WO2010016720A2 - 2세대 고온 초전도 선재의 용융확산 접합방법 - Google Patents

2세대 고온 초전도 선재의 용융확산 접합방법 Download PDF

Info

Publication number
WO2010016720A2
WO2010016720A2 PCT/KR2009/004360 KR2009004360W WO2010016720A2 WO 2010016720 A2 WO2010016720 A2 WO 2010016720A2 KR 2009004360 W KR2009004360 W KR 2009004360W WO 2010016720 A2 WO2010016720 A2 WO 2010016720A2
Authority
WO
WIPO (PCT)
Prior art keywords
high temperature
temperature superconducting
superconducting wire
layer
generation
Prior art date
Application number
PCT/KR2009/004360
Other languages
English (en)
French (fr)
Other versions
WO2010016720A9 (ko
WO2010016720A3 (ko
Inventor
이해근
송정빈
김현성
권나영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080076178A external-priority patent/KR100964361B1/ko
Priority claimed from KR1020080076174A external-priority patent/KR100964354B1/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US12/600,282 priority Critical patent/US20100210468A1/en
Priority to JP2010547577A priority patent/JP5214744B2/ja
Priority to CN2009801062233A priority patent/CN101971273B/zh
Priority to EP09805181A priority patent/EP2312592A4/en
Publication of WO2010016720A2 publication Critical patent/WO2010016720A2/ko
Publication of WO2010016720A9 publication Critical patent/WO2010016720A9/ko
Publication of WO2010016720A3 publication Critical patent/WO2010016720A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details

