WO2010018857A1 - アミド誘導体の製造方法 - Google Patents
アミド誘導体の製造方法 Download PDFInfo
- Publication number
- WO2010018857A1 WO2010018857A1 PCT/JP2009/064295 JP2009064295W WO2010018857A1 WO 2010018857 A1 WO2010018857 A1 WO 2010018857A1 JP 2009064295 W JP2009064295 W JP 2009064295W WO 2010018857 A1 WO2010018857 A1 WO 2010018857A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- group
- compound represented
- represented
- hydrogen atom
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/64—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
- C07C233/76—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
- A01N37/46—N-acyl derivatives
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/40—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/49—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
- C07C205/57—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C205/58—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton the carbon skeleton being further substituted by halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/02—Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/64—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
- C07C233/81—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/68—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom and to a carbon atom of a six-membered aromatic ring wherein at least one ortho-hydrogen atom has been replaced
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/57—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/58—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/81—Amides; Imides
- C07D213/82—Amides; Imides in position 3
Definitions
- the present invention relates to a method for producing an amide derivative.
- An object of the present invention is to provide a production method capable of efficiently producing an amide derivative exhibiting an excellent effect on pest control action.
- Y 1 and Y 2 each independently represent a halogen atom, a C 1 -C 3 haloalkyl group, or a C 1 -C 6 haloalkoxy group, and Rf represents a C 3 -C 4 perfluoro group.
- LG represents a leaving group
- T represents a hydrogen atom or a fluorine atom
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- X 1 , X 3 , X 4 , And X 5 each independently represents a hydrogen atom, a halogen atom, a nitro group or a nitrile group
- A represents a nitrogen atom or a methine group which may be substituted with a halogen atom, a nitro group or a nitrile group.
- X 1 , X 3 , X 4 , X 5 , A, T, Y 1 , Y 2 , R 1 , R 2 , and Rf are the same as those in the general formula (1) and the general formula ( The method for producing an amide derivative represented by X 1 , X 3 , X 4 , X 5 , A, T, Y 1 , Y 2 , R 1 , R 2 , and Rf in 2 ).
- the amide derivative represented by the general formula (3) is represented by the following general formula (4).
- X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group, or a nitrile group
- R 1 represents a hydrogen atom or C 1 -C 4 alkyl group
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- Y 1 and Y 2 each independently represent a halogen atom, a C 1 -C 3 haloalkyl group, or C 1 -C 6 haloalkoxy group
- Rf represents a C 3 -C 4 perfluoroalkyl group.
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- R 3 represents a hydrogen atom, a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2- A compound represented by C 6 alkenyl group or C 2 -C 6 alkynyl group
- the following general formula (6) :
- X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group, or a nitrile group, and LG represents a leaving group.
- a compound represented by the following general formula (7) is a compound represented by the following general formula (7)
- X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group, or a nitrile group
- X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group, or a nitrile group
- R 2 and R 3 have the same meanings as R 2 and R 3 in the general formula (5), X 1, X 2, X 3, X 4, and X 5 are the ⁇ 3> further comprising the step of producing a compound represented by the general formula (6) or X 1 , X 2 , X 3 , X 4 and X 5 in the general formula (6) or (7).
- R 21 represents a C 1 -C 6 alkyl group
- R 3 , X 1 , X 2 , X 3 , X 4 , and X 5 represent R 3 in General Formula (8).
- X 1 , X 2 , X 3 , X 4 , and X 5 represent R 3 in General Formula (8).
- X 1 , X 2 , X 3 , X 4 , and X 5 represent R 3 in General Formula (8).
- X 1 , X 2 , X 3 , X 4 , and X 5 represent R 3 in General Formula (8).
- X 1 , X 2 , X 3 , X 4 , and X 5 represent R 3 in General Formula (8).
- X 1 , X 2 , X 3 , X 4 , and X 5 represent R 3 in General Formula (8).
- R 21 represents a C 1 -C 6 alkyl group
- R 3 has the same meaning as R 3 in Formula (8).
- R 3 is a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2 -C 6 alkenyl group, or a C 2-
- a compound having a C 6 alkynyl group is represented by the following general formula (11)
- X 1 , X 2 , X 3 , X 4 , X 5 , and R 2 represent X 1 , X 2 , X 3 , X 4 , X 5 , And R 2 , wherein Hal represents a fluorine atom, a chlorine atom, or a bromine atom.
- the amide derivative represented by the general formula (3) is represented by the following general formula (20):
- X 1 , X 3 , X 4 and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group or a nitrile group, provided that at least one of X 1 and X 3 is R 1 represents a hydrogen atom or a C 1 -C 4 alkyl group, R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group, and Y 1 and Y 2 each independently represent a halogen atom 3.
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- R 3 represents a hydrogen atom, a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, C 2- A C 6 alkenyl group or a C 2 -C 6 alkynyl group, wherein X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group or a nitrile group;
- a compound represented by: ⁇ 11> The following general formula (12)
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- Hal represents a fluorine atom, a chlorine atom, or a bromine atom
- X 1 , X 2 , X 3 , X 4 , And X 5 each independently represents a hydrogen atom, a halogen atom, a nitro group or a nitrile group.
- Halogen atom refers to a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
- C a -C b (a, b represents an integer of 1 or more)”, for example, “C 1 -C 3 ” means 1 to 3 carbon atoms, “C 2 -C 6 ” means having 2 to 6 carbon atoms.
- N- means normal, “i-” means iso, “s-” means secondary, and “t-” means tertiary.
- C 1 -C 3 haloalkyl group examples include monofluoromethyl, difluoromethyl, trifluoromethyl, monochloromethyl, dichloromethyl, trichloromethyl, monobromomethyl, dibromomethyl, tribromomethyl, pentafluoroethyl, heptafluoro- n-propyl, heptafluoro-i-propyl, 2,2-difluoroethyl, 2,2-dichloroethyl, 2,2,2-trifluoroethyl, 1-fluoroethyl, 2-fluoroethyl, 1-chloroethyl, 2 -Chloroethyl, 1-bromoethyl, 2-bromoethyl, 2-iodoethyl, 2,2,2-trichloroethyl, 2,2,2-tribromoethyl, 1,3-difluoro-2-propyl, 1,3-
- C 1 -C 6 haloalkoxy group examples include trifluoromethyloxy, pentafluoroethyloxy, heptafluoro-n-propyloxy, heptafluoro-i-propyloxy, 2,2-difluoroethyloxy, 2, 2-dichloroethyloxy, 2,2,2-trifluoroethyloxy, 2-fluoroethyloxy, 2-chloroethyloxy, 2-bromoethyloxy, 2-iodoethyloxy, 2,2,2-trichloroethyloxy 2,2,2-tribromoethyloxy, 1,3-difluoro-2-propyloxy, 1,3-dichloro-2-propyloxy, 1-chloro-3-fluoro-2-propyloxy, 1,1 , 1-trifluoro-2-propyloxy, 2,3,3,3-trifluoro-n-propyloxy, 4,4 4-trifluoromethyl
- C 1 -C 4 alkyl group means, for example, linear or branched carbon such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, etc. Represents an alkyl group having 1 to 4 atoms.
- C 1 -C 6 alkyl group means, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, i-pentyl, neopentyl Represents a linear or branched alkyl group having 1 to 6 carbon atoms, such as 4-methyl-2-pentyl, n-hexyl, and 3-methyl-n-pentyl.
- C 3 -C 8 cycloalkyl group means, for example, cyclic such as cyclopropyl, cyclobutyl, cyclopentyl, 2-methylcyclopentyl, 3-methylcyclopentyl, cyclohexyl, 2-methylcyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl and the like
- cyclic such as cyclopropyl, cyclobutyl, cyclopentyl, 2-methylcyclopentyl, 3-methylcyclopentyl, cyclohexyl, 2-methylcyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl and the like
- An alkyl group having 3 to 8 carbon atoms having a structure is represented.
- C 2 -C 6 alkenyl group means, for example, a carbon chain such as vinyl, 1-propenyl, allyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 1-hexenyl, etc.
- a straight-chain or branched alkenyl group having 2 to 6 carbon atoms having a double bond therein is represented.
- “C 2 -C 6 alkynyl group” means, for example, a carbon chain such as ethynyl, propargyl, 2-pentynyl, 1-butyn-3-yl, 1-butyn-3-methyl-3-yl, and 3-hexynyl. Represents a straight-chain or branched alkynyl group having 2 to 6 carbon atoms having a triple bond.
- C 3 -C 4 perfluoroalkyl group examples include perfluoro-n-propyl, perfluoro-i-propyl, perfluoro-n-butyl, perfluoro-i-butyl, perfluoro-s-butyl, This represents a linear or branched alkyl group having 3 to 4 carbon atoms in which all hydrogen atoms such as perfluoro-t-butyl are substituted with fluorine atoms.
- C 1 -C 6 alkyl group”, “C 3 -C 8 cycloalkyl group”, “C 2 -C 6 alkenyl group”, and “C 2 -C 6 alkynyl group” in R 3 each have a substituent.
- substituents include an unsubstituted linear or branched alkyl group having 1 to 6 carbon atoms, and an unsubstituted cyclic cycloalkyl group having 3 to 8 carbon atoms.
- C 1 -C 6 alkyl group When “C 1 -C 6 alkyl group”, “C 3 -C 8 cycloalkyl group”, “C 2 -C 6 alkenyl group”, and “C 2 -C 6 alkynyl group” have a substituent Specific examples of these include, for example, methoxymethyl group, benzyloxymethyl group, phenacyl group, p-bromophenacyl group, p-methoxyphenacyl group, 2- (p-toluenesulfonyl) ethyl group, trichloroethyl group, 2-chloroethyl.
- the compound represented by the general formula (3) in the present invention may contain one or more asymmetric carbon atoms or asymmetric centers in the structural formula, and two or more optical isomers exist.
- the present invention includes all the optical isomers and a mixture in which they are contained in an arbitrary ratio.
- the compound represented by the general formula (3) in the present invention may have two or more kinds of geometric isomers derived from a carbon-carbon double bond in the structural formula. Also included are all mixtures containing geometric isomers in any proportion.
- the process for producing an amide derivative represented by the following general formula (3) of the present invention comprises reacting a compound represented by the following general formula (1) with a compound represented by the following general formula (2). including.
- Y 1 and Y 2 each independently represent a halogen atom, a C 1 -C 3 haloalkyl group, or a C 1 -C 6 haloalkoxy group
- Rf represents C 3 —C 4 represents a perfluoroalkyl group
- R 1 represents a hydrogen atom or a C 1 -C 4 alkyl group.
- LG represents a leaving group
- T represents a hydrogen atom or a fluorine atom
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- X 1 , X 3 , X 4 , and X 5 are each independently
- A represents a hydrogen atom, a halogen atom, a nitro group, or a nitrile group
- A represents a nitrogen atom or a methine group that may be substituted with a halogen atom, a nitro group, or a nitrile group.
- the leaving group represented by LG include a halogen atom, a hydroxy group, an aryloxy group, and an acyloxy group. From the viewpoint of production efficiency, a halogen atom, an aryloxy group, and an acyloxy group are preferable. More preferably, it is a halogen atom.
- reaction conditions that are usually used can be used without particular limitation.
- an aromatic carboxylic acid derivative having a leaving group (LG) represented by the general formula (2) and an aromatic amine derivative represented by the general formula (1) are reacted in a suitable solvent or without solvent.
- LG leaving group
- an amide derivative represented by the general formula (3) can be produced.
- an appropriate base can also be used.
- the solvent is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
- water benzene, toluene, xylene, chlorobenzene, dichlorobenzene and other aromatic hydrocarbons, dichloromethane, chloroform, carbon tetrachloride and the like.
- Halogenated hydrocarbons linear or cyclic ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, esters such as ethyl acetate and butyl acetate, alcohols such as methanol and ethanol, acetone, methyl isobutyl Ketones such as ketone and cyclohexanone, nitriles such as acetonitrile and propionitrile, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone, N, N -Dimethylacetate Amide in an inert solvent such as aprotic polar solvents such as hexamethylphosphoric amide can show, these solvents may be used alone or as a mixture of two or more.
- aprotic polar solvents such as hexamethylphosphoric
- Examples of the base include trimethylamine, triethylamine, tri-n-butylamine, piperidine, pyridine, 2-picoline, 3-picoline, 2,6-lutidine, N-methylmorpholine, N, N-diethylaniline, N-ethyl- N-methylaniline, diisopropylethylamine, 3-methylimidazole, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,4-diazabicyclo [2.2.2] octane, 4-dimethylaminopyridine, etc.
- Organic bases such as alkali hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, carbonates such as sodium bicarbonate, sodium carbonate and potassium carbonate, dipotassium monohydrogen phosphate and trisodium phosphate Phosphate, alkali metal hydride such as sodium hydride, sodium Tokishido, alkali metal alcoholates such as sodium ethoxide, may indicate example lithium amide such as lithium diisopropylamide or the like.
- These bases may be appropriately selected and used within a range of 0.01 to 5 molar equivalents relative to the compound represented by the general formula (2).
- the reaction temperature may be appropriately selected from ⁇ 20 ° C. to the reflux temperature of the solvent used, and the reaction time may be in the range of several minutes to 96 hours.
- an aromatic carboxylic acid halide in which LG is a halogen atom is an equimolar or more halogen atom from an aromatic carboxylic acid in which LG in the general formula (2) is a hydroxy group.
- the halogenating agent include thionyl chloride, thionyl bromide, oxalic acid dichloride, phosphorus oxychloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride and the like.
- a solvent may be used, and any solvent may be used as long as it is an inert solvent.
- linear or cyclic ethers such as diethyl ether, t-butyl ethyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, methylene chloride, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, dichloroethylene, chlorobenzene, dichlorobenzene, etc.
- Halogenated hydrocarbons aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene and dichlorobenzene, aliphatic hydrocarbons such as n-hexane, heptane, octane and cyclohexane, esters such as ethyl acetate and butyl acetate , Nitriles such as acetonitrile, propionitrile, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidino
- One or more aprotic polar solvents or the like can be suitably selected and the like.
- the reaction can usually be carried out at ⁇ 20 to 140 ° C., and the reaction time is usually appropriately selected from 0.1 to 96 hours.
- LG is represented by the general formula (3) from the compound having a hydroxy group. It is possible to produce amide derivatives.
- a method for example, Chem. Ber.
- an additive such as 1-hydroxybenzotriazole and 1-hydroxysuccinimide is appropriately used, and a method using a condensing agent using N, N′-dicyclohexylcarbodiimide is used. Can show. Examples of other condensing agents used in this case include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, 1,1'-carbonylbis-1H-imidazole, and the like.
- the aryloxy group used in the active ester method includes p-nitrophenyloxy group, 2,4-dinitrophenyloxy group, pentafluorophenyloxy group, 1,3,5-trichlorophenyloxy group, pentachlorophenyloxy group Etc. can be shown.
- Both the method using a condensing agent, the mixed acid anhydride method, and the active ester method are not limited to the solvent, reaction temperature, and reaction time described in the above literature, and an inert solvent that does not significantly inhibit the progress of the reaction is used as appropriate. What is necessary is just to select suitably reaction temperature and reaction time according to progress of reaction.
