
US9768336B2 (en) * | 2011-05-18 | 2017-09-19 | Lg Electronics Inc. | Solar cell module |
WO2012176516A1 (ja) * | 2011-06-23 | 2012-12-27 | 三洋電機株式会社 | 太陽電池モジュール |
JP2013008785A (ja) * | 2011-06-23 | 2013-01-10 | Sanyo Electric Co Ltd | 太陽電池モジュール |
US20160276500A1 (en) * | 2011-08-31 | 2016-09-22 | Panasonic Intellectual Property Management Co., Ltd. | Solar module manufacturing method |
WO2013042683A1 (ja) * | 2011-09-20 | 2013-03-28 | 三洋電機株式会社 | 太陽電池モジュール |
WO2014162790A1 (ja) * | 2013-04-05 | 2014-10-09 | 三菱電機株式会社 | 光電変換装置 |
JPWO2015045243A1 (ja) * | 2013-09-30 | 2017-03-09 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールおよび太陽電池モジュールの製造方法 |
US10714645B2 (en) | 2014-02-06 | 2020-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell module and solar cell module manufacturing method |
WO2015118869A1 (ja) * | 2014-02-06 | 2015-08-13 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールおよび太陽電池モジュールの製造方法 |
US10014428B2 (en) | 2014-02-06 | 2018-07-03 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell module and solar cell module manufacturing method |
JP2017529704A (ja) * | 2014-09-28 | 2017-10-05 | 蘇州中来光伏新材股▲ふん▼有限公司Jolywood (Suzhou) Sunwatt Co.,Ltd. | メインゲートフリーで高効率なバックコンタクト太陽電池モジュール、アセンブリ及び製造プロセス |
JPWO2016143250A1 (ja) * | 2015-03-10 | 2017-09-21 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールの製造方法 |
WO2016143250A1 (ja) * | 2015-03-10 | 2016-09-15 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールの製造方法 |
JPWO2016143249A1 (ja) * | 2015-03-11 | 2017-09-21 | パナソニックIpマネジメント株式会社 | 太陽電池モジュール |
WO2016143249A1 (ja) * | 2015-03-11 | 2016-09-15 | パナソニックIpマネジメント株式会社 | 太陽電池モジュール |
US10454413B2 (en) | 2015-03-13 | 2019-10-22 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell module |
JP2016171237A (ja) * | 2015-03-13 | 2016-09-23 | パナソニックIpマネジメント株式会社 | 太陽電池モジュール |
WO2017056371A1 (ja) * | 2015-09-30 | 2017-04-06 | パナソニックIpマネジメント株式会社 | 太陽電池モジュールおよび太陽電池セルの製造方法 |
KR101823601B1 (ko) * | 2017-01-17 | 2018-01-30 | 엘지전자 주식회사 | 태양전지 패널 |
JP2018163988A (ja) * | 2017-03-24 | 2018-10-18 | 株式会社カネカ | 太陽電池モジュール |
WO2019146365A1 (ja) * | 2018-01-24 | 2019-08-01 | 株式会社カネカ | 太陽電池セル用の接続部材セット、並びにそれを用いた太陽電池ストリング及び太陽電池モジュール |
JPWO2019146365A1 (ja) * | 2018-01-24 | 2021-01-07 | 株式会社カネカ | 太陽電池セル用の接続部材セット、並びにそれを用いた太陽電池ストリング及び太陽電池モジュール |
US11362225B2 (en) | 2018-01-24 | 2022-06-14 | Kaneka Corporation | Connection member set for solar battery cell, and solar cell string and solar cell module using same |
JP7179779B2 (ja) | 2018-01-24 | 2022-11-29 | 株式会社カネカ | 太陽電池セル用の接続部材セット、並びにそれを用いた太陽電池ストリング及び太陽電池モジュール |
US10930810B2 (en) | 2018-01-29 | 2021-02-23 | Panasonic Corporation | Solar cell and method of manufacturing solar cell |
WO2022030471A1 (ja) * | 2020-08-06 | 2022-02-10 | 株式会社カネカ | 太陽電池セル及び太陽電池セル製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5306352B2 (ja) | 2013-10-02 |
US9252299B2 (en) | 2016-02-02 |
CN102132420A (zh) | 2011-07-20 |
EP2320477A4 (en) | 2012-08-08 |
US20110277817A1 (en) | 2011-11-17 |
EP2320477A1 (en) | 2011-05-11 |
JPWO2010021204A1 (ja) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5306352B2 (ja) | 太陽電池モジュール、太陽電池及び太陽電池モジュールの製造方法 | |
JP5410050B2 (ja) | 太陽電池モジュール | |
EP2279530B1 (en) | Method for improving pv aesthetics and efficiency | |
JP4948473B2 (ja) | 太陽電池モジュール | |
JP5842170B2 (ja) | 太陽電池モジュール | |
JP5367587B2 (ja) | 太陽電池モジュール及び太陽電池 | |
JP5484663B2 (ja) | 太陽電池モジュールの製造方法 | |
JP2008159895A (ja) | 太陽電池セル及び太陽電池モジュール | |
JPWO2019146366A1 (ja) | 太陽電池モジュール | |
JP5642355B2 (ja) | 太陽電池モジュール | |
US20200203540A1 (en) | Solar cell and electronic device provided with said solar cell | |
JP7564974B2 (ja) | 太陽光電池及び太陽光発電モジュール | |
US20130312826A1 (en) | Photovoltaic device and photovoltaic module | |
JP2012129359A (ja) | 太陽電池モジュール及び太陽電池セル | |
JP5554409B2 (ja) | 光電変換装置 | |
KR101192345B1 (ko) | 태양전지의 전극 패턴 및 이를 포함하는 태양전지 | |
CN107408597B (zh) | 太阳能电池组件 | |
JP2012094921A (ja) | 太陽電池モジュール | |
JP2016086154A (ja) | 太陽電池モジュール | |
JP2010182851A (ja) | 太陽電池モジュール | |
CN211507649U (zh) | 一种无激光切割的高效半片太阳电池及组件 | |
CN110534588A (zh) | 光伏模块 | |
CN212380432U (zh) | 光伏电池及光伏组件 | |
US20200168751A1 (en) | Solar cell and solar cell module | |
KR20230038356A (ko) | 태양 전지, 그의 제조 방법 및 그를 포함하는 태양 전지 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980132764.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09808140 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010525635 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009808140 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13060233 Country of ref document: US |