Definitions

  • the present invention relates to a method for joining a second generation high temperature superconducting wire including a substrate portion, a buffer layer, a superconductor layer, and a stabilizing material layer. By diffusing, the present invention relates to a melt diffusion bonding method of second generation high temperature superconducting wires connected by one strand.
  • the present invention lowers the eutectic melting point by making the oxygen partial pressure close to vacuum, and thus, the second generation of high temperature superconducting wires by controlling the oxygen partial pressure to melt diffusion against the second generation high temperature superconducting wire. It relates to a melt diffusion bonding method.
  • the present invention after fixing the superconductor layers exposed by etching the stabilizing material layer of the superconducting wire to each other with a holder, the melt diffusion bonding of the second generation high temperature superconducting wire to melt diffusion of the fixed portion and oxidation in the oxygen atmosphere (oxygenation annealing) It is about a method.
  • the connected superconducting wires must be connected as if using a single wire. So when all the windings have been made a lossless operation should be made.
  • superconducting magnets and superconducting applications such as Nuclear Magnetic Resonance (NMR), Magnetic Resonance Imaging (MRI) and Superconducting Magnet Energy Storage (SMES) systems.
  • the junction between superconducting wires is generally lower than that of unbonded wires, so the critical current depends on the joints in the permanent current mode operation. Therefore, improving the critical current characteristics of the junction between superconducting wires is very important for the fabrication of permanent current mode superconducting applications.
  • the superconductor is ceramic, so it is very difficult to maintain a superconducting state.
  • FIG. 1 is a view showing the structure of the second generation high temperature superconducting wire (YBCO-CC).
  • FIG. 2 is a view showing a cross-sectional view of a phase-conducting junction of a general second generation high temperature superconducting wire (YBCO-CC) and a flow of current.
  • YBCO-CC general second generation high temperature superconducting wire
  • the second generation high temperature superconducting wire 10 is a wire rod made of a tape in a laminated structure.
  • the laminated structure of the superconducting wire 10 is composed of a substrate portion 11, a buffer layer 12, a superconductor layer 13, and a stabilizing material layer 14.
  • the substrate portion 11 is made of a metal-based material such as Ni or Ni alloy, and is manufactured by forming a cube texture by rolling and heat treatment.
  • the buffer layer 12 is epitaxially stacked on the substrate 11 in a single layer or multiple layers of ZrO 2 , CeO 2 , YSZ, Y 2 O 3, or HfO 2 .
  • the superconductor layer 13 is made of an oxide superconducting material represented by YBa 2 Cu 3 O 7-x system. That is, the molar ratio of Y: Ba: Cu is 1: 2: 3, and the molar ratio of oxygen (O) to it should generally be 6.4 to 7.
  • O oxygen
  • the stabilizer layer 14 is stacked on the top surface of the superconductor layer 13 to electrically stabilize the superconductor layer 13, such as to protect the superconductor layer 13 during overcurrent.
  • Stabilizer layer 14 is made of a metal material having a relatively low electrical resistance in order to protect the wire rod through the overcurrent.
  • it is composed of a metal material having a low electrical resistance such as silver or copper, and stainless steel may be used.
  • FIG. 2 shows a conventional technique for joining the second generation high temperature superconducting wires shown in FIG. 1.
  • the stabilizing material layer 14 of the portion to be connected to the superconductor layer 13 is removed by etching or the like, and is bonded therebetween using a phase conductor layer material including a solder 15 therebetween. do.
  • the flow of current 16 necessarily passes through the phase conductor layer, so that the generation of the junction resistance is inevitable.
  • the junction uses a resistive junction such as soldering, resistance is present at the junction, and thus, the permanent current mode operation in the strict sense is impossible.
  • the material of the second generation high temperature superconducting wire (YBCO material such as Y123) has a relatively high critical current when the crystal grows directionally. Therefore, in order to directly join and bond two strands of the second generation wire, a process of heat treatment from high temperature to the melting point will be required so that two different strands of wires may have crystal orientation with each other.
  • the heat-treating temperature is so high that silver (Ag) contained in YBC0-CC, the second generation high temperature superconducting wire, may preferentially melt. Heat treatment at high temperatures becomes impossible.
  • the first problem to be solved by the present invention is to connect the superconductor layer of the second-generation high-temperature superconducting wire two strands composed of the substrate portion, the buffer layer, the superconductor layer and the stabilizer layer directly to each other to connect them in one strand by melting diffusion. It is to provide a melt diffusion bonding method of generation high temperature superconducting wire.
  • the present invention provides a method for joining a second generation high temperature superconducting wire including a superconductor layer and a stabilizing material layer in order to achieve the first object, (a) of the stabilizing material layer contained in the second strand of second generation high temperature superconducting wire Removing some; (b) fixing the second superconducting layer of the second-generation high-temperature superconducting wire, which is exposed by removing the stabilizing layer, to be in contact with each other; (c) melting and diffusing the butt-contacted superconductor layer by heating to the melting point of the superconductor layer, thereby joining the two second-generation high temperature superconducting wires; And (d) oxidizing the junction to an oxygen atmosphere.
  • the step of joining the second strand of the second generation high temperature superconducting wire rod controls the oxygen partial pressure until the melting point of the superconductor layer is lower than the melting point of the stabilizer layer, and the second generation high temperature superconducting wire 2 under the controlled oxygen partial pressure. Splice the strands.
  • removing a portion of the stabilizer layer may include: (a1) exposing a portion of the stabilizer layer by patterning it using a resist on the stabilizer layer; And (a2) removing a portion of the exposed stabilizer layer by etching.
  • the step of removing a portion of the stabilizing material layer is characterized in that to remove the stabilizing material layer present in the region starting from the end of the second generation high temperature superconducting wire rod to a portion away from the end, the second The step of fixing the superconducting layers of the second generation of high temperature superconducting wires to contact each other is such that the ends of the second generation of the high temperature superconducting wires of one strand touch the stepped portions of the second generation of the high temperature superconducting wires of the other strand and are fixed to closely adhere to each other. It is characterized by.
  • the two upper and lower metal plates and the fastening means are made of a material having heat resistance at 1,000 ° C. or higher.
  • the step of oxidizing (oxygenation annealing) to the oxygen atmosphere is characterized in that the oxygen is continuously circulated and flowed at 450 ⁇ 650 °C inside the furnace (furnace).
  • oxygenation annealing is O (based on when Y (yttrium), Ba (barium), Cu (copper) constituting the superconductor layer is 1, 2, 3 mol, respectively, Oxygenation annealing is carried out in an oxygen atmosphere until the amount of 6.4-7 mol.
  • the present invention by directly melting and diffusing the superconductor layer without an intermediate medium, a sufficiently long wire can be produced with little bonding resistance as compared with the phase conduction bonding.
  • the present invention by oxidizing in an oxygen atmosphere after melt diffusion at high temperature, the superconductor properties can be maintained by compensating oxygen lost from the superconductor during melt diffusion at high temperature.
  • the oxygen partial pressure is made close to vacuum, and thus, the eutectic melting point can be lowered to prevent the stabilization layer including silver (Ag) from melting and the like.
  • FIG. 1 is a view showing the structure of the second generation high temperature superconducting wire (YBCO-CC).
  • FIG. 2 is a view showing a cross-sectional view of a phase-conducting junction of a general second generation high temperature superconducting wire (YBCO-CC) and a flow of current.
  • YBCO-CC general second generation high temperature superconducting wire
  • Figure 3 is a flow chart illustrating a melt diffusion bonding method of the second generation high temperature superconducting wire by adjusting the oxygen partial pressure according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a second generation high temperature superconducting wire (YBCO-CC) after removing a stabilizing material layer from one end of the superconducting wire according to one embodiment of the present invention.
  • YBCO-CC second generation high temperature superconducting wire
  • FIG. 5 is a diagram illustrating contacting two strands of superconducting wire with each other according to an embodiment of the present invention.
  • Figure 6 is a view showing the configuration of a holder for fixing the two strands of superconducting wire in accordance with an embodiment of the present invention.
  • 7 to 10 are graphs showing the change of the melting point of Y123-Ag and Ag according to the change of the partial pressure of oxygen.
  • FIG. 11 is a graph showing the change of the lattice parameter of the superconducting wire (YBCO-CC) according to the oxygen content.
  • step portion 25 junction
  • Figure 3 is a flow chart illustrating a melt diffusion bonding method of the second generation high temperature superconducting wire by adjusting the oxygen partial pressure according to an embodiment of the present invention.
  • Second generation high temperature superconducting wire 20 is composed of a substrate portion 21, a buffer layer 22, a superconductor layer 23 and a stabilizing material layer 24.
  • step 10 in the bonding method of the second generation high temperature superconducting wire according to the embodiment of the present invention, two ends of the superconducting wire 20 are etched in step 10 to remove the stabilizing material layer 24 (S10).
  • step 20 the stabilizing material layer 24 is removed, and the exposed superconductor layer 23 is brought into contact with each other, and then fixed with a holder (S20).
  • step 30 the fixed part is placed in a furnace and oxygen.
  • the superconductor layer is heated to the melting point (melting point) to bond by melting diffusion (S30), and in step 40, the junction is oxidized to an oxygen atmosphere (oxygenation annealing) (S40).
  • oxygen atmosphere oxygenation annealing
  • Step 10 is a step of removing the stabilizing material layer 24 by etching a predetermined length portion of one end of each strand of the two strands of the superconducting wire 20 (S10).
  • the step 10 includes the steps of: (a1) applying a resist to the inner portion of the portion 25 away from one end of the superconducting wire strand 20; and (a2) removing the stabilizing material layer by etching the region from the end of the superconducting wire strand end 20 to the portion 25 away from the predetermined length.