- the amide derivative represented by the general formula (3) of the present invention thus obtained is separated from the reaction mixture after the completion of the reaction by usual means for separation and production, such as extraction, concentration, neutralization, filtration, recrystallization, column chromatography, distillation. It can isolate by using means, such as. Moreover, it is also possible to use for the next reaction process, without isolating a target object from a reaction system.
- the compound represented by the following general formula (22) in which LG is a hydroxy group can be produced as follows.
- R 3 is a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2 -C 6 alkenyl group, or a C 2 -C 6 alkynyl.
- the compound as a group can be converted to a compound represented by the following general formula (22) by hydrolysis using a general method or a method using a Pd catalyst.
- the compound represented by the general formula (21) is represented by the general formula.
- the compound represented by (22) can be obtained.
- X 1 , X 3 , X 4 , X 5 , T, A, and R 2 are X 1 , X 3 , X 4 , Each having the same meaning as X 5 , T, A, and R 2 , and R 3 is a hydrogen atom, a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2 -C 6 alkenyl group, or C Represents a 2- C 6 alkynyl group.
- the compound represented by the general formula (22) can be converted into a compound in which LG is a halogen atom among the compounds represented by the general formula (2) by a known method using a halogenating agent. it can. Specifically, in the same manner as the method for producing the compound represented by the general formula (12) from the compound represented by the general formula (11) described later, the compound represented by the general formula (22) Among the compounds represented by the formula (2), a compound in which LG is represented by a halogen atom can be obtained.
- the compound represented by the general formula (21) is obtained by reacting a compound represented by the following general formula (23) with a compound represented by the following general formula (24) or the following general formula (25). Can be manufactured.
- X 1 , X 3 , X 4 , X 5 , T, A, and R 2 are X 1 , X 3 , X 4 , Each having the same meaning as X 5 , T, A, and R 2 , and R 3 is a hydrogen atom, a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2 -C 6 alkenyl group, or C It represents a 2- C 6 alkynyl group, and LG represents a leaving group. Examples of the leaving group represented by LG include a halogen atom, a hydroxy group, and an aryloxy group, and a halogen atom is preferable from the viewpoint of production efficiency.
- the compound represented by the following general formula (26) in which R 2 is a C 1 -C 6 alkyl group is a compound represented by the following general formula (27).
- the compound represented by the following general formula (26) is produced in the same manner as the method for producing the compound represented by the general formula (9) from the compound represented by the general formula (13) described later. can do.
- X 1 , X 3 , X 4 , X 5 , T, and A are the same as X 1 , X 3 , X 4 , X 5 , in the general formula (3).
- R 3 represents a hydrogen atom, a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2 -C 6 alkenyl group, or a C 2 -C 6 alkynyl group.
- R 21 represents a C 1 -C 6 alkyl group.
- the compound represented by the general formula (26) is a compound represented by the general formula (24) using a compound represented by the following general formula (28) as the compound represented by the general formula (23). Alternatively, it can also be produced by reacting the compound represented by the general formula (25). Furthermore, the compound represented by the following general formula (28) can be produced by alkylating the compound represented by the following general formula (29).
- R 3 and R 21 are the same meanings as R 3 and R 21 in the general formula (26).
- the method for producing the compound represented by the general formula (28) from the compound represented by the general formula (29) is represented by the general formula (10) from the compound represented by the general formula (14) described later. It can be carried out in the same manner as the method for producing the compound.
- the amide derivative represented by the general formula (3) is a compound represented by the following general formula (4) or a compound represented by the following general formula (20) from the viewpoint of pest control action. It is preferable.
- X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group, or a nitrile group
- R 1 is a hydrogen atom or C 1 —C 4 alkyl group
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- Y 1 and Y 2 each independently represent a halogen atom, a C 1 -C 3 haloalkyl group, or C 1 — Represents a C 6 haloalkoxy group
- Rf represents a C 3 -C 4 perfluoroalkyl group.
- X 1 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom, a halogen atom, a nitro group, or a nitrile group. However, at least one of X 1 and X 3 is a halogen atom.
- R 1 represents a hydrogen atom or a C 1 -C 4 alkyl group
- R 2 represents a hydrogen atom or a C 1 -C 6 alkyl group
- Y 1 and Y 2 each independently represent a halogen atom
- C 1- A C 3 haloalkyl group or a C 1 -C 6 haloalkoxy group is represented
- Rf represents a C 3 -C 4 perfluoroalkyl group.
- the amide compound represented by the general formula (4) can be produced in the same manner as the amide derivative represented by the general formula (3).
- the method for producing the amide compound represented by the general formula (4) includes a compound represented by the following general formula (5) and a compound represented by the following general formula (6) or the following general formula ( It is preferable to further include a step of producing a compound represented by the following general formula (8) by reacting with the compound represented by 7).
- X 1 , X 2 , X 3 , X 4 , X 5 , and R 2 are the same as X 1 , X 2 , X 3 , X in the general formula (4).
- 4 , X 5 , and R 2 , and R 3 is a hydrogen atom, a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2 -C 6 alkenyl group, or a C 2- C 6 represents an alkynyl group, and LG represents a leaving group.
- Examples of the leaving group represented by LG include a halogen atom, a hydroxy group, an aryloxy group, and an acyloxy group. From the viewpoint of production efficiency, a halogen atom, an aryloxy group, and an acyloxy group are preferable. More preferably, it is a halogen atom.
- the general formula ( The compound represented by 8) can be produced.
- an appropriate base or solvent can be used.
- the solvent used is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
- aromatic hydrocarbons such as benzene, toluene and xylene, halogenated carbons such as methylene chloride, chloroform and carbon tetrachloride, Chain ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, esters such as ethyl acetate and butyl acetate, ketones such as acetone, methyl isobutyl ketone and cyclohexanone, N, N-dimethyl Polar aprotic solvents such as formamide, N, N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric triamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, acetonitrile, propionitrile, etc. May show nitriles, water, etc. It can be used in these solvents individually or in a mixture of two or more solvents
- Bases include organic bases such as trimethylamine, triethylamine, tri-n-butylamine, piperidine, pyridine, 2-picoline, 3-picoline, 2,6-lutidine, diisopropylethylamine, 4-dimethylaminopyridine, lithium hydroxide , Alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium bicarbonate, sodium carbonate and potassium carbonate, phosphates such as dipotassium monohydrogen phosphate and trisodium phosphate, sodium hydride Examples thereof include alkali metal hydrides such as sodium alkoxide, alkali metal alcoholates such as sodium methoxide and sodium ethoxide, lithium amide such as lithium diisopropylamide and the like.
- These bases may be appropriately selected and used within a range of 0.01 to 5 molar equivalents relative to the compound represented by the general formula (5).
- the reaction temperature may be appropriately selected within the range of ⁇ 20 ° C. to the reflux temperature of the solvent used.
- the reaction time may be appropriately selected within the range of several minutes to 96 hours.
- an aromatic carboxylic acid halide compound in which LG is a halogen atom can be easily produced from an aromatic carboxylic acid by a conventional method using a halogenating agent.
- the halogenating agent include thionyl chloride, oxalyl chloride, phosgene, phosphorus oxychloride, phosphorus pentachloride, phosphorus trichloride, thionyl bromide, phosphorus tribromide and the like.
- the aromatic carboxylic acid anhydride represented by the general formula (7) can be produced by co-existing an aromatic carboxylic acid in the presence of a dehydrating agent. Examples of dehydrating agents include phosphoric chloride, acetic anhydride, acid anhydrides such as trifluoroacetic anhydride or acid chlorides, haloformates, carbodiimides, and the like.
- LG is represented by the general formula (8) from an aromatic carboxylic acid having a hydroxy group and an aniline derivative.
- Compounds can be produced.
- Chem. Ber. The method described on page 788 (1970) can be followed. Specifically, a method of using a condensing agent using N, N′-dicyclohexylcarbodiimide by appropriately using additives such as 1-hydroxybenzotriazole and 1-hydroxysuccinimide can be shown.
- condensing agents used in this case include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, N, N′-carbonylbis-1H-imidazole, diphenyl phosphate azide, diethyl cyanophosphate and the like. It can also be carried out using a peptide condensation reagent alone.
- the reaction temperature is usually ⁇ 20 to + 50 ° C., preferably 0 ° C. to room temperature.
- Commonly used solvents include dioxane, N, N-dimethylformamide, dimethyl sulfoxide, chloroform, methylene chloride, tetrahydrofuran, etc., and these can be used alone or in combination.
- a mixed acid anhydride method using chloroformate esters can be exemplified.
- Am. Chem. Soc. The method described on page 5012 (1967) can be mentioned.
- Examples of the chloroformate used in this case include methyl chloroformate, chloroformate-i-propyl, chloroformate-i-butyl and the like.
- diethylacetyl chloride, trimethylacetyl chloride and the like can be shown.
- Both the method using a condensing agent and the method using a mixed acid anhydride are not limited to the solvent, reaction temperature, and reaction time described in the above-mentioned literature.
- As the solvent an inert solvent that does not significantly inhibit the progress of the reaction may be used, and the reaction temperature and the reaction time may be appropriately selected according to the progress of the reaction.
- the manufacturing method of the compound represented by General formula (4) is alkylated the compound represented by following General formula (13) whose R ⁇ 2 > in General formula (8) is a hydrogen atom, and is represented by following General formula (9) It is preferable to further include a step of obtaining a compound represented by
- X 1 , X 2 , X 3 , X 4 , X 5 , and R 3 represent X 1 , X 2 , X 3 , X in the general formula (8). 4 , X 5 , and R 3 are the same as each other, and R 21 represents a C 1 -C 6 alkyl group.
- a compound represented by the general formula (9) is produced by reacting the compound represented by the general formula (13) with a predetermined reagent (preferably an alkylating agent) using a base in a solvent.
- a predetermined reagent preferably an alkylating agent
- Any solvent may be used as long as it does not significantly inhibit the progress of this reaction. Examples thereof include aliphatic hydrocarbons such as n-hexane, cyclohexane and methylcyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, and chloride.
- Halogenated carbons such as methylene, chloroform, 1,2-dichloroethane, chain or cyclic ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, esters such as ethyl acetate, butyl acetate, acetone, Ketones such as methyl isobutyl ketone and cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric triamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone Polar aprotic such as Solvents, nitriles such as acetonitrile and propionitrile, methanol, can be shown and alcohols such as ethanol, can be used those solvents individually or in a mixture of two or more solvents.
- the base examples include organic bases such as triethylamine, tri-n-butylamine, piperidine, pyridine and 4-dimethylaminopyridine, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, sodium hydrogen carbonate Carbonates such as sodium carbonate and potassium carbonate, phosphates such as dipotassium monohydrogen phosphate and trisodium phosphate, alkali metal hydrides such as sodium hydride, alkali metals such as sodium methoxide and sodium ethoxide Examples include alcoholates, organolithiums such as n-butyllithium, Grignard reagents such as ethylmagnesium bromide, lithium amides such as lithium diisopropylamide, and the like. These bases may be appropriately selected or used as a solvent in the range of 0.01 to 5 molar equivalents with respect to the compound represented by the general formula (13).
- organic bases such as triethylamine, tri-
- Examples of the reactive agent include alkyl halides such as methyl iodide, ethyl bromide, ethyl iodide, trifluoromethyl iodide, n-propyl iodide, 2,2,2-trifluoroethyl iodide, iodine Allyl halides such as allyl halide, propargyl halides such as propargyl bromide, acyl halides such as acetyl chloride, acid anhydrides such as trifluoroacetic anhydride, and alkyl sulfates such as dimethyl sulfate and diethyl sulfate. Can be used.
- alkyl halides such as methyl iodide, ethyl bromide, ethyl iodide, trifluoromethyl iodide, n-propyl iodide, 2,2,2-trifluoroeth
- reactants may be appropriately selected or used as a solvent in the range of 1 to 5 molar equivalents with respect to the compound represented by the general formula (13).
- the reaction temperature may be appropriately selected from ⁇ 80 ° C. to the reflux temperature of the solvent used, and the reaction time may be in the range of several minutes to 96 hours.
- the manufacturing method of the compound represented by General formula (4) is alkylated the compound represented by following General formula (14) whose R ⁇ 2 > in General formula (5) is a hydrogen atom, and the following general formula ( It is preferable to further include a step of obtaining a compound represented by 10).
- a compound represented by the general formula (5) a compound represented by the following general formula (10) is used, and this is a compound represented by the general formula (6) or a compound represented by the general formula (7). By making it react with, the compound represented by the said General formula (9) can be manufactured.
- R 3 and R 21 are the same meanings as R 3 and R 21 in the general formula (9).
- Examples of the method for producing the compound represented by the general formula (10) from the compound represented by the general formula (14) include the following methods A to C.
- Method A By reacting a compound having an amino group represented by the general formula (14) with an aldehyde or a ketone in a solvent, adding a catalyst and reacting in a hydrogen atmosphere, the compound represented by the general formula (10) is obtained. Alkylated compounds can be produced.
- any solvent that does not significantly inhibit the progress of this reaction can be used.
- aliphatic hydrocarbons such as n-hexane, cyclohexane, and methylcyclohexane
- aromatic hydrocarbons such as benzene, xylene, and toluene, and chloride.
- Halogenated hydrocarbons such as methylene, chloroform, carbon tetrachloride, 1,2-dichloroethane, chain or cyclic ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, N, N-dimethylformamide, Polar aprotic solvents such as N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, hexamethylphosphoric triamide, acetonitrile, propionitrile, etc.
- Nitriles, ethyl acetate, vinegar Esters such as butyl, alcohols such as methanol and ethanol, can indicate a water or the like, these solvents may be used alone or as a mixture of two or more.
- the catalyst examples include palladium catalysts such as palladium / carbon and palladium hydroxide / carbon, nickel catalysts such as Raney nickel, cobalt catalysts, platinum catalysts, ruthenium catalysts, rhodium catalysts, and the like.
- aldehydes examples include aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, trifluoroacetaldehyde, difluoroacetaldehyde, fluoroacetaldehyde, chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, and bromoacetaldehyde.
- aldehydes include aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, trifluoroacetaldehyde, difluoroacetaldehyde, fluoroacetaldehyde, chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, and bromoacetaldehyde.
- ketones examples include ketones such as acetone, perfluoroacetone, and methyl ethyl ketone.
- the reaction pressure may be appropriately selected in the range of 1 to 100 atm.
- the reaction temperature may be appropriately selected within the range of ⁇ 20 ° C. to the reflux temperature of the solvent used.
- the reaction time may be appropriately selected within the range of several minutes to 96 hours.
- the compound represented by general formula (10) can be produced by reacting the compound represented by general formula (14) with an aldehyde or ketone in a solvent and treating with a reducing agent.
- the solvent is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
- aliphatic hydrocarbons such as n-hexane, cyclohexane and methylcyclohexane, aromatic hydrocarbons such as benzene, xylene and toluene, dichloromethane
- Halogenated hydrocarbons such as chloroform, carbon tetrachloride, 1,2-dichloroethane, chain or cyclic ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, N, N-dimethylformamide, N , N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, hexamethylphosphoric triamide, and other polar aprotic solvents, acetonitrile, propionitrile, etc.
