WO2010016316A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2010016316A1
WO2010016316A1 PCT/JP2009/059946 JP2009059946W WO2010016316A1 WO 2010016316 A1 WO2010016316 A1 WO 2010016316A1 JP 2009059946 W JP2009059946 W JP 2009059946W WO 2010016316 A1 WO2010016316 A1 WO 2010016316A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
switching element
pixel circuit
data
driving
Prior art date
Application number
PCT/JP2009/059946
Other languages
English (en)
French (fr)
Inventor
誠二 大橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2010523796A priority Critical patent/JP5199367B2/ja
Priority to US12/737,294 priority patent/US8674914B2/en
Priority to CN200980126608.6A priority patent/CN102089798B/zh
Priority to EP09804803.6A priority patent/EP2309478B1/en
Publication of WO2010016316A1 publication Critical patent/WO2010016316A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes

Definitions

  • the present invention relates to a display device, and more particularly, to a current-driven display device such as an organic EL display or FED, and a driving method thereof.
  • the organic EL element included in the organic EL display emits light with higher luminance as the applied voltage is higher and the flowing current is larger.
  • the relationship between the luminance and voltage of the organic EL element easily varies under the influence of driving time and ambient temperature. For this reason, when a voltage control type driving method is applied to the organic EL display, it becomes very difficult to suppress variations in luminance of the organic EL element.
  • the luminance of the organic EL element is substantially proportional to the current, and this proportional relationship is not easily influenced by external factors such as the ambient temperature. Therefore, it is preferable to apply a current control type driving method to the organic EL display.
  • the pixel circuit and the drive circuit of the display device are configured using TFTs (Thin Film Transistors) made of amorphous silicon, low-temperature polycrystalline silicon, CG (Continuous Grain) silicon, or the like.
  • TFTs Thin Film Transistors
  • CG Continuous Grain
  • a method for compensating for variations in TFT characteristics includes a current programming method in which the amount of current flowing in the driving TFT is controlled by a current signal, and a voltage programming method in which the amount of current is controlled by a voltage signal. It is roughly divided into If the current programming method is used, variations in threshold voltage and mobility can be compensated, and if the voltage programming method is used, only variations in threshold voltage can be compensated.
  • the influence of parasitic capacitance is set during setting of a current signal.
  • the influence of parasitic capacitance and the like is slight, and the circuit design is relatively easy.
  • the influence of the mobility variation on the current amount is smaller than the influence of the threshold voltage variation on the current amount, and the mobility variation can be suppressed to some extent in the TFT manufacturing process. Therefore, even with a display device to which the voltage program method is applied, sufficient display quality can be obtained.
  • Patent Document 1 describes that the pixel circuit 100 (details will be described later) shown in FIG. 2 is driven according to the timing chart shown in FIG.
  • the driving method shown in FIG. 13 before time t1, the potential of the scanning line Gi and the control wiring Wi is controlled to the high level, the potential of the control wiring Ri is controlled to the low level, and the potential of the data line Sj is controlled to the reference potential Vpc.
  • the switching TFT 111 changes to a conductive state.
  • the switching TFT 112 changes to a conductive state.
  • the gate terminal and the drain terminal of the driving TFT 110 are short-circuited to have the same potential.
  • the switching TFT 113 changes to a non-conductive state.
  • a current flows from the power supply wiring Vp to the gate terminal of the driving TFT 110 via the driving TFT 110 and the switching TFT 112, and the gate terminal potential of the driving TFT 110 rises while the driving TFT 110 is in a conductive state. Since the driving TFT 110 changes to a non-conductive state when the gate-source voltage reaches the threshold voltage Vth (negative value), the gate terminal potential of the driving TFT 110 rises to (VDD + Vth).
  • the switching TFT 112 changes to a non-conductive state.
  • the capacitor 121 holds a potential difference (VDD + Vth ⁇ Vpc) between the gate terminal of the driving TFT 110 and the data line Sj.
  • the gate terminal potential of the driving TFT 110 changes by the same amount (Vdata ⁇ Vpc) to (VDD + Vth + Vdata ⁇ Vpc).
  • the switching TFT 111 changes to a non-conductive state.
  • the capacitor 122 holds the gate-source voltage (Vth + Vdata ⁇ Vpc) of the driving TFT 110.
  • the potential of the data line Sj changes from the data potential Vdata to the reference potential Vpc.
  • the switching TFT 113 changes to a conductive state.
  • a current flows from the power supply wiring Vp to the organic EL element 130 via the driving TFT 110 and the switching TFT 113.
  • the amount of current flowing through the driving TFT 110 increases or decreases according to the gate terminal potential (VDD + Vth + Vdata ⁇ Vpc).
  • the threshold voltage Vth is different, the amount of current is the same if the potential difference (Vdata ⁇ Vpc) is the same. Therefore, regardless of the value of the threshold voltage Vth, an amount of current corresponding to the data potential Vdata flows through the organic EL element 130, and the organic EL element 130 emits light with a luminance corresponding to the data potential Vdata.
  • Patent Document 2 describes that the pixel circuit 900 shown in FIG. 14 is driven in accordance with the timing chart shown in FIG. 15 (however, the names of the signal lines are changed for easy comparison with the present invention). Have been).
  • the driving method shown in FIG. 15 before the time t1, the potentials of the scanning lines G1i and G2i are controlled to a high level, and the potential of the control wiring Ei is controlled to a low level.
  • the switching TFTs 913 and 914 change to a non-conduction state.
  • connection point B A potential Vdata of the data line Sj is applied to a connection point between the switching TFT 911 and the capacitor 921 (hereinafter referred to as a connection point B).
  • the switching TFT 915 changes to a non-conduction state.
  • a current flows from the power supply wiring Vp to the gate terminal of the driving TFT 910 via the driving TFT 910 and the switching TFT 912, and the gate terminal potential Vg of the driving TFT 910 increases while the driving TFT 910 is conductive.
  • the driving TFT 910 changes to a non-conductive state when the gate-source voltage reaches the threshold voltage Vth (negative value), the gate terminal potential Vg of the driving TFT 910 rises to (VDD + Vth).
  • the switching TFTs 911 and 912 change to a non-conductive state, and the switching TFTs 913 and 914 become conductive. Change to state.
  • the potential at the connection point B changes from Vdata to Vpc, and the gate terminal potential Vg of the driving TFT 910 changes by the same amount as the potential at the connection point B to become (VDD + Vth + Vpc ⁇ Vdata).
  • the capacitor 921 holds a potential difference (VDD + Vth ⁇ Vdata) between the gate terminal of the driving TFT 910 and the power supply wiring Vint.
  • a current flows from the power supply wiring Vp to the organic EL element 930 via the driving TFT 910 and the switching TFT 913.
  • the amount of current flowing through the driving TFT 910 increases or decreases according to the gate terminal potential (VDD + Vth + Vpc ⁇ Vdata).
  • VDD + Vth + Vpc ⁇ Vdata the gate terminal potential
  • the current amount is the same if the potential difference (Vpc ⁇ Vdata) is the same. Therefore, regardless of the value of the threshold voltage Vth, an amount of current corresponding to the data potential Vdata flows through the organic EL element 930, and the organic EL element 930 emits light with a luminance corresponding to the data potential Vdata.
  • a desired amount of current flows through the organic EL element 930 regardless of the threshold voltage Vth of the driving TFT 910. Can be made to emit light with a desired luminance.
  • Examples of the organic EL display to which the current control type driving method is applied include Patent Document 3 and another application (Japanese Patent Application No. 2008-131568, 2008) shared by the present applicant and the inventor. (2008) filed on May 20th).
  • the current Ids flowing between the drain and source of the driving TFT 110 is expressed by the following equation using the gate-source voltage Vgs of the driving TFT 110: It is expressed as (1).
  • Ids (1/2) ⁇ (W / L) ⁇ ⁇ ⁇ Cox (Vgs ⁇ Vth) 2
  • W is the channel width of the driving TFT 110
  • L is the channel length of the driving TFT 110
  • is the mobility of the driving TFT 110
  • Cox is the gate oxide film capacitance of the driving TFT 110
  • Vth is for driving. This represents the threshold voltage of the TFT 110.
  • the threshold voltage Vth and the mobility ⁇ tend to vary in the TFT manufacturing process. For this reason, when the pixel circuit 100 shown in FIG. 2 is driven according to the timing chart shown in FIG. 13, the amount of current flowing through the organic EL element 130 fluctuates due to variations in mobility of the driving TFT 110. It becomes difficult to cause the EL element 130 to emit light with a desired luminance. The same problem occurs when the pixel circuit 900 shown in FIG. 14 is driven according to the timing chart shown in FIG.
  • an object of the present invention is to provide a display device that compensates for both variations in threshold voltage and mobility in a driving element using a voltage programming method, and a driving method thereof.
  • a first aspect of the present invention is a current-driven display device, A plurality of pixel circuits arranged corresponding to the intersections of the plurality of scanning lines and the plurality of data lines; A driving circuit that selects a pixel circuit to be written using the scanning line and applies a data potential corresponding to display data to the data line;
  • the pixel circuit includes: An electro-optic element provided between the first power supply wiring and the second power supply wiring; A driving element provided in series with the electro-optic element between the first power supply wiring and the second power supply wiring; A compensation capacitor having a first electrode connected to a control terminal of the drive element; A compensation switching element provided between the control terminal of the drive element and one of the current input / output terminals,
  • the drive circuit controls the compensation switching element to be in a conductive state, applies a potential corresponding to a threshold voltage to the control terminal of the drive element, and then turns on the compensation switching element.
  • the potential applied to the second electrode of the compensation capacitor is switched while maintaining the state, and the write potential
  • the pixel circuit includes: A write switching element provided between the second electrode of the compensation capacitor and the data line; A blocking switching element provided between the driving element and the electro-optic element; It further includes a holding capacitor provided between the control terminal of the driving element and the other current input / output terminal.
  • the driving circuit sets the write switching element and the compensation switching element to a conductive state and the blocking switching element to a non-conductive state while applying a predetermined reference potential to the data line for the pixel circuit to be written. Then, the potential applied to the data line is switched to the data potential while maintaining the state of each switching element.
  • the pixel circuit includes: A blocking switching element provided between one current input / output terminal of the driving element and the first power supply wiring; A write switching element provided between the other current input / output terminal of the drive element and the data line; The second electrode of the compensation capacitor is connected to a control wiring to which the drive circuit applies a potential.
  • the drive circuit controls the writing switching element and the compensation switching element to be in a conductive state and the cutoff switching element to be in a non-conductive state while applying the data potential to the data line for the pixel circuit to be written. Then, the potential applied to the control wiring is switched so that the write potential is applied to the control terminal of the drive element while maintaining the state of each switching element.
  • a sixth aspect of the present invention is the fifth aspect of the present invention.
  • the drive circuit switches the potential applied to the control wiring so that the write potential is applied to the control terminal of the drive element, and then applies the potential applied to the data line to the control terminal of the drive element rather than the data potential. It is characterized by switching to a reference potential close to the potential.
  • the drive circuit is determined by the display data and the amount of change in potential applied to the control wiring with respect to the data line while the write switching element is controlled to be in a conductive state for the pixel circuit to be written. It is characterized by providing a potential.
  • the drive circuit is a potential at which a voltage applied to the electro-optic element is lower than a light emission threshold voltage with respect to the data line while the writing switching element is controlled to be in a conductive state with respect to a pixel circuit to be written. It is characterized by giving.
  • the pixel circuit includes: A write switching element provided between the second electrode of the compensation capacitor and the data line; A blocking switching element provided between the driving element and the electro-optic element; A first initialization switching element provided between the second electrode of the compensation capacitor and a third power supply wiring; Further included is a second initialization switching element provided between one current input / output terminal of the drive element and the third power supply wiring.
  • the driving circuit brings the writing switching element, the compensation switching element, and the second initialization switching element into a conductive state while applying the data potential to the data line for the pixel circuit to be written.
  • the blocking switching element and the first initialization switching element are controlled to be in a non-conductive state, and then the write switching element is set in a non-conductive state while the compensation switching element is maintained in a conductive state.
  • the first initialization switching element is controlled to be in a conductive state.
  • An eleventh aspect of the present invention is a method for driving a current-driven display device including a plurality of pixel circuits arranged corresponding to intersections of a plurality of scanning lines and a plurality of data lines,
  • the pixel circuit includes an electro-optical element provided between a first power supply line and a second power supply line, and the electro-optical element between the first power supply line and the second power supply line.
  • a drive element provided in series, a compensation capacitor having a first electrode connected to the control terminal of the drive element, and a compensation provided between the control terminal of the drive element and one current input / output terminal When including a switching element for A selection step of selecting a pixel circuit to be written using the scanning line; For a pixel circuit to be written, a threshold state setting step of controlling the compensation switching element to a conductive state and applying a potential corresponding to a threshold voltage to a control terminal of the drive element; After the threshold state setting step, for the pixel circuit to be written, the potential applied to the second electrode of the compensation capacitor is switched while the compensation switching element is kept in a conductive state, so that the control circuit of the drive element A conduction state setting step of providing display data and a write potential corresponding to the threshold voltage.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention
  • the pixel circuit includes a writing switching element provided between the second electrode of the compensation capacitor and the data line, and a blocking switching element provided between the driving element and the electro-optical element. And a holding capacitor provided between the control terminal of the drive element and the other current input / output terminal,
  • the threshold state setting step with respect to the pixel circuit to be written, while supplying a predetermined reference potential to the data line, the writing switching element and the compensation switching element are turned on, and the blocking switching element is turned off. Control to the state, In the conduction state setting step, the potential applied to the data line is switched to a data potential corresponding to the display data while maintaining the state of each switching element.
  • a thirteenth aspect of the present invention is the eleventh aspect of the present invention
  • the pixel circuit includes a blocking switching element provided between one current input / output terminal of the drive element and the first power supply wiring, the other current input / output terminal of the drive element, and the data line.
  • a switching element for writing provided between the second capacitor and the second electrode of the compensation capacitor is connected to the control wiring,
  • the threshold state setting step the writing switching element and the compensating switching element are brought into a conducting state while applying a data potential corresponding to the display data to the data line for the pixel circuit to be written, and the blocking is performed.
  • Control the switching element for non-conduction In the conduction state setting step, the potential applied to the control wiring is switched so that the write potential is applied to the control terminal of the driving element while maintaining the state of each switching element.
  • a fourteenth aspect of the present invention is the eleventh aspect of the present invention
  • the pixel circuit includes a writing switching element provided between the second electrode of the compensation capacitor and the data line, and a blocking switching element provided between the driving element and the electro-optical element.
  • a first initialization switching element provided between the second electrode of the compensation capacitor and a third power supply line, one current input / output terminal of the drive element, and the third power supply
  • the write switching element, the compensation switching element, and the second initialization are performed while applying a data potential corresponding to the display data to the data line for the pixel circuit to be written.
  • the conducting state setting step controls the writing switching element to a non-conducting state and the first initialization switching element to a conducting state while keeping the compensation switching element in a conducting state.
  • the threshold voltage is applied to the control terminal by controlling the compensation switching element to the conductive state, and then the compensation switching element is turned on.
  • the display data and the write voltage corresponding to the threshold voltage are applied to the control terminal of the drive element.
  • the drive element is in a conductive state, a current corresponding to the mobility of the drive element flows through the compensation switching element and the drive element, and the potential of the control terminal of the drive element is the movement of the drive element. Varies according to the degree.
  • the electro-optic element when the electro-optic element emits light, a current that is not affected by variations in the threshold voltage of the drive element and is not affected by variations in mobility of the drive element can be passed through the electro-optic element. Therefore, it is possible to compensate for both the threshold voltage variation and the mobility variation of the driving element, and to emit the electro-optical element with a desired luminance.
  • a pixel including an electro-optic element, a driving element, three switching elements (for compensation, writing, and cutoff), and two capacitors (for compensation and holding)
  • a current that is not affected by variations in the threshold voltage of the drive element and that is not affected by variations in the mobility of the drive element is caused to flow through the electro-optic element, thereby causing variations in the threshold voltage of the drive element. Both mobility variations can be compensated.
  • the write switching element and the compensation switching element are controlled to be in a conductive state, and the cutoff switching element is controlled to be in a nonconductive state.
  • a potential obtained by correcting variations in threshold voltage of the drive element can be applied to the control terminal of the drive element.
  • display voltage and a writing voltage corresponding to the threshold voltage can be applied to the control terminal of the driving element.
  • the potential of the control terminal of the drive element changes according to the mobility of the drive element.
  • a current that is not affected by the variation in the threshold voltage of the drive element and that is not affected by the variation in the mobility of the drive element is caused to flow through the electro-optic element. Both can be compensated.
  • a display device including a pixel circuit including an electro-optic element, a driving element, three switching elements (for compensation, writing, and cutoff), and a compensation capacitor.
  • a current that is unaffected by variations in drive element threshold voltage and unaffected by drive element mobility variations is passed through the electro-optic element to compensate for both drive element threshold voltage variations and mobility variations. can do.