  • a superconductor layer 23 forming a superconductor through which permanent current can flow is laminated between a phase conductor layer such as the buffer layer 22 and the stabilizing material layer 24. Therefore, it is impossible to join superconductors in the originally manufactured state.
  • the preceding process is to remove the phase conductive layer covering the superconductor layer 23 to expose the superconductor layer 23.
  • the superconductor layer 23 is exposed by removing the stabilizer layer 24 covering the superconductor layer 23 through an optical method or a chemical method.
  • Figure 4 shows the superconductor layer 23 is revealed by removing the stabilizing material layer 24 of the portion to be bonded.
  • the etching method may be used to remove the stabilizing material layer 24 by a chemical method.
  • a resist is applied to portions other than the stabilizer layer 24 to be removed. Since the portion to be joined is from the end of the superconducting wire 20 to the part 25 spaced apart from the end of the superconducting wire 20 by a predetermined length, it is applied with a resist on the stabilizing material layer 24 except for the portion to be joined.
  • a point 25 is a portion away from the end of the superconducting wire 20 by a predetermined length, and a resist is applied in the opposite direction to the end of the superconducting wire 20 from 25.
  • the stabilizing material layer 24 is etched by etching with an etchant.
  • the etchant is a chemical substance capable of etching the material forming the stabilizing material layer 24.
  • the etching chemical is selected as a chemical capable of etching the material according to the material of the stabilizing material layer 24. Since the etching is well known in the art, a detailed description thereof will be omitted.
  • this invention does not limit the process of removing the stabilizing material layer 24 of a superconducting wire to an etching process. That is, any technique can be applied as long as the technique can partially remove the stabilizer layer 24.
  • FIG. 5 is a view illustrating contact between two strands of superconducting wire in contact with each other according to an embodiment of the present invention
  • FIG. 6 is a configuration of a holder for butt fixing two strands of superconducting wire in accordance with one embodiment of the present invention.
  • Figure is a diagram. Step 20 will be described in more detail with reference to FIGS. 3 and 4 to 6.
  • Step 20 overlaps one end of the two strands of the superconducting wire 20 and fixes them with the holder 30, and the stabilizing material layer 24 is removed to fix the exposed superconductor layer 23 to be in contact with each other (S20). ).
  • one end of the superconducting wire 20 of one strand is fixed to the holder 30 so that the superconducting layer 23 is in close contact with the step portion 25 of the superconducting wire of the other strand.
  • the holder 30 includes fastening means for fastening the two upper and lower metal plates 31 and the two metal plates 31, and in step 20, the holder 30 is formed of two strands contacted between the upper and lower metal plates 31.
  • the superconducting wire 20 is fastened to the two metal plates 31 by the fastening means.
  • the holder 30 is preferably made of a material having heat resistance at least 1,000 °C. That is, the two superconducting wires 20 from which the stabilizer layer 24 is removed as described above are overlapped with each other as shown in FIG. 5. At this time, one of the strands of the superconducting wire 20 is to the end to reach the step portion 25 of the other strand. If both superconducting wires 20 remove stabilization layer 24 to the same desired length, the two strands of superconducting superconducting layer 23 may be in close contact.
  • the superconductor layers 23 of the superconducting wires 20 etched with the stabilizer layer 24 face each other and are fixed with a holder 30.
  • the holder 30 includes two metal plates 31 facing each other, a fastening hole 32 for connecting the fastening means to the metal plate 31, and a bolt 33 and a nut 34 as fastening means. That is, by tightening the bolt 33 and the nut 34 through the fastening hole 32, the superconducting wire is contacted and fixed.
  • the holders 30 must all be made of a material having high heat resistance since they must withstand heat treatment at high temperatures. In particular, since the temperature at which melting diffusion is performed at 800 ° C or higher, it is desirable to have heat resistance that can withstand at least 1,000 ° C or higher.
  • the phase conduction layer does not exist between the superconductor layers 23, thereby preventing Joule heat and quench generation due to the generation of the junction resistance.
  • step 30 the part fixed in step 20 is placed in a furnace, and the diffusion of the superconductor layer which is brought into contact with each other by heating to the superconductor melting point of the superconductor layer 23 while the oxygen partial pressure is vacuum is melted diffusion.
  • the vacuum state includes a state close to the vacuum, and the state close to the vacuum is preferably set to a partial pressure state of about 10 Pa or less.
  • the two strands of the superconducting wire 20 fixed by the holder 30 in step 20 are put in a furnace to induce bonding between the superconductor layers 23 by melting diffusion.
  • the temperature for inducing bonding due to melting diffusion may be controlled by using a change in melting point of the material according to the partial pressure of oxygen. That is, the reason for adjusting the heating temperature for melt diffusion is that deformation or contamination may occur due to the high temperature in other portions (or layers) except the superconductor layer 23 at the heating temperature.
  • the superconductor material of the second generation high temperature superconducting wire begins to melt near 980 ° C.
  • the melting point of YBCO is about 980 ° C. Therefore, in order to melt diffusion of the portion 26 of the superconducting wire rod fixed in step 20, it is required to heat it to around 980 ° C.
  • silver (Ag) which is widely used as a material of the stabilizing material layer 24, has an eutectic melting point of 935 ° C to 940 ° C at atmospheric pressure (Po 2 of 21.3 kPa). Therefore, when the portion 26 of the superconducting wire is heated to around 980 ° C. in order to melt diffusion, silver (Ag) preferentially melts. That is, the silver (Ag) is melted (melting) before the superconductor layer 23 is bonded during the heat treatment of the superconducting wire, various problems occur.
  • the melting point of the Y123-Ag occurs at a temperature lower than the eutectic melting point of Ag. That is, in a vacuum state, the heat treatment may be performed at the melting point of Y123-Ag to bond or diffuse the Y123-Ag by melting or melting. At this time, since the temperature (or melting point of Y123-Ag) to be heat-treated is lower than the eutectic melting point of Ag, Ag does not melt.
  • FIGS. 7 and 8 are graphs in which the melting point is changed at atmospheric pressure
  • FIGS. 9 and 10 are graphs showing the change in the melting point when the oxygen partial pressure is low.
  • 8 and 10 are enlarged graphs of specific temperature ranges (900 to 1000 ° C.) of FIGS. 7 and 9.
  • the eutectic melting point of silver (Ag) is 935 to 940 ° C at the point where the eutectic melting point is peak (point b of FIG. 8), and the peak of Y123-Ag. It can be seen that at the point (point c of Figure 7b) is 990 °C. That is, it can be seen that the melting point of Y123-Ag is higher than silver.
  • the oxygen partial pressure is 960 ° C. at the eutectic melting point of silver (Ag), that is, the third peak (point b of FIG. 10).
  • the results of Table 1 above are experimental values.
  • the measured temperature may vary slightly depending on the state of Y123-Ag, that is, the content of Ag.
  • the experimental results may vary slightly depending on the state of Ag or experimental conditions.
  • the present invention can be applied even if the temperature varies slightly depending on the form of the superconductor (for example, bulk type or thin film type) or the state of Ag, and the present invention includes the temperature range.
  • the melting point (or eutectic melting point) of Y123-Ag and Ag is reversed according to the oxygen partial pressure.
  • heat treatment is performed by lowering the oxygen partial pressure, thereby inducing bonding of the superconductor layer without problems due to melting of Ag.
  • step 40 the junction part in step 30 is oxidized at 450 to 650 ° C. in an oxygen atmosphere (S40).
  • oxygen is continuously circulated and flowed into the furnace.
  • O oxygen atoms
  • step 40 oxygen atoms
  • Y yttrium
  • Ba barium
  • Cu copper
  • the superconductor layer 13 is made of an oxide superconducting material represented by YBa 2 Cu 3 O 7-x system. That is, the molar ratio of Y: Ba: Cu is 1: 2: 3, and the molar ratio of oxygen (O) to it should generally be 6.4 to 7.
  • oxygen (O) is released from the configuration of YBa 2 Cu 3 O 7-x forming the superconductor layer 23 at such a high temperature.
  • oxygen escapes the molar ratio of Y: Ba: Cu is 1: 2: 3, while the molar ratio of oxygen (O) generally falls below 6.4.
  • the superconductor layer 23 undergoes a phase change from the superconducting orthorhombic structure to the tetragonal structure of the phase conduction state. That is, the superconductor layer 23 loses superconductivity.
  • the lattice parameter of the superconducting material of the YBa 2 Cu 3 O 7-x system is changed according to the oxygen content.
  • the x-axis represents the oxygen content and the y-axis represents the numerical value of each lattice variable.
  • the oxygen content of the x-axis is a value indicated by 7-X in YBa 2 Cu 3 O 7-x .
  • step 40 is a second heat treatment process to restore superconductivity by compensating for the loss of oxygen by performing oxygenation annealing in an oxygen atmosphere near 450 to 650 ° C. to solve this problem.
  • the oxygen atmosphere is made by continuously circulating and flowing oxygen into a furnace that undergoes oxidation annealing.
  • the reason for the heat treatment by oxidation in the vicinity of 450 ⁇ 650 °C is because the orthorhombic phase (orthorhombic phase) is the most stable at this temperature.
  • the time for oxidization annealing should be controlled, because the oxygen content becomes higher when oxidizing annealing in the oxygen atmosphere for a long time over a certain time, and the oxygenation annealing is not performed for a sufficient time. This is because the oxygen content is insufficient to read the superconductivity.
  • the above-described invention has described an embodiment in which a stabilizing material layer 24 is placed on top of a superconductor layer 23 made of an oxide superconducting material of YBa 2 Cu 3 O 7-x type . It is not limited to the example. That is, if the superconducting layer can be removed irrespective of the type of the base material or the stabilizing material layer of the superconducting wire, it is possible to simply superconducting through heat treatment according to the present invention. In addition, the present invention has the advantage that it is possible to simply superconduct bonding through heat treatment after removing the phase conduction layer, it is convenient to use in the actual production of superconducting system.
  • the present invention can be used for the bonding of superconducting wires connecting two strands of the second generation high temperature superconducting wires into one strand.
  • the present invention can be used to fabricate a sufficiently long superconducting wire used for the development of all superconducting magnet systems, and in particular, it can be applied to applications that require permanent current mode operation such as MRI, NMR, SMES magnet system.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