- borohydrides such as sodium borohydride, sodium cyanoborohydride, sodium triacetate borohydride, and the like.
- aldehydes examples include aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, trifluoroacetaldehyde, difluoroacetaldehyde, fluoroacetaldehyde, chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, and bromoacetaldehyde.
- aldehydes include aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, trifluoroacetaldehyde, difluoroacetaldehyde, fluoroacetaldehyde, chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, and bromoacetaldehyde.
- ketones examples include ketones such as acetone, perfluoroacetone, and methyl ethyl ketone.
- the reaction temperature may be appropriately selected within the range of ⁇ 20 ° C. to the reflux temperature of the solvent used.
- the reaction time may be appropriately selected within the range of several minutes to 96 hours.
- the compound represented by the general formula (10) can be produced by reacting the compound represented by the general formula (14) with an aldehyde in a solvent or without a solvent.
- the solvent is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
- aliphatic hydrocarbons such as n-hexane, cyclohexane and methylcyclohexane, aromatic hydrocarbons such as benzene, xylene and toluene, dichloromethane
- Halogenated hydrocarbons such as chloroform, carbon tetrachloride, 1,2-dichloroethane, chain or cyclic ethers such as diethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, N, N-dimethylformamide, N , N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and other polar aprotic solvents, acetonitrile, propionitrile, etc.
- the reaction temperature may be appropriately selected from ⁇ 20 ° C. to the reflux temperature of the solvent to be used, and the reaction time may be selected from a range of several minutes to 96 hours.
- R 3 is a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group
- a compound having a C 2 -C 6 alkenyl group or a C 2 -C 6 alkynyl group is represented by the following general formula (11) by hydrolysis using a general method or a method using a Pd catalyst or the like. It is preferable to further include the step of converting into a compound to be converted.
- R 3 is a C 1 -C 6 alkyl group, a C 3 -C 8 cycloalkyl group, a C 2 -C 6 alkenyl group, or a C 2 -C 6 alkynyl group.
- the compound represented by the general formula (11) can be obtained by hydrolysis using a general method or a method using a Pd catalyst.
- aqueous or alcoholic lithium hydroxide sodium hydroxide or potassium hydroxide is used as a base. It can be obtained by hydrolysis.
- a combination of an aqueous base such as sodium hydroxide, potassium hydroxide or lithium hydroxide and a phase transfer catalyst such as tetrabutylammonium bromide, benzyltriethylammonium chloride or crown ether, even in a water-insoluble solvent such as toluene or xylene Hydrolysis can also be carried out.
- reaction temperature may be appropriately selected within the range of ⁇ 20 ° C. to the reflux temperature of the solvent used.
- the reaction time may be appropriately selected within the range of several minutes to 96 hours.
- a method using Pd the method described in Tetrahedron Letters 4371 pages (1987) can be used, for example.
- the method for producing a compound represented by the general formula (4) preferably further includes a step of converting a compound represented by the following general formula (11) into a compound represented by the following general formula (12).
- X 1, X 2, X 3, X 4, X 5, and R 2 X 1 in the general formula (11), X 2, X 3, X 4, X 5, and It is synonymous with R 2 respectively.
- Hal represents a fluorine atom, a chlorine atom, or a bromine atom.
- the compound represented by the general formula (12) can be produced by treating the compound represented by the general formula (11) with an equimolar or more halogenating agent.
- the halogenating agent include thionyl chloride, thionyl bromide, oxalic acid dichloride, phosphorus oxychloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride and the like.
- a solvent may be used, and any solvent may be used as long as it is an inert solvent.
- linear or cyclic ethers such as diethyl ether, t-butyl ethyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, methylene chloride, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, dichloroethylene, chlorobenzene, dichlorobenzene, etc.
- Halogenated hydrocarbons aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene and dichlorobenzene, aliphatic hydrocarbons such as n-hexane, heptane, octane and cyclohexane, esters such as ethyl acetate and butyl acetate , Nitriles such as acetonitrile, propionitrile, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidino
- One or more aprotic polar solvents or the like can be suitably selected and the like.
- the reaction can usually be carried out at ⁇ 20 to 140 ° C., and the reaction time is usually appropriately selected from 0.1 to 96 hours.
- the compound represented by the general formula (14) can be produced, for example, from the compound represented by the following general formula (15) as follows.
- R 3 has the same meaning as R 3 in the general formula (14).
- metal fluoride sodium fluoride, potassium fluoride, and cesium fluoride are preferable.
- the heating temperature is preferably 50 ° C to 250 ° C, particularly preferably 80 ° C to 200 ° C.
- the solvent used in the reaction is not particularly limited as long as it does not inhibit the progress of the reaction, and a polar organic solvent having a high action of dissolving the metal fluoride is particularly preferable because the reaction rate is increased.
- nitriles such as acetonitrile and propionitrile, ketones such as acetone, methyl isobutyl ketone and methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane, nitromethane, N, N-dimethylformamide, 1,3-dimethyl- Examples include aprotic polar solvents such as 2-imidazolidinone, dimethyl sulfoxide, sulfolane, N-methylpyrrolidone and N, N-dimethylacetamide, and N, N-dimethylformamide, dimethyl sulfoxide and sulfolane are preferred.
- the amount of the metal fluoride is usually 1 mol or more based on the compound
- An additive may be used.
- the additive include crown ethers such as 18-crown-6, phase transfer catalysts such as tetraphenylphosphonium salts, inorganic salts such as calcium fluoride and calcium chloride, mercury oxide And the like, and these additives can be used not only in the reaction system but also as a pretreatment agent for the fluorinating agent.
- the compound represented by the general formula (16) can be led to the compound represented by the general formula (14) by a reduction reaction.
- the reduction reaction include a method using a hydrogenation reaction and a method using a metal compound (for example, stannous chloride (anhydride), iron powder, zinc powder, etc.).
- the former can be carried out in a solvent, in the presence of a catalyst, at normal pressure or under pressure, under a hydrogen atmosphere.
- the catalyst include palladium catalysts such as palladium / carbon, nickel catalysts such as Raney nickel, cobalt catalysts, ruthenium catalysts, rhodium catalysts, platinum catalysts and the like.
- palladium / carbon is used at a metal weight of 1/10 to 1 / 10,000 times that of the compound represented by the general formula (16), a hydrogen pressure of 0.1 to 10 MPa, and a reaction temperature of usually 0 to The stirring can be performed at 100 ° C. for several minutes to 96 hours.
- Solvents such as water, alcohols such as methanol and ethanol, chain or cyclic ethers such as ether, dioxane and tetrahydrofuran, esters such as ethyl acetate and butyl acetate, N, N-dimethylformamide, 1,3-dimethyl-2
- aprotic polar solvents such as imidazolidinone, dimethyl sulfoxide, sulfolane, N-methylpyrrolidone, N, N-dimethylacetamide, and these are used alone or in combination.
- the reaction for reducing the compound represented by the general formula (16) is not limited to the conditions, and examples thereof include those described in Organic Synthesis Coll. Vol. III By using the conditions described on page 453, a method of using stannous chloride (anhydride) as a metal compound can be exemplified.
- the compound represented by the general formula (8) of the present invention is extremely useful as a production intermediate in the method for producing the amide derivative represented by the general formula (3).
- the following Table 1 shows typical examples of the compound represented by the general formula (8), but the compound of the present invention is not limited thereto. In the table.
- N- represents normal
- i- represents iso
- Me represents methyl group
- Et represents ethyl group
- n-Pr represents normal propyl group
- n-Bu represents normal
- N-Pn represents a normal pentyl group
- n-hex represents a normal hexyl group
- i-Pr represents an isopropyl group
- H represents a hydrogen atom
- F represents a fluorine atom.
- “Cl” represents a chlorine atom
- “CN” represents a nitrile group
- “Cyclo-Pr” represents a cyclopropyl group
- “Cyclo-hex” represents a cyclohexyl group
- “CH 2 CH ⁇ CH 2 ” represents an allyl group.
- CH 2 C ⁇ CH represents a propargyl group
- CH 2 OCH 3 represents a methoxymethyl group
- CH 2 Ph represents a benzyl group
- CH 2 OCH 2 Ph represents a benzyloxymethyl group
- C (CH 3) 3 is t- The methyl group, a “CH 2 CH 2 Cl” 2-chloroethyl group, "NO 2” means a nitro group, and represents, respectively.
- Table 2 shows typical examples of the compound represented by the general formula (12) useful as a production intermediate in the method for producing an amide compound of the present invention, but the present invention is not limited thereto. It is not what is done.
- “n-” represents normal, “i-” represents iso, “Me” represents methyl group, “Et” represents ethyl group, “n-Pr” represents normal propyl group, “n” “-Bu” represents a normal butyl group, “n-Pn” represents a normal pentyl group, “n-hex” represents a normal hexyl group, “i-Pr” represents an isopropyl group, “H” represents a hydrogen atom, “ “F” represents a fluorine atom, “Cl” represents a chlorine atom, “Br” represents a bromine atom, “CN” represents a nitrile group, “NO 2 ” represents a nitro group, and “Cyclo-Pr” represents a cyclo
- Table 3 shows typical examples of the amide derivative represented by the general formula (3) obtained by the method for producing an amide compound of the present invention, but the present invention is not limited to these.
- n- is normal, “i-” is iso, “s-” is secondary, “Me” is methyl group, “Et” is ethyl group, “n-Pr” Is a normal propyl group, “CF 3 ” is a trifluoromethyl group, “H” is a hydrogen atom, “F” is a fluorine atom, “Cl” is a chlorine atom, “Br” is a bromine atom, “ “I” represents an iodine atom, “CN” represents a nitrile group, “NO 2 ” represents a nitro group, “OCF 3 ” represents a trifluoromethoxy group, “CH” represents a methine group, and “N” represents a nitrogen atom. , Respectively.
- the pest control agent containing the amide derivative represented by the general formula (3) produced by using the compound of the present invention as an active ingredient is a variety of agricultural pests that harm agricultural and horticultural crops and trees, and humans such as houses. Occurring in sanitary pests that adversely affect the living environment, veterinary drugs for pets, stored grain pests that harm grain stored in warehouses, insects such as wood pests that harm wood such as buildings, and similar situations Any harmful pests such as mites, crustaceans, molluscs and nematodes can be effectively controlled at low concentrations.
- insects, mites, crustaceans, molluscs and nematodes that can be controlled using the amide derivative represented by the general formula (3) produced by using the compound of the present invention are as follows. Is mentioned. For example, teaberry leafworm (Adoxophyes honmai), appleberry leaflet (Adoxophyes orana faciata), appleberry leaflet (Archips breviplicanus), appleberry leaflet (Grapholita inopinata), green leafworm leaflet (Archips fuscocupreanus), ), Choristoneura magnanima, Leguminivora glycinivorella, Olethreutes mori, Caloptilia zachrysa, Argyresthia conjugast, taser phaseoli), Tobihamaki (Pandemis heparana), Nashichibiga (Bucculatrix pyrivorella), Prunus sorghum (Lyonetia clerkella), Peach squirrel (Carposina niponen
- Botten leafhopper (Arboridia apicalis), green leafhopper (Balclutha , Peanut leafhopper (Empoasca ), Orange lice (Diaphorina citri), pear lice (Psylla pyrisuga), mandarin white lice (Aleurocanthus spiniferus), silver leaf white lice (Bemisiagentargentifolii), tobacco white lice (Bemisia tabaci), mandarin oranges Whitefly (Trialeurodes vaporariorum), Grape whitefly (Aleurolobus taonabae), Grape aphid (Viteus vitifolii), Black-headed aphid (Lipaphis erysimi), Cotton aphid (Aphis gossypii), Snowy aphid moth (Aphis spira) , Komikan Aphid (Toxoptera aurantii), Drosicha puenta, Icerya purchasi, Phenacoccus solani, Pulvinaria Auoc
- Soybean flies (Asphondylia yushimai), mud wings (Sitodiplosis mosellana), fruit flies (Bactrocera cucurbitae), citrus fruit flies (Bactrocera dorsalis), citrus fruit flies (Ceratitis capitata), rice moth flies
- Leafhopper (Agromyza oryzae), Leafworm (Chromatomyia horticola), Eggplant leaffly (Liriomyza bryoniae), Leafy leaffly (Liriomyza chinensis), Tomato leaffly (Liriomyza sativae), Beanworm (Liriomyza dwarf) ), Sugar beetle (Pegomya cunicularia), apple maggot (Rhagoletis pomonella), hessian fly (Mayetiola destructor), housefly (Musca domestica), flies (Stomoxys calcitrans), sheep
- Straight-legged insects such as Telemacrylus emma, Kera (Gryllotalpa orientalis), Tosama grasshopper (Locusta migratoria), Oxya yezoensis, Sabaquat grasshopper (Schistocerca gregaria), Coleopteran insects such as the white-headed beetle (Onychiurus folsomi), the Siberian white-headed beetle (Onychiurus sibiricus), the Bourletiella hortensis, Nettle insects such as black cockroach (Periplaneta fuliginosa), cockroach (Periplaneta japonica), German cockroach (Blattella germanica), cockroach (Periplaneta Americana),
- Termite insects such as termites (Coptotermes formosanus), Yamato termites (Reticulitermes speratus), Taiwan termites (Odontotermes formosanus), Insect insects such as cat fleas (Ctenocephalidae felis), dog fleas (Ctenocephalides canis), chicken fleas (Echidnophaga gallinacea), human fleas (Pulex irritans), keops mouse fleas (Xenopsylla cheopis), Insects such as chicken lice (Menacanthus stramineus) and bovine lice (Bovicola bovis), Lice insects such as bovine lice (Haematopinus eurysternus), porcine lice (Haematopinus suis), bovine white lice (Linognathus vituli), horned lice (Solenopotes capillatus), Dust mites such as cyclamen dust mite (Phytonemus pallidus), chano
- Spider mites such as rice spider mite (Oligonychus shinkajii), citrus spider mite (Panonychus citri), blue spider mite (Panonychus mori), apple spider mite (Panonychus ulmi), Kanzawa spider mite (Tetranychus kanzawai), spider mite (Tetranychus urticae), etc.
- Mite mites such as Robin mite (Rhizoglyphus robini), Mushroom mite (Tyrophagus putrescentiae), Spinach mushroom mite (Tyrophagus similis), Bee mites such as honeybee mite (Varroa jacobsoni), Tick tick (Boophilus microplus), Rhipicephalus sanguineus, Tick tick (Haemaphysalis longicornis), Tick tick (Haemophysalis flava), Tick tick (Haemophysalis campanulata), Tick tick (Ixo
- Acne mites (Cheyletiella yasguri), crayfish mites (Cheyletiella blakei), etc.
- Cucumber mites such as sheep cucumber mites (Psoroptes ovis), Spider mites, such as Sarkoptes scabiei, Caterpillar spider mite (Notoedres cati), Chicken spider mite (Knemidocoptes spp.), Crustaceans such as the armadillum (Armadillidium vulgare), Gastropods such as Pomacea canaliculata, African mussel (Achatina fulica), Slug (Meghimatium bilineatum), Chaukoura slug (Limax Valentiana), Uskawamai (Acusta despecta sieboldiana), Mishamai mai (Euhadra peliomphala), etc.