  • the write switching element and the compensation switching element are controlled to be in a conductive state, and the cutoff switching element is controlled to be in a nonconductive state.
  • a potential obtained by correcting the variation of the threshold voltage of the drive element can be applied to the control terminal of the drive element.
  • the potential applied to the control wiring connected to the second electrode of the compensation capacitor is switched to a suitable level, whereby the display data and the threshold voltage are set at the control terminal of the driving element.
  • a corresponding write voltage can be applied.
  • the potential of the control terminal of the drive element changes according to the mobility of the drive element.
  • a current that is not affected by the variation in the threshold voltage of the drive element and that is not affected by the variation in the mobility of the drive element is caused to flow through the electro-optic element. Both can be compensated.
  • the reference potential closer to the control terminal of the drive element than the data potential is applied to the data line, whereby the change in the potential of the control terminal of the drive element can be reduced. Therefore, even when the mobility of the drive element is large, the influence of the mobility of the drive element on the potential of the control terminal of the drive element is reduced to compensate for both the threshold voltage variation and the mobility variation of the drive element. be able to.
  • the electro-optic element when the data potential is applied to the data line, by applying a potential corresponding to the amount of change in the potential of the control wiring, the electro-optic element can have a brightness corresponding to the display data. Can emit light.
  • the voltage applied to the electro-optic element when the data potential is applied to the data line, the voltage applied to the electro-optic element is applied with a voltage that is equal to or lower than the light emission threshold voltage, whereby the potential of the data line is changed to the pixel circuit.
  • the electro-optic element does not emit light simply by writing on the. As a result, it is possible to increase the light emission duty ratio by controlling only the pixel circuit to be written to the non-light emission state while causing other pixel circuits to emit light.
  • a pixel circuit including an electro-optical element, a driving element, five switching elements (two for compensation, writing, cutoff, and initialization), and a compensation capacitor.
  • a current that is not affected by variation in threshold voltage of the drive element and that is not affected by variation in mobility of the drive element is caused to flow through the electro-optic element, thereby causing variation in threshold voltage and mobility of the drive element. Both of the variations can be compensated.
  • the write switching element, the compensation switching element, and the second initialization switching element are brought into a conducting state while applying a data potential to the data line.
  • a potential obtained by correcting the variation of the threshold voltage of the driving element can be applied to the control terminal of the driving element.
  • the write switching element is controlled to be non-conductive, and the first initialization switching element is controlled to be conductive, so that the second electrode of the compensation capacitor is controlled.
  • the potential to be applied can be switched and a writing voltage corresponding to the display data and the threshold voltage can be applied to the control terminal of the driving element.
  • the potential of the control terminal of the drive element changes according to the mobility of the drive element.
  • a current that is not affected by the variation in the threshold voltage of the drive element and that is not affected by the variation in the mobility of the drive element is caused to flow through the electro-optic element. Both can be compensated.
  • FIG. 6 is a block diagram showing a configuration of a display device according to first to fourth embodiments of the present invention.
  • 1 is a circuit diagram of a pixel circuit included in a display device according to a first embodiment of the present invention.
  • 3 is a timing chart illustrating a driving method of the pixel circuit in the display device according to the first embodiment of the present invention. It is a figure which shows the state immediately after the mobility compensation period start of the pixel circuit contained in the display apparatus which concerns on the 1st Embodiment of this invention.
  • FIG. 6 is a circuit diagram of a pixel circuit included in display devices according to second and third embodiments of the present invention.
  • FIG. 6 is a timing chart illustrating a driving method of a pixel circuit in a display device according to a second embodiment of the present invention. It is a figure which shows the state immediately after the mobility compensation period start of the pixel circuit contained in the display apparatus which concerns on the 2nd Embodiment of this invention. It is a circuit diagram of an inverter. 10 is a timing chart illustrating a driving method of a pixel circuit in a display device according to a third embodiment of the present invention. It is a figure which shows the state immediately after the mobility compensation period start of the pixel circuit contained in the display apparatus which concerns on the 3rd Embodiment of this invention. FIG. 10 is a circuit diagram of a pixel circuit included in a display device according to a fourth embodiment of the present invention.
  • FIG. 10 is a timing chart illustrating a driving method of a pixel circuit in a display device according to a fourth embodiment of the present invention. It is a timing chart which shows the drive method of the pixel circuit in the conventional display apparatus. It is a circuit diagram of the pixel circuit described in a certain literature. 15 is a timing chart showing a method for driving the pixel circuit shown in FIG.
  • the display device includes a pixel circuit including an electro-optical element, a driving element, a capacitor, and a plurality of switching elements.
  • the switching element can be composed of a low-temperature polysilicon TFT, a CG silicon TFT, an amorphous silicon TFT, or the like. Since the structure and manufacturing process of these TFTs are known, the description thereof is omitted here.
  • An organic EL element is used as the electro-optical element. Since the configuration of the organic EL element is also known, its description is omitted here.
  • FIG. 1 is a block diagram showing a configuration of a display device according to the first to fourth embodiments of the present invention.
  • a display device 10 shown in FIG. 1 includes a plurality of pixel circuits Aij (i is an integer of 1 to n, j is an integer of 1 to m), a display control circuit 11, a gate driver circuit 12, and a source driver circuit 13. It has.
  • the display device 10 is provided with a plurality of scanning lines Gi arranged in parallel to each other and a plurality of data lines Sj arranged in parallel to each other so as to be orthogonal to the scanning lines Gi.
  • the pixel circuits Aij are arranged in a matrix corresponding to the intersections of the scanning lines Gi and the data lines Sj.
  • a plurality of control wirings (Ri, Ui, Wi, etc .; not shown) are arranged in parallel to the scanning lines Gi.
  • the power supply wiring Vp and the common cathode Vcom are arranged in the arrangement region of the pixel circuit Aij.
  • the scanning line Gi and the control wiring are connected to the gate driver circuit 12 and are driven by the gate driver circuit 12.
  • the data line Sj is connected to the source driver circuit 13 and driven by the source driver circuit 13.
  • the display control circuit 11 outputs a timing signal OE, a start pulse YI, and a clock YCK to the gate driver circuit 12, and outputs a start pulse SP, a clock CLK, display data DA, and a latch pulse LP to the source driver circuit 13. To do.
  • the gate driver circuit 12 and the source driver circuit 13 are driving circuits for the pixel circuit Aij.
  • the gate driver circuit 12 functions as a scanning signal output circuit that selects a pixel circuit to be written using the scanning line Gi, and the source driver circuit 13 has a potential corresponding to display data (hereinafter referred to as a data potential) with respect to the data line Sj. ) Function as a display signal output circuit.
  • the gate driver circuit 12 includes a shift register circuit, a logical operation circuit, and a buffer (all not shown).
  • the shift register circuit sequentially transfers the start pulse YI in synchronization with the clock YCK.
  • the logical operation circuit performs a logical operation between the pulse output from each stage of the shift register circuit and the timing signal OE.
  • the output of the logical operation circuit is given to the corresponding scanning line Gi and control wiring via the buffer.
  • the source driver circuit 13 includes an m-bit shift register 21, a register 22, a latch circuit 23, and m D / A converters 24.
  • the shift register 21 includes m 1-bit registers connected in cascade. The shift register 21 sequentially transfers the start pulse SP in synchronization with the clock CLK, and outputs a timing pulse DLP from each stage register. Display data DA is supplied to the register 22 in accordance with the output timing of the timing pulse DLP.
  • the register 22 stores display data DA according to the timing pulse DLP. When the display data DA for one row is stored in the register 22, the display control circuit 11 outputs a latch pulse LP to the latch circuit 23. When the latch circuit 23 receives the latch pulse LP, the latch circuit 23 holds the display data stored in the register 22.
  • One D / A converter 24 is provided for each data line Sj. The D / A converter 24 converts the display data held in the latch circuit 23 into an analog signal voltage, and supplies it to the corresponding data line Sj.
  • the source driver circuit 13 performs line-sequential scanning for simultaneously supplying the data potential for one row to the pixel circuit connected to one scanning line. Dot sequential scanning may be performed in which the data potential is sequentially supplied to the pixel circuit. Since the configuration of the source driver circuit that performs dot sequential scanning is known, the description thereof is omitted here.
  • the driving TFT, the switching TFT, and the organic EL element included in the pixel circuit Aij function as a driving element, a switching element, and an electro-optical element, respectively.
  • the power supply wiring Vp corresponds to the first power supply wiring
  • the common cathode Vcom corresponds to the second power supply wiring
  • the power supply wiring Vint corresponds to the third power supply wiring.
  • FIG. 2 is a circuit diagram of a pixel circuit included in the display device according to the first embodiment of the present invention.
  • the pixel circuit 100 shown in FIG. 2 includes a driving TFT 110, switching TFTs 111 to 113, capacitors 121 and 122, and an organic EL element 130. All of the TFTs included in the pixel circuit 100 are p-channel type.
  • the pixel circuit 100 is also described in Patent Document 1 (International Publication No. 98/48403 pamphlet).
  • the pixel circuit 100 is connected to the power supply wiring Vp, the common cathode Vcom, the scanning line Gi, the control wirings Wi and Ri, and the data line Sj. Among these, constant potentials VDD and VSS (where VDD> VSS) are applied to the power supply wiring Vp and the common cathode Vcom, respectively.
  • the common cathode Vcom is a cathode common to all the organic EL elements 130 in the display device.
  • the TFT terminals denoted as G, S, and D in FIG. 2 are referred to as a gate terminal, a source terminal, and a drain terminal, respectively.
  • the lower applied voltage of two current input / output terminals is called a drain terminal, and the higher applied voltage is called a source terminal.
  • the lower one of the two current input / output terminals is called a source terminal, and the higher applied voltage is called a drain terminal.
  • the terminal name is changed according to the magnitude relation of the voltage, the explanation becomes complicated, so the magnitude relation of the voltage is reversed, and even when the two current input / output terminals should be called with the opposite names,
  • the terminals are referred to by the names shown for convenience.
  • the p-channel type is used for all TFTs, but the n-channel type may be used for the switching TFTs.
  • the above description regarding the TFT terminal name and TFT type also applies to the second to fourth embodiments.
  • the driving TFT 110, the switching TFT 113, and the organic EL element 130 are provided in series in this order from the power wiring Vp side between the power wiring Vp and the common cathode Vcom.
  • a capacitor 121 and a switching TFT 111 are provided in series in this order from the gate terminal side.
  • a switching TFT 112 is provided between the gate terminal and the drain terminal of the driving TFT 110, and a capacitor 122 is provided between the gate terminal of the driving TFT 110 and the power supply wiring Vp.
  • the gate terminal of the switching TFT 111 is connected to the scanning line Gi
  • the gate terminal of the switching TFT 112 is connected to the control wiring Wi
  • the gate terminal of the switching TFT 113 is connected to the control wiring Ri.
  • the switching TFT 111 is used as a writing switching element
  • the switching TFT 112 is used as a compensation switching element
  • the switching TFT 113 is used as a blocking switching element
  • the capacitor 121 is used as a compensation capacitor
  • the capacitor 122 is used for holding. Functions as a capacitor.
  • the display device described in Patent Document 1 compensates for variations in threshold voltage of the driving TFT 110 by driving the pixel circuit 100 according to the timing chart shown in FIG.
  • the pixel circuit 100 is arranged according to a timing chart (FIG. 3) different from the conventional one. To drive.
  • FIG. 3 is a timing chart showing a driving method of the pixel circuit 100 in the display device according to the present embodiment.
  • FIG. 3 shows changes in the potential of the data line Sj, the control wirings Wi and Ri, and the scanning line Gi, and changes in the gate terminal potential Vg of the driving TFT 110.
  • the potential of the scanning line Gi and the control wiring Wi is controlled to the high level
  • the potential of the control wiring Ri is controlled to the low level
  • the potential of the data line Sj is controlled to the reference potential Vpc.
  • the switching TFT 111 changes to a conductive state.
  • the potential Vpc of the data line Sj is applied to the electrode on the switching TFT 111 side of the capacitor 121.
  • the switching TFT 112 changes to a conductive state.
  • the gate terminal and the drain terminal of the driving TFT 110 are short-circuited to have the same potential.
  • the switching TFT 113 changes to a non-conductive state.
  • a current flows from the power supply wiring Vp to the gate terminal of the driving TFT 110 via the driving TFT 110 and the switching TFT 112, and the gate terminal potential of the driving TFT 110 rises while the driving TFT 110 is in a conductive state.
  • the driving TFT 110 changes to a non-conductive state when the gate-source voltage becomes the threshold voltage Vth (negative value) (that is, the gate terminal potential becomes (VDD + Vth)). Therefore, the gate terminal potential of the driving TFT 110 rises to (VDD + Vth). Up to here, it is the same as the conventional driving method.
  • the potential of the data line Sj changes from the reference potential Vpc to the data potential Vdata (Vdata ⁇ Vpc except in the case of black display).
  • the data potential Vdata is applied to the data line Sj while the switching TFT 112 is kept in a conductive state, and the data potential Vdata is applied to the data line Sj after the switching TFT 112 is changed to the non-conductive state. This is different from the conventional display device that gives
  • FIG. 4 is a diagram illustrating a state of the pixel circuit 100 immediately after time t4.
  • the driving TFT 110 changes to a conductive state as the gate-source voltage Vgs decreases (except for the case of black display).
  • the switching TFT 112 is in a conductive state after time t4. For this reason, as shown in FIG. 4, immediately after time t4, the current Ia flows from the power supply wiring Vp to the gate terminal of the driving TFT 110 via the driving TFT 110 and the switching TFT 112, and the gate terminal potential of the driving TFT 110 Vg increases (in FIG. 4, the amount of increase is described as ⁇ ).
  • the switching TFT 111 changes to a non-conductive state.
  • the selection period of the pixel circuit 100 ends at this point.
  • the potential of the data line Sj changes from the data potential Vdata to the reference potential Vpc. Since the switching TFT 111 is non-conductive after time t5, even if the potential of the data line Sj changes at time t6, the pixel circuit 100 is not affected.
  • the gate-source voltage (Vth + Vdata ⁇ Vpc + ⁇ V) of the driving TFT 110 is held on the driving TFT 110 side of the capacitor 122.
  • the switching TFT 113 changes to a conductive state.
  • a current flows from the power supply wiring Vp to the organic EL element 130 via the driving TFT 110 and the switching TFT 113.
  • the amount of current flowing through the driving TFT 110 varies depending on the gate-source voltage (Vth + Vdata ⁇ Vpc + ⁇ V) of the driving TFT 110.
  • the organic EL element 130 emits light with a luminance corresponding to the current flowing through the driving TFT 110.
  • the amount of current flowing through the driving TFT 110 is the same if the potential difference (Vdata ⁇ Vpc) is the same even if the threshold voltage Vth is different. For this reason, an amount of current corresponding to the data potential Vdata flows through the organic EL element 130 regardless of the value of the threshold voltage Vth, and the organic EL element 130 emits light with a luminance corresponding to the data potential Vdata.
  • the display device it is possible to compensate for variations in the threshold voltage Vth of the driving TFT 110.
  • ⁇ V ⁇ V
  • a target value of a TFT characteristic (threshold voltage Vth, mobility ⁇ , etc.) is set in advance, and various processes are performed to bring the TFT characteristic to be close to the target value.
  • the mobility ⁇ of the manufactured TFT may be larger than the target value or smaller than the target value.
  • the case where the mobility ⁇ of the driving TFT 110 is equal to the target value is used as a reference.
  • the current (current Ia shown in FIG. 4) flowing into the gate terminal of the driving TFT 110 during the mobility compensation period is determined by the equations (1) and (3), and increases or decreases according to the mobility ⁇ of the driving TFT 110.
  • the mobility ⁇ of the driving TFT 110 is larger than the target value
  • the current Ia in the mobility compensation period becomes larger than the reference.
  • the change amount ⁇ V of the gate terminal potential of the driving TFT 110 during the mobility compensation period becomes larger than the reference, and the absolute value
  • the mobility ⁇ of the driving TFT 110 is smaller than the target value, the current Ia in the mobility compensation period becomes smaller than the reference.
  • the change amount ⁇ V of the gate terminal potential of the driving TFT 110 during the mobility compensation period becomes smaller than the reference, and the absolute value
  • of the gate-source voltage of the driving TFT 110 after the mobility compensation period is small, and the reference A current that is closer to the driving TFT having the mobility of flows in the organic EL element 130 during light emission.
  • of the gate-source voltage of the driving TFT 110 after the mobility compensation period is large, and the current is closer to the driving TFT having the reference mobility. Flows to the organic EL element 130 during light emission.
  • an amount of current corresponding to the data potential Vdata flows through the organic EL element 130, and the organic EL element 130 emits light with a luminance corresponding to the data potential Vdata. Therefore, according to the display device according to the present embodiment, it is possible to compensate for variations in mobility of the driving TFT 110 in addition to variations in threshold voltage of the driving TFT 110.
  • the timing at which the potential of the data line Sj changes from the data potential Vdata to the reference potential Vpc may be any time after the potential of the scanning line Gi has changed to a high level. That is, time t6 may be any time after time t5.
  • the timing at which the potential of the control wiring Wi changes to the high level is a range after the potential of the data line Sj changes from the reference potential Vpc to the data potential Vdata and before the potential of the control wiring Ri changes to the low level. Determined within. That is, time t7 is determined within the range from time t4 to time t8. The time t7 is determined based on the mobility ⁇ of the driving TFT 110, the variation in the threshold voltage Vth, the variation in the mobility ⁇ , and the like.
  • the pixel circuit 100 shown in FIG. 2 is driven according to the timing chart shown in FIG. Both of these can be compensated for and the organic EL element 130 can emit light with a desired luminance.
  • FIG. 5 is a circuit diagram of a pixel circuit included in a display device according to the second embodiment of the present invention.
  • a pixel circuit 200 shown in FIG. 5 includes a driving TFT 210, switching TFTs 211 to 213, a capacitor 221, and an organic EL element 230. All of the TFTs included in the pixel circuit 200 are n-channel type.
  • the pixel circuit 200 is also described in another application (Japanese Patent Application No. 2008-131568) shared by the present applicant and the inventor.
  • the pixel circuit 200 is connected to the power supply wiring Vp, the common cathode Vcom, the scanning line Gi, the control wiring Ri, Ui, and the data line Sj.