본 발명은 기판부, 완충층, 초전도체층 및 안정화재층을 포함한 2세대 고온 초전도 선재의 접합방법에 관한 것으로서, 2세대 고온 초전도 선재 2가닥에 포함된 안정화재층의 일부를 제거하고, 안정화재층이 제거되어 노출된 2세대 고온 초전도 선재 2가닥의 초전도체층을 맞대어 접촉하도록 고정한 다음 초전도체층의 용융점(melting point)까지 가열함으로써 맞대어 접촉한 초전도체층을 용융확산(melting diffusion)시켜 2세대 고온 초전도 선재 2가닥을 접합한다. 이후 접합부분을 산소분위기로 산화(oxygenation annealing)시켜 2세대 고온 초전도 선재의 초전도 특성을 회복한다. 이러한 구성에 의하여 중간 매개체 없이 직접 초전도체층을 맞대어 용융확산함으로써, 상전도 접합에 비해 접합저항이 거의 없이 충분히 긴 선재를 제작할 수 있고, 특히, 산소분압을 진공에 가까운 상태로 만들어 공융점을 낮춤으로써, 은(Ag)을 함유한 안정화재층 등이 용융되지 않게 하면서 접합할 수 있다.

Description

2세대 고온 초전도 선재의 용융확산 접합방법
본 발명은 기판부, 완충층, 초전도체층 및 안정화재층을 포함한 2세대 고온 초전도 선재의 접합방법에 관한 것으로서, 더욱 상세하게는 2세대 고온 초전도 선재의 초전도체층을 직접 맞대어 접합하여 산소분압 조절하에 용융확산함으로써, 하나의 가닥으로 연결하는 2세대 고온 초전도 선재의 용융확산 접합방법에 관한 것이다.
특히, 본 발명은 산소분압을 진공에 가까운 상태로 만들어 공융점(eutectic melting point)을 낮추어, 2세대 고온 초전도 선재를 맞대어 용융확산(melting diffusion)을 하는 산소분압 조절을 통한 2세대 고온 초전도 선재의 용융확산 접합방법에 관한 것이다.
또한, 본 발명은 초전도 선재의 안정화재층을 식각하여 드러난 초전도체층을 서로 맞대어 홀더로 고정한 후, 고정된 부분을 용융확산하고 산소분위기에서 산화(oxygenation annealing)시키는 2세대 고온 초전도 선재의 용융확산 접합방법에 관한 것이다.
일반적으로 초전도 선재의 접합은 다음과 같은 경우에 필요하다. 첫째로는 코일 권선 시 초전도 선재의 길이가 짧아서 장선재로 사용하기 위하여 선재를 접합해야 하는 경우이며, 두 번째로는 초전도 선재를 권선한 코일을 서로 연결하기 위하여 초전도 마그네트 코일간의 접합이 필요한 경우이다. 마지막으로 영구전류모드 마그네트 시스템 제작을 위해서 초전도 폐회로(closed loop) 제작 시 양 단자 끝을 연결하는 경우이다.
특히, 영구전류모드 운전이 필수적으로 요구되어지는 초전도 응용기기에서 초전도 선재를 연결하여 사용하기 위해서는, 연결된 초전도 선재가 마치 하나의 선재를 이용하는 것과 같이 연결되어야 한다. 그래서 모든 권선이 이루어졌을 때 손실이 없는 운전이 이루어져야 한다. 예를 들면, Nuclear Magnetic Resonance(NMR), Magnetic Resonance Imaging(MRI) 및 Superconducting Magnet Energy Storage(SMES) 시스템 등과 같은 초전도 마그네트 및 초전도 응용기기에서 그러하다.
하지만 초전도 선재간의 접합부위는 일반적으로 접합되지 않은 선재보다 특성이 낮으므로 영구전류모드 운전시 임계전류는 접합부에 크게 의존한다. 따라서 초전도 선재간의 접합부위의 임계전류 특성을 향상시키는 것은 영구전류 모드형 초전도 응용기기 제작에 매우 중요하다. 그러나 저온초전도 선재와는 달리 고온초전도 테이프 선재의 경우 초전도체가 세라믹이므로 초전도 상태를 유지하는 접합은 매우 어렵다.
도 1과 도 2를 참조하여, 종래의 2세대 고온 초전도 선재를 접합하는 방법을 설명하기로 한다.
도 1은 2세대 고온 초전도 선재(YBCO-CC)의 구조를 도시한 도면이다.
도 2는 일반적인 2세대 고온 초전도 선재(YBCO-CC)의 상전도 접합의 단면도 및 전류의 흐름을 표시한 도면이다.
도 1에서 보는 바와 같이, 2세대 고온 초전도 선재(10)는 적층구조로 테이프 형상으로 만들어진 선재이다. 초전도 선재(10)의 적층구조는 기판부(11, substrate), 완충층(12, Buffer Layer), 초전도체층(13), 및 안정화재층(14)으로 구성된다.
기판부(11)는 Ni 또는 Ni합금 등 금속계 물질의 재질로 이루어져 있으며, 압연 및 열처리하여 큐브 집합조직(Cube texture)을 형성하여 제작된다.
완충층(12)은 ZrO2, CeO2, YSZ, Y2O3 또는 HfO2 등의 재질로 단일층 또는 다수의 층으로 기판부(11) 위에 에피택셜(Epitaxial)하게 적층된다.
초전도체층(13)은 YBa2Cu3O7-x계로 대표되는 산화물 초전도 물질로 이루어진다. 즉, Y:Ba:Cu의 몰 비율은 1:2:3이고, 이에 대한 산소(O)의 몰비율은 일반적으로 6.4 내지 7이 되어야 한다. 초전도체층(13)을 구성하는 산화물 초전도체의 산소량이 변동함으로써 초전도체층(13)의 특성이 크게 변화된다. 따라서 상기 산소의 몰비율은 일정하게 유지시켜주어야 한다.
안정화재층(14)은 과전류시 초전도체층(13)을 보호하는 등 초전도체층(13)을 전기적으로 안정화시키기 위하여 초전도체층(13) 상부면에 적층된다. 안정화재층(14)은 과전류가 흐를 선재를 보호하기 위하여 전기저항이 상대적으로 낮은 금속물질로 구성된다. 예를 들면, 은 또는 동 등의 전기저항이 낮은 금속물질로 구성되며 스테인리스 등이 이용될 수도 있다.
도 2는 도 1에 도시된 제 2세대 고온 초전도 선재를 접합하는 종래의 기술을 도시하고 있다. 도 2에서 보는 바와 같이, 에칭 등으로 초전도체층(13)의 연결하고자 하는 부위의 안정화재층(14)을 제거하고, 그 사이에 솔더(15, solder)를 비롯한 상전도체 층 물질을 매개로 접합한다. 이때 전류의 흐름(16)이 반드시 상전도체 층을 지나게 되어 접합 저항의 발생을 피할 수 없게 된다.
접합 저항에 의하여 전류가 흐를 때 열이 발생하게 되고, 열이 발생하면 접합부위에 온도가 올라가게 된다. 최악의 경우 온도 상승으로 인해 낮은 온도에서 초전도 성질을 나타내는 초전도체가 상전도로 전이될 수도 있다. 그렇지 않다하더라도, 온도를 낮추기 위한 냉각 비용이 많이 들게 되는 문제점들이 발생한다.
무엇보다도, 이 경우 접합은 솔더링(Soldering) 등 저항 접합을 이용하므로 접합부위에 저항이 상존하게 되어 엄밀한 의미의 영구전류모드 운전은 불가능하다.
제 2세대 고온 초전도 선재의 재료(Y123 등 YBCO 물질)는 결정이 방향성을 갖게 성장하면 상대적으로 임계전류가 높은 특성을 가진다. 따라서, 2가닥의 제 2세대 선재를 직접 접촉시켜 접합하려면, 접합되는 부분에서도 서로 다른 2가닥의 선재가 서로 결정의 방향성을 갖도록 고온에서 용융점까지 열처리하는 공정이 필요할 것이다. 그러나 고온에서 YBCO 물질을 용융점까지 열처리를 하는 경우, 상기 열처리를 하는 온도가 너무 높아 제 2세대 고온 초전도 선재인 YBC0-CC에 함유된 은(Ag) 등이 우선적으로 용융되는 경우도 있으며 이런 경우에는 고온에서 열처리가 불가능 하게 된다.
또한, 2가닥의 제 2세대 선재의 직접 접합부위를 용융공정처리(melt-textured process)를 해주려면, 고온에서 열처리(Heat Treatment)를 해주어야 한다. 그런데 제조된 고온초전도 선재의 접합부위 전체가 열처리되어야 하므로, 제 2세대 고온 초전도 선재에 적층되는 안정화재층(14) 등이 열처리로 인한 고온에서 오염 및 변형이 될 수 있는 문제점이 있다.
따라서 본 발명이 해결하고자 하는 첫번째 과제는 기판부, 완충층, 초전도체층 및 안정화재층으로 구성된 2세대 고온 초전도 선재 2가닥의 초전도체층을 직접 맞대어 용융확산(melting diffusion)함으로써 하나의 가닥으로 연결하는 2세대 고온 초전도 선재의 용융확산 접합방법을 제공하는 것이다.
본 발명은 상기 첫 번째 과제를 달성하기 위하여, 초전도체층 및 안정화재층을 포함한 2세대 고온 초전도 선재를 접합하는 방법에 있어서, (a) 상기 2세대 고온 초전도 선재 2가닥에 포함된 안정화재층의 일부를 제거하는 단계; (b) 상기 안정화재층이 제거되어 노출된 상기 2세대 고온 초전도 선재 2가닥의 초전도체층을 맞대어 접촉하도록 고정하는 단계; (c) 상기 초전도체층의 용융점(melting point)까지 가열함으로써 상기 맞대어 접촉한 초전도체층을 용융확산(melting diffusion)시켜 상기 2세대 고온 초전도 선재 2가닥을 접합하는 단계; 및 (d) 상기 접합부분을 산소분위기로 산화(oxygenation annealing)시키는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 2세대 고온 초전도 선재 2가닥을 접합하는 단계는 상기 초전도체층의 용융점이 상기 안정화재층의 용융점보다 낮아질 때까지 산소분압을 제어하고, 상기 제어된 산소분압 하에서 상기 2세대 고온 초전도 선재 2가닥을 접합한다.
또한, 상기 안정화재층의 일부를 제거하는 단계는 (a1) 상기 안정화재층 위에 레지스트(resist)를 이용하여 패터닝함으로써 상기 안정화재층의 일부를 노출시키는 단계; 및 (a2) 상기 노출된 안정화재층 일부를 에칭으로 제거하는 단계를 포함한다.
한편, 상기 안정화재층의 일부를 제거하는 단계는 상기 2세대 고온 초전도 선재의 끝단에서 시작하여 상기 끝단으로부터 일정 거리 떨어진 부분에 이르는 영역에 존재하는 안정화재층을 제거하는 것을 특징으로 하고, 상기 2세대 고온 초전도 선재 2가닥의 초전도체층을 맞대어 접촉하도록 고정하는 단계는 한 가닥의 2세대 고온 초전도 선재의 끝단이 다른 가닥의 2세대 고온 초전도 선재의 단차부분에 닿고, 초전도체층 상호간에 밀착되도록 고정되는 것을 특징으로 한다.