- Southern nematode nematode (Prathylenchus coffeae), Kitane-negususa nematode (Prathylenchus penetrans), Kurume rushes nematode (Prathylenchus vulnus), potato cyst nematode (Globodera rostochiensis), soybean cyst nematode (Heterodera lypter Nematodes such as root-knot nematode (Meloidogyne incognita), rice-spotted nematode (Aphelenchoides besseyi), pine wood nematode (Bursaphelenchus xylophilus), Insects, mites, crustaceans, molluscs, and nematodes that can be controlled using the amide derivative represented by the general formula (3) in the present invention are not limited to these. Absent.
- the pest control agent containing the amide derivative represented by the general formula (3) produced by the production method of the present invention as an active ingredient is harmful to paddy field crops, field crops, fruit trees, vegetables, other crops, and flowers. Since it has a remarkable control effect on the harmful crops that give the pests, the paddy field, the field, The effect as a pest control agent of the present invention can be obtained by treating fruit trees, vegetables, other crops, paddy water such as flower buds, foliage or soil.
- the pest control agent comprising as an active ingredient the amide derivative represented by the general formula (3) produced by using the production method of the present invention has a remarkable control effect against stored pests and the like generated during storage of harvested products. It is what has. That is, a pest control agent containing an amide derivative represented by the general formula (3) produced by the method for producing an amide derivative of the present invention as an active ingredient is sprayed on a harvested product or a storage place of the harvested product. What is necessary is just to perform post-harvest processing such as spraying, coating, dipping, powder coating, fumigation / smoke, or pressurized injection.
- the pest control agent having the amide derivative represented by the general formula (3) produced by the production method of the present invention as an active ingredient is applied to plant seeds, thereby causing damage caused by pests generated on the plant after sowing. Can be prevented. That is, the pests in the form of a pest control agent containing the amide derivative represented by the general formula (3) produced by using the compound of the present invention as an active ingredient as it is, or appropriately diluted or suspended with water or the like.
- the amide derivative produced by using the production method of the present invention may be brought into contact with the plant seed by spraying the plant seed with an effective amount for the control, and performing treatment such as smearing, dipping or powder coating. Plant seeds refer to those that store nutrients for germination of young plants and are used for agricultural reproduction.
- seeds such as corn, soybeans, red beans, cotton, rice, sugar beet, wheat, barley, sunflower, tomato, cucumber, eggplant, spinach, sweet pea, pumpkin, sugar cane, tobacco, sweet pepper, rape, sweet potato , Seed varieties such as konjac, edible lily, bulbs such as tulips and seed balls such as raccoon.
- the pest control agent containing the amide derivative represented by the general formula (3) produced by the production method of the present invention as an active ingredient is a diptera pest (Acaeca, Chicaeka, Chironomidae, Housefly, Butterfly, Bovine Ab, etc.) It has a remarkable control effect against sanitary pests such as reticulate pests (such as German cockroaches, black cockroaches, American cockroaches).
- the pest control agent containing the amide derivative represented by the general formula (3) produced by the production method of the present invention as an active ingredient is effective against wood pests such as termites, oyster beetles, moth beetles, beetles, beetles, etc.
- the wood pests can be controlled by treating the wood such as soil or buildings.
- the amide derivative represented by the general formula (3) produced by using the production method of the present invention exhibits a control effect against various pests, and has an effect of protecting useful crops, as well as an insecticide or insecticide at a low dose. Since it exhibits an excellent control effect as a mite agent, it has the effect of greatly contributing to reducing the burden on the environment. Furthermore, the amide derivative represented by the general formula (3) produced by using the method for producing an amide derivative of the present invention includes other agricultural and horticultural insecticides, acaricides, nematicides, fungicides, and herbicides. Also, when used in combination with plant growth regulators, biological pesticides, etc., an excellent control effect is exhibited.
- the amide derivative represented by the general formula (3) produced by the production method of the present invention is usually mixed with an appropriate solid carrier or liquid carrier, and further, if desired, a surfactant, penetrant, extender.
- a surfactant penetrant, extender.
- Add adhesives, thickeners, anti-freezing agents, binders, anti-caking agents, disintegrating agents, antifoaming agents, antiseptics and anti-degradation agents, etc. and add soluble concentrates, emulsions (emulsifiable concentrates), Wettable powder, water soluble powder, water dispersible granule, water soluble granule, suspension concentrate, concentrated emulsion , Suspoemulsion, microemulsion, dustable powder, granule, tablet, and emulsifiable gel, etc.
- the preparations of any of the above dosage forms can be provided by being enclosed in a water-soluble package such as a water-soluble capsule and a bag of a water-soluble film.
- the inert carrier that can be used may be either solid or liquid. Examples of materials that can be used as a solid inert carrier include soybean flour, cereal flour, wood flour, bark flour, saw flour, and tobacco stem flour.
- the material that can be a liquid inert carrier is selected from those having solvent ability itself, and those that can disperse an active ingredient compound with the aid of an auxiliary agent without having solvent ability.
- the following carriers can be exemplified as examples, and these are used alone or in the form of a mixture of two or more, such as water, alcohols (for example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.), ketones (Eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, etc.), ethers (eg, diethyl ether, dioxane, cellosolve, diisopropyl ether, tetrahydrofuran, etc.), aliphatic hydrocarbons (eg, kerosene, mineral oil, etc.), aromatic Hydrocarbons (eg Benzene, toluene
- surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl (mono or di) phenyl ether, polyoxyethylene (mono, di or tri) styryl phenyl ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene Ethylene fatty acid (mono or di) ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, castor oil ethylene oxide adduct, acetylene glycol, acetylene alcohol, ethylene oxide adduct of acetylene glycol, ethylene oxide adduct of acetylene alcohol and alkyl
- Nonionic surfactants such as glycosides, alkyl sulfate esters, alkylbenzene sulfonates, lignin sulfonates, Killsulfosuccinate, naphthalenesulfonate, alkylnaphthalenesulfon
- the occurrence of the pests is expected to be effective in controlling the disease in the form of the amide derivative represented by the general formula (3) as it is, or appropriately diluted with water or suspended. It may be used by applying it to crops that are unfavorable or where generation is not desirable.
- the amount used varies depending on various factors such as purpose, target pests, crop growth status, pest occurrence tendency, weather, environmental conditions, dosage form, application method, application location, application time, etc. It is preferably used at a concentration of 0.0001 to 5000 ppm, preferably 0.01 to 1000 ppm.
- the application amount per 10a is generally 1 to 300 g as an active ingredient.
- the amount of the active ingredient of the amide derivative represented by the general formula (3) produced using the production method of the present invention is usually 0.1 to 20% by weight for a powder, 5 to 50% by weight for an emulsion, and a wettable powder. Is 3 to 90% by weight, 0.1 to 20% by weight for granules, 5 to 90% by weight for flowable preparations, and 3 to 90% by weight for wettable granules.
- the amount of carrier in each dosage form is usually 60 to 99.9% by weight for powders, 40 to 95% by weight for emulsions, 10 to 90% by weight for wettable powders, and 80 to 99.9% by weight for granules.
- the amount of the adjuvant is usually 0.1 to 20% by weight for powders, 1 to 20% by weight for emulsions, 0.1 to 20% by weight for wettable powders, 0.1 to 20% by weight for granules, and
- the flowable preparation is 0.1 to 20% by weight, and the granule wettable powder is 0.1 to 20% by weight.
- the compound of the present invention when using the compound of the present invention as an agrochemical, other types of herbicides, various insecticides, acaricides, nematicides, fungicides, plant growth regulators, as necessary, when formulated or sprayed, You may mix and apply with a synergist, a fertilizer, a soil improvement agent, etc.
- Methyl 3-amino-2-fluorobenzoate hydrochloride (7.77 g, 0.037 mol) was suspended in methylene chloride (100 ml), and pyridine (6.94 g, 0.085 mol) was added dropwise. Under cooling, benzoic acid chloride (5.78 g, 0.041 mol) was added dropwise to the reaction solution and stirred overnight at room temperature. After completion of the reaction, the reaction solution was washed successively with 1N aqueous hydrochloric acid solution, saturated aqueous sodium hydrogen carbonate and saturated brine, and dried over anhydrous sodium sulfate.
- Methyl 3-benzamido-2-fluorobenzoate (8.75 g, 32.0 mmol) was dissolved in acetonitrile (200 ml). Into this, dimethyl sulfate (4.3 g, 34.1 mmol) and potassium hydroxide (2.63 g, 39.8 mmol) were sequentially charged and stirred at 60 ° C. for 30 minutes. After cooling to room temperature, the reaction mixture was concentrated, ethyl acetate was added to the concentrated residue, washed with water, and dried over anhydrous sodium sulfate.
- Example 1 the title compound was obtained from methyl 3-amino-2-fluorobenzoate hydrochloride and 3-fluorobenzoic acid chloride.
- 1 H-NMR (CDCl 3 , ppm) ⁇ 3.95 (3H, s), 7.24-7.30 (2H, s), 7.48-7.54 (1H, m), 7.61-7 .72 (3H, m), 8.10 (1H, brs), 8.68-8.70 (1H, m)
- Process 2 Production of methyl 2-fluoro-3- (3-fluoro-N-methylbenzamide) benzoate (Compound No. 1-64)
- Methyl 3-benzamido-2-fluorobenzoate (3.10 g, 11.0 mmol) was dissolved in N, N-dimethylformamide (30 ml) and cooled. 60% sodium hydride (0.53 g, 13.2 mmol) was charged and stirred at that temperature. After 10 minutes, ethyl iodide (2.05 g, 13.0 mmol) was charged and stirred at room temperature overnight. Water was added dropwise to the reaction solution, extracted with ethyl acetate, and dried over anhydrous sodium sulfate.
- Example 10 According to the method described in Example 9, the reaction of 2-fluoro-3- (N-methylbenzamido) benzoic acid and 2-bromo-4- (perfluoropropan-2-yl) -6- (trifluoromethyl) aniline was performed. When the toluene was used instead of 1,3-dimethyl-2-imidazolidinone, the title compound of Example 9 was obtained in a yield of 14%.
- Example 11 According to the method described in Example 9, the reaction of 2-fluoro-3- (N-methylbenzamido) benzoic acid and 2-bromo-4- (perfluoropropan-2-yl) -6- (trifluoromethyl) aniline was performed. When the dioxane was used instead of 1,3-dimethyl-2-imidazolidinone, the title compound of Example 9 was obtained in a yield of 16%.
- Example 12 According to the method described in Example 9, the reaction of 2-fluoro-3- (N-methylbenzamido) benzoic acid and 2-bromo-4- (perfluoropropan-2-yl) -6- (trifluoromethyl) aniline was performed. The title compound of Example 9 was obtained in a yield of 37% when carried out without solvent without using 1,3-dimethyl-2-imidazolidinone.
- Example 9 2-fluoro-3- (N-methylbenzamide) benzoic acid (a compound represented by the general formula (2)) and 2-bromo-4- (perfluoropropan-2-yl)- Instead of 6- (trifluoromethyl) aniline (compound represented by the general formula (1)), the corresponding general formula is obtained in the same manner as in Example 9, except that each of the compounds shown in Table 4 below was used. An amide derivative represented by the formula (3) was obtained.
- the preparation When using the preparation obtained above, the preparation is diluted 1 to 10,000 times with water or sprayed directly without dilution.
- Example 1 Insecticidal test against Spodoptera litura Cabbage leaf pieces were immersed in a chemical solution prepared with a test compound at a predetermined concentration for 30 seconds and air-dried, and then put into a 7 cm polyethylene cup covered with filter paper to release 2nd-instar larvae of Spodoptera litra. The sample was left in a constant temperature room at 25 ° C., and the number of live and dead insects was examined after 6 days. We went in 1 ward, 5 heads, 2 trains. As a result of the above test, all of the amide derivatives represented by the general formula (3) obtained in Example 9 and Examples 13 to 19 produced by using this production method had a death rate of 70% or more at a concentration of 1 ppm. The insect rate was shown.
- Example 2 Insecticidal test against blue moth (Plutella xylostella) Cabbage leaf pieces were immersed in a chemical solution prepared with a predetermined concentration of test compound for 30 seconds and air-dried, and then placed in a 7 cm polyethylene cup with filter paper and 3rd-instar larvae were released. The sample was left in a constant temperature room at 25 ° C., and the number of live and dead insects was examined after 6 days. We went in 1 ward, 5 heads, 2 trains. As a result of the above test, all of the amide derivatives represented by the general formula (3) obtained in Example 9 and Examples 13 to 19 produced by using this production method had a death rate of 70% or more at a concentration of 1 ppm. The insect rate was shown.