  • constant potentials VDD and VSS are applied to the power supply wiring Vp and the common cathode Vcom, respectively.
  • the common cathode Vcom is a cathode common to all the organic EL elements 230 in the display device.
  • a switching TFT 213, a driving TFT 210, and an organic EL element 230 are provided in series between the power wiring Vp and the common cathode Vcom in this order from the power wiring Vp side.
  • a switching TFT 211 is provided between the source terminal of the driving TFT 210 and the data line Sj
  • a switching TFT 212 is provided between the gate terminal and the drain terminal of the driving TFT 210
  • a capacitor 221 is provided between the control wiring Ui.
  • the gate terminals of the switching TFTs 211 and 212 are both connected to the scanning line Gi, and the gate terminal of the switching TFT 213 is connected to the control wiring Ri.
  • the switching TFT 211 functions as a writing switching element
  • the switching TFT 212 functions as a compensation switching element
  • the switching TFT 213 functions as a cutoff switching element
  • the capacitor 221 functions as a compensation capacitor.
  • FIG. 6 is a timing chart showing a driving method of the pixel circuit 200 in the display device according to the present embodiment.
  • FIG. 6 shows changes in the potential of the scanning line Gi, the control wirings Ri and Ui, and the data line Sj, and changes in the gate terminal potential Vg of the driving TFT 210.
  • Vg0 represents the gate terminal potential of the driving TFT 210 after the data potential has been written to the pixel circuit 200 last time.
  • the potential of the scanning line Gi is controlled to a low level
  • the potential of the control wiring Ri is controlled to a high level
  • the potential of the control wiring Ui is controlled to a relatively high potential V1.
  • the switching TFTs 211 and 212 are in a non-conductive state
  • the switching TFT 213 is in a conductive state.
  • the driving TFT 210 is in a conductive state
  • a current flows from the power supply wiring Vp to the organic EL element 230 via the switching TFT 213 and the driving TFT 210, and the organic EL element 230 emits light with a predetermined luminance.
  • the potential of the scanning line Gi changes to the high level, and a new data potential Vdata is applied to the data line Sj.
  • the switching TFTs 211 and 212 become conductive, and the data potential Vdata is applied from the data line Sj to the source terminal of the driving TFT 210 via the switching TFT 211.
  • the data potential Vdata applied at this time is determined so that the organic EL element 230 is in a non-light emitting state.
  • the data potential Vdata is determined so that the difference from the potential VSS is equal to or less than the emission threshold voltage Vth_oled. . This is expressed by the following equation (6). Vth_oled ⁇ Vdata ⁇ VSS (6)
  • the gate and drain of the driving TFT 210 are short-circuited, and the potential VDD is applied to the gate terminal and the drain terminal of the driving TFT 210 from the power supply wiring Vp. Therefore, the gate-source voltage Vgs of the driving TFT 210 is expressed by the following equation (7).
  • Vgs VDD ⁇ Vdata (7)
  • the potential of the control wiring Ui changes to a relatively low potential V2.
  • the potential of the control wiring Ri changes to a low level.
  • the switching TFT 213 is turned off, current flows from the gate terminal of the driving TFT 210 (and the drain terminal short-circuited thereto) to the source terminal, and the gate terminal potential of the driving TFT 210 gradually decreases.
  • the driving TFT 210 becomes equal to the threshold voltage Vth of the driving TFT 210 (that is, when the gate terminal potential becomes (Vdata + Vth)
  • the driving TFT 210 becomes non-conductive and is driven. After that, the gate terminal potential of the TFT 210 does not decrease.
  • the driving TFT 210 is in a state where the threshold voltage Vth is applied between the gate and the source regardless of the threshold voltage Vth.
  • the lifetime of the organic EL element becomes shorter as a larger amount of current flows. Therefore, in order to prevent a current from flowing through the organic EL element 230, it is preferable to use the data potential Vdata that satisfies Expression (6).
  • the data potential Vdata is used, either the anode and the cathode of the organic EL element 230 are at the same potential, or a reverse bias voltage is applied to the organic EL element 230. Thereby, it is possible to prevent a current from flowing into the organic EL element 230 after the time t3 and extend the life of the organic EL element 230.
  • the potential of the control wiring Ui changes from V2 to V1.
  • the control wiring Ui and the gate terminal of the driving TFT 210 are connected via a capacitor 221.
  • the gate terminal potential of the driving TFT 210 changes by the same amount (V1-V2), as shown in the following equation (8).
  • Vg Vdata + Vth + V1-V2 (8)
  • FIG. 7 is a diagram illustrating a state of the pixel circuit 200 immediately after time t4.
  • the driving TFT 210 changes to a conductive state as the gate-source voltage Vgs increases (except for the case of black display).
  • the switching TFT 212 is in a conductive state after time t4. For this reason, as shown in FIG. 7, immediately after time t4, data is transferred from the gate terminal of the driving TFT 210 (and the drain terminal short-circuited thereto) via the switching TFT 212, the driving TFT 210, and the switching TFT 211.
  • the current Ib flows out to the line Sj, and the gate terminal potential Vg of the driving TFT 210 decreases (the amount of decrease is described as ⁇ in FIG. 7).
  • the switching TFTs 211 and 212 change to a non-conduction state. If the change amount of the gate terminal potential of the driving TFT 210 from time t4 to time t5 (hereinafter referred to as mobility compensation period) is ⁇ V (where ⁇ V> 0), the gate terminal of the driving TFT 210 at time t5
  • the potential Vg is as shown in the following formula (9).
  • Vg Vdata + Vth + V1-V2- ⁇ V (9)
  • the potential difference between the electrodes of the capacitor 221 is (Vdata + Vth ⁇ V2 ⁇ V). After the time t5, the potential difference is held in the capacitor 221. Note that the time t5 is determined based on the mobility ⁇ of the driving TFT 210, the variation in the threshold voltage Vth, the variation in the mobility ⁇ , and the like.
  • the switching TFT 213 changes to a conductive state, and the potential VDD is applied to the drain terminal of the driving TFT 210 from the power supply wiring Vp.
  • the gate terminal potential of the driving TFT 210 is kept at (Vdata + Vth + V1-V2- ⁇ V) after time t6. Therefore, after time t6, the potential (Vdata + V1-V2-) is obtained by subtracting the threshold voltage Vth of the driving TFT 210 from the gate terminal potential from the power supply wiring Vp via the switching TFT 213 and the organic EL element 230 to the organic EL element 230.
  • a current corresponding to ⁇ V) flows, and the organic EL element 230 emits light with a luminance corresponding to the current.
  • the data potential Vdata applied to the data line Sj during the period when the potential of the scanning line Gi is at a high level should be originally applied in order to cause the organic EL element 230 to emit light with a desired luminance.
  • the potential is set by subtracting the amplitude (V1-V2) of the potential of the control wiring Ui from the data potential Vdata ′. This can be expressed by the following equation (10).
  • Vdata Vdata ′ ⁇ (V1 ⁇ V2) (10)
  • the mobility ⁇ of the driving TFT 210 when the mobility ⁇ of the driving TFT 210 is smaller than the target value, the current Ib in the mobility compensation period becomes smaller than the reference. Therefore, the amount of change ⁇ V in the gate terminal potential of the driving TFT 210 during the mobility compensation period becomes smaller than the reference, and the absolute value
  • the absolute value of the gate-source voltage of the driving TFT 210 after the mobility compensation period is the same as in the first embodiment.
  • becomes smaller, and a current closer to the driving TFT having the reference mobility flows to the organic EL element 230 during light emission.
  • the mobility ⁇ of the driving TFT 210 is small, the absolute value
  • the organic EL element 230 does not emit light only by writing the potential of the data line Sj to the pixel circuit 200.
  • the gate driver circuit 12 changes the potential of the control wiring Ui in two steps (V1 and V2).
  • the inverter circuit shown in FIG. 8 is provided as a buffer circuit at the final stage of the gate driver circuit 12.
  • the inverter circuit shown in FIG. 8 changes the potential of the control wiring Ui in two steps according to the input signal IN.
  • the display device includes a gate driver circuit 12 that changes the potential of the control wiring Ui in two stages. Such a gate driver circuit can be easily configured.
  • the timing at which the potential of the control wiring Ui changes from V1 to V2 may be before the potential of the scanning line Gi changes to a high level. That is, time t2 may be before time t1.
  • this method even when the number of scanning lines Gi is large and the time during which the potential of the scanning line Gi is at a high level is short, variations in threshold voltage and mobility in the driving TFT 210 can be compensated.
  • a forward bias voltage is applied to the organic EL element 230, the organic EL element 230 may emit light unnecessarily, and the contrast of the screen may be lowered. Therefore, as shown in FIG. 6, it is more preferable that the potential of the control wiring Ui changes from V1 to V2 after the potential of the scanning line Gi changes to the high level.
  • the gate terminals of the switching TFTs 211 and 212 are connected to the same scanning line Gi.
  • the switching TFTs 211 and 212 may be connected to different control wirings that change at almost the same timing. Good.
  • the pixel circuit 200 shown in FIG. 5 is driven according to the timing chart shown in FIG. Both can be compensated for, and the organic EL element 230 can emit light with a desired luminance.
  • the display device according to the third embodiment of the present invention includes the pixel circuit 200 shown in FIG.
  • the display device according to the present embodiment drives the pixel circuit 200 according to a timing chart (FIG. 9) different from that of the second embodiment.
  • FIG. 9 is a timing chart showing a driving method of the pixel circuit 200 in the display device according to the present embodiment.
  • the potential of the data line Sj becomes the reference potential Vpc higher than the data potential Vdata from time t4 to time t5 (mobility compensation period).
  • the timing chart shown in FIG. 9 is the same as the timing chart shown in FIG.
  • the potential of the data line Sj is driven higher than the data potential Vdata after the potential of the control wiring Ui is changed from V2 to V1 (potential at which the driving TFT 210 is turned on). It changes to a potential close to the gate terminal potential of the TFT 210 for use.
  • the reference potential Vpc is determined so as to be lower than the gate terminal potential of the driving TFT 210 when the data potential Vdata is the minimum in order to prevent gradation inversion. That is, when the data potential Vdata when displaying the minimum gradation is Vm, the reference potential Vpc is determined so as to satisfy the following equation (11). Vpc ⁇ Vm + Vth + V1-V2 (11)
  • the pixel circuit 200 by driving the pixel circuit 200 according to the timing chart shown in FIG. 9, similarly to the second embodiment, the pixel circuit 200 is not affected by variations in the threshold voltage of the driving TFT 210.
  • a current that is not affected by variations in mobility of the driving TFT 210 can be passed through the organic EL element 230 to compensate for both variations in threshold voltage and mobility in the organic EL element 230.
  • FIG. 10 is a diagram illustrating a state of the pixel circuit 200 immediately after time t4 in the display device according to the present embodiment. Also in the display device according to the present embodiment, as in the second embodiment, after time t4, the current Ic flows from the gate terminal of the driving TFT 210 to the data line Sj, and the gate terminal potential Vg of the driving TFT 210 drops ( In FIG. 10, the descending amount is indicated as ⁇ ).
  • some TFTs have high mobility.
  • the mobility of amorphous silicon TFTs is less than 10 cm 2 / Vs, while the mobility of low-temperature polysilicon TFTs or CG silicon TFTs exceeds 100 cm 2 / Vs. Therefore, when the display device according to the second embodiment is configured using TFTs having high mobility, the amount of change ⁇ V in the gate terminal potential of the driving TFT 210 during the mobility compensation period increases, and the threshold value of the driving TFT 210 is increased. Voltage variations may not be compensated correctly.
  • the reference potential Vpc applied to the data line Sj after time t4 is closer to the gate terminal potential of the driving TFT 210 than the data potential Vdata. Therefore, the current Ic flowing from the gate terminal of the driving TFT 210 to the data line Sj after time t4 is smaller than that in the second embodiment (Ic ⁇ Ib), and the amount of change in the gate terminal potential Vg of the driving TFT 210 is also the first. It is smaller than the second embodiment ( ⁇ ⁇ ). As a result, the amount of change in the gate terminal potential of the driving TFT 210 during the mobility compensation period is smaller than that in the second embodiment.
  • the display device of this embodiment even when the mobility of the driving TFT 210 is large, the influence of the mobility of the driving TFT 210 on the gate terminal potential of the driving TFT 210 is reduced, and the driving TFT 210 Both variation in threshold voltage and variation in mobility can be compensated.
  • FIG. 11 is a circuit diagram of a pixel circuit included in a display device according to the fourth embodiment of the present invention.
  • a pixel circuit 300 shown in FIG. 11 includes a driving TFT 310, switching TFTs 311 to 315, a capacitor 321, and an organic EL element 330. All of the TFTs included in the pixel circuit 300 are p-channel type.
  • the pixel circuit 300 is a modification of the pixel circuit (FIG. 14) described in Patent Document 2 (Japanese Patent Laid-Open No. 2007-133369) so that the gate terminals of all the switching TFTs are connected to different signal lines. It is a thing.
  • the pixel circuit 300 is connected to power supply wirings Vp and Vint, a common cathode Vcom, scanning lines G1i, G2i, and G3i, control wirings E1i and E2i, and a data line Sj.
  • constant potentials VDD and VSS are applied to the power supply wiring Vp and the common cathode Vcom, respectively, and a constant potential Vpc is applied to the power supply wiring Vint.
  • the common cathode Vcom is a cathode common to all the organic EL elements 330 in the display device.
  • a driving TFT 310, a switching TFT 313, and an organic EL element 330 are provided in series between the power wiring Vp and the common cathode Vcom in this order from the power wiring Vp side.
  • a capacitor 321 and a switching TFT 311 are provided in series in this order from the gate terminal side.
  • a switching TFT 312 is provided between the gate terminal and the drain terminal of the driving TFT 310.
  • a connection point between the switching TFT 311 and the capacitor 321 is referred to as a connection point A.
  • a switching TFT 314 is provided between the connection point A and the power supply wiring Vint
  • a switching TFT 315 is provided between the drain terminal of the driving TFT 310 and the power supply wiring Vint.
  • the gate terminal of the switching TFT 311 is connected to the scanning line G1i
  • the gate terminal of the switching TFT 312 is connected to the scanning line G3i
  • the gate terminal of the switching TFT 313 is connected to the control wiring E2i
  • the gate terminal of the switching TFT 314 is controlled.
  • Connected to the wiring E1i the gate terminal of the switching TFT 315 is connected to the scanning line G2i.
  • the scanning lines G1i, G2i, and G3i correspond to the scanning lines Gi in FIG.
  • the switching TFT 311 is used as a writing switching element
  • the switching TFT 312 is used as a compensation switching element
  • the switching TFT 313 is used as a blocking switching element
  • the switching TFT 314 is used as a first initialization switching element.
  • the switching TFT 315 functions as a second initialization switching element
  • the capacitor 321 functions as a compensation capacitor.
  • FIG. 12 is a timing chart showing a driving method of the pixel circuit 300 in the display device according to the present embodiment.
  • FIG. 12 shows changes in the potentials of the scanning lines G1i, G2i, G3i, the control wirings E1i, E2i, and the data line Sj, and changes in the gate terminal potential Vg of the driving TFT 310.
  • the potentials of the scanning lines G1i, G2i, G3i are controlled to a high level, and the potentials of the control wirings E1i, E2i are controlled to a low level.
  • the switching TFTs 313 and 314 change to a non-conduction state.
  • the switching TFTs 311, 312, and 315 change to a conductive state.
  • the gate terminal and the drain terminal of the driving TFT 310 are short-circuited to have the same potential, and the gate terminal potential Vg of the driving TFT 310 becomes equal to the potential Vpc of the power supply wiring Vint.
  • the potential Vdata of the data line Sj is applied to the connection point A.
  • the switching TFT 315 changes to a non-conduction state.
  • a current flows from the power supply wiring Vp to the gate terminal of the driving TFT 310 via the driving TFT 310 and the switching TFT 312, and the gate terminal potential Vg of the driving TFT 310 increases while the driving TFT 310 is in a conductive state.
  • the driving TFT 310 changes to a non-conductive state when the gate-source voltage becomes the threshold voltage Vth (negative value)
  • the gate terminal potential Vg of the driving TFT 310 rises to (VDD + Vth).
  • the switching TFT 311 changes to a non-conduction state
  • the switching TFT 314 changes to a conduction state.
  • the potential at the connection point A changes from Vdata to Vpc
  • the gate terminal potential Vg of the driving TFT 310 changes by the same amount as the potential at the connection point A.
  • the gate terminal potential Vg and the gate-source voltage Vgs of the driving TFT 310 at time t4 are as shown in the following equations (12) and (13), respectively.
  • Vg VDD + Vth + (Vpc ⁇ Vdata) (12)
  • Vgs Vth + (Vpc ⁇ Vdata) (13)
  • the gate-source voltage (Vth + Vpc ⁇ Vdata) of the driving TFT 310 is temporarily held on the driving TFT 310 side of the capacitor 321.
  • a current flows from the power supply wiring Vp to the gate terminal of the driving TFT 310 via the driving TFT 310 and the switching TFT 312 and the gate terminal potential Vg of the driving TFT 310 rises.
  • the switching TFT 313 changes to a conductive state.
  • a current flows from the power supply wiring Vp to the organic EL element 330 via the driving TFT 310 and the switching TFT 313.
  • the amount of current flowing through the driving TFT 310 varies according to the gate-source voltage (Vth + Vpc ⁇ Vdata + ⁇ V) of the driving TFT 310.
  • the organic EL element 330 emits light with a luminance corresponding to the current flowing through the driving TFT 310.
  • the current flowing into the gate terminal of the driving TFT 310 during the mobility compensation period is determined by equations (1) and (13), and increases or decreases according to the mobility ⁇ of the driving TFT 310.
  • the mobility ⁇ of the driving TFT 310 is larger than the target value, the current in the mobility compensation period becomes larger than the reference.
  • the change amount ⁇ V of the gate terminal potential of the driving TFT 310 during the mobility compensation period becomes larger than the reference, and the absolute value
  • the mobility ⁇ of the driving TFT 310 is smaller than the target value, the current in the mobility compensation period becomes smaller than the reference. For this reason, the change amount ⁇ V of the gate terminal potential of the driving TFT 310 during the mobility compensation period becomes smaller than the reference, and the absolute value
  • an amount of current corresponding to the data potential Vdata flows through the organic EL element 330, and the organic EL element 330 emits light with a luminance corresponding to the data potential Vdata. Therefore, according to the display device according to this embodiment, it is possible to compensate for variations in mobility of the driving TFT 310 in addition to variations in threshold voltage of the driving TFT 310.
  • the pixel circuit 300 shown in FIG. 11 is driven according to the timing chart shown in FIG. Both of these can be compensated for and the organic EL element 330 can emit light with a desired luminance.
  • the pixel circuit includes an organic EL element as an electro-optical element.
  • the pixel circuit is an electro-optical element other than an organic EL element such as a semiconductor LED (Light Emitting Diode) or a light emitting unit of an FED.
  • the current drive type electro-optical element may be included.
  • the pixel circuit is a MOS transistor (herein referred to as a MOS transistor including a silicon gate MOS structure) formed on an insulating substrate such as a glass substrate as a driving element for the electro-optical element. TFT was included.
  • the pixel circuit is not limited to this, and the pixel circuit has an arbitrary control voltage (threshold voltage) that changes the output current according to the control voltage applied to the current control terminal as the driving element of the electro-optical element and makes the output current zero.
  • a voltage-controlled element may be included.
  • a general insulated gate field effect transistor including, for example, a MOS transistor formed on a semiconductor substrate can be used as the drive element of the electro-optic element.
  • the display device of the present invention has an effect of being able to compensate for both of the threshold voltage variation and the mobility variation of the drive element, various display devices including current-driven display elements such as an organic EL display and FED. Can be used.