본 발명의 일 일시예에 의하면, 상기 2세대 고온 초전도 선재 2가닥의 초전도체층을 맞대어 접촉하도록 고정하는 단계는 상기 2가닥의 2세대 고온 초전도 선재의 초전도체층을 접촉시킨 후 상하 2개의 금속판과 상기 2개의 금속판을 체결하는 체결수단을 이용하여 상기 2개의 금속판을 체결하는 것을 특징으로 한다.
또한, 상기 상하 2개의 금속판과 상기 체결수단은 1,000℃ 이상에서 내열성을 가지는 물질로 제조된다.
본 발명의 다른 실시예에 의하면, 상기 산소분위기로 산화(oxygenation annealing)시키는 단계는 노(furnace) 내부에 450~650℃에서 산소를 지속적으로 순환시켜 흘려 넣어주는 것을 특징으로 한다.
또한, 상기 산소분위기로 산화(oxygenation annealing)시키는 단계는 상기 초전도체층을 이루는 구성하는 Y(이트륨), Ba(바륨), Cu(구리) 가 각각 1, 2, 3 몰일 때를 기준으로, O(산소 원자)가 6.4 ~ 7몰이 될 때까지 산소분위기에서 산화(oxygenation annealing)시킨다.
본 발명에 따르면 중간 매개체 없이 직접 초전도체층을 맞대어 용융확산함으로써, 상전도 접합에 비해 접합저항이 거의 없이 충분히 긴 선재를 제작할 수 있다. 또한, 본 발명에 따르면 고온에서 용융확산한 후에 산소분위기에서 산화(oxygenation annealing)시킴으로써, 고온에서 용융확산 과정 중에서 초전도체로부터 손실된 산소를 보상하여 초전도체 성질을 유지할 수 있다. 나아가 본 발명에 따르면 산소분압을 진공에 가까운 상태로 만들어 공융점(eutectic melting point)을 낮추어 은(Ag) 등이 포함된 안정화재층 등이 용융되지 않게 하면서 접합할 수 있다.
도 1은 2세대 고온 초전도 선재(YBCO-CC)의 구조를 도시한 도면이다.
도 2는 일반적인 2세대 고온 초전도 선재(YBCO-CC)의 상전도 접합의 단면도 및 전류의 흐름을 표시한 도면이다.
도 3은 본 발명의 일실시예에 따른 산소분압 조절을 통한 2세대 고온 초전도 선재의 용융확산 접합방법을 설명하는 흐름도이다.
도 4는 본 발명의 일실시예에 따라, 초전도 선재의 일단에서 안정화재층을 제거한 후의 2세대 고온 초전도 선재(YBCO-CC)를 도시한 도면이다.
도 5는 본 발명의 일실시예에 따라, 2가닥의 초전도 선재를 맞대어 접촉시키는 것을 도시한 도면이다.
도 6은 본 발명의 일실시예에 따른 2가닥의 초전도 선재를 맞대어 고정시키는 홀더의 구성을 도시한 도면이다.
도 7 내지 도 10은 산소분압의 변화에 따라 Y123-Ag와 Ag의 용융점의 변화를 표시한 그래프이다.
도 11은 산소함량에 따른 초전도 선재(YBCO-CC)의 격자변수(Lattice parameter)의 변화를 나타낸 그래프이다.
* 도면의 주요 부분에 대한 부호의 설명 *
10,20 : 초전도 선재 11,21 : 기판부
12,22 : 완충층 13,23 : 초전도체층
14,24 : 안정화재층 15 : 솔더(solder)
25 : 단차부분 25 : 접합부위
30 : 홀더 31 : 금속판
32 : 체결홀 33 : 볼트
34 : 너트
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다. 또한, 본 발명을 설명하는데 있어서 동일 부분은 동일 부호를 붙이고, 그 반복 설명은 생략한다.
도 3은 본 발명의 일실시예에 따른 산소분압 조절을 통한 2세대 고온 초전도 선재의 용융확산 접합방법을 설명하는 흐름도이다.
도 4는 본 발명의 일실시예에 따라, 초전도 선재의 일단에서 안정화재층을 제거한 후의 2세대 고온 초전도 선재(YBCO-CC)를 도시한 도면이다. 본 발명의 일 실시예에 따른 2세대 고온 초전도 선재(20)는 기판부(21), 완충층(22), 초전도체층(23) 및 안정화재층(24)으로 구성된다.
도 3을 참조하면, 본 발명의 일실시예에 따른 2세대 고온 초전도 선재의 접합 방법은 10 단계에서 초전도 선재(20)의 2가닥 일단을 식각하여 안정화재층(24)을 제거하고(S10), 20 단계에서 안정화재층(24)이 제거되어 노출된 초전도체층(23)을 맞대어 접촉시킨 후, 홀더로 고정시키고(S20), 30 단계에서 상기 고정시킨 부분을 노(furnace)에 넣고, 산소분압을 조절시킨 상태에서 초전도체층 용융점(melting point)으로 가열하여 용융확산(melting diffusion)에 의한 접합을 하고(S30), 40 단계에서 상기 접합부분을 산소분위기로 산화(oxygenation annealing)시킨다(S40). 이상의 각 단계에서 대해서 도 4 내지 도 6을 참조하여 이하 상세히 살펴보기로 한다.
10 단계는 초전도 선재(20)의 2가닥에 대하여, 각 가닥 일단의 소정의 길이 부분을 식각하여 안정화재층(24)을 제거하는 공정이다(S10). 바람직하게는, 10 단계는 (a1) 초전도 선재 가닥(20) 일단으로부터 소정의 길이 떨어진 부분(25) 안쪽 부분에 레지스트(resist)를 도포하는 단계; (a2) 초전도 선재 가닥 일단(20)의 끝단으로부터 소정의 길이 떨어진 부분(25)까지의 영역을 에칭으로 안정화재층을 제거하는 단계를 포함하여 구성된다. 2세대 고온 초전도 선재(YBCO-CC)(20)에서 영구전류가 흐를 수 있는 초전도체를 이루는 초전도체 층(23)은 완충층(22) 및 안정화재층(24) 등 상전도체 층 사이에 적층되어 있다. 따라서 원래 제조된 상태에서는 초전도체 끼리 접합하는 것은 불가능하다.
초전도체 간에 접합을 하기 위해, 선행되는 공정은 초전도체 층(23)을 노출시키도록 초전도체 층(23)을 덮고 있는 상전도 층을 제거하는 일이다. 바람직하게는, 광학적 방법 또는 화학적 방법을 통해 초전도체 층(23)을 덮고 있는 안정화재층(24)을 제거하여 초전도체층(23)을 노출시킨다. 도 4는 접합하고자 하는 부분의 안정화재층(24)을 제거하여 초전도체층(23)이 드러난 모습을 보여주고 있다.
안정화재층(24)을 화학적 방법에 의해 제거하는 데는 에칭의 방법이 이용될 수 있다. 먼저 제거하고자 하는 안정화재층(24)의 이외 부분에 레지스트(resist)를 도포한다. 접합하고자 하는 부분은 초전도 선재(20)의 끝단으로부터 초전도 선재(20)의 끝단에서 소정의 길이만큼 떨어진 부분(25)까지이므로, 접합하고자 하는 부분을 제외한 안정화재층(24) 상에 레지스트로 도포를 한다. 도 4에서 도면부호 25인 지점이 초전도 선재(20)의 끝단에서 소정의 길이만큼 떨어진 부분이고, 도면부호 25부터 초전도 선재(20)의 끝단의 반대 방향으로 레지스트를 도포한다.
레지스트(resist)를 도포한 후에 식각약품으로 에칭을 하여 안정화재층(24)을 식각한다. 식각약품은 안정화재층(24)을 이루는 물질을 식각할 수 있는 화학물질이다. 이 식각약품은 안정화재층(24)을 이루는 물질에 따라 상기 물질을 식각할 수 있는 약품이 선택된다. 상기 에칭은 본 분야에 공지기술이므로 구체적 설명은 생략한다. 한편, 본 발명은 초전도 선재의 안정화재층(24)을 제거하는 공정을 에칭 공정에 한정하지 않는다. 즉, 안정화재층(24)을 부분적으로 제거할 수 있는 기술이라면 어느 것이나 적용될 수 있다.
도 5는 본 발명의 일실시예에 따라, 2가닥의 초전도 선재를 맞대어 접촉시키는 것을 도시한 도면이고, 도 6은 본 발명의 일실시예에 따른 2가닥의 초전도 선재를 맞대어 고정시키는 홀더의 구성을 도시한 도면이다. 20 단계는 도 3과 도 4 내지 도 6을 참조하여 보다 상세히 설명하기로 한다.
20 단계는 초전도 선재(20)의 2가닥의 일단을 서로 겹쳐 홀더(30)로 고정하되, 안정화재층(24)이 제거되어 노출된 초전도체층(23)이 맞대어 접촉하도록 고정하는 공정이다(S20). 바람직하게는, 20 단계에서, 한 가닥의 초전도 선재(20)의 끝단이 다른 가닥의 초전도 선재의 단차부분(25)에 닿고 초전도체층(23)이 밀착되도록 홀더(30)로 고정한다.
바람직하게는, 홀더(30)는 상하 2개의 금속판(31) 및 2개의 금속판(31)을 체결하는 체결수단을 포함하고, 20 단계에서, 상하 2개의 금속판(31) 사이에 접촉된 2가닥의 초전도 선재(20)를 두고 체결수단으로 2개의 금속판(31)을 체결한다. 특히, 홀더(30)는 적어도 1,000℃ 에서 내열성을 가지는 물질로 제조된 것이 바람직하다. 즉, 위와 같이 안정화체층(24)을 제거한 두 초전도 선재(20)를 도 5와 같이 서로 맞대어 겹치도록 한다. 이때, 초전도 선재(20)의 하나의 가닥은 끝단은 다른 가닥의 단차(25) 부분에 닿도록 한다. 두 초전도 선재(20)가 모두 동일한 소정의 길이로 안정화재층(24)을 제거하면, 2가닥의 노출된 초전도층(23)은 밀접하게 접촉될 수 있을 것이다.
다음으로, 도 6에서 보는 바와 같이 안정화체층(24)이 식각된 초전도 선재(20)의 초전도체층(23)끼리 서로 마주보도록 놓고 홀더(holder)(30)로 고정한다. 즉, 홀더(30)는 마주보는 2개의 금속판(31)과, 금속판(31)에 체결수단을 연결하기 위한 체결홀(32), 체결수단인 볼트(33)와 너트(34)이다. 즉, 볼트(33)와 너트(34)를 체결홀(32)을 관통하여 조여줌으로써, 초전도 선재를 접촉시켜 고정시킨다.
홀더(holder)(30)는 모두 고온에서의 열처리를 견뎌야하므로 내열성이 강한 물질로서 제작되어야 한다. 특히, 용융확산(melting diffusion)을 하는 온도가 800℃ 이상에서 이루어지므로, 최소한 1,000℃가 넘는 온도에서도 견딜 수 있는 내열성을 가지는 것이 바람직하다.