- the amide derivative represented by the general formula (3) obtained by the method for producing an amide derivative of the present invention exhibits an excellent pest control action. That is, the method for producing an amide derivative of the present invention has high industrial utility.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pyridine Compounds (AREA)
Abstract
Description
また、本発明にかかるアミド誘導体を製造する上での有用な中間体を見出し、本発明を完成するに至ったものである。
すなわち、本発明は以下の通りである。
<1> 下記一般式(1)
<2> 前記一般式(2)において、LGで表される脱離基がハロゲン原子である前記<1>に記載のアミド誘導体の製造方法。
<3> 前記一般式(3)で表されるアミド誘導体が、下記一般式(4)
<4> 下記一般式(5)
<6> 前記一般式(5)におけるR2が水素原子である化合物を、下記一般式(10)
<8> 前記一般式(11)で表される化合物を、下記一般式(12)
<9> 前記一般式(3)で表されるアミド誘導体が、下記一般式(20)
<10> 下記一般式(8)
<11> 下記一般式(12)
「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を示す。
「Ca-Cb(a、bは1以上の整数を表す)」との表記、例えば、「C1-C3」とは炭素原子数が1~3個であることを意味し、「C2-C6」とは炭素原子数が2~6個であることを意味する。
「n-」とはノルマルを意味し、「i-」はイソを意味し、「s-」はセカンダリーを意味し、「t-」はターシャリーを意味する。
「C1-C6アルキル基」とは例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、n-ペンチル、i-ペンチル、ネオペンチル、4-メチル-2-ペンチル、n-ヘキシル、3-メチル-n-ペンチル等の直鎖状または分岐状の炭素原子数が1~6のアルキル基を表す。
「C2-C6アルケニル基」とは例えば、ビニル、1-プロペニル、アリル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1,3-ブタジエニル、1-ヘキセニル等の炭素鎖の中に二重結合を有する直鎖または分岐状の炭素原子数が2~6個のアルケニル基を表す。
「C2-C6アルキニル基」とは例えば、エチニル、プロパルギル、2-ペンチニル、1-ブチン-3-イル、1-ブチン-3-メチル-3-イル、3-ヘキシニル等の炭素鎖の中に三重結合を有する直鎖または分岐状の炭素原子数が2~6個のアルキニル基を表す。
また、これらの置換基は、可能であればさらに置換基を有していてもよく、その置換基の具体例は上記と同様である。
また、本発明における一般式(3)等で表される化合物は、その構造式中に、炭素-炭素二重結合に由来する2種以上の幾何異性体が存在する場合もあるが、各々の幾何異性体が任意の割合で含まれる混合物をも全て包含する。
本発明の下記一般式(3)で表されるアミド誘導体の製造方法は、下記一般式(1)で表される化合物と、下記一般式(2)で表される化合物と、を反応させる工程を含む。かかる製造方法であることにより、有害生物防除作用に卓効を示すアミド誘導体を効率的に製造することができる。
LGで表される脱離基としては、ハロゲン原子、ヒドロキシ基、アリールオキシ基、アシルオキシ基等を挙げることができ、製造効率の観点から、ハロゲン原子、アリールオキシ基、アシルオキシ基であることが好ましく、ハロゲン原子であることがより好ましい。
例えば、一般式(2)で表される脱離基(LG)を有する芳香族カルボン酸誘導体と、一般式(1)で表される芳香族アミン誘導体とを適当な溶媒中もしくは無溶媒で反応させることにより、一般式(3)で表されるアミド誘導体を製造することができる。また本工程では適当な塩基を用いることもできる。
これらの塩基は、一般式(2)で表される化合物に対して0.01~5倍モル当量の範囲で適宜選択して使用すれば良い。
反応温度は、-20℃~使用する溶媒の還流温度、反応時間は、数分から96時間の範囲でそれぞれ適宜選択すれば良い。
ハロゲン化剤としては、例えば、塩化チオニル、臭化チオニル、シュウ酸ジクロリド、オキシ塩化リン、オキザリルクロリド、三塩化リン、五塩化リン等を示すことができる。
この反応は溶媒を用いてもよく、不活性な溶媒であればいずれのものでもよい。例えばジエチルエーテル、t-ブチルエチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン等の鎖状または環状エーテル類、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、ジクロロエチレン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン、クロルベンゼン、ジクロロベンゼン等の芳香族炭化水素類、n-ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素類、酢酸エチル、酢酸ブチル等のエステル類、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等の非プロトン性極性溶媒等から1種又は2種以上を適宜選択することができる。
反応は、通常-20~140℃で行なうことができ、その反応時間は、通常0.1~96時間から適宜選択される。
縮合剤を用いる方法、混合酸無水物法、活性エステル法共に、前記文献記載の溶媒、反応温度、反応時間に限定されることは無く、適宜反応の進行を著しく阻害しない不活性溶媒を使用すればよく、反応温度、反応時間についても、反応の進行に応じて、適宜選択すれば良い。
下記一般式(21)で表される化合物のうち、R3がC1-C6アルキル基、C3-C8シクロアルキル基、C2-C6アルケニル基、または、C2-C6アルキニル基である化合物を一般的な手法を利用した加水分解や、Pd触媒を用いた方法により、下記一般式(22)で表される化合物に変換することができる。具体的には、後述する一般式(8)で表される化合物から一般式(11)で表される化合物を製造する方法と同様にして、一般式(21)で表される化合物から一般式(22)で表される化合物を得ることができる。
LGで表される脱離基としては、ハロゲン原子、ヒドロキシ基、アリールオキシ基等を挙げることができ、製造効率の観点から、ハロゲン原子であることが好ましい。
さらに下記一般式(28)で表される化合物は、下記一般式(29)で表される化合物をアルキル化することで製造することができる。
LGで表される脱離基としては、ハロゲン原子、ヒドロキシ基、アリールオキシ基、アシルオキシ基等を挙げることができ、製造効率の観点から、ハロゲン原子、アリールオキシ基、アシルオキシ基であることが好ましく、ハロゲン原子であることがより好ましい。
使用する溶媒としては、本反応の進行を著しく阻害しないものであれば良く、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭素類、、ジエチルエーテル、ジオキサン、テトラヒドロフラン、1,2-ジメトキシエタン等の鎖状または環状エーテル類、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ヘキサメチルホスホリックトリアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン等の極性非プロトン性溶媒類、アセトニトリル、プロピオニトリル等のニトリル類、水等を示すことができ、これらの溶媒を単独もしくは2種以上の溶媒を混合して使用できる。
これらの塩基は、一般式(5)で表される化合物に対して0.01~5倍モル当量の範囲で適宜選択して使用すればよい。
反応温度は、-20℃から使用する溶媒の還流温度の範囲で適宜選択すればよい。また反応時間は、数分間から96時間の範囲で適宜選択すれば良い。
また一般式(7)で表される芳香族カルボン酸無水物は、芳香族カルボン酸を脱水剤の共存下、製造することができる。脱水剤として、塩化ホスホリル、無水酢酸、トリフルオロ酢酸無水物のような酸無水物あるいは酸塩化物、ハロギ酸エステル、カルボジイミド、等が例示できる
縮合剤を用いる方法、混合酸無水物を用いる方法共に前記文献記載の溶媒、反応温度、反応時間に限定されることは無い。溶媒としては、反応の進行を著しく阻害しない不活性溶媒を使用すればよく、反応温度、反応時間についても、反応の進行に応じて、適宜選択すればよい。
溶媒としては、本反応の進行を著しく阻害しないものであれば良く、例えば、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭素類、ジエチルエーテル、ジオキサン、テトラヒドロフラン、1,2-ジメトキシエタン等の鎖状または環状エーテル類、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ヘキサメチルホスホリックトリアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン等の極性非プロトン性溶媒類、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール等のアルコール類等を示すことができ、これらの溶媒を単独もしくは2種以上の溶媒を混合して使用できる。
これらの塩基は、一般式(13)で表される化合物に対して0.01から5倍モル等量の範囲で適宜選択、または溶媒として使用すればよい。
これらの反応剤は、一般式(13)で表される化合物に対して1から5倍モル等量の範囲で適宜選択、または溶媒として使用すればよい。
反応温度は、-80℃から使用する溶媒の還流温度、反応時間は数分間から96時間の範囲でそれぞれ適宜選択すればよい。
前記一般式(5)で表される化合物として、下記一般式(10)で表される化合物を用い、これを一般式(6)で表される化合物または一般式(7)で表される化合物と反応させることで、前記一般式(9)で表される化合物を製造することができる。
一般式(14)で表される化合物から、一般式(10)で表される化合物を製造する方法としては、以下の方法A~方法Cを挙げることができる。
一般式(14)で表されるアミノ基を有する化合物を溶媒中、アルデヒド類またはケトン類と反応させ、触媒を添加し、水素雰囲気下で反応させることにより、一般式(10)で表されるアルキル化された化合物を製造することができる。
またケトン類としては、例えば、アセトン、パーフルオロアセトン、メチルエチルケトン等のケトン類を示すことができる。
一般式(14)で表される化合物を溶媒中で、アルデヒド類またはケトン類と反応させて、還元剤で処理することにより、一般式(10)で表される化合物を製造することができる。
ケトン類としては、例えば、アセトン、パーフルオロアセトン、メチルエチルケトン等のケトン類を示すことができる。
一般式(14)で表される化合物を溶媒中、または無溶媒でアルデヒド類と反応させることにより、一般式(10)で表される化合物を製造することができる。
一般式(8)で表される化合物のうち、R3がC1-C6アルキル基、C3-C8シクロアルキル基、C2-C6アルケニル基、または、C2-C6アルキニル基である化合物を、一般的な手法を利用した加水分解や、Pd触媒を用いた方法により、一般式(11)で表される化合物を得ることができる。例えば、加水分解による方法としては、メタノール、エタノールまたはテトラヒドロフラン、ジオキサンの単独または混合溶媒中、等量から5倍モルの水性またはアルコール性の水酸化リチウム、水酸化ナトリウムまたは水酸化カリウムを使用し塩基加水分解することにより得ることができる。またトルエン、キシレンなどの非水溶性溶媒中でも、水性の水酸化ナトリウム、水酸化カリウムまたは水酸化リチウムなどの塩基と、テトラブチルアンモニウムブロマイド、ベンジルトリエチルアンモニウムクロライドまたはクラウンエーテルなどの相間移動触媒との組み合わせによって加水分解を行うこともできる。また、塩酸や硫酸等の無機酸類、酢酸やトリフルオロ酢酸等の有機酸、強酸性樹脂を使用した酸加水分解を行うこともできる。
反応温度は、-20℃から使用する溶媒の還流温度の範囲で適宜選択すればよい。また反応時間は、数分から96時間の範囲で適宜選択すればよい。
また、Pdを用いる方法としては、例えば、Tetrahedron Letters 4371ページ(1987年)に記載されている方法を用いることができる。
一般式(12)で表される化合物は、一般式(11)で表される化合物を等モル以上のハロゲン化剤で処理することにより製造することができる。
ハロゲン化剤としては、例えば、塩化チオニル、臭化チオニル、シュウ酸ジクロリド、オキシ塩化リン、オキザリルクロリド、三塩化リン、五塩化リン等を示すことができる。
この反応は溶媒を用いてもよく、不活性な溶媒であればいずれのものでもよい。例えばジエチルエーテル、t-ブチルエチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン等の鎖状または環状エーテル類、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、ジクロロエチレン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン、クロルベンゼン、ジクロロベンゼン等の芳香族炭化水素類、n-ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素類、酢酸エチル、酢酸ブチル等のエステル類、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等の非プロトン性極性溶媒等から1種又は2種以上を適宜選択することができる。
反応は、通常-20~140℃で行なうことができ、その反応時間は、通常0.1~96時間から適宜選択される。
一般式(15)で表される化合物と、金属フッ化物、例えば、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、フッ化ルビジウム等よりなる群から選ばれる少なくとも1種または混合物とを、適当な溶媒中で反応させることにより一般式(16)で表される化合物を製造することができる。
金属フッ化物としては、フッ化ナトリウム、フッ化カリウム、フッ化セシウムが好ましい。金属フッ化物の形状、製法に特に制限はないが、スプレードライ品か、使用する前に加熱処理することが好ましく、使用前に加熱処理することが特に好ましい。加熱の温度は50℃~250℃が好ましく、80℃~200℃が特に好ましい。
金属フッ化物の量は、一般式(15)で表される化合物に対して、通常1モル以上用いるが、十分な収率で目的物を得るためには、1~10モルが好ましく、1~5モルが特に好ましい。
還元反応としては、水素添加反応を用いる方法と金属化合物(例えば、塩化第一スズ(無水物)、鉄粉、亜鉛粉等)を用いる方法を例示できる。前者は溶媒中、触媒存在下、常圧下もしくは加圧下にて、水素雰囲気下で反応を行うことができる。触媒としては、パラジウム/炭素等のパラジウム触媒、ラネーニッケル等のニッケル触媒、コバルト触媒、ルテニウム触媒、ロジウム触媒、白金触媒等が例示できる。例えば、パラジウム/炭素を、一般式(16)で表される化合物に対して金属重量1/10~1/10,000倍を使用し、水素圧0.1~10MPa、反応温度は通常0~100℃で、数分~96時間撹拌しながら行うことができる。溶媒として水やメタノール、エタノール等のアルコール類、エーテル、ジオキサン、テトラヒドロフラン等の鎖状または環状エーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、スルホラン、N-メチルピロリドン、N,N-ジメチルアセトアミド等の非プロトン性極性溶媒を挙げることができ、これらを単独または混合して用いられる。
以下の第1表には、一般式(8)で表される化合物の代表的な例を示すが、本発明の化合物はこれらに限定されるものでない。なお、表中。「n-」はノルマルを、「i-」はイソを、「Me」はメチル基を、「Et」はエチル基を、「n-Pr」はノルマルプロピル基を、「n-Bu」はノルマルブチル基を、「n-Pn」はノルマルペンチル基を、「n-hex」はノルマルヘキシル基を、「i-Pr」はイソプロピル基を、「H」は水素原子を、「F」はフッ素原子を、「Cl」は塩素原子を、「CN」はニトリル基を、「Cyclo-Pr」はシクロプロピル基を、「Cyclo-hex」はシクロヘキシル基を、「CH2CH=CH2」はアリル基を、「CH2C≡CH」はプロパルギル基を、「CH2OCH3」はメトキシメチル基を、「CH2Ph」はベンジル基を、「CH2OCH2Ph」はベンジルオキシメチル基を、「C(CH3)3」はt-ブチル基を、「CH2CH2Cl」は2-クロロエチル基を、「NO2」はニトロ基を、それぞれ表すものである。
ヒラズハナアザミウマ(Frankliniella intonsa)、キイロハナアザミウマ(Thrips flavus)、ミカンキイロアザミウマ(Frankliniella occidentalis)、クロトンアザミウマ(Heliothrips haemorrhoidalis)、チャノキイロアザミウマ(Scirtothrips dorsalis)、ミナミキイロアザミウマ(Thrips palmi)、ネギアザミウマ(Thrips tabaci)、カキクダアザミウマ(Ponticulothrips diospyrosi)、等の総翅目昆虫、
クリハバチ(Apethymus kuri)、カブラハバチ(Athalia rosae)、チュウレンジハバチ(Arge pagana)、マツノキハバチ(Neodiprion sertifer)、クリタマバチ(Dryocosmus kuriphilus)、グンタイアリ(Eciton burchelli, Eciton schmitti)、クロオオアリ(Camponotus japonicus)、オオスズメバチ(Vespa mandarina)、ブルドックアント(Myrmecia spp.)、ファイヤーアント類(Solenopsis spp.)、ファラオアント(Monomorium pharaonis)等の膜翅目昆虫、