Abstract

 スイッチ用TFT111、112を導通状態、スイッチ用TFT113を非導通状態に制御し、駆動用TFT110のゲート端子に閾値電圧に応じた電位(VDD+Vth)を与える。次にTFT112を導通状態に保ったままで、データ線Sjの電位を基準電位Vpcからデータ電位Vdataに変化させて、TFT110を導通状態にする。このときに電流Iaが流れ、TFT110のゲート端子電位は上昇する。TFT110の移動度が大きいときほど、ゲート端子電位の変化量は大きくなり、発光時に有機EL素子130に流れる電流は少なくなる。これにより、TFT110の閾値電圧のばらつきと移動度のばらつきの影響を受けない電流を有機EL素子130に流し、電流駆動型の表示装置において駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償する。

Description

表示装置およびその駆動方法
 本発明は、表示装置に関し、より特定的には、有機ELディスプレイやFEDなどの電流駆動型の表示装置、および、その駆動方法に関する。
 近年、薄型、軽量、高速応答可能な表示装置の需要が高まり、これに伴い、有機EL(Electro Luminescence)ディスプレイやFED(Field Emission Display)に関する研究開発が活発に行われている。
 有機ELディスプレイに含まれる有機EL素子は、印加される電圧が高く、流れる電流が多いほど、高い輝度で発光する。ところが、有機EL素子の輝度と電圧の関係は、駆動時間や周辺温度などの影響を受けて容易に変動する。このため、有機ELディスプレイに電圧制御型の駆動方式を適用すると、有機EL素子の輝度のばらつきを抑えることが非常に困難になる。これに対して、有機EL素子の輝度は電流にほぼ比例し、この比例関係は周辺温度などの外的要因の影響を受けにくい。したがって、有機ELディスプレイには電流制御型の駆動方式を適用することが好ましい。
 一方、表示装置の画素回路や駆動回路は、アモルファスシリコン、低温多結晶シリコン、CG(Continuous Grain)シリコンなどで構成されたTFT(Thin Film Transistor:薄膜トランジスタ)を用いて構成される。ところが、TFTの特性(例えば、閾値電圧や移動度)には、ばらつきが生じやすい。そこで、有機ELディスプレイの画素回路にはTFTの特性のばらつきを補償する回路が設けられ、この回路の作用により有機EL素子の輝度のばらつきが抑えられる。
 電流制御型の駆動方式においてTFTの特性のばらつきを補償する方式は、駆動用TFTに流れる電流の量を電流信号で制御する電流プログラム方式と、この電流の量を電圧信号で制御する電圧プログラム方式とに大別される。電流プログラム方式を用いれば閾値電圧と移動度のばらつきを補償することができ、電圧プログラム方式を用いれば閾値電圧のばらつきのみを補償することができる。
 ところが、電流プログラム方式には、第1に、非常に微少な量の電流を扱うので画素回路や駆動回路の設計が困難である、第2に、電流信号を設定する間に寄生容量の影響を受けやすいので大面積化が困難であるという問題がある。これに対して、電圧プログラム方式では、寄生容量などの影響は軽微であり、回路設計も比較的容易である。また、移動度のばらつきが電流量に与える影響は、閾値電圧のばらつきが電流量に与える影響よりも小さく、移動度のばらつきはTFT作製工程である程度抑えることができる。したがって、電圧プログラム方式を適用した表示装置でも、十分な表示品位が得ることができる。
 電流制御型の駆動方式を適用した有機ELディスプレイについては、従来から各種の構成が知られている。例えば特許文献1には、図2に示す画素回路100(詳細は後述)を図13に示すタイミングチャートに従って駆動することが記載されている。図13に示す駆動方法では、時刻t1より前では、走査線Giと制御配線Wiの電位はハイレベルに、制御配線Riの電位はローレベルに、データ線Sjの電位は基準電位Vpcに制御される。時刻t1において走査線Giの電位がローレベルに変化すると、スイッチ用TFT111が導通状態に変化する。次に時刻t2において制御配線Wiの電位がローレベルに変化すると、スイッチ用TFT112が導通状態に変化する。これにより、駆動用TFT110のゲート端子とドレイン端子は、短絡されて同電位となる。
 次に時刻t3において制御配線Riの電位がハイレベルに変化すると、スイッチ用TFT113が非導通状態に変化する。このとき、電源配線Vpから駆動用TFT110とスイッチ用TFT112を経由して駆動用TFT110のゲート端子に電流が流れ込み、駆動用TFT110のゲート端子電位は駆動用TFT110が導通状態である間は上昇する。駆動用TFT110はゲート-ソース間電圧が閾値電圧Vth(負の値)になると非導通状態に変化するので、駆動用TFT110のゲート端子電位は(VDD+Vth)まで上昇する。
 次に時刻t4において制御配線Wiの電位がハイレベルに変化すると、スイッチ用TFT112が非導通状態に変化する。このときコンデンサ121には、駆動用TFT110のゲート端子とデータ線Sjとの電位差(VDD+Vth-Vpc)が保持される。
 次に時刻t5においてデータ線Sjの電位が基準電位Vpcからデータ電位Vdataに変化すると、駆動用TFT110のゲート端子電位は、同じ量(Vdata-Vpc)だけ変化して(VDD+Vth+Vdata-Vpc)となる。次に時刻t6において走査線Giの電位がハイレベルに変化すると、スイッチ用TFT111が非導通状態に変化する。このときコンデンサ122には、駆動用TFT110のゲート-ソース間電圧(Vth+Vdata-Vpc)が保持される。
 次に時刻t7において、データ線Sjの電位がデータ電位Vdataから基準電位Vpcに変化する。次に時刻t8において制御配線Riの電位がローレベルに変化すると、スイッチ用TFT113が導通状態に変化する。これにより、電源配線Vpから駆動用TFT110とスイッチ用TFT113を経由して有機EL素子130に電流が流れる。駆動用TFT110を流れる電流の量はゲート端子電位(VDD+Vth+Vdata-Vpc)に応じて増減するが、閾値電圧Vthが異なっていても電位差(Vdata-Vpc)が同じであれば電流量は同じである。したがって、閾値電圧Vthの値にかかわらず、有機EL素子130にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子130はデータ電位Vdataに応じた輝度で発光する。
 このように図2に示す画素回路100を図13に示すタイミングチャートに従って駆動することにより、駆動用TFT110の閾値電圧Vthにかかわらず、有機EL素子130に所望量の電流を流し、有機EL素子130を所望の輝度で発光させることができる。
 特許文献2には、図14に示す画素回路900を図15に示すタイミングチャートに従って駆動することが記載されている(ただし、本願発明との対比を容易にするために、信号線の名称は変更されている)。図15に示す駆動方法では、時刻t1より前では、走査線G1i、G2iの電位はハイレベルに、制御配線Eiの電位はローレベルに制御される。時刻t1において制御配線Eiの電位がハイレベルに変化すると、スイッチ用TFT913、914が非導通状態に変化する。次に時刻t2において走査線G1i、G2iの電位がローレベルに変化すると、スイッチ用TFT911、912、915が導通状態に変化する。これにより、駆動用TFT910のゲート端子とドレイン端子は短絡されて同電位となり、駆動用TFT910のゲート端子電位Vgは電源配線Vintの電位Vpcに等しくなる。また、スイッチ用TFT911とコンデンサ921の接続点(以下、接続点Bという)には、データ線Sjの電位Vdataが印加される。
 次に時刻t3において走査線G2iの電位がハイレベルに変化すると、スイッチ用TFT915が非導通状態に変化する。このとき、電源配線Vpから駆動用TFT910とスイッチ用TFT912を経由して駆動用TFT910のゲート端子に電流が流れ込み、駆動用TFT910のゲート端子電位Vgは駆動用TFT910が導通状態である間は上昇する。駆動用TFT910はゲート-ソース間電圧が閾値電圧Vth(負の値)になると非導通状態に変化するので、駆動用TFT910のゲート端子電位Vgは(VDD+Vth)まで上昇する。
 次に時刻t4において、走査線G1iの電位がハイレベルに変化し、制御配線Eiの電位がローレベルに変化すると、スイッチ用TFT911、912が非導通状態に変化し、スイッチ用TFT913、914が導通状態に変化する。このとき、接続点Bの電位はVdataからVpcに変化し、駆動用TFT910のゲート端子電位Vgは接続点Bの電位と同じ量だけ変化して(VDD+Vth+Vpc-Vdata)になる。コンデンサ921は、駆動用TFT910のゲート端子と電源配線Vintとの電位差(VDD+Vth-Vdata)を保持する。
 時刻t4以降、電源配線Vpから駆動用TFT910とスイッチ用TFT913を経由して有機EL素子930に電流が流れる。駆動用TFT910を流れる電流の量はゲート端子電位(VDD+Vth+Vpc-Vdata)に応じて増減するが、閾値電圧Vthが異なっていても電位差(Vpc-Vdata)が同じであれば電流量は同じである。したがって、閾値電圧Vthの値にかかわらず、有機EL素子930にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子930はデータ電位Vdataに応じた輝度で発光する。
 このように図14に示す画素回路900を図15に示すタイミングチャートに従って駆動することにより、駆動用TFT910の閾値電圧Vthにかかわらず、有機EL素子930に所望量の電流を流し、有機EL素子930を所望の輝度で発光させることができる。
 なお、電流制御型の駆動方式を適用した有機ELディスプレイの例は、特許文献3や、本出願と出願人および発明者が共通する別の出願(日本国特願2008-131568号、平成20年(2008年)5月20日出願)にも記載されている。
国際公開第98/48403号パンフレット 日本国特開2007-133369号公報 日本国特開2004-341359号公報
"4.0-in. TFT-OLED Displays and a Novel Digital Driving Method"、SID'00 Digest、pp. 924-927、半導体エネルギー研究所 "Continuous Grain Silicon Technology and Its Applications for Active Matrix Display"、AM-LCD 2000、pp. 25-28、半導体エネルギー研究所 "Polymer Light-Emitting Diodes for Use in Flat Panel Display"、AM-LCD' 01、pp. 211-214、University of Cambridge、Cambridge Display Technology
 図2に示す画素回路100において駆動用TFT110を飽和領域で動作させた場合、駆動用TFT110のドレイン-ソース間を流れる電流Idsは、駆動用TFT110のゲート-ソース間電圧Vgsを用いて、次式(1)のように表される。
  Ids=(1/2)・(W/L)・μ・Cox(Vgs-Vth) …(1)
 ただし、式(1)において、Wは駆動用TFT110のチャネル幅、Lは駆動用TFT110のチャネル長、μは駆動用TFT110の移動度、Coxは駆動用TFT110のゲート酸化膜容量、Vthは駆動用TFT110の閾値電圧を表す。
 式(1)に含まれる値のうち閾値電圧Vthと移動度μには、TFT作製工程でばらつきが生じやすい。このため、図2に示す画素回路100を図13に示すタイミングチャートに従って駆動した場合、有機EL素子130に流れる電流の量は駆動用TFT110の移動度のばらつきの影響を受けて変動するので、有機EL素子130を所望の輝度で発光させることが困難になる。図14に示す画素回路900を図15に示すタイミングチャートに従って駆動した場合にも、同様の問題が発生する。
 それ故に、本発明は、電圧プログラム方式を用いて駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償する表示装置、および、その駆動方法を提供することを目的とする。
 本発明の第1の局面は、電流駆動型の表示装置であって、
 複数の走査線と複数のデータ線の各交差点に対応して配置された複数の画素回路と、
 前記走査線を用いて書き込み対象の画素回路を選択し、前記データ線に対して表示データに応じたデータ電位を与える駆動回路とを備え、
 前記画素回路は、
  第1の電源配線と第2の電源配線との間に設けられた電気光学素子と、
  前記第1の電源配線と前記第2の電源配線との間に前記電気光学素子と直列に設けられた駆動素子と、
  前記駆動素子の制御端子に第1の電極が接続された補償用コンデンサと、
  前記駆動素子の制御端子と一方の電流入出力端子との間に設けられた補償用スイッチング素子とを含み、
 前記駆動回路は、書き込み対象の画素回路について、前記補償用スイッチング素子を導通状態に制御して前記駆動素子の制御端子に閾値電圧に応じた電位を与え、その後に、前記補償用スイッチング素子を導通状態に保ったままで前記補償用コンデンサの第2の電極に与える電位を切り替えて、前記駆動素子の制御端子に前記表示データと前記閾値電圧に応じた書き込み電位を与えることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記画素回路は、
  前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、
  前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、
  前記駆動素子の制御端子と他方の電流入出力端子との間に設けられた保持用コンデンサとをさらに含む。
 本発明の第3の局面は、本発明の第2の局面において、
 前記駆動回路は、書き込み対象の画素回路について、前記データ線に所定の基準電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、その後に、各スイッチング素子の状態を保ったままで、前記データ線に与える電位を前記データ電位に切り替えることを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記画素回路は、
  前記駆動素子の一方の電流入出力端子と前記第1の電源配線との間に設けられた遮断用スイッチング素子と、
  前記駆動素子の他方の電流入出力端子と前記データ線との間に設けられた書き込み用スイッチング素子とをさらに含み、
 前記補償用コンデンサの第2の電極は、前記駆動回路が電位を与える制御配線に接続されていることを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 前記駆動回路は、書き込み対象の画素回路について、前記データ線に前記データ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、その後に、各スイッチング素子の状態を保ったままで、前記駆動素子の制御端子に前記書き込み電位が与えられるように前記制御配線に与える電位を切り替えることを特徴とする。
 本発明の第6の局面は、本発明の第5の局面において、
 前記駆動回路は、前記駆動素子の制御端子に前記書き込み電位が与えられるように前記制御配線に与える電位を切り替えた後に、前記データ線に与える電位を前記データ電位よりも前記駆動素子の制御端子の電位に近い基準電位に切り替えることを特徴とする。
 本発明の第7の局面は、本発明の第5の局面において、
 前記駆動回路は、書き込み対象の画素回路について、前記書き込み用スイッチング素子を導通状態に制御している間、前記データ線に対して、前記表示データと前記制御配線に与える電位の変化量とによって定まる電位を与えることを特徴とする。
 本発明の第8の局面は、本発明の第5の局面において、
 前記駆動回路は、書き込み対象の画素回路について、前記書き込み用スイッチング素子を導通状態に制御している間、前記データ線に対して、前記電気光学素子への印加電圧が発光閾値電圧以下となる電位を与えることを特徴とする。
 本発明の第9の局面は、本発明の第1の局面において、
 前記画素回路は、
  前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、
  前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、
  前記補償用コンデンサの第2の電極と第3の電源配線との間に設けられた第1の初期化用スイッチング素子と、
  前記駆動素子の一方の電流入出力端子と前記第3の電源配線との間に設けられた第2の初期化用スイッチング素子とをさらに含む。
 本発明の第10の局面は、本発明の第9の局面において、
 前記駆動回路は、書き込み対象の画素回路について、前記データ線に対して前記データ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子と前記第2の初期化用スイッチング素子を導通状態に、前記遮断用スイッチング素子と前記第1の初期化用スイッチング素子を非導通状態に制御し、その後に、前記補償用スイッチング素子を導通状態に保ったままで、前記書き込み用スイッチング素子を非導通状態に、前記第1の初期化用スイッチング素子を導通状態に制御することを特徴とする。
 本発明の第11の局面は、複数の走査線と複数のデータ線の各交差点に対応して配置された複数の画素回路を備えた電流駆動型の表示装置の駆動方法であって、
 前記画素回路が、第1の電源配線と第2の電源配線との間に設けられた電気光学素子と、前記第1の電源配線と前記第2の電源配線との間に前記電気光学素子と直列に設けられた駆動素子と、前記駆動素子の制御端子に第1の電極が接続された補償用コンデンサと、前記駆動素子の制御端子と一方の電流入出力端子との間に設けられた補償用スイッチング素子とを含む場合に、
 前記走査線を用いて書き込み対象の画素回路を選択する選択ステップと、
 書き込み対象の画素回路について、前記補償用スイッチング素子を導通状態に制御して前記駆動素子の制御端子に閾値電圧に応じた電位を与える閾値状態設定ステップと、
 前記閾値状態設定ステップの後に、書き込み対象の画素回路について、前記補償用スイッチング素子を導通状態に保ったままで前記補償用コンデンサの第2の電極に与える電位を切り替えて、前記駆動素子の制御端子に表示データと前記閾値電圧に応じた書き込み電位を与える導通状態設定ステップとを備える。
 本発明の第12の局面は、本発明の第11の局面において、
 前記画素回路が、前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、前記駆動素子の制御端子と他方の電流入出力端子との間に設けられた保持用コンデンサとをさらに含む場合に、
 前記閾値状態設定ステップは、書き込み対象の画素回路について、前記データ線に所定の基準電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、
 前記導通状態設定ステップは、各スイッチング素子の状態を保ったままで、前記データ線に与える電位を前記表示データに応じたデータ電位に切り替えることを特徴とする。
 本発明の第13の局面は、本発明の第11の局面において、
 前記画素回路が、前記駆動素子の一方の電流入出力端子と前記第1の電源配線との間に設けられた遮断用スイッチング素子と、前記駆動素子の他方の電流入出力端子と前記データ線との間に設けられた書き込み用スイッチング素子とをさらに含み、前記補償用コンデンサの第2の電極が制御配線に接続されている場合に、
 前記閾値状態設定ステップは、書き込み対象の画素回路について、前記データ線に対して前記表示データに応じたデータ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、
 前記導通状態設定ステップは、各スイッチング素子の状態を保ったままで、前記駆動素子の制御端子に前記書き込み電位が与えられるように前記制御配線に与える電位を切り替えることを特徴とする。
 本発明の第14の局面は、本発明の第11の局面において、
 前記画素回路が、前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、前記補償用コンデンサの第2の電極と第3の電源配線との間に設けられた第1の初期化用スイッチング素子と、前記駆動素子の一方の電流入出力端子と前記第3の電源配線との間に設けられた第2の初期化用スイッチング素子とをさらに含む場合に、
 前記閾値状態設定ステップは、書き込み対象の画素回路について、前記データ線に対して前記表示データに応じたデータ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子と前記第2の初期化用スイッチング素子を導通状態に、前記遮断用スイッチング素子と前記第1の初期化用スイッチング素子を非導通状態に制御し、
 前記導通状態設定ステップは、前記補償用スイッチング素子を導通状態に保ったままで、前記書き込み用スイッチング素子を非導通状態に、前記第1の初期化用スイッチング素子を導通状態に制御することを特徴とする。
 本発明の第1または第11の局面によれば、補償用スイッチング素子を導通状態に制御することにより、駆動素子は制御端子に閾値電圧が印加された状態になり、その後に補償用スイッチング素子を導通状態に保ったままで補償用コンデンサの第2の電極に与える電位を切り替えることにより、駆動素子の制御端子に表示データと閾値電圧に応じた書き込み電圧が与えられる。黒表示の場合を除き、駆動素子は導通状態になり、補償用スイッチング素子と駆動素子を経由して駆動素子の移動度に応じた電流が流れ、駆動素子の制御端子の電位は駆動素子の移動度に応じて変化する。これにより、電気光学素子の発光時に、駆動素子の閾値電圧のばらつきの影響を受けず、駆動素子の移動度のばらつきの影響も受けない電流を電気光学素子に流すことができる。したがって、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償し、電気光学素子を所望の輝度で発光させることができる。
 本発明の第2の局面によれば、電気光学素子、駆動素子、3個のスイッチング素子(補償用と書き込み用と遮断用)、および、2個のコンデンサ(補償用と保持用)を含む画素回路を備えた表示装置について、駆動素子の閾値電圧のばらつきの影響を受けず、駆動素子の移動度のばらつきの影響も受けない電流を電気光学素子に流して、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 本発明の第3または第12の局面によれば、データ線に基準電位を与えながら、書き込み用スイッチング素子と補償用スイッチング素子を導通状態に、遮断用スイッチング素子を非導通状態に制御することにより、駆動素子の制御端子に駆動素子の閾値電圧のばらつき分を補正した電位を与えることができる。次に各スイッチング素子の状態を保ったままで、補償用コンデンサの第2の電極に与える電位を切り替えることにより、駆動素子の制御端子に表示データと閾値電圧に応じた書き込み電圧を与えることができる。その後、駆動素子の制御端子の電位は駆動素子の移動度に応じて変化する。これにより、駆動素子の閾値電圧のばらつきの影響を受けず、駆動素子の移動度のばらつきの影響も受けない電流を電気光学素子に流して、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 本発明の第4の局面によれば、電気光学素子、駆動素子、3個のスイッチング素子(補償用と書き込み用と遮断用)、および、補償用コンデンサを含む画素回路を備えた表示装置について、駆動素子の閾値電圧のばらつきの影響を受けず、駆動素子の移動度のばらつきの影響も受けない電流を電気光学素子に流して、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 本発明の第5または第13の局面によれば、データ線に対してデータ電位を与えながら、書き込み用スイッチング素子と補償用スイッチング素子を導通状態に、遮断用スイッチング素子を非導通状態に制御することにより、駆動素子の制御端子に駆動素子の閾値電圧のばらつき分を補正した電位を与えることができる。次に各スイッチング素子の状態を保ったままで、補償用コンデンサの第2の電極に接続された制御配線に与える電位を好適なレベルに切り替えることにより、駆動素子の制御端子に表示データと閾値電圧に応じた書き込み電圧を与えることができる。その後、駆動素子の制御端子の電位は駆動素子の移動度に応じて変化する。これにより、駆動素子の閾値電圧のばらつきの影響を受けず、駆動素子の移動度のばらつきの影響も受けない電流を電気光学素子に流して、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 本発明の第6の局面によれば、データ電位よりも駆動素子の制御端子の電位に近い基準電位をデータ線に与えることにより、駆動素子の制御端子の電位の変化を小さくすることができる。したがって、駆動素子の移動度が大きい場合でも、駆動素子の移動度が駆動素子の制御端子の電位に与える影響を小さくして、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 本発明の第7の局面によれば、データ線に対してデータ電位を与えるときに、制御配線の電位の変化量に応じた電位を与えることにより、電気光学素子を表示データに応じた輝度で発光させることができる。