상기와 같은 접합은 초전도체층(23) 사이에 상전도 층이 존재하지 않게 되므로 접합 저항의 발생으로 인한 줄열 및 Quench 발생을 방지해준다.
30 단계는 20 단계에서 고정시킨 부분을 노(furnace)에 넣고, 산소분압이 진공인 상태에서 초전도체층(23)의 초전도체 용융점(melting point)으로 가열하여 맞대어 접촉한 초전도체층을 용융확산(melting diffusion)하는 공정이다(S30). 이때의 진공상태는 진공에 가까운 상태도 포함하며, 이러한 진공에 가까운 상태는 10Pa정도 이하인 분압상태로 설정하는 것이 바람직하다. 즉, 앞서 20 단계에서 홀더(30)로 고정시킨 2가닥의 초전도 선재(20)를 노(furnace)에 넣어서 초전도체층(23) 사이에서 용융확산(melting diffusion)에 따른 결합을 유도한다.
이 때 산소 분압에 따른 물질의 녹는점 변화를 이용하여 용융확산(melting diffusion)에 따른 결합을 유도하기 위한 온도를 조절할 수 있다. 즉, 용융확산을 하기 위한 가열온도를 조절하는 이유는 가열온도에서 초전도체층(23)을 제외한 다른 부분(또는 층)에서 고온에 의해 변형 또는 오염이 발생할 수 있기 때문이다.
예를 들면, 대기압 상태(Po2 of 21.3 kPa)에서 2세대 고온 초전도 선재의 초전도체 물질인 YBCO는 980℃ 근처에서 용융(melting)이 이루어지기 시작한다. 즉, YBCO의 용융점은 약 980℃ 이다. 따라서 20 단계에서 고정시킨 초전도 선재의 부분(26)을 용융확산(melting diffusion) 시키기 위해서는 980℃ 근처까지 가열을 해야 한다.
그런데, 안정화재층(24)의 물질로 많이 이용되는 은(Ag)은 대기압 상태(Po2 of 21.3 kPa)에서 공융점(eutectic melting point)이 935℃ 내지 940℃ 이다. 따라서 초전도 선재의 부분(26)을 용융확산(melting diffusion) 시키기 위해서 980℃ 근처까지 가열하면, 은(Ag)이 우선적으로 용융(melting)되어 버린다. 즉, 초전도 선재의 열처리 과정 중 초전도체층(23)의 결합이 이루어지기 전에 은(Ag)이 용융(melting)됨으로써 여러 가지 문제가 발생된다.
따라서 안정화재층(24)에 은(Ag)이 함유되어 있는 경우에는 은(Ag)이 용융(melting)이 되지 않으면서, 초전도체층(23)을 용융확산(melting diffusion) 시킬 수 있어야 한다.
이를 위해, 산소 분압이 진공에 가까운 상태에서는 Y123-Ag의 용융점(melting point)이 Ag의 공융점(eutectic melting point) 보다 낮은 온도에서 발생하게 되는 현상을 이용한다. 즉, 진공상태에서는 Y123-Ag의 용융점(melting point)에서 열처리를 함으로써 Y123-Ag의 확산(diffusion)이나 용융(melting)으로 결합을 시킬 수 있다. 이때 열처리하는 온도(또는 Y123-Ag의 용융점)는 Ag의 공융점보다 낮은 온도이므로, Ag는 용융(melting)이 일어나지 않는다.
산소분압에 따라 Y123-Ag과 Ag의 용융점이 서로 교차되는 것을 도 7 내지 도 10을 참조하여 설명한다. 도 7과 도 8은 대기압에서의 용융점이 변하는 그래프이고, 도 9와 도 10은 산소분압이 낮은 경우에서의 용융점의 변화를 표시한 그래프이다. 도 8 과 도 10은 도 7과 도 9의 특정 온도 구간(900 ~ 1000℃)을 확대한 그래프이다.
도 7과 도 8에서 보는 바와 같이, 대기압에서는 은(Ag)의 공융점(eutectic melting point)이 피크(peak)인 지점(도 8의 b지점)에서 935 ~ 940℃이고, Y123-Ag의 피크 지점(도 7b의 c지점)에서 990℃ 임을 알 수 있다. 즉, Y123-Ag의 용융점이 은보다 더 높음을 알 수 있다.
반면, 도 9와 도 10을 참조하면 산소분압이 0.55kPa에서는 은(Ag)의 공융점(eutectic melting point), 즉, 3번째 피크(peak)인 지점(도 10의 b지점)에서 960℃이고, Y123-Ag의 용융점인 2번째 피크 지점(도 10의 c지점)에서 950 ~ 955℃ 임을 알 수 있다. 즉, Y123-Ag의 용융점이 Ag보다 더 낮음을 알 수 있다.
이를 비교하여 나타내면, 다음 [표 1]과 같다.
표 1
Figure PCTKR2009004360-appb-T000001
다만, 앞의 표 1의 결과는 실험에 의한 값으로 Y123-Ag의 상태, 즉, Ag의 함유량 등에 따라 측정된 온도는 약간 차이가 있을 수 있다. 또, Ag의 상태 또는 실험 조건에 따라 실험결과가 약간의 차이가 있을 수 있다.
따라서 초전도체의 형태(예를 들면, 벌크타입 또는 박막타입 등) 또는 Ag의 상태에 따라 온도에 약간 차이가 나더라도 본 발명을 적용할 수 있고, 본 발명은 그 온도 범위까지 포함된다. 본 발명의 일 실시예에서는 산소분압에 따라 Y123-Ag 및 Ag의 용융점(또는 공융점)이 서로 역전되는 현상을 이용한다. 요약하면, 산소분압을 낮추어 열처리를 함으로써, Ag의 용융(melting)으로 인한 문제없이 초전도체 층의 결합을 유도할 수 있다.
40 단계는 30 단계에서의 접합부분을 450 ~ 650 ℃에서, 산소분위기로 산화시킨다(S40). 바람직하게는, 40 단계에서, 노(furnace) 내부에 산소를 지속적으로 순환시켜 흘려 넣어준다. 특히, 40 단계에서, 초전도체층을 이루는 구성하는 Y(이트륨), Ba(바륨), Cu(구리) 가 각각 1, 2, 3 몰일 때를 기준으로, O(산소 원자)가 6.4 ~ 7몰이 될 때까지 주변의 산소원자의 초전도체 내부로의 확산(in-diffusion)을 유도하여 산화(oxygenation annealing)시킨다.
초전도체층(13)은 YBa2Cu3O7-x계로 대표되는 산화물 초전도 물질로 이루어진다. 즉, Y:Ba:Cu의 몰 비율은 1:2:3이고, 이에 대한 산소(O)의 몰비율은 일반적으로 6.4 내지 7이어야 한다.
그런데 30 단계에서 열처리를 하기 위해 900℃ 이상의 고온으로 유지하면, 이와 같은 높은 온도에서 초전도체층(23)을 이루는 YBa2Cu3O7-x 의 구성에서 산소(O)가 빠져나온다. 산소가 빠져 나오면, Y:Ba:Cu의 몰 비율은 1:2:3에 대하여, 산소(O)의 몰비율은 일반적으로 6.4 이하로 떨어지게 된다.
이렇게 되면, 초전도체층(23)은 초전도 상태인 사방정계(orthorhombic) 구조에서 상전도 상태인 정방정계(tetragonal) 구조로의 상변화가 일어난다. 즉, 초전도체층(23)은 초전도성을 잃어버리게 되는 현상이 발생한다.
이와같은 초전도체층(23)의 구조변화를 도 11을 참조하여 보다 자세히 설명한다. 도 11에서 보는 바와 같이, YBa2Cu3O7-x 계의 초전도 물질은 산소의 함량에 따라 격자변수(Lattice parameter)가 변하게 된다. 도 11의 그래프에서 x축은 산소함량을 표시하고, y축은 각 격자변수의 수치를 표시한 것이다. 특히, x축의 산소함량은 YBa2Cu3O7-x에서 7-X가 나타내는 값이다.
도 11에서, 산소함량이 6.4보다 작게 되면 격자변수(Lattice parameter) a와 b는 같게 된다. 즉, 격자변수 a와 b가 같다는 것은 정방정계(tetragonal) 구조인 것을 말하고, 초전도성을 잃어버린다는 것을 의미한다. 요약하면, Y-123 와 Ag의 녹는점 변화를 위해 진공상태에서 고온으로 열처리를 하면, 초전도체층(23)은 산소의 손실로 인한 상변화가 일어나 초전도성을 잃어버린다. 즉, 40 단계는 이를 해결하기 위해 450~650℃ 근처에서 산소 분위기로 산화(oxygenation annealing)를 해 줌으로써 산소의 손실을 보상하여 초전도성을 회복시키는 두 번째 열처리 공정이다.
산소 분위기는 산화(oxygenation annealing)를 하는 노(furnace) 내부에 산소를 지속적으로 순환시켜 흘려 넣어주는 것으로 만들어진다. 특히, 450~650℃ 근처에서 열처리하여 산화시키는 이유는 이 온도에서 사방정계(orthorhombic phase)가 가장 안정적이기 때문이다.
40 단계에서 산화(oxygenation annealing)를 하는 시간을 조절해야 하는데 그 이유는 일정 시간을 넘어서 장시간 산소분위기에서 산화(oxygenation annealing)시키는 경우 오히려 산소함유량이 높아지고, 충분한 시간동안 산화(oxygenation annealing)를 하지 않으면 산소함유량이 미달되어 초전도성을 읽어버리기 때문이다.
한편, 앞서 기재한 발명은 YBa2Cu3O7-x계의 산화물 초전도 물질로 이루어진 초전도체층(23)을 대상으로 그 상부에 안정화재층(24)을 둔 경우의 실시예를 설명하였으나 이 실시예에 한정하는 것은 아니다. 즉, 초전도 선재의 모재나 안정화재층의 종류에 관계없이 상전도 층을 제거할 수 있다면, 본 발명에 따라 열처리를 통해 간단하게 초전도 접합이 가능하다. 또한, 본 발명은 상전도 층을 제거한 후 열처리를 통해 간단히 초전도 접합이 가능하고, 실제 초전도 시스템 제작에 이용하기 편리하다는 장점도 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명은 2세대 고온 초전도 선재의 2가닥을 접합하여 하나의 가닥으로 연결하는 초전도 선재의 접합에 이용될 수 있다. 본 발명은 모든 초전도 마그네트 시스템 개발에 이용되는 충분히 긴 초전도 선재를 제작하는데 이용될 수 있으며, 특히 MRI, NMR, SMES 마그네트 시스템 등과 같이 영구전류모드 운전이 필수적인 응용기기에 적용될 수 있다.