エンマコオロギ(Teleogryllus emma)、ケラ(Gryllotalpa orientalis)、トノサマバッタ(Locusta migratoria)、コバネイナゴ(Oxya yezoensis)、サバクワタリバッタ(Schistocerca gregaria)等の直翅目昆虫、
トゲナシシロトビムシ(Onychiurus folsomi)、シベリアシロトビムシ(Onychiurus sibiricus)、キボシマルトビムシ(Bourletiella hortensis)等の粘管目昆虫、
クロゴキブリ(Periplaneta fuliginosa)、ヤマトゴキブリ(Periplaneta japonica)、チャバネゴキブリ(Blattella germanica)、ワモンゴキブリ(Periplaneta Americana)、等の網翅目昆虫、
ネコノミ(Ctenocephalidae felis)、イヌノミ(Ctenocephalides canis)、ニワトリノミ(Echidnophaga gallinacea)、ヒトノミ(Pulex irritans)、ケオプスネズミノミ(Xenopsylla cheopis)等の等翅目昆虫、
ニワトリオオハジラミ(Menacanthus stramineus)、ウシハジラミ(Bovicola bovis)等のハジラミ目昆虫、
ウシジラミ(Haematopinus eurysternus)、ブタジラミ(Haematopinus suis)、ウシホソジラミ(Linognathus vituli)、ケブカウシジラミ(Solenopotes capillatus)等のシラミ目昆虫、
シクラメンホコリダニ(Phytonemus pallidus)、チャノホコリダニ(Polyphagotarsonemus latus)、スジブトホコリダニ(Tarsonemus bilobatus)等のホコリダニ類、
ハクサイダニ(Penthaleus erythrocephalus)、ムギダニ(Penthaleus major)等のハシリダニ類、
イネハダニ(Oligonychus shinkajii)、ミカンハダニ(Panonychus citri)、クワオオハダニ(Panonychus mori)、リンゴハダニ(Panonychus ulmi)、カンザワハダニ(Tetranychus kanzawai)、ナミハダニ(Tetranychus urticae)等のハダニ類、
チャノナガサビダニ(Acaphylla theavagrans)、チューリップサビダニ(Aceria tulipae)、トマトサビダニ(Aculops lycopersici)、ミカンサビダニ(Aculops pelekassi)、リンゴサビダニ(Aculus schlechtendali)、ニセナシサビダニ(Eriophyes chibaensis)、シトラスラストマイト(Phyllocoptruta oleivora)等のフシダニ類、
ロビンネダニ(Rhizoglyphus robini)、ケナガコナダニ(Tyrophagus putrescentiae)、ホウレンソウケナガコナダニ(Tyrophagus similis)等のコナダニ類、
ミツバチヘギイタダニ(Varroa jacobsoni)等のハチダニ類、
オウシマダニ(Boophilus microplus)、クリイロコイタマダニ(Rhipicephalus sanguineus)、フタトゲチマダニ(Haemaphysalis longicornis)、キチマダニ(Haemophysalis flava)、ツリガネチマダニ(Haemophysalis campanulata)、ヤマトマダニ(Ixodes ovatus)、シュルツェマダニ(Ixodes persulcatus)、オオマダニ(Amblyomma spp.)、アミメマダニ(Dermacentor spp.)等のマダニ類、
イヌツメダニ(Cheyletiella yasguri)、ネコツメダニ(Cheyletiella blakei)等のツメダニ類、イヌニキビダニ(Demodex canis)、ネコニキビダニ(Demodex cati)などのニキビダニ類、
ヒツジキュウセンダニ(Psoroptes ovis)等のキュウセンダニ類、
センコウヒゼンダニ(Sarcoptes scabiei)、ネコショウセンコウヒゼンダニ(Notoedres cati)、ニワトリヒゼンダニ(Knemidocoptes spp.)等のヒゼンダニ類、
オカダンゴムシ(Armadillidium vulgare)等の甲殻類、
スクミリンゴガイ(Pomacea canaliculata)、アフリカマイマイ(Achatina fulica)、ナメクジ(Meghimatium bilineatum)、チャコウラナメクジ(Limax Valentiana)、ウスカワマイマイ(Acusta despecta sieboldiana)、ミスジマイマイ(Euhadra peliomphala)等の腹足類、
ミナミネグサレセンチュウ(Prathylenchus coffeae)、キタネグサレセンチュウ(Prathylenchus penetrans)、クルミネグサレセンチュウ(Prathylenchus vulnus)、ジャガイモシストセンチュウ(Globodera rostochiensis)、ダイズシストセンチュウ(Heterodera glycines)、キタネコブセンチュウ(Meloidogyne hapla)、サツマイモネコブセンチュウ(Meloidogyne incognita)、イネシンガレセンチュウ(Aphelenchoides besseyi)、マツノザイセンチュウ(Bursaphelenchus xylophilus)等の線虫類、
等が挙げられるが、本発明における一般式(3)で表されるアミド誘導体を用いて防除しうる昆虫類、ダニ類、甲殻類、軟体動物及び線虫類はこれらのみに限定されるものではない。
さらに、本発明のアミド誘導体の製造方法を用いて製造した一般式(3)で表されるアミド誘導体は、他の農園芸用殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、除草剤、植物成長調節剤、生物農薬等と混合使用することによっても優れた防除効果を奏するものである。
使用できる不活性担体としては固体または液体のいずれであっても良く、固体の不活性担体になりうる材料としては、例えば、ダイズ粉、穀物粉、木粉、樹皮粉、鋸粉、タバコ茎粉、クルミ殻粉、ふすま、繊維素粉末、植物エキス抽出後の残渣、粉砕合成樹脂などの合成重合体、粘土類(例えばカオリン、ベントナイト、酸性白土など)、タルク類(例えばタルク、ピロフィライドなど)、シリカ類(例えば珪藻土、珪砂、雲母、ホワイトカーボン〔含水微粉珪素、含水珪酸ともいわれる合成高分散珪酸で、製品により珪酸カルシウムを主成分として含むものもある。〕)、活性炭、イオウ粉末、軽石、焼成珪藻土、レンガ粉砕物、フライアッシュ、砂、炭酸カルシウム、リン酸カルシウムなどの無機鉱物性粉末、硫安、燐安、硝安、尿素、塩安などの化学肥料、堆肥などを挙げることができ、これらは単独でもしくは二種以上の混合物の形で使用される。
これら界面活性剤の含有量は、特に限定されるものではないが、本発明の製剤100重量部に対し、通常0.05~20重量部の範囲が望ましい。また、これら界面活性剤は、単独で用いても2種以上を併用してもよい。
また、本発明化合物を農薬として使用する場合には、必要に応じて製剤時又は散布時に他種の除草剤、各種殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、植物生長調節剤、共力剤、肥料、土壌改良剤等と混合施用してもよい。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
2-フルオロ-3-(N-メチルベンズアミド)安息香酸メチルの製造(化合物番号1-2)
(工程1)
2-クロロ-3-ニトロ安息香酸メチルの製造
1H-NMR(CDCl3,ppm)δ3.98(3H,s),7.46-7.50(1H,m),7.83-7.86(1H,m),7.94-7.98(1H,m).
(工程2)
2-フルオロ-3-ニトロ安息香酸メチルの製造
1H-NMR(CDCl3,ppm)δ3.99(3H,s),7.36-7.40(1H,m),8.14-8.25(2H,m).
(工程3)
3-アミノ-2-フルオロ安息香酸メチル塩酸塩の製造
1H-NMR(DMSO-d6,ppm)δ3.86(3H,s),7.21-7.25(1H,m),7.27(3H,brs),7.42-7.53(2H,m).
(工程4)
3-ベンズアミド-2-フルオロ安息香酸メチルの製造(化合物番号1-1)
1H-NMR(CDCl3,ppm)δ3.95(3H,s),7.24-7.28(1H,m),7.51-7.58(3H,m),7.66-7.70(1H,m),7.89-7.91(2H,m),8.20-8.22(1H,m),8.70-8.73(1H,m).
(工程5)
2-フルオロ-3-(N-メチルベンズアミド)安息香酸メチルの合成(化合物番号1-2)
1H-NMR(CDCl3,ppm)δ3.43(3H,s),3.90(3H,s),7.01-7.05(1H,m),7.20-7.33(6H,m),7.77-7.79(1H,m)
2-フルオロ-3-(N-メチルベンズアミド)安息香酸クロリドの製造(化合物番号2-5)
(工程1)
2-フルオロ-3-(メチルアミノ)安息香酸メチルの合成
1H-NMR(CDCl3,ppm)δ2.89(3H,s),3.91(3H,s),6.80-6.85(1H,m),7.03-7.09(1H,m),7.14-7.16(2H,m).
(工程2)
2-フルオロ-3-(N-メチルベンズアミド)安息香酸メチルの合成(化合物番号1-2)
1H-NMR(CDCl3,ppm)δ3.43(3H,s),3.92(3H,s),7.01-7.05(1H,m),7.19-7.32(6H,m),7.76-7.79(1H,m)
(工程3)
2-フルオロ-3-(N-メチルベンズアミド)安息香酸の合成(化合物番号1-3)
1H-NMR(CDCl3,ppm)δ3.45(3H,s),7.05-7.09(1H,m),7.21-7.35(6H,m),7.85-7.90(1H,m),10.29(1H,brs)
(工程4)
2-フルオロ-3-(N-メチルベンズアミド)安息香酸クロリドの製造(化合物番号2-5)
1H-NMR(CDCl3,ppm)δ3.17(3H,s),7.15(1H,t,J=8.0Hz),7.23-7.35(6H,m),7.94(1H,t,J=8.0Hz).
2-フルオロ-3-(4-フルオロ-N-メチルベンズアミド)安息香酸クロリドの製造(化合物番号2-15)
(工程1)
2-フルオロ-3-(4-フルオロベンズアミド)安息香酸メチルの製造(化合物番号1-20)
1H-NMR(CDCl3,ppm)δ3.95(3H,s), 7.17-7.27(3H, m), 7.66-7.70(1H,m), 7.89-7.94(2H,m), 8.11(1H,brs), 8.63-8.68(1H,m)
(工程2)
2-フルオロ-3-(4-フルオロ-N-メチルベンズアミド)安息香酸メチルの製造(化合物番号1-21)
1H-NMR(CDCl3,ppm)δ3.42(3H,s),3.88(3H,s),6.86-6.90(2H,m),7.09-7.13(1H,m),7.32-7.38(3H,m),7.78-7.82(1H,m).
(工程3)
2-フルオロ-3-(4-フルオロ-N-メチルベンズアミド)安息香酸の製造(化合物番号1-22)
1H-NMR(CDCl3,ppm)δ3.45(3H,s), 6.87-6.91(2H, m), 7.10-7.18(1H,m), 7.30-7.37(3H, m), 7.87-7.92(1H,m) カルボン酸のプロトン検出されず。
2-フルオロ-3-(4-フルオロ-N-メチルベンズアミド)安息香酸クロリドの製造(化合物番号2-15)
1H-NMR(CDCl3,ppm)δ2.95(3H,s), 6.92(2H, t,J=8.8Hz), 7.19(1H,t,J=8.0Hz), 7.33-7.36(3H, m), 7.97(1H,t,J=8.0Hz)
2-フルオロ-3-(3-フルオロ-N-メチルベンズアミド)安息香酸の製造(化合物番号1-65)
(工程1)
2-フルオロ-3-(3-フルオロベンズアミド)安息香酸メチルの製造(化合物番号1-63)
1H-NMR(CDCl3,ppm)δ3.95(3H,s),7.24-7.30(2H,s),7.48-7.54(1H,m),7.61-7.72(3H,m),8.10(1H,brs),8.68-8.70(1H,m)
(工程2)
2-フルオロ-3-(3-フルオロ-N-メチルベンズアミド)安息香酸メチルの製造(化合物番号1-64)
1H-NMR(CDCl3,ppm)δ3.46(3H,s),3.93(3H,s),6.95-7.22(6H,m),7.79-7.82(1H,m)
(工程3)
2-フルオロ-3-(3-フルオロ-N-メチルベンズアミド)安息香酸の製造(化合物番号1-65)
1H-NMR(CDCl3,ppm)δ3.44(3H,s),6.98-7.00(1H,m),7.07-7.16(4H,m),7.29-7.30(1H,m),7.88-7.91(1H,m),カルボン酸のプロトン観測されず。
3-(N-エチルベンズアミド)-2-フルオロ安息香酸の製造(化合物番号1-11)
(工程1)
3-(N-エチルベンズアミド)-2-フルオロ安息香酸メチルの製造(化合物番号1-10)
1H-NMR(CDCl3,ppm)δ1.19-1.28(3H,m),3.88-4.04(5H,m),7.06-7.30(7H,m),7.80-7.83(1H,m).
(工程2)
3-(N-エチルベンズアミド)-2-フルオロ安息香酸の製造(化合物番号1-11)
1H-NMR(DMSO-d6,ppm)δ1.08-1.19(3H,m),3.74-3.89(2H,m),7.24-7.40(6H,m),7.64-7.73(2H,m),13.36(1H,brs)
2-フルオロ-3-(N-n-プロピルベンズアミド)安息香酸の製造(化合物番号1-13)
(工程1)
2-フルオロ-3-(N-n-プロピルベンズアミド)安息香酸メチルの製造(化合物番号1-12)
1H-NMR(CDCl3,ppm)δ0.92-1.02(3H,m)、1.59-1.63(2H,m)、3.72-3.78(2H,m)、3.09(3H,s)、7.05-7.06(1H,m),7.18-7.28(6H,m)、7.70-7.71(1H,m)
(工程2)
2-フルオロ-3-(N-n-プロピルベンズアミド)安息香酸の製造(化合物番号1-13)
1H-NMR(CDCl3+DMSO-d6,ppm)δ0.88-0.94(3H,m),1.60-1.65(2H,m),3.72-3.73(1H,m),3.91-3.92(1H,m),7.04-7.06(1H,m)、7.22-7.28(6H,m)、7.79-7.80(1H,m)カルボン酸のプロトン検出されず
3-(2-クロロ-4-フルオロ-N-メチルベンズアミド)-2-フルオロ安息香酸の製造(化合物番号1-139)
(工程1)
3-(2-クロロ-4-フルオロベンズアミド)-2-フルオロ安息香酸メチルの製造(化合物番号1-137)
1H-NMR(CDCl3,ppm)δ3.95(3H,s),7.11-7.16(1H,m),7.22-7.28(2H,m),7.68-7.72(1H,m),7.89-7.92(1H,m),8.45(1H,brs),8.69(1H,t,J=7.8Hz)
(工程2)
3-(2-クロロ-4-フルオロ-N-メチルベンズアミド)-2-フルオロ安息香酸メチルの製造(化合物番号1-138)
1H-NMR(CDCl3,ppm)δ3.44(3H,s),3.92(3H,s),6.80-6.84(1H,m),6.93(1H,dd,J=2.0,7.3Hz),7.04(1H,t,J=7.8Hz),7.21-7.25(1H,m),7.37(1H,t,J=7.3Hz),7.76-7.80(1H,m).
(工程3)
3-(2-クロロ-4-フルオロ-N-メチルベンズアミド)-2-フルオロ安息香酸の製造(化合物番号1-139)
1H-NMR(CDCl3,ppm)δ3.46(3H,s),5.70(1H,brs),6.82-6.86(1H,m),6.94(1H,dd,J=2.4,8.8Hz),7.08(1H,t,J=7.8Hz),7.22-7.28(1H,m),7.47-7.48(1H,m)、7.84-7.88(1H,m).
3-(4-シアノ-N-メチルベンズアミド)-2-フルオロ安息香酸の製造(化合物番号1-104)
(工程1)
3-(4-シアノベンズアミド)-2-フルオロ安息香酸メチルの製造(化合物番号1-102)
1H-NMR(DMSO-d6,ppm)δ3.88(3H,s),7.36(1H,t,J=7.8Hz),7.75-7.79(1H,m),7.87-7.91(1H,m),8.03-8.10(2H,m),8.13-8.15(2H,m),10.53(1H,s).
(工程2)
3-(4-シアノ-N-メチルベンズアミド)-2-フルオロ安息香酸メチルの製造(化合物番号1-103)
1H-NMR(CDCl3,ppm)δ3.44(3H,s),3.92(3H,s),7.08-7.12(1H,m),7.25(1H,brs),7.41-7.43(2H,m),7.49-7.51(2H,m),7.81-7.84(1H,s).
(工程3)
3-(4-シアノ-N-メチルベンズアミド)-2-フルオロ安息香酸の製造(化合物番号1-104)
1H-NMR(DMSO-d6,ppm)δ3.33(3H,s),7.22(1H,brs),7.45(2H,brs),7.69-7.74(4H,brs).カルボン酸のプロトン検出されず。
1H-NMR(CDCl3,ppm)δ3.50(3H,s),6.99-7.33(6H,m),7.43-7.45(1H,m),7.90(1H,s),7.97-8.06(2H,m),8.13(1H,s).
実施例9記載の方法に従って、2-フルオロ-3-(N-メチルベンズアミド)安息香酸と2-ブロモ-4-(パーフルオロプロパン-2-イル)-6-(トリフルオロメチル)アニリンの反応を、1,3-ジメチル-2-イミダゾリジノンの代わりにトルエンを用いて行ったところ、収率14%で実施例9の標記化合物を得た。
実施例9記載の方法に従って、2-フルオロ-3-(N-メチルベンズアミド)安息香酸と2-ブロモ-4-(パーフルオロプロパン-2-イル)-6-(トリフルオロメチル)アニリンの反応を、1,3-ジメチル-2-イミダゾリジノンの代わりにジオキサンを用いて行ったところ、収率16%で実施例9の標記化合物を得た。
実施例9記載の方法に従って、2-フルオロ-3-(N-メチルベンズアミド)安息香酸と2-ブロモ-4-(パーフルオロプロパン-2-イル)-6-(トリフルオロメチル)アニリンの反応を、1,3-ジメチル-2-イミダゾリジノンを用いずに無溶媒で行ったところ、収率37%で実施例9の標記化合物を得た。
実施例9において、2-フルオロ-3-(N-メチルベンズアミド)安息香酸(一般式(2)で表される化合物)、および、2-ブロモ-4-(パーフルオロプロパン-2-イル)-6-(トリフルオロメチル)アニリン(一般式(1)で表される化合物)の代わりに、下記第4表に示した化合物をそれぞれ用いたこと以外は実施例9と同様にして、対応する一般式(3)で表されるアミド誘導体を得た。
<製剤例1>
一般式(3)で表されるアミド誘導体20部、ポリオキシエチレンスチリルフェニルエーテル10部、キシレン70部、以上を均一に混合して乳剤を得た。
<製剤例2>
一般式(3)で表されるアミド誘導体10部、ラウリル硫酸ナトリウム2部、ジアルキルスルホサクシネート2部、β‐ナフタレンスルホン酸ホルマリン縮合物ナトリウム塩1部、珪藻土85部以上を均一に攪拌混合して水和剤を得た。
<製剤例3>
一般式(3)で表されるアミド誘導体0.3部、ホワイトカーボン0.3部を均一に混合し、クレー99.2部、ドリレスA(三共アグロ製)0.2部を加えて、均一に粉砕混合し、粉剤を得た。
<製剤例4>
一般式(3)で表されるアミド誘導体3部、ポリオキシエチレン・ポリオキシプロピレン縮合物1.5部、カルボキシメチルセルロース3部、クレー64.8部、タルク27.7部、以上を均一に粉砕混合後、水を加えて混練し、造粒乾燥して粒剤を得た。
<製剤例5>
一般式(3)で表されるアミド誘導体10部、β‐ナフタレンスルホン酸ホルマリン縮合物ナトリウム塩3部、トリスチリルフェノール1部、プロピレングリコール5部、シリコン系消泡剤0.5部、水33.5部を十分攪拌混合した後、キサンタンガム0.3部、水46.7部を混合したものと再び攪拌混合してフロアブル剤を得た。
<製剤例6>
一般式(3)で表されるアミド誘導体20部、ナフタレンスルホン酸ホルムアルデヒド縮合物金属塩6部、ジアルキルスルホコハク酸金属塩1部、炭酸カルシウム73部、以上を均一に粉砕混合後、水を加えて混練し、造粒乾燥して顆粒水和剤を得た。
<試験例1>
ハスモンヨトウ(Spodoptera litura)に対する殺虫試験
試験化合物を所定濃度に調製した薬液にキャベツ葉片を30秒間浸漬し風乾後、ろ紙を敷いた7cmのポリエチレンカップに入れハスモンヨトウ2齢幼虫を放虫した。25℃恒温室にて放置し、6日後に生死虫数を調査した。1区5頭2連制で行った。
上記試験の結果、本製造方法を利用して製造した実施例9、実施例13~19で得られた一般式(3)で表されるアミド誘導体はいずれも、濃度1ppmで70%以上の死虫率を示した。
コナガ(Plutella xylostella)に対する殺虫試験
試験化合物を所定濃度に調製した薬液にキャベツ葉片を30秒間浸漬し風乾後、ろ紙を敷いた7cmのポリエチレンカップに入れコナガ3齢幼虫を放虫した。25℃恒温室にて放置し、6日後に生死虫数を調査した。1区5頭2連制で行った。
上記試験の結果、本製造方法を利用して製造した実施例9、実施例13~19で得られた一般式(3)で表されるアミド誘導体はいずれも、濃度1ppmで70%以上の死虫率を示した。
Claims (11)
- 下記一般式(1)
(一般式(1)中、Y1およびY2はそれぞれ独立に、ハロゲン原子、C1-C3ハロアルキル基、またはC1-C6ハロアルコキシ基を表し、RfはC3-C4パーフルオロアルキル基を表し、R1は水素原子またはC1-C4アルキル基を表す。)で表される化合物と、下記一般式(2)
(一般式(2)中、LGは脱離基を表し、Tは水素原子またはフッ素原子を表し、R2は水素原子またはC1-C6アルキル基を表し、X1、X3、X4、およびX5はそれぞれ独立して、水素原子、ハロゲン原子、ニトロ基またはニトリル基を表し、Aは窒素原子、または、ハロゲン原子、ニトロ基もしくはニトリル基で置換されてもよいメチン基を表す。)で表される化合物と、を反応させる工程を含む下記一般式(3)
(一般式(3)中、X1、X3、X4、X5、A、T、Y1、Y2、R1、R2、およびRfは、前記一般式(1)および一般式(2)におけるX1、X3、X4、X5、A、T、Y1、Y2、R1、R2、およびRfとそれぞれ同義である。)で表されるアミド誘導体の製造方法。 - 前記一般式(2)において、LGで表される脱離基がハロゲン原子である請求項1に記載のアミド誘導体の製造方法。
- 下記一般式(5)
(一般式(5)中、R2は水素原子またはC1-C6アルキル基を表し、R3は水素原子、C1-C6アルキル基、C3-C8シクロアルキル基、C2-C6アルケニル基、または、C2-C6アルキニル基を表す。)で表される化合物と、下記一般式(6)
(一般式(6)中、X1、X2、X3、X4、およびX5はそれぞれ独立して、水素原子、ハロゲン原子、ニトロ基またはニトリル基を表し、LGは脱離基を表す。)で表される化合物、または、下記一般式(7)
(一般式(7)中、X1、X2、X3、X4、およびX5はそれぞれ独立して、水素原子、ハロゲン原子、ニトロ基またはニトリル基を表す。)で表される化合物と、を反応させて、下記一般式(8)
(一般式(8)中、R2およびR3は前記一般式(5)におけるR2およびR3とそれぞれ同義であり、X1、X2、X3、X4、およびX5は、前記一般式(6)または一般式(7)におけるX1、X2、X3、X4、およびX5とそれぞれ同義である。)で表される化合物を製造する工程をさらに含む請求項3に記載のアミド誘導体の製造方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/064295 WO2010018857A1 (ja) | 2008-08-13 | 2009-08-13 | アミド誘導体の製造方法 |
ES09806748T ES2757835T3 (es) | 2008-08-13 | 2009-08-13 | Método para producir derivados de amida |
CN200980131106.2A CN102119144B (zh) | 2008-08-13 | 2009-08-13 | 酰胺衍生物的制备方法 |
JP2010524751A JP5406192B2 (ja) | 2008-08-13 | 2009-08-13 | アミド誘導体の製造方法 |
US13/058,349 US8853440B2 (en) | 2008-08-13 | 2009-08-13 | Method for producing amide derivative |
BRPI0918022-2A BRPI0918022B1 (pt) | 2008-08-13 | 2009-08-13 | Method for the production of amida derivatives |
EP09806748.1A EP2322502B1 (en) | 2008-08-13 | 2009-08-13 | Method for producing amide derivative |
RU2011106925/04A RU2469025C2 (ru) | 2008-08-13 | 2009-08-13 | Способ получения амидного производного |
IL211128A IL211128A (en) | 2008-08-13 | 2011-02-08 | A method for preparing a rich derivative and intermediate compounds |
US14/306,885 US9394240B2 (en) | 2008-08-13 | 2014-06-17 | Method for producing amide derivative |
US15/185,586 US9890110B2 (en) | 2008-08-13 | 2016-06-17 | Method for producing amide derivative |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008208714 | 2008-08-13 | ||
JP2008-208714 | 2008-08-13 | ||
PCT/JP2009/064295 WO2010018857A1 (ja) | 2008-08-13 | 2009-08-13 | アミド誘導体の製造方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/058,349 A-371-Of-International US8853440B2 (en) | 2008-08-13 | 2009-08-13 | Method for producing amide derivative |
US14/306,885 Division US9394240B2 (en) | 2008-08-13 | 2014-06-17 | Method for producing amide derivative |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010018857A1 true WO2010018857A1 (ja) | 2010-02-18 |
Family
ID=42830808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064295 WO2010018857A1 (ja) | 2008-08-13 | 2009-08-13 | アミド誘導体の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US8853440B2 (ja) |
EP (1) | EP2322502B1 (ja) |
JP (1) | JP5406192B2 (ja) |
CN (1) | CN102119144B (ja) |
BR (1) | BRPI0918022B1 (ja) |
ES (1) | ES2757835T3 (ja) |
IL (1) | IL211128A (ja) |
WO (1) | WO2010018857A1 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093415A1 (ja) * | 2010-01-29 | 2011-08-04 | 三井化学アグロ株式会社 | 動物寄生虫駆除用組成物および動物寄生虫の駆除方法 |
WO2012102239A1 (ja) | 2011-01-25 | 2012-08-02 | 三井化学アグロ株式会社 | 芳香族アミドカルボン酸誘導体の製造方法 |
WO2013150988A1 (ja) | 2012-04-03 | 2013-10-10 | 三井化学アグロ株式会社 | アルキル化芳香族アミド誘導体の製造方法 |
US8686044B2 (en) | 2008-08-13 | 2014-04-01 | Mitsui Chemicals Agro, Inc. | Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative |
JP2016516747A (ja) * | 2013-04-02 | 2016-06-09 | シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト | 殺虫性化合物 |
WO2016142456A1 (en) | 2015-03-11 | 2016-09-15 | BASF Agro B.V. | Pesticidal mixture comprising a carboxamide compound and a biopesticide |
WO2016162371A1 (en) | 2015-04-07 | 2016-10-13 | Basf Agrochemical Products B.V. | Use of an insecticidal carboxamide compound against pests on cultivated plants |
WO2016166252A1 (en) | 2015-04-17 | 2016-10-20 | Basf Agrochemical Products B.V. | Method for controlling non-crop pests |
WO2017024167A1 (en) | 2015-08-04 | 2017-02-09 | Dow Agrosciences Llc | Process for fluorinating compounds |
WO2017104838A1 (ja) | 2015-12-18 | 2017-06-22 | 三井化学アグロ株式会社 | 芳香族アミド誘導体の製造方法 |
US20170305839A1 (en) * | 2012-10-31 | 2017-10-26 | Syngenta Participations Ag | Insecticidal compounds |
WO2018011056A1 (en) | 2016-07-12 | 2018-01-18 | Basf Agrochemical Products B.V. | Pesticidally active mixtures |
WO2019059412A1 (en) | 2017-09-20 | 2019-03-28 | Mitsui Chemicals Agro, Inc. | AGENT FOR EXTENDED CONTROL OF ECTOPARASITES FOR ANIMAL |
WO2019158408A1 (en) | 2018-02-13 | 2019-08-22 | Basf Agrochemical Products B.V. | Crystalline forms of broflanilide |
WO2019170690A1 (en) | 2018-03-07 | 2019-09-12 | Basf Agrochemical Products B.V. | Method for increasing the resistance of a cereal plant |
WO2019214588A1 (zh) | 2018-05-11 | 2019-11-14 | 沈阳化工大学 | 一种苯甲酰胺类化合物及其应用 |
JP2020019789A (ja) * | 2013-10-18 | 2020-02-06 | ビーエーエスエフ アグロケミカル プロダクツ ビー.ブイ. | 土壌及び種子施用における殺有害生物活性カルボキサミド誘導体の使用、並びに処理方法 |
US10791734B2 (en) | 2013-10-18 | 2020-10-06 | Basf Agrochemical Products B.V. | Insecticidal active mixtures comprising carboxamide compound |
US10897897B2 (en) | 2013-10-18 | 2021-01-26 | Basf Agrochemical Products B.V. | Agricultural mixtures comprising carboxamide compound |
US11219211B2 (en) | 2015-03-11 | 2022-01-11 | Basf Agrochemical Products B.V. | Pesticidal mixture comprising a carboxamide compound and a biopesticide |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014161849A1 (en) * | 2013-04-02 | 2014-10-09 | Syngenta Participations Ag | Insecticidal compounds |
ES2762595T3 (es) | 2013-12-23 | 2020-05-25 | Syngenta Participations Ag | Compuestos insecticidas |
CN105685034A (zh) * | 2014-11-26 | 2016-06-22 | 三井化学Agro株式会社 | 有害生物防除混合组合物 |
TW201638076A (zh) * | 2014-12-22 | 2016-11-01 | 拜耳作物科學股份有限公司 | 新穎之異噻唑醯胺類,其製備方法及其作為除草劑及/或植物生長調節劑之用途 |
AU2016218096B2 (en) * | 2015-02-11 | 2020-02-20 | Basf Se | Pesticidal mixture comprising a pyrazole compound, an insecticide and a fungicide |
EP3316692B1 (en) | 2015-07-02 | 2021-03-17 | BASF Agro B.V. | Pesticidal compositions comprising a triazole compound |
CN109206335B (zh) * | 2017-06-29 | 2020-10-30 | 沈阳中化农药化工研发有限公司 | 制备邻三氟甲基苯胺类化合物的方法及其中间体 |
CN109206397B (zh) * | 2017-06-29 | 2022-06-07 | 沈阳中化农药化工研发有限公司 | 一种胡椒酸衍生物及其制备和应用 |
JP7184545B2 (ja) | 2018-06-14 | 2022-12-06 | アース製薬株式会社 | 殺虫剤組成物 |
CN109776367A (zh) * | 2018-12-18 | 2019-05-21 | 江苏华星新材料科技股份有限公司 | 一种合成橡胶塑解剂的方法 |
CN112457288B (zh) * | 2019-09-06 | 2021-12-14 | 沈阳中化农药化工研发有限公司 | 一种胡椒酸衍生物及其应用 |
CN112707836B (zh) * | 2019-10-25 | 2022-10-14 | 南通泰禾化工股份有限公司 | 一种间二酰胺类化合物的制备方法 |
CN115073300B (zh) * | 2021-03-10 | 2024-04-05 | 江西天宇化工有限公司 | 一种4-(全氟丙烷-2-基)-2-三氟甲基苯胺及其制备方法和应用 |
CN115974717A (zh) * | 2021-12-22 | 2023-04-18 | 浙江宇龙药业有限公司 | 一种含七氟异丙基的双酰胺类化合物及其中间体化合物,其制备方法与用途 |
CN113979887A (zh) * | 2021-12-29 | 2022-01-28 | 北京亦农生物科技有限公司 | 一种芳香胺羧酸衍生物的合成方法 |
WO2024087613A1 (zh) * | 2022-10-24 | 2024-05-02 | 浙江宇龙药业有限公司 | 一种含七氟异丙基的双酰胺类化合物及其中间体化合物,其制备方法与用途 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005021488A1 (ja) | 2003-08-29 | 2005-03-10 | Mitsui Chemicals, Inc. | 農園芸用殺虫剤及びその使用方法 |
WO2005073165A1 (ja) | 2004-01-28 | 2005-08-11 | Mitsui Chemicals, Inc. | アミド誘導体及びその製造方法ならびにその殺虫剤としての使用方法 |
WO2006137476A1 (ja) | 2005-06-24 | 2006-12-28 | Ulvac, Inc. | 位置修正装置、真空処理装置、及び位置修正方法 |
WO2006137376A1 (ja) * | 2005-06-21 | 2006-12-28 | Mitsui Chemicals, Inc. | アミド誘導体ならびに該化合物を含有する殺虫剤 |
WO2006137395A1 (ja) | 2005-06-23 | 2006-12-28 | Mitsui Chemicals, Inc. | アミド誘導体、該化合物を含有する殺虫剤およびその使用方法 |
WO2007013150A1 (ja) * | 2005-07-27 | 2007-02-01 | Mitsui Chemicals, Inc. | 有害生物防除組成物 |
JP2007031395A (ja) * | 2005-07-29 | 2007-02-08 | Bayer Cropscience Ag | 殺虫性3−アシルアミノベンズアニリド類 |
JP2007031324A (ja) * | 2005-07-25 | 2007-02-08 | Mitsui Chemicals Inc | 殺虫殺菌組成物 |
WO2007083394A1 (ja) * | 2006-01-19 | 2007-07-26 | Mitsui Chemicals, Inc. | ジアミン誘導体を含む有害生物防除組成物 |