 本発明の第8の局面によれば、データ線に対してデータ電位を与えるときに、電気光学素子への印加電圧が発光閾値電圧以下となる電圧を与えることにより、データ線の電位を画素回路に書き込んだだけでは電気光学素子は発光しなくなる。これにより、他の画素回路を発光させたままで書き込み対象の画素回路だけを非発光状態に制御し、発光デューティー比を高くすることができる。
 本発明の第9の局面によれば、電気光学素子、駆動素子、5個のスイッチング素子(補償用と書き込み用と遮断用と初期化用2個)、および、補償用コンデンサを含む画素回路を備えた表示装置について、駆動素子の閾値電圧のばらつきの影響を受けず、駆動素子の移動度のばらつきの影響も受けない電流を電気光学素子に流して、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 本発明の第10または第14の局面によれば、データ線に対してデータ電位を与えながら、書き込み用スイッチング素子と補償用スイッチング素子と第2の初期化用スイッチング素子を導通状態に、遮断用スイッチング素子と第1の初期化用スイッチング素子を非導通状態に制御することにより、駆動素子の制御端子に駆動素子の閾値電圧のばらつき分を補正した電位を与えることができる。次に補償用スイッチング素子を導通状態に保ったままで、書き込み用スイッチング素子を非導通状態に、第1の初期化用スイッチング素子を導通状態に制御することにより、補償用コンデンサの第2の電極に与える電位を切り替え、駆動素子の制御端子に表示データと閾値電圧に応じた書き込み電圧を与えることができる。その後、駆動素子の制御端子の電位は駆動素子の移動度に応じて変化する。これにより、駆動素子の閾値電圧のばらつきの影響を受けず、駆動素子の移動度のばらつきの影響も受けない電流を電気光学素子に流して、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
本発明の第1~第4の実施形態に係る表示装置の構成を示すブロック図である。 本発明の第1の実施形態に係る表示装置に含まれる画素回路の回路図である。 本発明の第1の実施形態に係る表示装置における画素回路の駆動方法を示すタイミングチャートである。 本発明の第1の実施形態に係る表示装置に含まれる画素回路の移動度補償期間開始直後の状態を示す図である。 本発明の第2および第3の実施形態に係る表示装置に含まれる画素回路の回路図である。 本発明の第2の実施形態に係る表示装置における画素回路の駆動方法を示すタイミングチャートである。 本発明の第2の実施形態に係る表示装置に含まれる画素回路の移動度補償期間開始直後の状態を示す図である。 インバータの回路図である。 本発明の第3の実施形態に係る表示装置における画素回路の駆動方法を示すタイミングチャートである。 本発明の第3の実施形態に係る表示装置に含まれる画素回路の移動度補償期間開始直後の状態を示す図である。 本発明の第4の実施形態に係る表示装置に含まれる画素回路の回路図である。 本発明の第4の実施形態に係る表示装置における画素回路の駆動方法を示すタイミングチャートである。 従来の表示装置における画素回路の駆動方法を示すタイミングチャートである。 ある文献に記載された画素回路の回路図である。 図14に示す画素回路の駆動方法を示すタイミングチャートである。
 以下、図1~図12を参照して、本発明の第1~第4の実施形態に係る表示装置について説明する。各実施形態に係る表示装置は、電気光学素子、駆動素子、コンデンサおよび複数のスイッチング素子を含む画素回路を備えている。スイッチング素子は、低温ポリシリコンTFTやCGシリコンTFTやアモルファスシリコンTFTなどで構成することができる。これらTFTの構成や製造プロセスは公知であるので、ここではその説明を省略する。また、電気光学素子には有機EL素子が使用される。有機EL素子の構成も公知であるので、ここではその説明を省略する。
 図1は、本発明の第1~第4の実施形態に係る表示装置の構成を示すブロック図である。図1に示す表示装置10は、複数の画素回路Aij(iは1以上n以下の整数、jは1以上m以下の整数)、表示制御回路11、ゲートドライバ回路12、および、ソースドライバ回路13を備えている。表示装置10には、互いに平行に配置された複数の走査線Giと、走査線Giに直交するように互いに平行に配置された複数のデータ線Sjとが設けられる。画素回路Aijは、走査線Giとデータ線Sjの各交差点に対応してマトリクス状に配置されている。
 これに加えて表示装置10には、複数の制御配線(Ri、Ui、Wiなど;図示せず)が走査線Giと平行に配置されている。また、図1では省略されているが、画素回路Aijの配置領域には電源配線Vpと共通陰極Vcomが配置されている。走査線Giと制御配線はゲートドライバ回路12に接続され、ゲートドライバ回路12によって駆動される。データ線Sjはソースドライバ回路13に接続され、ソースドライバ回路13によって駆動される。
 表示制御回路11は、ゲートドライバ回路12に対してタイミング信号OE、スタートパルスYIおよびクロックYCKを出力し、ソースドライバ回路13に対してスタートパルスSP、クロックCLK、表示データDAおよびラッチパルスLPを出力する。
 ゲートドライバ回路12とソースドライバ回路13は、画素回路Aijの駆動回路である。ゲートドライバ回路12は走査線Giを用いて書き込み対象の画素回路を選択する走査信号出力回路として機能し、ソースドライバ回路13はデータ線Sjに対して表示データに応じた電位(以下、データ電位という)を与える表示信号出力回路として機能する。
 より詳細には、ゲートドライバ回路12は、シフトレジスタ回路、論理演算回路、および、バッファ(いずれも図示せず)を含んでいる。シフトレジスタ回路は、クロックYCKに同期してスタートパルスYIを順次転送する。論理演算回路は、シフトレジスタ回路の各段から出力されたパルスとタイミング信号OEとの間で論理演算を行う。論理演算回路の出力は、バッファを経由して、対応する走査線Giと制御配線に与えられる。
 ソースドライバ回路13は、mビットのシフトレジスタ21、レジスタ22、ラッチ回路23、および、m個のD/A変換器24を含んでいる。シフトレジスタ21は、縦続接続されたm個の1ビットレジスタを含んでいる。シフトレジスタ21は、クロックCLKに同期してスタートパルスSPを順次転送し、各段のレジスタからタイミングパルスDLPを出力する。タイミングパルスDLPの出力タイミングに合わせて、レジスタ22には表示データDAが供給される。レジスタ22は、タイミングパルスDLPに従い、表示データDAを記憶する。レジスタ22に1行分の表示データDAが記憶されると、表示制御回路11はラッチ回路23に対してラッチパルスLPを出力する。ラッチ回路23は、ラッチパルスLPを受け取ると、レジスタ22に記憶された表示データを保持する。D/A変換器24は、各データ線Sjに1つずつ設けられる。D/A変換器24は、ラッチ回路23に保持された表示データをアナログ信号電圧に変換し、対応するデータ線Sjに与える。
 なお、ここではソースドライバ回路13は、1本の走査線に接続された画素回路に対して1行分のデータ電位を同時に供給する線順次走査を行うこととしたが、これに代えて、各画素回路に対してデータ電位を順に供給する点順次走査を行ってもよい。点順次走査を行うソースドライバ回路の構成は公知であるので、ここでは説明を省略する。
 以下、各実施形態に係る表示装置に含まれる画素回路Aijの詳細を説明する。画素回路Aijに含まれる駆動用TFT、スイッチ用TFTおよび有機EL素子は、それぞれ、駆動素子、スイッチング素子および電気光学素子として機能する。また、電源配線Vpは第1の電源配線に相当し、共通陰極Vcomは第2の電源配線に相当し、電源配線Vintは第3の電源配線に相当する。
 (第1の実施形態)
 図2は、本発明の第1の実施形態に係る表示装置に含まれる画素回路の回路図である。図2に示す画素回路100は、駆動用TFT110、スイッチ用TFT111~113、コンデンサ121、122、および、有機EL素子130を備えている。画素回路100に含まれるTFTは、いずれもpチャネル型である。画素回路100は、特許文献1(国際公開第98/48403号パンフレット)にも記載されている。
 画素回路100は、電源配線Vp、共通陰極Vcom、走査線Gi、制御配線Wi、Riおよびデータ線Sjに接続されている。このうち、電源配線Vpと共通陰極Vcomには、それぞれ、一定の電位VDD、VSS(ただし、VDD>VSS)が印加される。共通陰極Vcomは、表示装置内のすべての有機EL素子130に共通する陰極である。
 図2でG、SおよびDと記載したTFTの端子を、それぞれ、ゲート端子、ソース端子およびドレイン端子という。一般にpチャネル型TFTでは、2個の電流入出力端子のうち、印加電圧の低いほうをドレイン端子といい、印加電圧の高いほうをソース端子という。また、nチャネル型TFTでは、2個の電流入出力端子のうち、印加電圧の低いほうをソース端子といい、印加電圧の高いほうをドレイン端子という。しかし、電圧の大小関係に応じて端子名を変更すると説明が複雑になるので、電圧の大小関係が逆になり、2個の電流入出力端子を逆の名称で呼ぶべき場合でも、2個の端子を便宜上図示した名称で呼ぶこととする。また、本実施形態では、すべてのTFTにpチャネル型を用いているが、スイッチ用TFTにnチャネル型を用いてもよい。TFTの端子名とTFTの型に関する上記の説明は、第2~第4の実施形態にも適用される。
 画素回路100では、電源配線Vpと共通陰極Vcomとの間に電源配線Vp側から順に、駆動用TFT110、スイッチ用TFT113および有機EL素子130が直列に設けられている。駆動用TFT110のゲート端子とデータ線Sjとの間にはゲート端子側から順に、コンデンサ121およびスイッチ用TFT111が直列に設けられている。駆動用TFT110のゲート端子とドレイン端子との間にはスイッチ用TFT112が設けられ、駆動用TFT110のゲート端子と電源配線Vpとの間にはコンデンサ122が設けられている。スイッチ用TFT111のゲート端子は走査線Giに接続され、スイッチ用TFT112のゲート端子は制御配線Wiに接続され、スイッチ用TFT113のゲート端子は制御配線Riに接続されている。
 なお、画素回路100では、スイッチ用TFT111は書き込み用スイッチング素子として、スイッチ用TFT112は補償用スイッチング素子として、スイッチ用TFT113は遮断用スイッチング素子として、コンデンサ121は補償用コンデンサとして、コンデンサ122は保持用コンデンサとして機能する。
 特許文献1に記載された表示装置は、画素回路100を図13に示すタイミングチャートに従って駆動することにより、駆動用TFT110の閾値電圧のばらつきを補償する。これに対して、本実施形態に係る表示装置は、駆動用TFT110の閾値電圧のばらつきと移動度のばらつきの両方を補償するために、画素回路100を従来とは異なるタイミングチャート(図3)に従って駆動する。
 図3は、本実施形態に係る表示装置における画素回路100の駆動方法を示すタイミングチャートである。図3には、データ線Sj、制御配線Wi、Riおよび走査線Giの電位の変化と、駆動用TFT110のゲート端子電位Vgの変化とが記載されている。
 図3に示すように、時刻t1より前では、走査線Giと制御配線Wiの電位はハイレベルに、制御配線Riの電位はローレベルに、データ線Sjの電位は基準電位Vpcに制御される。時刻t1において走査線Giの電位がローレベルに変化すると、スイッチ用TFT111が導通状態に変化する。このとき、コンデンサ121のスイッチ用TFT111側の電極には、データ線Sjの電位Vpcが印加される。
 次に時刻t2において制御配線Wiの電位がローレベルに変化すると、スイッチ用TFT112が導通状態に変化する。これにより、駆動用TFT110のゲート端子とドレイン端子は、短絡されて同電位となる。
 次に時刻t3において制御配線Riの電位がハイレベルに変化すると、スイッチ用TFT113が非導通状態に変化する。時刻t3以降、電源配線Vpから駆動用TFT110とスイッチ用TFT112を経由して駆動用TFT110のゲート端子に電流が流れ込み、駆動用TFT110のゲート端子電位は駆動用TFT110が導通状態である間は上昇する。駆動用TFT110は、ゲート-ソース間電圧が閾値電圧Vth(負の値)になる(すなわち、ゲート端子電位が(VDD+Vth)になる)と、非導通状態に変化する。したがって、駆動用TFT110のゲート端子電位は(VDD+Vth)まで上昇する。ここまでは、従来の駆動方法と同じである。
 次に時刻t4において、データ線Sjの電位が基準電位Vpcからデータ電位Vdata(黒表示の場合を除き、Vdata<Vpc)に変化する。本実施形態に係る表示装置は、スイッチ用TFT112を導通状態に保ったままでデータ線Sjにデータ電位Vdataを与える点で、スイッチ用TFT112を非導通状態に変化させた後にデータ線Sjにデータ電位Vdataを与える従来の表示装置と相違する。
 データ線Sjの電位がVpcからVdataに変化すると、コンデンサ121のスイッチ用TFT111側の電極の電位も同様に変化し、駆動用TFT110のゲート端子電位は同じ量(Vdata-Vpc)だけ変化する。この結果、時刻t4における駆動用TFT110のゲート端子電位Vgとゲート-ソース間電圧Vgsは、それぞれ、次式(2)と(3)に示すようになる。
  Vg =VDD+Vth+(Vdata-Vpc) …(2)
  Vgs=Vth+(Vdata-Vpc)     …(3)
 図4は、時刻t4の直後の画素回路100の状態を示す図である。時刻t4以降、駆動用TFT110は、ゲート-ソース間電圧Vgsの低下に伴い、導通状態に変化する(ただし、黒表示の場合を除く)。また、スイッチ用TFT112は、時刻t4以降も導通状態にある。このため、図4に示すように、時刻t4の直後から、電源配線Vpから駆動用TFT110とスイッチ用TFT112を経由して駆動用TFT110のゲート端子に電流Iaが流れ込み、駆動用TFT110のゲート端子電位Vgは上昇する(図4では上昇量をαと記載)。
 次に時刻t5において走査線Giの電位がハイレベルに変化すると、スイッチ用TFT111が非導通状態に変化する。画素回路100の選択期間は、この時点で終了する。次に時刻t6において、データ線Sjの電位がデータ電位Vdataから基準電位Vpcに変化する。時刻t5以降スイッチ用TFT111は非導通状態にあるので、時刻t6においてデータ線Sjの電位が変化しても、画素回路100はその影響を受けない。
 次に時刻t7において制御配線Wiの電位がハイレベルに変化すると、スイッチ用TFT112が非導通状態に変化する。このため時刻t7以降、電源配線Vpから駆動用TFT110のゲート端子に至る電流経路は遮断され、駆動用TFT110のゲート端子電位はその後は上昇しなくなる。時刻t4から時刻t7までの間(以下、移動度補償期間という)における駆動用TFT110のゲート端子電位の変化量をΔV(ただし、ΔV>0)とすると、時刻t7における駆動用TFT110のゲート端子電位Vgとゲート-ソース間電圧Vgsは、それぞれ、次式(4)と(5)に示すようになる。
  Vg =VDD+Vth+(Vdata-Vpc)+ΔV …(4)
  Vgs=Vth+(Vdata-Vpc)+ΔV     …(5)
 また、時刻t7において、コンデンサ122の駆動用TFT110側には、駆動用TFT110のゲート-ソース間電圧(Vth+Vdata-Vpc+ΔV)が保持される。
 次に時刻t8において制御配線Riの電位がローレベルに変化すると、スイッチ用TFT113が導通状態に変化する。時刻t8以降、電源配線Vpから駆動用TFT110とスイッチ用TFT113を経由して有機EL素子130に電流が流れる。駆動用TFT110を流れる電流の量は、駆動用TFT110のゲート-ソース間電圧(Vth+Vdata-Vpc+ΔV)に応じて変化する。有機EL素子130は、駆動用TFT110を流れる電流に応じた輝度で発光する。
 ここで、まずΔVを無視して考えると、閾値電圧Vthが異なっていても電位差(Vdata-Vpc)が同じであれば、駆動用TFT110を流れる電流の量は同じになる。このため、閾値電圧Vthの値にかかわらず、有機EL素子130にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子130はデータ電位Vdataに応じた輝度で発光する。このように本実施形態に係る表示装置によれば、駆動用TFT110の閾値電圧Vthのばらつきを補償することができる。
 次に、ΔVを含めて考える。一般にTFTを作製するときには、TFTの特性(閾値電圧Vthや移動度μなど)の目標値を予め定めた上で、作製するTFTの特性を目標値に近づけるために各種の処理が行われる。ところが、作製されたTFTの移動度μは、目標値よりも大きくなる場合と目標値よりも小さくなる場合とがある。以下、駆動用TFT110の移動度μが目標値に等しい場合を基準とする。
 移動度補償期間に駆動用TFT110のゲート端子に流れ込む電流(図4に示す電流Ia)は、式(1)と(3)で定まり、駆動用TFT110の移動度μに応じて増減する。駆動用TFT110の移動度μが目標値よりも大きい場合には、移動度補償期間における電流Iaは基準よりも大きくなる。このため、移動度補償期間における駆動用TFT110のゲート端子電位の変化量ΔVは基準よりも大きくなり、時刻t7における駆動用TFT110のゲート-ソース間電圧の絶対値|Vgs|は基準よりも小さくなる。したがって、駆動用TFT110の閾値電圧Vthのばらつきだけを補償した場合と比べて、より基準に近い電流が有機EL素子130に流れる。
 一方、駆動用TFT110の移動度μが目標値よりも小さい場合には、移動度補償期間における電流Iaは基準よりも小さくなる。このため、移動度補償期間における駆動用TFT110のゲート端子電位の変化量ΔVは基準よりも小さくなり、時刻t7における駆動用TFT110のゲート-ソース間電圧の絶対値|Vgs|は基準よりも大きくなる。したがって、駆動用TFT110の閾値電圧Vthのばらつきだけを補償した場合と比べて、より基準に近い電流が有機EL素子130に流れる。
 このように、本実施形態に係る表示装置では、駆動用TFT110の移動度μが大きいときには、移動度補償期間後の駆動用TFT110のゲート-ソース間電圧の絶対値|Vgs|は小さくなり、基準の移動度を有する駆動用TFTにより近い電流が発光時に有機EL素子130に流れる。また、駆動用TFT110の移動度μが小さいときには、移動度補償期間後の駆動用TFT110のゲート-ソース間電圧の絶対値|Vgs|は大きくなり、基準の移動度を有する駆動用TFTにより近い電流が発光時に有機EL素子130に流れる。このため、移動度μの値にかかわらず、有機EL素子130にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子130はデータ電位Vdataに応じた輝度で発光する。したがって、本実施形態に係る表示装置によれば、駆動用TFT110の閾値電圧のばらつきに加えて、駆動用TFT110の移動度のばらつきを補償することができる。
 なお、本実施形態に係る表示装置では、データ線Sjの電位がデータ電位Vdataから基準電位Vpcに変化するタイミングは、走査線Giの電位がハイレベルに変化した後であれば、いつでもよい。すなわち、時刻t6は、時刻t5より後であればいつでもよい。また、制御配線Wiの電位がハイレベルに変化するタイミングは、データ線Sjの電位が基準電位Vpcからデータ電位Vdataに変化した後、かつ、制御配線Riの電位がローレベルに変化する前の範囲内で決定される。すなわち、時刻t7は、時刻t4から時刻t8の範囲内で決定される。時刻t7は、駆動用TFT110の移動度μ、閾値電圧Vthのばらつき、および、移動度μのばらつきなどに基づき決定される。
 以上に示すように、本実施形態に係る表示装置によれば、図2に示す画素回路100を図3に示すタイミングチャートに従って駆動することにより、駆動用TFT110の閾値電圧のばらつきと移動度のばらつきの両方を補償し、有機EL素子130を所望の輝度で発光させることができる。
 (第2の実施形態)
 図5は、本発明の第2の実施形態に係る表示装置に含まれる画素回路の回路図である。図5に示す画素回路200は、駆動用TFT210、スイッチ用TFT211~213、コンデンサ221、および、有機EL素子230を備えている。画素回路200に含まれるTFTは、いずれもnチャネル型である。画素回路200は、本出願と出願人および発明者が共通する別の出願(日本国特願2008-131568号)にも記載されている。
 画素回路200は、電源配線Vp、共通陰極Vcom、走査線Gi、制御配線Ri、Uiおよびデータ線Sjに接続されている。このうち、電源配線Vpと共通陰極Vcomには、それぞれ、一定の電位VDD、VSS(ただし、VDD>VSS)が印加される。共通陰極Vcomは、表示装置内のすべての有機EL素子230に共通する陰極である。
 画素回路200では、電源配線Vpと共通陰極Vcomとの間に電源配線Vp側から順に、スイッチ用TFT213、駆動用TFT210および有機EL素子230が直列に設けられている。駆動用TFT210のソース端子とデータ線Sjとの間にはスイッチ用TFT211が設けられ、駆動用TFT210のゲート端子とドレイン端子との間にはスイッチ用TFT212が設けられ、駆動用TFT210のゲート端子と制御配線Uiとの間にはコンデンサ221が設けられている。スイッチ用TFT211、212のゲート端子はいずれも走査線Giに接続され、スイッチ用TFT213のゲート端子は制御配線Riに接続されている。
 なお、画素回路200では、スイッチ用TFT211は書き込み用スイッチング素子として、スイッチ用TFT212は補償用スイッチング素子として、スイッチ用TFT213は遮断用スイッチング素子として、コンデンサ221は補償用コンデンサとして機能する。
 図6は、本実施形態に係る表示装置における画素回路200の駆動方法を示すタイミングチャートである。図6には、走査線Gi、制御配線Ri、Uiおよびデータ線Sjの電位の変化と、駆動用TFT210のゲート端子電位Vgの変化とが記載されている。図6において、Vg0は、画素回路200に対して前回にデータ電位を書き込んだ後の駆動用TFT210のゲート端子電位を表す。
 図6に示すように、時刻t1より前では、走査線Giの電位はローレベルに、制御配線Riの電位はハイレベルに、制御配線Uiの電位は相対的に高い電位V1に制御される。このため、スイッチ用TFT211、212は非導通状態、スイッチ用TFT213は導通状態にある。このとき駆動用TFT210は導通状態にあるので、電源配線Vpからスイッチ用TFT213と駆動用TFT210を経由して有機EL素子230に電流が流れ、有機EL素子230は所定の輝度で発光する。
 次に時刻t1において、走査線Giの電位がハイレベルに変化すると共に、データ線Sjに新たなデータ電位Vdataが印加される。このため、スイッチ用TFT211、212は導通状態になり、データ線Sjからスイッチ用TFT211を経由して駆動用TFT210のソース端子にデータ電位Vdataが印加される。
 ただし、このときに印加されるデータ電位Vdataは、有機EL素子230が非発光状態となるように決定される。具体的には、共通陰極Vcomの電位をVSS、有機EL素子230の発光閾値電圧をVth_oledとしたとき、データ電位Vdataは、電位VSSとの差が発光閾値電圧Vth_oled以下になるように決定される。これを式で表すと、次式(6)のようになる。
  Vth_oled≧Vdata-VSS …(6)