Claims (8)

  1. 초전도체층 및 안정화재층을 포함한 2세대 고온 초전도 선재를 접합하는 방법에 있어서,
    (a) 상기 2세대 고온 초전도 선재 2가닥에 포함된 안정화재층의 일부를 제거하는 단계;
    (b) 상기 안정화재층이 제거되어 노출된 상기 2세대 고온 초전도 선재 2가닥의 초전도체층을 맞대어 접촉하도록 고정하는 단계;
    (c) 상기 초전도체층의 용융점(melting point)까지 가열함으로써 상기 맞대어 접촉한 초전도체층을 용융확산(melting diffusion)시켜 상기 2세대 고온 초전도 선재 2가닥을 접합하는 단계; 및
    (d) 상기 접합부분을 산소분위기로 산화(oxygenation annealing)시키는 단계를 포함하는 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
  2. 제 1항에 있어서, 상기 2세대 고온 초전도 선재 2가닥을 접합하는 단계는,
    상기 초전도체층의 용융점이 상기 안정화재층의 용융점보다 낮아질 때까지 산소분압을 제어하고, 상기 제어된 산소분압 하에서 상기 2세대 고온 초전도 선재 2가닥을 접합하는 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
  3. 제 1항에 있어서, 상기 안정화재층의 일부를 제거하는 단계는,
    (a1) 상기 안정화재층 위에 레지스트(resist)를 이용하여 패터닝함으로써 상기 안정화재층의 일부를 노출시키는 단계; 및
    (a2) 상기 노출된 안정화재층 일부를 에칭으로 제거하는 단계를 포함하는 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
  4. 제 1항에 있어서, 상기 안정화재층의 일부를 제거하는 단계는,
    상기 2세대 고온 초전도 선재의 끝단에서 시작하여 상기 끝단으로부터 일정 거리 떨어진 부분에 이르는 영역에 존재하는 안정화재층을 제거하는 것을 특징으로 하고,
    상기 2세대 고온 초전도 선재 2가닥의 초전도체층을 맞대어 접촉하도록 고정하는 단계는,
    한 가닥의 2세대 고온 초전도 선재의 끝단이 다른 가닥의 2세대 고온 초전도 선재의 단차부분에 닿고, 초전도체층 상호간에 밀착되도록 고정되는 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
  5. 제 4항에 있어서, 상기 2세대 고온 초전도 선재 2가닥의 초전도체층을 맞대어 접촉하도록 고정하는 단계는,
    상기 2가닥의 2세대 고온 초전도 선재의 초전도체층을 접촉시킨 후 상하 2개의 금속판과 상기 2개의 금속판을 체결하는 체결수단을 이용하여 상기 2개의 금속판을 체결하는 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
  6. 제 5항에 있어서, 상기 상하 2개의 금속판과 상기 체결수단은,
    1,000℃ 이상에서 내열성을 가지는 물질로 제조된 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
  7. 제 1항에 있어서, 상기 접합부분을 산소분위기로 산화시키는 단계는,
    노(furnace) 내부에 450~650℃에서 산소를 지속적으로 순환시켜 흘려 넣어주는 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
  8. 제 1항에 있어서, 상기 접합부분을 산소분위기로 산화시키는 단계는,
    상기 초전도체층을 이루는 구성하는 Y(이트륨), Ba(바륨), Cu(구리) 가 각각 1, 2, 3 몰일 때를 기준으로, O(산소 원자)가 6.4 ~ 7몰이 될 때까지 산소분위기에서 산화(oxygenation annealing)시키는 것을 특징으로 하는 2세대 고온 초전도 선재의 용융확산 접합방법.
PCT/KR2009/004360 2008-08-04 2009-08-04 2세대 고온 초전도 선재의 용융확산 접합방법 WO2010016720A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/600,282 US20100210468A1 (en) 2008-08-04 2009-08-04 Method for joining second-generation high-temperature superconducting wires by melting diffusion
JP2010547577A JP5214744B2 (ja) 2008-08-04 2009-08-04 減圧された酸素分圧下における熱処理を用いた2世代高温超伝導線材の超伝導接合方法
CN2009801062233A CN101971273B (zh) 2008-08-04 2009-08-04 第二代高温超导线材的熔融扩散接合方法
EP09805181A EP2312592A4 (en) 2008-08-04 2009-08-04 FUSION DIFFUSION WELDING METHOD FOR SECOND GENERATION HIGH TEMPERATURE SUPERCONDUCTING WIRE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080076178A KR100964361B1 (ko) 2008-08-04 2008-08-04 산소분압 조절을 통한 2세대 초전도 선재의 용융확산접합방법
KR10-2008-0076178 2008-08-04
KR10-2008-0076174 2008-08-04
KR1020080076174A KR100964354B1 (ko) 2008-08-04 2008-08-04 초전도체층의 직접 용융확산에 의한 2세대 초전도 선재의접합방법

Publications (3)

Publication Number Publication Date
WO2010016720A2 true WO2010016720A2 (ko) 2010-02-11
WO2010016720A9 WO2010016720A9 (ko) 2010-04-29
WO2010016720A3 WO2010016720A3 (ko) 2010-06-17

Family

ID=41664093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004360 WO2010016720A2 (ko) 2008-08-04 2009-08-04 2세대 고온 초전도 선재의 용융확산 접합방법

Country Status (5)

Country Link
US (1) US20100210468A1 (ko)
EP (1) EP2312592A4 (ko)
JP (1) JP5214744B2 (ko)
CN (1) CN101971273B (ko)
WO (1) WO2010016720A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221191A (zh) * 2022-01-06 2022-03-22 中国科学院电工研究所 一种第二代高温超导带材的连接方法及连接超导线

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728591B1 (en) 2012-05-02 2018-04-25 Furukawa Electric Co., Ltd. Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and treatment method of superconducting wire material end
EP2672537B1 (en) * 2012-06-06 2015-12-16 Bruker HTS GmbH Superconductive device without an external shunt system, in particular with a ring shape
KR101374177B1 (ko) * 2012-10-11 2014-03-14 케이조인스(주) 고온 초전도체층의 직접 접촉에 의한 부분 미세 용융 확산 압접을 이용한 2세대 ReBCO 고온 초전도체의 접합 및 산소 공급 어닐링 열처리에 의한 초전도 회복 방법
CN102931339A (zh) * 2012-11-02 2013-02-13 西南交通大学 双面ybco薄膜结构的超导开关
KR101374212B1 (ko) * 2013-08-16 2014-03-17 케이조인스(주) ReBCO 고온 초전도 선재 접합 장치 및 이를 이용한 접합 방법
US9768370B2 (en) * 2013-09-17 2017-09-19 Varian Semiconductor Equipment Associates, Inc. Low AC loss high temperature superconductor tape
JP6419732B2 (ja) 2014-02-04 2018-11-07 国立研究開発法人理化学研究所 高温超伝導線材の低抵抗接続体および接続方法
JP6274975B2 (ja) * 2014-06-06 2018-02-07 株式会社フジクラ 酸化物超電導線材の接続構造体の製造方法、及び酸化物超電導線材の接続構造体
JP6178779B2 (ja) * 2014-12-05 2017-08-09 株式会社フジクラ 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
WO2016129469A1 (ja) 2015-02-12 2016-08-18 住友電気工業株式会社 超電導線材の製造方法および超電導線材接合用部材
KR102421692B1 (ko) * 2015-09-09 2022-07-18 한국전기연구원 고온 초전도 선재
JP6667543B2 (ja) * 2015-10-01 2020-03-18 古河電気工業株式会社 超電導線材の接続構造
JP6459149B2 (ja) * 2015-11-05 2019-01-30 住友電気工業株式会社 薄膜酸化物超電導線材の製造方法
US20180358153A1 (en) 2015-11-05 2018-12-13 Sumitomo Electric Industries, Ltd. Oxide superconducting thin film wire and method for producing the same
JP6459150B2 (ja) * 2015-11-05 2019-01-30 住友電気工業株式会社 薄膜酸化物超電導線材およびその製造方法
CN105390902B (zh) * 2015-12-07 2019-03-01 清华大学深圳研究生院 一种用于稀土钡铜氧高温超导导线的超导接头制作方法
CN106229074B (zh) * 2016-08-24 2018-01-23 西南交通大学 一种稀土钡铜氧高温超导带材的接头连接方法
CN106340381B (zh) * 2016-09-09 2019-03-22 西南交通大学 一种高温超导磁悬浮列车用超导磁体的制作方法
JP2018142409A (ja) 2017-02-27 2018-09-13 古河電気工業株式会社 超電導線材の接続構造
JP6998667B2 (ja) * 2017-03-30 2022-01-18 古河電気工業株式会社 接続構造体
US10141493B2 (en) * 2017-04-11 2018-11-27 Microsoft Technology Licensing, Llc Thermal management for superconducting interconnects
CN107393652A (zh) * 2017-06-01 2017-11-24 上海超导科技股份有限公司 一种带有低阻内封接头的钇系超导带材及其制备方法
GB2565839A (en) * 2017-08-25 2019-02-27 Tokamak Energy Ltd Superconducting joint using exfoliated ReBCO
JP6569959B2 (ja) * 2017-08-30 2019-09-04 国立研究開発法人理化学研究所 高温超伝導線材の接続体
US11645493B2 (en) 2018-05-04 2023-05-09 Microsoft Technology Licensing, Llc Flow for quantized neural networks
US10453592B1 (en) 2018-05-07 2019-10-22 Microsoft Technology Licensing Llc Reducing losses in superconducting cables
JP7256347B2 (ja) * 2018-09-28 2023-04-12 国立研究開発法人理化学研究所 高温超伝導線材の接続体および接続方法
US11763157B2 (en) 2019-11-03 2023-09-19 Microsoft Technology Licensing, Llc Protecting deep learned models
CN111106453B (zh) * 2019-12-09 2021-07-20 东部超导科技(苏州)有限公司 一种第二代高温超导带材的连接方法及超导线
CN111524653B (zh) * 2020-04-30 2021-12-07 中国科学院电工研究所 一种第二代高温超导带材的连接方法及超导线
CN111872539B (zh) * 2020-08-11 2022-02-11 上海上创超导科技有限公司 一种高温超导带材内封接头制作方法
CN112992420A (zh) * 2021-02-23 2021-06-18 东北大学 超导膜面向内封装的双芯超导带材
US20220375869A1 (en) * 2021-05-21 2022-11-24 Microsoft Technology Licensing, Llc High temperature superconductor-based interconnect systems with a lowered thermal load for interconnecting cryogenic electronics with non-cryogenic electronics