JP2008208714A (ja) | 2007-02-23 | 2008-09-11 | Mitsubishi Heavy Ind Ltd | 電動圧縮機 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101203485A (zh) | 2005-06-23 | 2008-06-18 | 三井化学株式会社 | 酰胺衍生物、含有该化合物的杀虫剂及其使用方法 |
JP2010047479A (ja) | 2006-12-19 | 2010-03-04 | Mitsui Chemicals Inc | 有害生物防除組成物 |
JP2010047478A (ja) | 2006-12-19 | 2010-03-04 | Mitsui Chemicals Inc | 有害生物防除組成物 |
JP2010047480A (ja) | 2006-12-19 | 2010-03-04 | Mitsui Chemicals Inc | 虫害の予防方法 |
JP2010047481A (ja) | 2006-12-19 | 2010-03-04 | Mitsui Chemicals Inc | 虫害の予防方法 |
BRPI0719126B1 (pt) | 2006-12-21 | 2016-10-18 | Syngenta Participations Ag | composto, método para combater e controlar insetos, acarinos, nematódeos ou moluscos, e, composição inseticida, acaricida ou nematicida |
KR101554078B1 (ko) * | 2011-01-25 | 2015-09-17 | 미쓰이가가쿠 아그로 가부시키가이샤 | 방향족 아미드카르본산 유도체의 제조방법 |
-
2009
- 2009-08-13 JP JP2010524751A patent/JP5406192B2/ja active Active
- 2009-08-13 WO PCT/JP2009/064295 patent/WO2010018857A1/ja active Application Filing
- 2009-08-13 CN CN200980131106.2A patent/CN102119144B/zh active Active
- 2009-08-13 BR BRPI0918022-2A patent/BRPI0918022B1/pt active IP Right Grant
- 2009-08-13 US US13/058,349 patent/US8853440B2/en active Active
- 2009-08-13 EP EP09806748.1A patent/EP2322502B1/en active Active
- 2009-08-13 ES ES09806748T patent/ES2757835T3/es active Active
-
2011
- 2011-02-08 IL IL211128A patent/IL211128A/en active IP Right Grant
-
2014
- 2014-06-17 US US14/306,885 patent/US9394240B2/en active Active
-
2016
- 2016-06-17 US US15/185,586 patent/US9890110B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005021488A1 (ja) | 2003-08-29 | 2005-03-10 | Mitsui Chemicals, Inc. | 農園芸用殺虫剤及びその使用方法 |
WO2005073165A1 (ja) | 2004-01-28 | 2005-08-11 | Mitsui Chemicals, Inc. | アミド誘導体及びその製造方法ならびにその殺虫剤としての使用方法 |
WO2006137376A1 (ja) * | 2005-06-21 | 2006-12-28 | Mitsui Chemicals, Inc. | アミド誘導体ならびに該化合物を含有する殺虫剤 |
WO2006137395A1 (ja) | 2005-06-23 | 2006-12-28 | Mitsui Chemicals, Inc. | アミド誘導体、該化合物を含有する殺虫剤およびその使用方法 |
WO2006137476A1 (ja) | 2005-06-24 | 2006-12-28 | Ulvac, Inc. | 位置修正装置、真空処理装置、及び位置修正方法 |
JP2007031324A (ja) * | 2005-07-25 | 2007-02-08 | Mitsui Chemicals Inc | 殺虫殺菌組成物 |
WO2007013150A1 (ja) * | 2005-07-27 | 2007-02-01 | Mitsui Chemicals, Inc. | 有害生物防除組成物 |
JP2007031395A (ja) * | 2005-07-29 | 2007-02-08 | Bayer Cropscience Ag | 殺虫性3−アシルアミノベンズアニリド類 |
WO2007083394A1 (ja) * | 2006-01-19 | 2007-07-26 | Mitsui Chemicals, Inc. | ジアミン誘導体を含む有害生物防除組成物 |
JP2008208714A (ja) | 2007-02-23 | 2008-09-11 | Mitsubishi Heavy Ind Ltd | 電動圧縮機 |
Non-Patent Citations (5)
Title |
---|
"J. Am. Chem. Soc.", 1967, pages: 5012 |
"Tetrahedron Letters", 1987, pages: 4371 |
CHEM. BER., 1970, pages 788 |
J. AM. CHEM. SOC, 1967, pages 5012 |
See also references of EP2322502A4 |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8686044B2 (en) | 2008-08-13 | 2014-04-01 | Mitsui Chemicals Agro, Inc. | Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative |
US10582708B2 (en) | 2008-08-13 | 2020-03-10 | Mitsui Chemicals Agro, Inc. | Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative |
US9237745B2 (en) | 2008-08-13 | 2016-01-19 | Mitsui Chemicals Agro, Inc. | Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative |
US9756856B2 (en) | 2008-08-13 | 2017-09-12 | Mitsui Chemicals Agro, Inc. | Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative |
JPWO2011093415A1 (ja) * | 2010-01-29 | 2013-06-06 | 三井化学アグロ株式会社 | 動物寄生虫駆除用組成物および動物寄生虫の駆除方法 |
JP5173039B2 (ja) * | 2010-01-29 | 2013-03-27 | 三井化学アグロ株式会社 | 動物寄生虫駆除用組成物および動物寄生虫の駆除方法 |
WO2011093415A1 (ja) * | 2010-01-29 | 2011-08-04 | 三井化学アグロ株式会社 | 動物寄生虫駆除用組成物および動物寄生虫の駆除方法 |
CN103328435A (zh) * | 2011-01-25 | 2013-09-25 | 三井化学Agro株式会社 | 芳香族酰胺羧酸衍生物的制造方法 |
JP5674823B2 (ja) * | 2011-01-25 | 2015-02-25 | 三井化学アグロ株式会社 | 芳香族アミドカルボン酸誘導体の製造方法 |
TWI490197B (zh) * | 2011-01-25 | 2015-07-01 | Mitsui Chemicals Agro Inc | 芳香族醯胺羧酸衍生物之製造方法 |
CN103328435B (zh) * | 2011-01-25 | 2015-07-01 | 三井化学Agro株式会社 | 芳香族酰胺羧酸衍生物的制造方法 |
US9079827B2 (en) | 2011-01-25 | 2015-07-14 | Mitsui Chemicals Agro, Inc. | Process for production of aromatic amide carboxylic acid derivative |
WO2012102239A1 (ja) | 2011-01-25 | 2012-08-02 | 三井化学アグロ株式会社 | 芳香族アミドカルボン酸誘導体の製造方法 |
US9458091B2 (en) | 2011-01-25 | 2016-10-04 | Mitsui Chemicals Agro, Inc. | Aromatic amidecarboxylic acid and process for producing the same |
WO2013150988A1 (ja) | 2012-04-03 | 2013-10-10 | 三井化学アグロ株式会社 | アルキル化芳香族アミド誘導体の製造方法 |
US20170305839A1 (en) * | 2012-10-31 | 2017-10-26 | Syngenta Participations Ag | Insecticidal compounds |
US10513489B2 (en) | 2012-10-31 | 2019-12-24 | Syngenta Participations Ag | Insecticidal compounds |
JP2016516747A (ja) * | 2013-04-02 | 2016-06-09 | シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト | 殺虫性化合物 |
US12102085B2 (en) | 2013-10-18 | 2024-10-01 | Basf Agrochemical Products B.V. | Insecticidal active mixtures comprising carboxamide compound |
US12075774B2 (en) | 2013-10-18 | 2024-09-03 | Basf Agrochemical Products B.V. | Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods |
US10791734B2 (en) | 2013-10-18 | 2020-10-06 | Basf Agrochemical Products B.V. | Insecticidal active mixtures comprising carboxamide compound |
US11882827B2 (en) | 2013-10-18 | 2024-01-30 | Basf Agrochemical Products B.V. | Agricultural mixtures comprising carboxamide compound |
US11564390B2 (en) | 2013-10-18 | 2023-01-31 | Basf Agrochemical Products B.V. | Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods |
US10897897B2 (en) | 2013-10-18 | 2021-01-26 | Basf Agrochemical Products B.V. | Agricultural mixtures comprising carboxamide compound |
JP2020019789A (ja) * | 2013-10-18 | 2020-02-06 | ビーエーエスエフ アグロケミカル プロダクツ ビー.ブイ. | 土壌及び種子施用における殺有害生物活性カルボキサミド誘導体の使用、並びに処理方法 |
WO2016142456A1 (en) | 2015-03-11 | 2016-09-15 | BASF Agro B.V. | Pesticidal mixture comprising a carboxamide compound and a biopesticide |
US11882830B2 (en) | 2015-03-11 | 2024-01-30 | Basf Agrochemical Products B.V. | Pesticidal mixture comprising a carboxamide compound and a biopesticide |
US11219211B2 (en) | 2015-03-11 | 2022-01-11 | Basf Agrochemical Products B.V. | Pesticidal mixture comprising a carboxamide compound and a biopesticide |
WO2016162371A1 (en) | 2015-04-07 | 2016-10-13 | Basf Agrochemical Products B.V. | Use of an insecticidal carboxamide compound against pests on cultivated plants |
US11064696B2 (en) | 2015-04-07 | 2021-07-20 | Basf Agrochemical Products B.V. | Use of an insecticidal carboxamide compound against pests on cultivated plants |
US11234436B2 (en) | 2015-04-17 | 2022-02-01 | Basf Agrochemical Products B.V. | Method for controlling non-crop pests |
WO2016166252A1 (en) | 2015-04-17 | 2016-10-20 | Basf Agrochemical Products B.V. | Method for controlling non-crop pests |
WO2017024167A1 (en) | 2015-08-04 | 2017-02-09 | Dow Agrosciences Llc | Process for fluorinating compounds |
US10647660B2 (en) | 2015-12-18 | 2020-05-12 | Mitsui Chemicals Agro, Inc. | Method of producing aromatic amide derivative |
WO2017104838A1 (ja) | 2015-12-18 | 2017-06-22 | 三井化学アグロ株式会社 | 芳香族アミド誘導体の製造方法 |
US11330820B2 (en) | 2016-07-12 | 2022-05-17 | Basf Se | Pesticidally active mixtures |
WO2018011056A1 (en) | 2016-07-12 | 2018-01-18 | Basf Agrochemical Products B.V. | Pesticidally active mixtures |
US11696913B2 (en) | 2017-09-20 | 2023-07-11 | Mitsui Chemicals Agro, Inc. | Prolonged ectoparasite-controlling agent for animal |
WO2019059412A1 (en) | 2017-09-20 | 2019-03-28 | Mitsui Chemicals Agro, Inc. | AGENT FOR EXTENDED CONTROL OF ECTOPARASITES FOR ANIMAL |
WO2019158408A1 (en) | 2018-02-13 | 2019-08-22 | Basf Agrochemical Products B.V. | Crystalline forms of broflanilide |
WO2019170690A1 (en) | 2018-03-07 | 2019-09-12 | Basf Agrochemical Products B.V. | Method for increasing the resistance of a cereal plant |
WO2019214588A1 (zh) | 2018-05-11 | 2019-11-14 | 沈阳化工大学 | 一种苯甲酰胺类化合物及其应用 |
US11407711B2 (en) | 2018-05-11 | 2022-08-09 | Metisa Biotechnology Co., Ltd. | Benzamide compound and use thereof |
Also Published As
Publication number | Publication date |
---|---|
US20160297750A1 (en) | 2016-10-13 |
US20110137068A1 (en) | 2011-06-09 |
EP2322502A1 (en) | 2011-05-18 |
IL211128A (en) | 2015-04-30 |
ES2757835T3 (es) | 2020-04-30 |
US8853440B2 (en) | 2014-10-07 |
BRPI0918022A2 (pt) | 2015-11-17 |
CN102119144A (zh) | 2011-07-06 |
JP5406192B2 (ja) | 2014-02-05 |
JPWO2010018857A1 (ja) | 2012-01-26 |
US9890110B2 (en) | 2018-02-13 |
CN102119144B (zh) | 2015-12-02 |
BRPI0918022B1 (pt) | 2017-12-26 |
US9394240B2 (en) | 2016-07-19 |
EP2322502A4 (en) | 2013-01-09 |
EP2322502B1 (en) | 2019-09-18 |
US20140296560A1 (en) | 2014-10-02 |
IL211128A0 (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5728540B2 (ja) | 新規な化合物 | |
JP5406192B2 (ja) | アミド誘導体の製造方法 | |
KR101455555B1 (ko) | 아미드 유도체, 그 아미드 유도체를 함유하는 유해 생물 방제제 및 유해 생물의 방제 방법 | |
US20110201687A1 (en) | Amide derivative, pest control agent containing the amide derivative, and use of the amide derivative | |
JP2011157296A (ja) | 有害生物防除組成物 | |
JP2011157295A (ja) | 植物種子用虫害防除組成物および虫害の予防方法 | |
JP2011063549A (ja) | アミド誘導体、および該アミド誘導体を含有する有害生物防除剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980131106.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09806748 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010524751 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 211128 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13058349 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009806748 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117003644 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1349/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011106925 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0918022 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110210 |