 また、スイッチ用TFT212が導通状態にあるので、駆動用TFT210のゲート-ドレイン間は短絡され、駆動用TFT210のゲート端子とドレイン端子には電源配線Vpから電位VDDが印加される。したがって、駆動用TFT210のゲート-ソース間電圧Vgsは、次式(7)のようになる。
  Vgs=VDD-Vdata …(7)
 次に時刻t2において、制御配線Uiの電位が相対的に低い電位V2に変化する。次に時刻t3において、制御配線Riの電位がローレベルに変化する。このため、スイッチ用TFT213は非導通状態になり、駆動用TFT210のゲート端子(および、これに短絡されたドレイン端子)からソース端子に電流が流れ、駆動用TFT210のゲート端子電位は徐々に下降する。駆動用TFT210のゲート-ソース間電圧が駆動用TFT210の閾値電圧Vthに等しくなったとき(すなわち、ゲート端子電位が(Vdata+Vth)になったとき)に、駆動用TFT210は非導通状態になり、駆動用TFT210のゲート端子電位はその後は下降しなくなる。この時点で駆動用TFT210は、閾値電圧Vthにかかわらず、ゲート-ソース間に閾値電圧Vthが印加された状態になる。
 時刻t3以降に駆動用TFT210のソース端子まで流れた電流は、有機EL素子230の抵抗成分とスイッチ用TFT211の導通時の抵抗成分とに応じて、有機EL素子230とスイッチ用TFT211に流れる。一般に、有機EL素子の寿命は、電流を多く流すほど短くなる。そこで、有機EL素子230に電流が流れることを防止するために、式(6)を満たすデータ電位Vdataを使用することが好ましい。そのようなデータ電位Vdataを使用した場合、有機EL素子230の陽極と陰極は同電位になるか、有機EL素子230に逆方向バイアス電圧が印加されるかのいずれかになる。これにより、時刻t3以降に電流が有機EL素子230に流れることを防止し、有機EL素子230の寿命を延ばすことができる。
 次に時刻t4において、制御配線Uiの電位がV2からV1に変化する。また、制御配線Uiと駆動用TFT210のゲート端子はコンデンサ221を介して接続されている。このため、制御配線Uiの電位がV2からV1に変化すると、駆動用TFT210のゲート端子電位は同じ量(V1-V2)だけ変化して、次式(8)に示すようになる。
  Vg=Vdata+Vth+V1-V2 …(8)
 図7は、時刻t4の直後の画素回路200の状態を示す図である。時刻t4以降、駆動用TFT210は、ゲート-ソース間電圧Vgsの上昇に伴い、導通状態に変化する(ただし、黒表示の場合を除く)。また、スイッチ用TFT212は、時刻t4以降も導通状態にある。このため、図7に示すように、時刻t4の直後から、駆動用TFT210のゲート端子(および、これに短絡されたドレイン端子)からスイッチ用TFT212と駆動用TFT210とスイッチ用TFT211を経由してデータ線Sjに電流Ibが流れ出し、駆動用TFT210のゲート端子電位Vgは下降する(図7では下降量をβと記載)。
 次に時刻t5において走査線Giの電位がローレベルに変化すると、スイッチ用TFT211、212が非導通状態に変化する。時刻t4から時刻t5までの間(以下、移動度補償期間という)における駆動用TFT210のゲート端子電位の変化量を-ΔV(ただし、ΔV>0)とすると、時刻t5における駆動用TFT210のゲート端子電位Vgは、次式(9)に示すようになる。
  Vg=Vdata+Vth+V1-V2-ΔV …(9)
 また、時刻t5では、コンデンサ221の電極間の電位差は(Vdata+Vth-V2-ΔV)である。時刻t5以降、コンデンサ221にはこの電位差が保持される。なお、時刻t5は、駆動用TFT210の移動度μ、閾値電圧Vthのばらつき、および、移動度μのばらつきなどに基づき決定される。
 次に時刻t6において制御配線Riの電位がハイレベルに変化すると、スイッチ用TFT213が導通状態に変化し、駆動用TFT210のドレイン端子には電源配線Vpから電位VDDが印加される。コンデンサ221の作用により、駆動用TFT210のゲート端子電位は、時刻t6以降も(Vdata+Vth+V1-V2-ΔV)に保たれる。このため、時刻t6以降、電源配線Vpからスイッチ用TFT213と有機EL素子230を経由して有機EL素子230に、上記ゲート端子電位から駆動用TFT210の閾値電圧Vthを引いた電位(Vdata+V1-V2-ΔV)に応じた電流が流れ、有機EL素子230は当該電流に応じた輝度で発光する。
 そこで、走査線Giの電位がハイレベルである期間(時刻t1から時刻t5)にデータ線Sjに印加されるデータ電位Vdataは、有機EL素子230を所望の輝度で発光させるために本来印加すべきデータ電位Vdata’から制御配線Uiの電位の振幅分(V1-V2)を引いた電位に設定される。これを式で表すと、次式(10)のようになる。
  Vdata=Vdata’-(V1-V2) …(10)
 ここで、まずΔVを無視して考えると、閾値電圧Vthが異なっていても電位(Vdata+V1-V2)が同じであれば、駆動用TFT210を流れる電流の量は同じになる。このため、閾値電圧Vthの値にかかわらず、有機EL素子230にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子230はデータ電位Vdataに応じた輝度で発光する。このように本実施形態に係る表示装置によれば、駆動用TFT210の閾値電圧Vthのばらつきを補償することができる。
 次に、ΔVを含めて考える。移動度補償期間に駆動用TFT210のゲート端子から流れ出す電流(図7に示す電流Ib)は、式(1)に示すように、駆動用TFT210の移動度μに応じて増減する。駆動用TFT210の移動度μが目標値よりも大きい場合には、移動度補償期間における電流Ibは基準よりも大きくなる。このため、移動度補償期間における駆動用TFT210のゲート端子電位の変化量ΔVは基準よりも大きくなり、時刻t5における駆動用TFT210のゲート-ソース間電圧の絶対値|Vgs|は基準よりも小さくなる。したがって、駆動用TFT210の閾値電圧Vthのばらつきだけを補償した場合と比べて、より基準に近い電流が有機EL素子230に流れる。
 一方、駆動用TFT210の移動度μが目標値よりも小さい場合には、移動度補償期間における電流Ibは基準よりも小さくなる。このため、移動度補償期間における駆動用TFT210のゲート端子電位の変化量ΔVは基準よりも小さくなり、時刻t5における駆動用TFT210のゲート-ソース間電圧の絶対値|Vgs|は基準よりも大きくなる。したがって、駆動用TFT210の閾値電圧Vthのばらつきだけを補償した場合と比べて、より基準に近い電流が有機EL素子230に流れる。
 このように、本実施形態に係る表示装置でも、第1の実施形態と同様に、駆動用TFT210の移動度μが大きいときには、移動度補償期間後の駆動用TFT210のゲート-ソース間電圧の絶対値|Vgs|は小さくなり、基準の移動度を有する駆動用TFTにより近い電流が発光時に有機EL素子230に流れる。一方、駆動用TFT210の移動度μが小さいときには、移動度補償期間後の駆動用TFT210のゲート-ソース間電圧の絶対値|Vgs|は大きくなり、基準の移動度を有する駆動用TFTにより近い電流が発光時に有機EL素子230に流れる。このため、移動度μの値にかかわらず、有機EL素子230にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子230はデータ電位Vdataに応じた輝度で発光する。したがって、本実施形態に係る表示装置によれば、駆動用TFT210の閾値電圧のばらつきに加えて、駆動用TFT210の移動度のばらつきを補償することができる。
 また、データ線Sjに対して式(6)を満たすデータ電位を与えることにより、データ線Sjの電位を画素回路200に書き込んだだけでは、有機EL素子230は発光しなくなる。これにより、他の画素回路200を発光させたままで書き込み対象の画素回路200だけを非発光状態に制御し、発光デューティー比を高くすることができる。
 図6に示すように、ゲートドライバ回路12は、制御配線Uiの電位を2段階(V1とV2)に変化させる。このため、ゲートドライバ回路12の最終段には、バッファ回路として、図8に示すインバータ回路が設けられる。図8に示すインバータ回路は、入力信号INに応じて、制御配線Uiの電位を2段階に変化させる。
 制御配線Uiの電位を3段階以上に変化させるためには、図8よりも複雑な回路が必要になり、ドライバ回路の面積が増大する。このため、ドライバ回路をガラス基板上に形成する場合には、額縁の拡大と歩留りの低下が問題になり、ドライバ回路をICに内蔵する場合には、チップ面積の増大に伴うコストの上昇と歩留りの低下、および、回路の複雑化に伴う消費電力の増大が問題となる。本実施形態に係る表示装置は、制御配線Uiの配線の電位を2段階に変化させるゲートドライバ回路12を備えている。このようなゲートドライバ回路は、簡単に構成することができる。
 なお、本実施形態に係る表示装置では、制御配線Uiの電位がV1からV2に変化するタイミングは、走査線Giの電位がハイレベルに変化する前でもよい。すなわち、時刻t2は時刻t1より前でもよい。この方法によれば、走査線Giの本数が多く、走査線Giの電位がハイレベルである時間が短い場合でも、駆動用TFT210の閾値電圧のばらつきと移動度のばらつきを補償することができる。ただし、この方法を用いると、有機EL素子230に順方向バイアス電圧が印加されて、有機EL素子230が不要に発光し、画面のコントラストが低下することがある。したがって、図6に示すように、走査線Giの電位がハイレベルに変化した後に、制御配線Uiの電位がV1からV2に変化するほうがより好ましい。
 また、画素回路200では、スイッチ用TFT211、212のゲート端子を同一の走査線Giに接続することとしたが、スイッチ用TFT211、212をほぼ同じタイミングで変化する別々の制御配線に接続してもよい。
 以上に示すように、本実施形態に係る表示装置によれば、図5に示す画素回路200を図6に示すタイミングチャートに従って駆動することにより、駆動用TFT210の閾値電圧のばらつきと移動度のばらつきの両方を補償し、有機EL素子230を所望の輝度で発光させることができる。
 (第3の実施形態)
 本発明の第3の実施形態に係る表示装置は、第2の実施形態に係る表示装置と同じく、図5に示す画素回路200を備えている。本実施形態に係る表示装置は、画素回路200を第2の実施形態とは異なるタイミングチャート(図9)に従って駆動する。
 図9は、本実施形態に係る表示装置における画素回路200の駆動方法を示すタイミングチャートである。図9に示すように、本実施形態に係る表示装置では、時刻t4から時刻t5までの間(移動度補償期間)、データ線Sjの電位はデータ電位Vdataよりも高い基準電位Vpcになる。これ以外の点では、図9に示すタイミングチャートは図6に示すタイミングチャートと同じである。
 このように本実施形態に係る表示装置では、制御配線Uiの電位がV2からV1(駆動用TFT210が導通状態になる電位)に変化した後に、データ線Sjの電位は、データ電位Vdataよりも駆動用TFT210のゲート端子電位に近い電位に変化する。
 基準電位Vpcは、階調反転を防止するために、データ電位Vdataが最小のときの駆動用TFT210のゲート端子電位よりも小さくなるように決定される。すなわち、最小階調を表示するときのデータ電位VdataをVmとしたとき、基準電位Vpcは次式(11)を満たすように決定される。
  Vpc<Vm+Vth+V1-V2 …(11)
 本実施形態に係る表示装置によれば、画素回路200を図9に示すタイミングチャートに従って駆動することにより、第2の実施形態と同様に、駆動用TFT210の閾値電圧のばらつきの影響を受けず、駆動用TFT210の移動度のばらつきの影響も受けない電流を有機EL素子230に流して、有機EL素子230の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 以下、本実施形態に係る表示装置に特有の効果を説明する。図10は、本実施形態に係る表示装置における時刻t4の直後の画素回路200の状態を示す図である。本実施形態に係る表示装置でも、第2の実施形態と同様に、時刻t4以降、駆動用TFT210のゲート端子からデータ線Sjに電流Icが流れ出し、駆動用TFT210のゲート端子電位Vgは下降する(図10では下降量をγと記載)。
 ところで、TFTの中には移動度が大きいものがある。例えば、アモルファスシリコンTFTの移動度は10cm/Vsに満たないが、低温ポリシリコンTFTやCGシリコンTFTの移動度は100cm/Vsを超える。このため、移動度が大きいTFTを用いて第2の実施形態に係る表示装置を構成した場合、移動度補償期間における駆動用TFT210のゲート端子電位の変化量ΔVが大きくなり、駆動用TFT210の閾値電圧のばらつきを正しく補償できなくなることがある。
 これに対して本実施形態に係る表示装置では、時刻t4以降にデータ線Sjに与えられる基準電位Vpcは、データ電位Vdataよりも駆動用TFT210のゲート端子電位に近い。このため、時刻t4以降に駆動用TFT210のゲート端子からデータ線Sjに流れる電流Icは第2の実施形態よりも少なくなり(Ic<Ib)、駆動用TFT210のゲート端子電位Vgの変化量も第2の実施形態よりも小さくなる(γ<β)。この結果、移動度補償期間における駆動用TFT210のゲート端子電位の変化量は、第2の実施形態よりも小さくなる。
 したがって、本実施形態に係る表示装置によれば、駆動用TFT210の移動度が大きい場合でも、駆動用TFT210の移動度が駆動用TFT210のゲート端子電位に与える影響を小さくして、駆動用TFT210の閾値電圧のばらつきと移動度のばらつきの両方を補償することができる。
 (第4の実施形態)
 図11は、本発明の第4の実施形態に係る表示装置に含まれる画素回路の回路図である。図11に示す画素回路300は、駆動用TFT310、スイッチ用TFT311~315、コンデンサ321、および、有機EL素子330を備えている。画素回路300に含まれるTFTは、いずれもpチャネル型である。画素回路300は、特許文献2(日本国特開2007-133369号公報)に記載された画素回路(図14)を、すべてのスイッチ用TFTのゲート端子を互いに異なる信号線に接続するように変形したものである。
 画素回路300は、電源配線Vp、Vint、共通陰極Vcom、走査線G1i、G2i、G3i、制御配線E1i、E2iおよびデータ線Sjに接続されている。このうち、電源配線Vpと共通陰極Vcomには、それぞれ、一定の電位VDD、VSS(ただし、VDD>VSS)が印加され、電源配線Vintには一定の電位Vpcが印加される。共通陰極Vcomは、表示装置内のすべての有機EL素子330に共通する陰極である。
 画素回路300では、電源配線Vpと共通陰極Vcomとの間に電源配線Vp側から順に、駆動用TFT310、スイッチ用TFT313および有機EL素子330が直列に設けられている。駆動用TFT310のゲート端子とデータ線Sjとの間にはゲート端子側から順に、コンデンサ321およびスイッチ用TFT311が直列に設けられている。駆動用TFT310のゲート端子とドレイン端子との間にはスイッチ用TFT312が設けられている。以下、スイッチ用TFT311とコンデンサ321の接続点を接続点Aという。接続点Aと電源配線Vintの間にはスイッチ用TFT314が設けられ、駆動用TFT310のドレイン端子と電源配線Vintの間にはスイッチ用TFT315が設けられている。
 スイッチ用TFT311のゲート端子は走査線G1iに接続され、スイッチ用TFT312のゲート端子は走査線G3iに接続され、スイッチ用TFT313のゲート端子は制御配線E2iに接続され、スイッチ用TFT314のゲート端子は制御配線E1iに接続され、スイッチ用TFT315のゲート端子は走査線G2iに接続されている。走査線G1i、G2i、G3iは、図1では走査線Giに相当する。
 なお、画素回路300では、スイッチ用TFT311は書き込み用スイッチング素子として、スイッチ用TFT312は補償用スイッチング素子として、スイッチ用TFT313は遮断用スイッチング素子として、スイッチ用TFT314は第1の初期化用スイッチング素子として、スイッチ用TFT315は第2の初期化用スイッチング素子として、コンデンサ321は補償用コンデンサとして機能する。
 図12は、本実施形態に係る表示装置における画素回路300の駆動方法を示すタイミングチャートである。図12には、走査線G1i、G2i、G3i、制御配線E1i、E2iおよびデータ線Sjの電位の変化と、駆動用TFT310のゲート端子電位Vgの変化とが記載されている。
 図12に示すように、時刻t1より前では、走査線G1i、G2i、G3iの電位はハイレベルに、制御配線E1i、E2iの電位はローレベルに制御される。次に時刻t1において制御配線E1i、E2iの電位がハイレベルに変化すると、スイッチ用TFT313、314が非導通状態に変化する。
 次に時刻t2において走査線G1i、G2i、G3iの電位がローレベルに変化すると、スイッチ用TFT311、312、315が導通状態に変化する。これにより、駆動用TFT310のゲート端子とドレイン端子は短絡されて同電位となり、駆動用TFT310のゲート端子電位Vgは電源配線Vintの電位Vpcに等しくなる。また、接続点Aには、データ線Sjの電位Vdataが印加される。
 次に時刻t3において走査線G2iの電位がハイレベルに変化すると、スイッチ用TFT315が非導通状態に変化する。このとき、電源配線Vpから駆動用TFT310とスイッチ用TFT312を経由して駆動用TFT310のゲート端子に電流が流れ込み、駆動用TFT310のゲート端子電位Vgは駆動用TFT310が導通状態である間は上昇する。駆動用TFT310はゲート-ソース間電圧が閾値電圧Vth(負の値)になると非導通状態に変化するので、駆動用TFT310のゲート端子電位Vgは(VDD+Vth)まで上昇する。
 次に時刻t4において、走査線G1iの電位がハイレベルに変化し、制御配線E1iの電位がローレベルに変化すると、スイッチ用TFT311が非導通状態に変化し、スイッチ用TFT314が導通状態に変化する。このとき、接続点Aの電位はVdataからVpcに変化し、駆動用TFT310のゲート端子電位Vgは接続点Aの電位と同じ量だけ変化する。この結果、時刻t4における駆動用TFT310のゲート端子電位Vgとゲート-ソース間電圧Vgsは、それぞれ、次式(12)と(13)に示すようになる。
  Vg =VDD+Vth+(Vpc-Vdata) …(12)
  Vgs=Vth+(Vpc-Vdata)     …(13)
 また、時刻t4において、コンデンサ321の駆動用TFT310側には、駆動用TFT310のゲート-ソース間電圧(Vth+Vpc-Vdata)が一時的に保持される。時刻t4以降、電源配線Vpから駆動用TFT310とスイッチ用TFT312を経由して駆動用TFT310のゲート端子に電流が流れ込み、駆動用TFT310のゲート端子電位Vgは上昇する。
 次に時刻t5において走査線G3iの電位がハイレベルに変化すると、スイッチ用TFT312が非導通状態に変化する。このため時刻t5以降、電源配線Vpから駆動用TFT310のゲート端子に至る電流経路は遮断され、駆動用TFT310のゲート端子電位はその後は上昇しなくなる。時刻t4から時刻t5までの間(以下、移動度補償期間という)における駆動用TFT310のゲート端子電位の変化量をΔV(ただし、ΔV>0)とすると、時刻t5における駆動用TFT310のゲート端子電位Vgとゲート-ソース間電圧Vgsは、それぞれ、次式(14)と(15)に示すようになる。
  Vg =VDD+Vth+(Vpc-Vdata)+ΔV …(14)
  Vgs=Vth+(Vpc-Vdata)+ΔV     …(15)
 次に時刻t6において制御配線E2iの電位がローレベルに変化すると、スイッチ用TFT313が導通状態に変化する。時刻t6以降、電源配線Vpから駆動用TFT310とスイッチ用TFT313を経由して有機EL素子330に電流が流れる。駆動用TFT310を流れる電流の量は、駆動用TFT310のゲート-ソース間電圧(Vth+Vpc-Vdata+ΔV)に応じて変化する。有機EL素子330は、駆動用TFT310を流れる電流に応じた輝度で発光する。
 ここで、まずΔVを無視して考えると、閾値電圧Vthが異なっていても電位差(Vpc-Vdata)が同じであれば、駆動用TFT310を流れる電流の量は同じになる。このため、閾値電圧Vthの値にかかわらず、有機EL素子330にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子330はデータ電位Vdataに応じた輝度で発光する。このように本実施形態に係る表示装置によれば、駆動用TFT310の閾値電圧Vthのばらつきを補償することができる。
 次に、ΔVを含めて考える。移動度補償期間に駆動用TFT310のゲート端子に流れ込む電流は、式(1)と(13)で定まり、駆動用TFT310の移動度μに応じて増減する。駆動用TFT310の移動度μが目標値よりも大きい場合には、移動度補償期間における電流は基準よりも大きくなる。このため、移動度補償期間における駆動用TFT310のゲート端子電位の変化量ΔVは基準よりも大きくなり、時刻t5における駆動用TFT310のゲート-ソース間電圧の絶対値|Vgs|は基準よりも小さくなる。したがって、駆動用TFT310の閾値電圧Vthのばらつきのみを補償した場合と比べて、より基準に近い電流が有機EL素子330に流れる。
 一方、駆動用TFT310の移動度μが目標値よりも小さい場合には、移動度補償期間における電流は基準よりも小さくなる。このため、移動度補償期間における駆動用TFT310のゲート端子電位の変化量ΔVは基準よりも小さくなり、時刻t5における駆動用TFT310のゲート-ソース間電圧の絶対値|Vgs|は基準よりも大きくなる。したがって、駆動用TFT310の閾値電圧Vthのばらつきのみを補償した場合と比べて、より基準に近い電流が有機EL素子330に流れる。
 このため、移動度μの値にかかわらず、有機EL素子330にはデータ電位Vdataに応じた量の電流が流れ、有機EL素子330はデータ電位Vdataに応じた輝度で発光する。したがって、本実施形態に係る表示装置によれば、駆動用TFT310の閾値電圧のばらつきに加えて、駆動用TFT310の移動度のばらつきを補償することができる。
 以上に示すように、本実施形態に係る表示装置によれば、図11に示す画素回路300を図12に示すタイミングチャートに従って駆動することにより、駆動用TFT310の閾値電圧のばらつきと移動度のばらつきの両方を補償し、有機EL素子330を所望の輝度で発光させることができる。
 なお、以上の説明では、画素回路は電気光学素子として有機EL素子を含むこととしたが、画素回路は電気光学素子として、半導体LED(Light Emitting Diode)やFEDの発光部など、有機EL素子以外の電流駆動型の電気光学素子を含んでいてもよい。
 また、以上の説明では、画素回路は、電気光学素子の駆動素子として、ガラス基板などの絶縁基板上に形成されるMOSトランジスタ(ここでは、シリコンゲートMOS構造を含めて、MOSトランジスタという)であるTFTを含むこととした。これに限らず、画素回路は、電気光学素子の駆動素子として、電流制御端子に印加する制御電圧に応じて出力電流が変化し、出力電流がゼロとなる制御電圧(閾値電圧)を有する任意の電圧制御型の素子を含んでいてもよい。このため、電気光学素子の駆動素子には、例えば、半導体基板上に形成されるMOSトランジスタなども含む、一般の絶縁ゲート型電界効果トランジスタを用いることができる。
 また、本発明は上述した各実施形態に限定されるものではなく、種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。
 本発明の表示装置は、駆動素子の閾値電圧のばらつきと移動度のばらつきの両方を補償できるという効果を奏するので、有機ELディスプレイやFEDなど、電流駆動型の表示素子を備えた各種の表示装置に利用することができる。
 10…表示装置
 11…表示制御回路
 12…ゲートドライバ回路
 13…ソースドライバ回路
 21…シフトレジスタ
 22…レジスタ
 23…ラッチ回路
 24…D/A変換器
 100、200、300、Aij…画素回路
 110、210、310…駆動用TFT
 111~113、211~213、311~315…スイッチ用TFT
 121、122、221、321…コンデンサ
 130、230、330…有機EL素子
 Gi、G1i、G2i、G3i…走査線
 Ri、Ui、Wi、E1i、E2i…制御配線
 Sj…データ線
 Vp…電源配線
 Vcom…共通陰極

Claims (14)

  1.  電流駆動型の表示装置であって、
     複数の走査線と複数のデータ線の各交差点に対応して配置された複数の画素回路と、
     前記走査線を用いて書き込み対象の画素回路を選択し、前記データ線に対して表示データに応じたデータ電位を与える駆動回路とを備え、
     前記画素回路は、
      第1の電源配線と第2の電源配線との間に設けられた電気光学素子と、
      前記第1の電源配線と前記第2の電源配線との間に前記電気光学素子と直列に設けられた駆動素子と、
      前記駆動素子の制御端子に第1の電極が接続された補償用コンデンサと、
      前記駆動素子の制御端子と一方の電流入出力端子との間に設けられた補償用スイッチング素子とを含み、
     前記駆動回路は、書き込み対象の画素回路について、前記補償用スイッチング素子を導通状態に制御して前記駆動素子の制御端子に閾値電圧に応じた電位を与え、その後に、前記補償用スイッチング素子を導通状態に保ったままで前記補償用コンデンサの第2の電極に与える電位を切り替えて、前記駆動素子の制御端子に前記表示データと前記閾値電圧に応じた書き込み電位を与えることを特徴とする、表示装置。
  2.  前記画素回路は、
      前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、
      前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、
      前記駆動素子の制御端子と他方の電流入出力端子との間に設けられた保持用コンデンサとをさらに含む、請求項1に記載の表示装置。
  3.  前記駆動回路は、書き込み対象の画素回路について、前記データ線に所定の基準電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、その後に、各スイッチング素子の状態を保ったままで、前記データ線に与える電位を前記データ電位に切り替えることを特徴とする、請求項2に記載の表示装置。
  4.  前記画素回路は、
      前記駆動素子の一方の電流入出力端子と前記第1の電源配線との間に設けられた遮断用スイッチング素子と、
      前記駆動素子の他方の電流入出力端子と前記データ線との間に設けられた書き込み用スイッチング素子とをさらに含み、
     前記補償用コンデンサの第2の電極は、前記駆動回路が電位を与える制御配線に接続されていることを特徴とする、請求項1に記載の表示装置。
  5.  前記駆動回路は、書き込み対象の画素回路について、前記データ線に前記データ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、その後に、各スイッチング素子の状態を保ったままで、前記駆動素子の制御端子に前記書き込み電位が与えられるように前記制御配線に与える電位を切り替えることを特徴とする、請求項4に記載の表示装置。
  6.  前記駆動回路は、前記駆動素子の制御端子に前記書き込み電位が与えられるように前記制御配線に与える電位を切り替えた後に、前記データ線に与える電位を前記データ電位よりも前記駆動素子の制御端子の電位に近い基準電位に切り替えることを特徴とする、請求項5に記載の表示装置。
  7.  前記駆動回路は、書き込み対象の画素回路について、前記書き込み用スイッチング素子を導通状態に制御している間、前記データ線に対して、前記表示データと前記制御配線に与える電位の変化量とによって定まる電位を与えることを特徴とする、請求項5に記載の表示装置。
  8.  前記駆動回路は、書き込み対象の画素回路について、前記書き込み用スイッチング素子を導通状態に制御している間、前記データ線に対して、前記電気光学素子への印加電圧が発光閾値電圧以下となる電位を与えることを特徴とする、請求項5に記載の表示装置。
  9.  前記画素回路は、
      前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、
      前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、
      前記補償用コンデンサの第2の電極と第3の電源配線との間に設けられた第1の初期化用スイッチング素子と、
      前記駆動素子の一方の電流入出力端子と前記第3の電源配線との間に設けられた第2の初期化用スイッチング素子とをさらに含む、請求項1に記載の表示装置。
  10.  前記駆動回路は、書き込み対象の画素回路について、前記データ線に対して前記データ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子と前記第2の初期化用スイッチング素子を導通状態に、前記遮断用スイッチング素子と前記第1の初期化用スイッチング素子を非導通状態に制御し、その後に、前記補償用スイッチング素子を導通状態に保ったままで、前記書き込み用スイッチング素子を非導通状態に、前記第1の初期化用スイッチング素子を導通状態に制御することを特徴とする、請求項9に記載の表示装置。
  11.  複数の走査線と複数のデータ線の各交差点に対応して配置された複数の画素回路を備えた電流駆動型の表示装置の駆動方法であって、
     前記画素回路が、第1の電源配線と第2の電源配線との間に設けられた電気光学素子と、前記第1の電源配線と前記第2の電源配線との間に前記電気光学素子と直列に設けられた駆動素子と、前記駆動素子の制御端子に第1の電極が接続された補償用コンデンサと、前記駆動素子の制御端子と一方の電流入出力端子との間に設けられた補償用スイッチング素子とを含む場合に、
     前記走査線を用いて書き込み対象の画素回路を選択する選択ステップと、
     書き込み対象の画素回路について、前記補償用スイッチング素子を導通状態に制御して前記駆動素子の制御端子に閾値電圧に応じた電位を与える閾値状態設定ステップと、
     前記閾値状態設定ステップの後に、書き込み対象の画素回路について、前記補償用スイッチング素子を導通状態に保ったままで前記補償用コンデンサの第2の電極に与える電位を切り替えて、前記駆動素子の制御端子に表示データと前記閾値電圧に応じた書き込み電位を与える導通状態設定ステップとを備えた、表示装置の駆動方法。
  12.  前記画素回路が、前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、前記駆動素子の制御端子と他方の電流入出力端子との間に設けられた保持用コンデンサとをさらに含む場合に、
     前記閾値状態設定ステップは、書き込み対象の画素回路について、前記データ線に所定の基準電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、
     前記導通状態設定ステップは、各スイッチング素子の状態を保ったままで、前記データ線に与える電位を前記表示データに応じたデータ電位に切り替えることを特徴とする、請求項11に記載の駆動方法。
  13.  前記画素回路が、前記駆動素子の一方の電流入出力端子と前記第1の電源配線との間に設けられた遮断用スイッチング素子と、前記駆動素子の他方の電流入出力端子と前記データ線との間に設けられた書き込み用スイッチング素子とをさらに含み、前記補償用コンデンサの第2の電極が制御配線に接続されている場合に、
     前記閾値状態設定ステップは、書き込み対象の画素回路について、前記データ線に対して前記表示データに応じたデータ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子を導通状態に、前記遮断用スイッチング素子を非導通状態に制御し、
     前記導通状態設定ステップは、各スイッチング素子の状態を保ったままで、前記駆動素子の制御端子に前記書き込み電位が与えられるように前記制御配線に与える電位を切り替えることを特徴とする、請求項11に記載の駆動方法。
  14.  前記画素回路が、前記補償用コンデンサの第2の電極と前記データ線との間に設けられた書き込み用スイッチング素子と、前記駆動素子と前記電気光学素子との間に設けられた遮断用スイッチング素子と、前記補償用コンデンサの第2の電極と第3の電源配線との間に設けられた第1の初期化用スイッチング素子と、前記駆動素子の一方の電流入出力端子と前記第3の電源配線との間に設けられた第2の初期化用スイッチング素子とをさらに含む場合に、
     前記閾値状態設定ステップは、書き込み対象の画素回路について、前記データ線に対して前記表示データに応じたデータ電位を与えながら、前記書き込み用スイッチング素子と前記補償用スイッチング素子と前記第2の初期化用スイッチング素子を導通状態に、前記遮断用スイッチング素子と前記第1の初期化用スイッチング素子を非導通状態に制御し、
     前記導通状態設定ステップは、前記補償用スイッチング素子を導通状態に保ったままで、前記書き込み用スイッチング素子を非導通状態に、前記第1の初期化用スイッチング素子を導通状態に制御することを特徴とする、請求項11に記載の駆動方法。
PCT/JP2009/059946 2008-08-07 2009-06-01 表示装置およびその駆動方法 WO2010016316A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010523796A JP5199367B2 (ja) 2008-08-07 2009-06-01 表示装置およびその駆動方法
US12/737,294 US8674914B2 (en) 2008-08-07 2009-06-01 Display device and method of driving the same
CN200980126608.6A CN102089798B (zh) 2008-08-07 2009-06-01 显示装置及其驱动方法
EP09804803.6A EP2309478B1 (en) 2008-08-07 2009-06-01 Display apparatus and method of driving the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008203765 2008-08-07
JP2008-203765 2008-08-07

Publications (1)

Publication Number Publication Date
WO2010016316A1 true WO2010016316A1 (ja) 2010-02-11

Family

ID=41663541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059946 WO2010016316A1 (ja) 2008-08-07 2009-06-01 表示装置およびその駆動方法

Country Status (6)

Country Link
US (1) US8674914B2 (ja)
EP (1) EP2309478B1 (ja)
JP (3) JP5199367B2 (ja)
CN (2) CN102089798B (ja)
RU (1) RU2457551C1 (ja)
WO (1) WO2010016316A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003205A (ja) * 2010-06-21 2012-01-05 Canon Inc 表示装置およびその駆動方法
JP2012033447A (ja) * 2010-08-03 2012-02-16 Nec Lighting Ltd 照明装置およびその制御方法
US20120127150A1 (en) * 2010-11-18 2012-05-24 Lg Display Co., Ltd. Organic Light Emitting Diode Display Device and Method for Driving the Same
JP2013101265A (ja) * 2011-11-09 2013-05-23 Samsung Display Co Ltd 電気光学装置の駆動方法および電気光学装置
WO2013164965A1 (ja) * 2012-05-01 2013-11-07 三星ディスプレイ株式会社 電気光学装置およびその駆動方法
JP2015152775A (ja) * 2014-02-14 2015-08-24 セイコーエプソン株式会社 電気光学装置および電子機器
US9269297B2 (en) 2013-08-29 2016-02-23 Samsung Display Co., Ltd. Electro-optical device
CN107665664A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 有机发光显示器及其驱动方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0912837A2 (pt) * 2008-05-20 2015-10-13 Sharp Kk dispositivo de display, circuito de pixel, e método para acionar o mesmo
KR101056293B1 (ko) * 2009-10-26 2011-08-11 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
KR20120111675A (ko) * 2011-04-01 2012-10-10 삼성디스플레이 주식회사 유기발광 표시 장치, 유기발광 표시 장치를 위한 데이터 구동 장치 및 그 구동 방법
WO2014174905A1 (ja) * 2013-04-23 2014-10-30 シャープ株式会社 表示装置およびその駆動電流検出方法
TWI548112B (zh) 2013-05-14 2016-09-01 友達光電股份有限公司 發光二極體模組
US9057899B2 (en) * 2013-09-09 2015-06-16 Shenzhen China Star Optoelectronics Technology Co., Ltd Array substrate and liquid crystal panel
CN104167173B (zh) * 2014-08-01 2017-05-17 上海和辉光电有限公司 主动式有机发光二极管显示器的像素电路
CN104409047B (zh) 2014-12-18 2017-01-18 合肥鑫晟光电科技有限公司 像素驱动电路、像素驱动方法和显示装置
CN104409051A (zh) * 2014-12-24 2015-03-11 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN104409050B (zh) * 2014-12-24 2017-02-15 京东方科技集团股份有限公司 Oled像素电路及其驱动方法、显示面板及显示装置
CN105989796B (zh) * 2015-02-05 2019-08-30 群创光电股份有限公司 具有临界电压补偿的有机发光二极管显示面板及驱动方法
JP6677383B2 (ja) * 2015-03-03 2020-04-08 天馬微電子有限公司 電子回路、走査回路及び表示装置並びに電子回路の寿命延長方法
KR102390958B1 (ko) * 2015-06-22 2022-04-27 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN111052216B (zh) * 2017-09-12 2022-06-21 夏普株式会社 显示装置及其驱动方法
CN107591126A (zh) * 2017-10-26 2018-01-16 京东方科技集团股份有限公司 一种像素电路的控制方法及其控制电路、显示装置
CN109727570A (zh) 2017-10-31 2019-05-07 云谷(固安)科技有限公司 一种像素电路及其驱动方法、显示装置
CN107909966B (zh) * 2017-12-08 2020-01-21 京东方科技集团股份有限公司 一种像素驱动电路、其驱动方法及显示装置
CN109936890B (zh) * 2017-12-18 2022-03-15 群创光电股份有限公司 电子装置
CN111837173B (zh) * 2018-03-19 2022-07-22 夏普株式会社 显示装置以及其驱动方法
CN108538249B (zh) * 2018-06-22 2021-05-07 京东方科技集团股份有限公司 像素驱动电路及方法、显示装置
CN111724733B (zh) * 2020-06-19 2021-07-23 武汉天马微电子有限公司 一种像素驱动电路、其驱动方法及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514320A (ja) * 1997-04-23 2002-05-14 サーノフ コーポレイション アクティブマトリックス発光ダイオードピクセル構造及び方法
JP2006047787A (ja) * 2004-08-05 2006-02-16 Sharp Corp 表示装置およびその駆動方法
JP2006215213A (ja) * 2005-02-02 2006-08-17 Sony Corp 画素回路及び表示装置とその駆動方法
JP2007133369A (ja) * 2005-11-09 2007-05-31 Samsung Sdi Co Ltd 画素及び発光表示装置
JP2008051960A (ja) * 2006-08-23 2008-03-06 Sony Corp 画素回路
JP2008216941A (ja) * 2007-03-08 2008-09-18 Seiko Epson Corp 画素回路の駆動方法、電気光学装置および電子機器
JP2009031782A (ja) * 2007-06-29 2009-02-12 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP2009115840A (ja) * 2007-11-01 2009-05-28 Toshiba Matsushita Display Technology Co Ltd アクティブマトリクス型表示装置及びアクティブマトリクス型表示装置の駆動方法
JP2009115839A (ja) * 2007-11-01 2009-05-28 Toshiba Matsushita Display Technology Co Ltd アクティブマトリクス型表示装置及びアクティブマトリクス型表示装置の駆動方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012274A (en) 1987-12-31 1991-04-30 Eugene Dolgoff Active matrix LCD image projection system
US6229506B1 (en) * 1997-04-23 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
BR0009298A (pt) * 1999-03-24 2002-02-05 Avix Inc Sistema de exibição de led inteiramente a cores
RU2249858C2 (ru) 1999-03-30 2005-04-10 Эвикс Инк. Система полноцветного светодиодного дисплея
JP4425574B2 (ja) * 2003-05-16 2010-03-03 株式会社半導体エネルギー研究所 素子基板及び発光装置
JP4484451B2 (ja) * 2003-05-16 2010-06-16 奇美電子股▲ふん▼有限公司 画像表示装置
JP5392963B2 (ja) * 2005-04-19 2014-01-22 インテレクチュアル キーストーン テクノロジー エルエルシー 電気光学装置及び電子機器
JP2007025192A (ja) * 2005-07-15 2007-02-01 Seiko Epson Corp 電子装置、その駆動方法、電気光学装置および電子機器
KR101322195B1 (ko) 2005-09-15 2013-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 이의 구동 방법
JP5076457B2 (ja) 2006-11-24 2012-11-21 ソニー株式会社 映像信号処理装置、映像信号処理方法
JP2008134509A (ja) * 2006-11-29 2008-06-12 Sony Corp 表示装置
JP2008158303A (ja) * 2006-12-25 2008-07-10 Sony Corp 表示装置
BRPI0912837A2 (pt) * 2008-05-20 2015-10-13 Sharp Kk dispositivo de display, circuito de pixel, e método para acionar o mesmo

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514320A (ja) * 1997-04-23 2002-05-14 サーノフ コーポレイション アクティブマトリックス発光ダイオードピクセル構造及び方法
JP2006047787A (ja) * 2004-08-05 2006-02-16 Sharp Corp 表示装置およびその駆動方法
JP2006215213A (ja) * 2005-02-02 2006-08-17 Sony Corp 画素回路及び表示装置とその駆動方法
JP2007133369A (ja) * 2005-11-09 2007-05-31 Samsung Sdi Co Ltd 画素及び発光表示装置
JP2008051960A (ja) * 2006-08-23 2008-03-06 Sony Corp 画素回路
JP2008216941A (ja) * 2007-03-08 2008-09-18 Seiko Epson Corp 画素回路の駆動方法、電気光学装置および電子機器
JP2009031782A (ja) * 2007-06-29 2009-02-12 Semiconductor Energy Lab Co Ltd 表示装置及びその駆動方法
JP2009115840A (ja) * 2007-11-01 2009-05-28 Toshiba Matsushita Display Technology Co Ltd アクティブマトリクス型表示装置及びアクティブマトリクス型表示装置の駆動方法
JP2009115839A (ja) * 2007-11-01 2009-05-28 Toshiba Matsushita Display Technology Co Ltd アクティブマトリクス型表示装置及びアクティブマトリクス型表示装置の駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2309478A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003205A (ja) * 2010-06-21 2012-01-05 Canon Inc 表示装置およびその駆動方法
JP2012033447A (ja) * 2010-08-03 2012-02-16 Nec Lighting Ltd 照明装置およびその制御方法
US20120127150A1 (en) * 2010-11-18 2012-05-24 Lg Display Co., Ltd. Organic Light Emitting Diode Display Device and Method for Driving the Same
US8884853B2 (en) * 2010-11-18 2014-11-11 Lg Display Co., Ltd. Organic light emitting diode display device and method for driving the same
JP2013101265A (ja) * 2011-11-09 2013-05-23 Samsung Display Co Ltd 電気光学装置の駆動方法および電気光学装置
US9236001B2 (en) 2011-11-09 2016-01-12 Samsung Display Co., Ltd. Method of driving electro-optic device and electro-optic device in which light emitting elements emit light concurrently in a period during one frame
WO2013164965A1 (ja) * 2012-05-01 2013-11-07 三星ディスプレイ株式会社 電気光学装置およびその駆動方法
CN104620307A (zh) * 2012-05-01 2015-05-13 三星显示有限公司 电光学设备和驱动电光学设备的方法
US9269297B2 (en) 2013-08-29 2016-02-23 Samsung Display Co., Ltd. Electro-optical device
JP2015152775A (ja) * 2014-02-14 2015-08-24 セイコーエプソン株式会社 電気光学装置および電子機器
CN107665664A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 有机发光显示器及其驱动方法

Also Published As

Publication number Publication date
US20110096059A1 (en) 2011-04-28
JP5512000B2 (ja) 2014-06-04
JPWO2010016316A1 (ja) 2012-01-19
JP5199367B2 (ja) 2013-05-15
CN103762225B (zh) 2015-11-18
JP2013140375A (ja) 2013-07-18
CN102089798B (zh) 2014-03-19
EP2309478A4 (en) 2011-07-27
CN103762225A (zh) 2014-04-30
EP2309478B1 (en) 2014-08-27
RU2457551C1 (ru) 2012-07-27
JP5734403B2 (ja) 2015-06-17
CN102089798A (zh) 2011-06-08
JP2014089459A (ja) 2014-05-15
EP2309478A1 (en) 2011-04-13
US8674914B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
JP5734403B2 (ja) 表示装置およびその駆動方法
JP5014338B2 (ja) 電流駆動型表示装置
US8289246B2 (en) Electric current driving type display device and pixel circuit
EP2200010B1 (en) Current-driven display
US20100073344A1 (en) Pixel circuit and display device
EP2453432A1 (en) Display device
JP4327042B2 (ja) 表示装置およびその駆動方法
CN109166522B (zh) 像素电路、其驱动方法及显示装置
WO2006103802A1 (ja) 表示装置及びその駆動方法
JP4685100B2 (ja) 表示装置およびその駆動方法
JP5121926B2 (ja) 表示装置、画素回路およびその駆動方法
JP5034208B2 (ja) 表示装置および表示装置の駆動方法
CN115775524A (zh) 微型发光二极管像素电路及驱动方法
WO2007108149A1 (ja) 表示装置及びその駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126608.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523796

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009804803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12737294

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1467/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011108567

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0917954

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110207