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427191A (en) * 1982-06-24 1984-01-24 Hess Stanley E Panel clamp
JPS63292519A (ja) * 1987-05-26 1988-11-29 Hitachi Cable Ltd 電流ブス
US5015620A (en) * 1987-11-06 1991-05-14 The United States Of America As Represented By The Secretary Of Commerce High-Tc superconductor contact unit having low interface resistivity, and method of making
JPH042669A (ja) * 1990-04-19 1992-01-07 Ishikawajima Harima Heavy Ind Co Ltd 超電導膜の接合方法及び補修方法
JP2501281B2 (ja) * 1992-02-12 1996-05-29 インターナショナル・ビジネス・マシーンズ・コーポレイション 高臨界電流密度の超伝導体を製造する方法
US5334804A (en) * 1992-11-17 1994-08-02 Fujitsu Limited Wire interconnect structures for connecting an integrated circuit to a substrate
JP2907313B2 (ja) * 1993-12-02 1999-06-21 中部電力 株式会社 ビスマス系高温超電導体の接合方法
US5872081A (en) * 1995-04-07 1999-02-16 General Atomics Compositions for melt processing high temperature superconductor
US5882536A (en) * 1995-10-12 1999-03-16 The University Of Chicago Method and etchant to join ag-clad BSSCO superconducting tape
JPH09306256A (ja) * 1996-05-14 1997-11-28 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center バルク酸化物超電導体ならびにその線材及び板の作製方法
US5856277A (en) * 1996-06-03 1999-01-05 Illinois Superconductor Corporation Surface texturing of superconductors by controlled oxygen pressure
DK0866508T3 (da) * 1997-03-21 2003-10-06 Haldor Topsoe As Fremgangsmåde til fremstilling af superledere af sjældne jordarter-barium-cuprater
JPH1167523A (ja) * 1997-08-21 1999-03-09 Toshiba Corp 酸化物超電導線材の接続方法、酸化物超電導コイル装置およびそれを用いた超電導装置
JP3717683B2 (ja) * 1998-10-30 2005-11-16 株式会社フジクラ 酸化物超電導導体の接続構造及び接続方法
JP3836299B2 (ja) * 2000-05-02 2006-10-25 株式会社フジクラ 酸化物超電導導体の接続方法
JP4016601B2 (ja) * 2000-07-14 2007-12-05 住友電気工業株式会社 酸化物超電導線材の製造方法とその製造方法に用いられる加圧熱処理装置
KR100360292B1 (ko) * 2000-12-20 2002-11-07 한국전기연구원 고온 초전도 테이프 선재의 초전도 접합 방법
JP4113113B2 (ja) * 2001-06-29 2008-07-09 財団法人国際超電導産業技術研究センター 酸化物超電導体の接合方法及び酸化物超電導体接合体
US7071148B1 (en) * 2005-04-08 2006-07-04 Superpower, Inc. Joined superconductive articles
US7674751B2 (en) * 2006-01-10 2010-03-09 American Superconductor Corporation Fabrication of sealed high temperature superconductor wires
JP2008066399A (ja) * 2006-09-05 2008-03-21 Sumitomo Electric Ind Ltd 超電導線材の接続構造、超電導コイルおよび超電導線材の接続方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2312592A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221191A (zh) * 2022-01-06 2022-03-22 中国科学院电工研究所 一种第二代高温超导带材的连接方法及连接超导线
CN114221191B (zh) * 2022-01-06 2023-12-01 中国科学院电工研究所 一种第二代高温超导带材的连接方法及连接超导线

Also Published As

Publication number Publication date
CN101971273A (zh) 2011-02-09
CN101971273B (zh) 2012-07-04
WO2010016720A9 (ko) 2010-04-29
EP2312592A4 (en) 2012-12-26
US20100210468A1 (en) 2010-08-19
JP2011515792A (ja) 2011-05-19
EP2312592A2 (en) 2011-04-20
JP5214744B2 (ja) 2013-06-19
WO2010016720A3 (ko) 2010-06-17

Similar Documents

Publication Publication Date Title
WO2010016720A9 (ko) 2세대 고온 초전도 선재의 용융확산 접합방법
WO2014058092A1 (ko) 고온 초전도체층의 직접 접촉에 의한 부분 미세 용융 확산 압접을 이용한 2세대 rebco 고온 초전도체의 접합 및 산소 공급 어닐링 열처리에 의한 초전도 회복 방법
WO2014157780A1 (ko) 고온 초전도체층의 직접 접촉에 의한 고상 원자확산 압접 및 산소 공급 어닐링 열처리에 의한 초전도 회복을 이용한 2세대 rebco 고온 초전도체의 영구전류모드 접합 방법
KR100964354B1 (ko) 초전도체층의 직접 용융확산에 의한 2세대 초전도 선재의접합방법
WO2015023125A1 (ko) Rebco 고온 초전도 선재 접합 장치 및 이를 이용한 접합 방법
JP2007266149A (ja) 超電導線材の接続方法及び超電導線材
WO2011115385A2 (ko) 제 1세대 고온 초전도 선재의 초전도 접합 방법
Wang et al. Design and experimental research on self-shielding DC HTS cable model with large current capacity
WO2020130522A1 (ko) 마이크로 수직 채널을 구비하는 고온 초전도 자석
KR100964361B1 (ko) 산소분압 조절을 통한 2세대 초전도 선재의 용융확산접합방법
JP3447990B2 (ja) 超電導線材の超電導接続方法および超電導接続構造
WO2021107248A1 (ko) 확산접합을 이용한 고온초전도코일의 제조방법 및 이에 의해 제조되는 고온초전도코일
WO2021060644A1 (ko) 다중 초전도층을 가지는 고온초전도 선재 및 이를 위한 고온초전도 선재의 제조방법
JP2018129128A (ja) 超電導ケーブル及び超電導ケーブルの接続部
EP4105949A1 (en) Flexible hts current leads
WO2018236102A1 (ko) 금속-절연체 전이 물질을 구비한 고온 초전도 선재
JPH11340533A (ja) 高温超電導コイル永久電流スイッチ
WO2017047959A1 (ko) 고온 초전도 선재의 결함 보수 방법 및 고온 초전도 선재의 제조 방법
JP4081911B2 (ja) 限流器
WO2019107597A1 (ko) 세라믹 선재의 제조방법
JP2644433B2 (ja) 中空部冷却型複数芯線高温超電導体
KR100821209B1 (ko) 니켈 기판을 이용한 고온초전도 후막테이프의 제조방법
JPH05114515A (ja) 高温超電導電流リード
JPH01159912A (ja) 超電導限流素子の製造方法
Ohmatsu et al. Multifilament superconducting wire of NB 3 AL

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106223.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12600282

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805181

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009805181

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010547577

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE